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Abstract

A Bayesian approach is presented for selecting the most probable model class among a set of damage me-

chanics models for fatigue damage progression in composites. Candidate models, that are first parameterized

through a Global Sensitivity Analysis, are ranked based on estimated probabilities that measure the extent

of agreement of their predictions with observed data. A case study is presented using multi-scale fatigue

damage data from a cross-ply CFRP laminate. The results show that, for this case, the most probable model

class among the competing candidates is the one that involves the simplest damage mechanics. The principle

of Ockham’s razor seems to hold true for the composite materials investigated here since the data-fit of more

complex models is penalized, as they extract more information from the data.
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1. Introduction

Modeling the progression of fatigue damage in fiber-reinforced polymer (FRP) composite materials is

still a challenging problem with important implications for safety and cost in a wide range of engineering

applications. Although composites are high-performance materials with high strength-weight ratios, they are

susceptible to fatigue degradation from the beginning of lifespan [1]. Unlike metals, fatigue in composites is

governed by complex multi-scale damage processes driven by several internal fracture events that ultimately

lead to the alteration of the macro-scale mechanical properties [1, 2]. The inherent complexity of this

process implies uncertainty in modeling, that not only includes the uncertainty in model parameters but also

the uncertainty arising from the choice of a particular model class (e.g., the parameterized mathematical

structure of the model for predicting damage behavior). This paper focuses on quantifying model uncertainty

of a set of candidate damage mechanics models for composites, through a full Bayesian approach that
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simultaneously estimates the plausibility of each individual model class along with the uncertainty of the

underlying model parameters.

Some researchers have started investigating the role of uncertainties in modeling the behavior of com-

posites materials. For example, Sriramula and Chryssanthopoulos [3] discussed different stochastic modeling

approaches for analyzing uncertainties at the ply-level, coupon-level and component-level. Uncertainty quan-

tification methods have also been used to assess the uncertainty in the material properties [4, 5] and extended

it to study a variety of phenomena such as elastic response [6, 7], aeroelastic behavior [8], and reliability [9],

among others. The topic of uncertainty in composites is slowly gaining interest, and there is an evident need

for the development of a rigorous treatment of uncertainty in modeling the progression of fatigue damage of

composite materials.

In particular, the Bayesian approach has been successfully applied for uncertainty quantification in

fatigue, but mainly in the context of metals. Cross et al. [10] and Sankararaman et al. [11] used Bayesian

inference to estimate parameters underlying crack growth behavior. Sankararaman et al. [12] also used

dynamic Bayesian networks for model parameter estimation and calculated Bayes factors as a means to

quantify model uncertainty. Recently, Chiachío et al. [13] have proposed a new stochastic damage model

for fatigue based on Markov chains and have applied a Bayesian model selection framework to account for

model uncertainty.

In summary, the application of Bayesian methods for assessing the modeling uncertainty still remains very

limited in the fatigue literature. Therefore it seems reasonable to explore the applicability of these methods

to fatigue damage progression in composites materials, where the benefits of the Bayesian approach can be

fully exploited due to the inherent complexity and the existence of multiple competing models.

This paper proposes a rigorous Bayesian framework to account for modeling uncertainty in application

to the problem of fatigue damage progression in composite materials. To this end, Bayes’ Theorem is applied

at two levels: first, to quantify the uncertainty regarding the model parameters for a specific model class,

and second, to assess the probability of each model class within a set of candidate damage mechanics

models. Here, probability is interpreted as a multi-valued logic that expresses the degree of belief of a

proposition conditioned on the given information [14, 15]. Consequently, the approach has the advantage of

being able to quantify the uncertainties associated with (1) model parameters and (2) model choice for the

damage behavior, and then to further make predictions of fatigue degradation that rigorously incorporate

different types of modeling uncertainty in a quantitative manner.

A set of five model classes pertaining to three families of damage mechanics models [16] (i.e., shear-lag,

variational and crack opening displacement (COD)) is chosen to represent the relation between the macro-

scale stiffness reduction and the micro-scale damage, due to matrix-cracks. Damage mechanics models are

preferred over other analytical approaches (e.g. continuum damage mechanics models or synergistic damage

mechanics models [16]) due to their efficiency in relation to the assumptions adopted, and for being well
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connected with the physics of the underlying damage process. Moreover, these models have the ability to

adapt to different systems (specimen, materials, conditions, etc.) without much training and furthermore,

they can incorporate monitoring data in the Structural Health Monitoring (SHM) context.

Each candidate damage mechanics model is subsequently embedded into themodified Paris’ law [17], that

is used in this study to model the propagation forward in time of the matrix-cracks density. This two-level

modeling approach results in a large number of uncertain parameters, leading to a computationally-intensive

inference problem. To reduce the dimensionality of the problem without significantly altering the underlying

uncertainty in the model output, a model input tuning is carried out by means of a Global Sensitivity

Analysis (GSA) [18]. This allows to determine in advance the subset of parameters that are most "sensitive"

to the model output uncertainty.

As a validation example, the proposed Bayesian framework is applied to damage data for matrix-crack

density and stiffness reduction from a tension-tension fatigue experiment performed over a cross-ply CFRP

laminate [19, 20]. The results show that more complicated damage mechanics models not only involve more

complicated analysis and adjustable parameters, but also do not yield higher probabilities in explaining the

observed damage response. In this context, the evidence (also called as marginal likelihood) of each model

class is revealed as a suitable measure to know the overall ability of the candidate model to predict the

observed damage response, avoiding the extremes of over-fitting or under-fitting the data.

The paper is organized as follows. Section 2 discusses the theory behind fatigue damage in composites

and presents the proposed methodology for fatigue damage modeling. In Section 3, the Bayesian inference

framework for both model parameters and model classes is presented together with the problem of model

parameterization using GSA. Section 4 is devoted to providing implementation details for conferring com-

putational efficiency to the Bayesian inference problem. In particular, the computation of the likelihood

function using the Graphics Processing Unit (GPU) is illustrated. In Section 5, the proposed framework is

applied to a set of fatigue damage data to serve as an example. Finally Section 6 discusses the results and

Section 7 provides concluding remarks.

2. Fatigue damage modeling

Typically, fatigue damage is perceived as a progressive or sudden change of the macro-scale mechanical

properties, such as stiffness or strength, as a consequence of different fracture modes that evolve at the

micro-scale along the lifespan of the structure [2]. In this research work, longitudinal stiffness loss is chosen

as the macro-scale damage variable. In contrast to the strength, the stiffness can be measured through

non-destructive methods during operation, which is of key importance for the model-updating approach

proposed. At the micro-scale level, matrix micro-cracking [21] is selected as the dominant fracture mode for

the early stage of damage accumulation.
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Matrix cracks usually initiate from internal defects in 90◦ plies during first loading cycles, and grow

rapidly along fibers direction spanning the entire width of the specimen [21]. Continued loading leads to

formation of new cracks between the already formed cracks thereby progressively increasing the matrix-cracks

density of the ply until saturation. This saturated state, usually termed as characteristic damage state [1], is

long recognized as a precursor of more severe fracture modes in adjacent plies, such as delamination and

fiber breakage [22, 23], which may subsequently lead to the catastrophic failure of the laminate. In addition,

matrix micro-cracking may itself constitute failure of the design when micro-cracks induced degradation in

properties exceeds the predefined threshold.

To accurately represent the relation between this micro-scale damage mode and its manifestation through

macro-scale properties, several families of micro-damage mechanics models can be found in the litera-

ture [16]. These models, that are grounded on first principles of admissible ply stress fields in presence of

damage, can be roughly classified into 1) computational methods, 2) semi-analytical methods and 3) analy-

tical methods. Among them, computational and semi-analytical methods have been shown to be promising

approaches, however they are computationally intensive; hence a large number of repeated evaluations in

a simulation-based inference procedure is computationally prohibitive. Therefore, we focus here on the set

of analytical models to address the relationship between stiffness loss and micro-crack density. Three types

of analytical models are considered: shear-lag models [24, 25], variational models [26], and crack opening

displacement based models [27, 28].

Shear-lag models use one-dimensional approximations of the equilibrium stress field after cracking to

derive expressions for stiffness properties of the cracked laminate. The main modeling assumption is basically

that, in the position of matrix cracks, axial load is transferred to uncracked plies by the axial shear stresses

at the interfaces. These models have received the most attention in the literature and, as a consequence, a

vast number of modifications and extensions of that analysis can be found. However, as stated by Talreja

and Singh [16], all the one-dimensional shear-lag models are virtually identical, except for the choice of the

shear-lag parameter, as explained later in this section.

Variational models are based on a two-dimensional approximation of the equilibrium stress field, that in

contrast to shear-lag analysis, is obtained from the Principle of Minimum Complementary Energy [29, 30].

Finally, COD-based models use a 3-D homogenization procedure derived from the study of the average

crack-face opening displacement of a single matrix crack as a function of the applied load, that can be calcu-

lated either analytically [27] or numerically [28, 31, 32]. While shear-lag and variational models are applicable

mostly to cross-ply laminates (i.e. those with stacking sequence
[
0n0

2
/90n90

/0n0
2

]
, where n0,90 = total num-

ber of plies at 0◦ and 90◦, respectively), COD-based models are applicable to general laminates with an ar-

bitrary distribution of matrix cracks. The reader is referred to the recent work of Talreja and Singh [16] for a

detailed overview of these models, but for the sake of clarity, the key formulation is appropriately reproduced

here with a uniform notation.
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2.1. Shear-lag and variational models

Following the unifying formulation of Joffe and Varna [33], the effective longitudinal Young’s modulus

E∗
x can be calculated in

[
φnφ

2
/90n90

/φnφ
2

]
laminates (where φ ∈ [−90◦, 90◦]) as a function of the crack-

spacing in 90◦ layers for both shear-lag and variational models as follows:

E∗
x =

Ex,0

1 + a 1
2l̄
R(l̄)

(1)

In the last equation, Ex,0 is the longitudinal Young’s modulus of the undamaged laminate, l̄ = l
t90

is the

half crack-spacing normalized with the 90◦ sub-laminate thickness, R(l̄) is the average stress perturbation

function, and a is a known function of laminate properties (defined in Appendix A). It should be noted

that matrix-cracks density is usually defined as ρ = 1
2l , so that the normalized half crack-spacing l̄ can be

expressed as a function of ρ as l̄ = 1
2ρt90

. The function R(l̄) takes different expressions depending on the

approach considered:

R(l̄) =
2

ξ
tanh(ξl̄) (Shear-Lag) (2a)

R(l̄) =
4α1α2

α2
1 + α2

2

cosh(2α1 l̄)− cos(2α2 l̄)

α2 sinh(2α1 l̄) + α1 sin(2α2 l̄)
(Variational) (2b)

where ξ is the shear-lag parameter, and α1, α2 are known functions dependent on ply and laminate proper-

ties, as described in Appendix A. Depending on the choice of parameter ξ, different shear-lag models, that

have been proposed in the literature, can be obtained [16].

In this paper three candidate shear-lag models are selected, namely, the "classical" shear-lag model

[24, 34] and two of its modifications: interlaminar shear-lag model [25], and bi-dimensional shear-lag model

[35, 36]. The main difference between the classical approach and the interlaminar approach is that the later

assumes that shear stresses develop within a resin rich region near the interfaces between adjacent plies,

whose thickness d0 and shear modulus Gm are uncertain. The bi-dimensional approach is essentially equiva-

lent to the classical approach except for that it introduces a minor correction to account for the Poisson’s

effect [16, 37]. See [16] for further discussion about shear-lag analysis.

The shear-lag parameter of each candidate model can be obtained as a function of ply and laminate

properties (see Appendix A for nomenclature description), as follows:

ξ2 = G23

(
1

E2
+

1

λE
(φ)
x

)
(classical) (3a)

ξ2 =
Gm
d0

t90

(
1

E2
+

1

λE
(φ)
x

)
(interlaminar) (3b)

ξ2 =

1
Q22

+ 1

λQ
(φ)
xx

1
3G23

+ λ

3G
(φ)
xz

(bi-dimensional) (3c)
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where Q22 in Equation 3c is the (2, 2)th element of the on-axis (local coordinates) ply stiffness matrix,

defined as Q22 = E2

1−ν2
12
E2/E1

, and Q
(φ)
xx is the (1, 1)th element of the stiffness matrix of the

[
φnφ

2

]
sub-

laminate. Given the ply stiffness matrix, which can be straightforwardly obtained from basic ply properties,

the stiffness matrix of the total laminate or any sub-laminate can be obtained using the classical laminates

plate theory [38].

2.2. Crack opening displacement model

For the COD-based model, the formulation of Gudmundson and Zang [27] is adopted, that use a closed-

form expression for the average COD to derive expressions for the effective longitudinal Young’s modulus

in laminates with general layup, as:

E∗
x =

1
(

(S0)−1 −∑N
k=1 ν

ktkρk(Ak)T
∑N
i=1 β

ikAi
)−1

(1,1)

(4)

In the last equation, S0 is the in-plane compliance matrix of the intact laminate, N is the number of plies

and, νk, tk and ρk stand for the volume fraction, the thickness and the matrix-cracks density of the kth ply,

respectively. Ak is a matrix determined by the compliance matrix and the unit normal vector on the crack

surfaces of the kth ply, and βik is a matrix associated with the average crack opening displacements and

tractions of the surface of transverse cracks. Both are detailed in Appendix A. The subscript (1, 1) in

Equation 4 denotes the first component of the resulting matrix.

2.3. Damage propagation model

Having identified the candidate models to express the relationship between effective stiffness and micro-

cracks density, the next step is to address the time evolution of the micro-cracks density. To this end, the

previously explained micro-damage mechanics models are used to obtain the energy released per unit crack

area due to the formation of a new crack between two existing cracks, denoted here as G. This energy, known

as energy release rate (ERR), can be calculated as [39, 40]:

G =
σ2
xh

2ρt90

(
1

E∗
x(2ρ)

− 1

E∗
x(ρ)

)
(5)

where σx is the applied axial tension, and h and t90 are the laminate and 90◦-sublaminate half-thickness,

respectively. The result of the energy calculation is further introduced into the modified Paris’ law [17] to

obtain the evolution of matrix-cracks density as a function of fatigue cycle n, as shown below:

dρ

dn
= A(∆G)α (6)

where A and α are fitting parameters and ∆G is the increment in ERR for a specific stress amplitude:

∆G = G(σx,max)−G(σx,min). Due to the complexity of the expression for ∆G, which involves the underlying
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micro-damage mechanics models for the computation of E∗
x(ρ), a closed-form solution for Equation 6 is hard

to obtain. To overcome this drawback, the resulting differential equation can be solved by approximating

the derivative using "unit-time" finite differences, considering that damage evolves cycle-to-cycle as:

ρn = ρn−1 +A (∆G(ρn−1))
α (7)

To summarize, five micro-damage mechanics models, namely shear-lag (×3), variational and COD models,

are selected to compute E∗
x(ρ), i.e. the relationship between the effective stiffness (macro-scale) and the

matrix-cracks density (micro-scale). The evolution of matrix-cracks density is modeled by the modified

Paris’ law in Equation 7, that uses one of the candidate damage mechanics models to evaluate the increment

in ERR. Therefore, for this study, five candidate models are considered to investigate the overall damage

progression at both micro-scale and macro-scale.

3. Bayesian methodology

3.1. Model class definition by stochastic embedding

For the purpose of Bayesian model selection and parameter estimation, a probability-based description

of the deterministic damage models described in Section 2 is needed. To this end, let us consider a candidate

damage model that is defined by a deterministic relationship g = g(u,m) : RNi ×RNm → RNo , between the

model input u ∈ RNi and the model output g ∈ RNo , given a set of Nm uncertain model parameters m ∈
RNm . This damage model can be “embedded” stochastically [15] by adding an error term e = e(v) : RNe →
RNo parameterized by v ∈ RNe , that represents the difference between the measured output y ∈ RNo and

the model output g, as follows:

y︸︷︷︸
measurements

= g(u,m)︸ ︷︷ ︸
model

+ e(v)︸︷︷︸
error

(8)

In the last equation, it is assumed that both the measurement and model errors are subsumed into

e(v). Such assumption is commonly adopted when the measurement error is negligible compared with the

model error, or when an independent study about the measurement error is not available. In addition, the

set m of model parameters is augmented with the set v of error parameters, resulting in a set of model

parameters defined as θ = {m,v} ∈ Θ ⊂ Rd=Nm+Ne . This set of parameters is further updated through

Bayes’ Theorem, as explained below.

It should be noted here that the probability model chosen for the error term e in Equation 8 determines

the probability model for the observed output y. For example, if the error term is assumed to be modeled

as a Gaussian distribution, i.e. e ∼ N (µe,Σe), then the observed output y will be also distributed as a

Gaussian, as follows:

e = y − g(u,θ) ∼ N (µe,Σe) =⇒ y ∼ N (g(u,θ) + µe,Σe) (9)
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where µe ∈ RNo is a systematic bias between model output and observations, and Σe ∈ RNo×No is

a covariance matrix. This assumption is supported by the Principle of Maximum Information Entropy

(PMIE) [14, 41], which enables a rational way to establish a probability model for the error term such

that it produces the largest uncertainty (largest Shannon entropy). Thus, by adopting this assumption, a

stochastic model of damage can be defined from any deterministic damage model g(u,θ), as

p(y|u,θ,M) =
(
(2π)No |Σe|

)− 1
2 exp

(
−1

2
(y − ȳ)

T
Σ−1

e (y − ȳ)

)
(10)

where ȳ = g(u,θ) + µe denotes the mean output of the stochastic model andM represents the candidate

Bayesian model class, defined by the stochastic model of damage and the prior probability density function

(PDF) of model parameters, p(θ|M). This prior PDF represents the initial relative plausibility of parame-

ters θ before the information from measurements is incorporated through Bayesian updating, as explained

further below.

3.2. Stochastic embedding for deterministic damage models

As discussed in Section 2, the progression of fatigue damage in composites is studied at every fatigue

cycle n by focusing on two of its manifestations: the matrix-cracks density, ρn, and the normalized effective

stiffness, defined as Dn =
E∗x
Ex,0

. Then, according to Equation 8, the system response can be represented by:

ρn = g1(ρn−1,u,θ)︸ ︷︷ ︸
Equation 7

+e1 (11a)

Dn = g2(ρn,u,θ)︸ ︷︷ ︸
Equations 1 & 4

+e2 (11b)

where subscripts 1 and 2 denote the corresponding damage subsystems: matrix-crack density and relative

stiffness reduction, respectively.

From Equations 11a and 11b, the three main elements defining the stochastic damage model in Equa-

tion 10 are identified: (1) the measurements yn = (ρn, Dn) ∈ R2, (2) the model output g = (g1, g2) ∈ R2, and

(3) the corresponding error term e = (e1, e2) ∈ R2. A key concept here is the consideration of errors e1 and e2

as stochastically independent (i.e., not correlated) a priori, even though the models corresponding to the

damage subsystems, g1 and g2, are mathematically related, as shown in Section 2. This means that the co-

variance operator Σe is a diagonal matrix, i.e. Σe = diag(σ2
e1 , σ

2
e2); therefore, Equation 10 can be expressed

as a product of univariate Gaussians, as follows:

p(yn|u,θ,M) = p(ρn|ρn−1,u,θ)p(Dn|ρn,u,θ) (12)

where

p(ρn|ρn−1,u,θ) = N
(
g1(ρn−1,u,θ) + µe1 , σ

2
e1

)
(13a)

p(Dn|ρn,u,θ) = N
(
g2(ρn,u,θ) + µe2 , σ

2
e2

)
(13b)
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and (µe1 , σe1) and (µe2 , σe2) are the parameters (mean and standard deviation) of the error terms e1 and

e2, respectively; i.e., v = {µe1 , σe1 , µe2 , σe2}.
It should be noted that the same assumption of stochastic independency made for v can also be adopted

for the rest of model parameters in θ. Under this assumption, the prior PDF of model parameters p(θ|M)

can be defined as the unconditional product of the individual priors p(θi|M), i = 1, . . . , d; i.e., p(θ|M) =
∏d
i=1 p(θi|M). Note that this assumption is not an assertion that no correlations actually exists in models

parameters, but is only a description of the available prior information about such correlations. If existed,

they will become apparent after Bayesian updating (explained further below) and therefore, they will be

considered in the subsequent forward model simulations.

3.3. Bayesian model updating

The focus of Bayesian model updating is to obtain the posterior PDF of the model parameters θ over

the set Θ ⊂ Rd of possible values in the model classM, from the information of system response contained

in data D. It can be accomplished using Bayes’ Theorem, as follows:

p(θ|D,M)︸ ︷︷ ︸
posterior

= c−1p(D|θ,M) p(θ|M)︸ ︷︷ ︸
prior

(14)

where c is a normalizing constant so that p(θ|D,M) represents a valid PDF, as:
∫

Θ

p(θ|D,M)dθ = c−1

∫

Θ

p(D|θ,M)p(θ|M)dθ = 1 (15)

Here, the PDF p(D|θ,Mj) is known as the likelihood function, and provides a measure of how well the

model specified by θ within the model classM predicts the observed system response D.

3.4. Formulation of the likelihood function from physics-based models

In this study, data D consists of an experimental sequence of N fatigue damage measurements Y =

{y1, . . . ,yn, . . . ,yN} defined over a discrete set of cycles T = {1, . . . , n, . . . , N} ⊂ N, where yn = (ρn, Dn).

The likelihood function is then computed as the probability of predicting the experimental sequence Y by

the stochastic model defined in Equation 12 under the parameterization specified by θ within the model

classM, as follows:

p(Y|θ,M) =

N∏

n=1

p(yn|u,θ,M) (16)

By substituting Equation 12 into Equation 16, the likelihood function can be finally expressed as:

p(Y|θ,M) =

N∏

n=1

p(Dn|ρn,u,θ,M)p(ρn|ρn−1,u,θ,M) (17)

Note that when data are available over a set of non-regularly scheduled cycles TD = {nk, nl, . . . , nN},
TD ⊂ T , the likelihood function defined in Equation 17 cannot be evaluated. This is due to the "one-step"
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description of the matrix-cracks evolution model, as is defined in Equation 11a. To overcome this drawback,

which is usual in fatigue testing, the Total Probability Theorem can be applied to bridge the missing damage

path growth between two non-subsequent measurements of matrix-cracks density. For example, for general

cycles nk and nl, such that nl = nk+∆n with ∆n ∈ N > 1, the probability p(ρnl |ρnk ,u,θ,M) in Equation 17

can be calculated as:

p (ρnl |ρnk ,θ) =

∫
p
(
ρnl |Γnlnk , ρnk ,θ

)
p
(
Γnlnk |ρnk ,θ

)
dΓnlnk (18)

where Γnlnk represents the missing damage sequence between the observed data ρnk and ρnl , i.e. Γnlnk=

{ρnk+1, ρnk+2, . . . , ρnl−1}. Note that, for the sake of clarity, the conditioning on model classM and model

inputs u is dropped.

The high dimensional probability integral in Equation 18 can be readily estimated as a mathematical

expectation using the direct Monte Carlo (MC) method, as:

p (ρnl |ρnk ,θ) ≈ 1

T

T∑

i=1

p
(
ρnl |Γ̃nl,(i)nk

, ρnk ,θ
)

(19)

where Γ̃
nl,(i)
nk = {ρ̃(i)

nk+1, ρ̃
(i)
nk+2, . . . , ρ̃

(i)
nl−1} is the ith simulated sequence of damage growth between cycles nk

and nl, i = 1, . . . , T . It can be obtained by conditional sampling from the stochastic matrix-cracks evolution

model given in Equation 13a: first sample ρ̃(i)
nk+1 using the aforementioned evolution model conditional on

the initial observed state ρnk , i.e. ρ̃
(i)
nk+1 ∼ p(·|ρnk ,θ); then sample the succeeding state conditional on the

previous sample, i.e. ρ̃(i)
nk+2 ∼ p(·|ρ̃(i)

nk+1,θ); finally, repeat the same process until the final damage state in

Γ̃
nl,(i)
nk is reached.

By the Markovian type of evolution of the matrix-cracks density, inherited from the definition of the crack

evolution model in Equation 11a, the probability of any future damage state is conditionally independent of

the past history given the immediately previous state, thus p(ρnl |Γnlnk ,θ) = p(ρnl |ρnl−1,θ). Then Equation

19 can be rewritten as:

p(ρnl |ρnk ,θ) ≈ 1

T

T∑

i=1

p(ρnl |ρ̃
(i)
nl−1,θ) (20)

where ρ̃(i)
nl−1 is the last damage state in Γ̃

nl,(i)
nk . The probability estimate obtained from Equation 20 is further

inserted in Equation 17 to calculate the overall likelihood of the damage model specified by θ in model class

M. Figure A.1 provides further clarification about the calculation of the likelihood along with details for its

computational implementation, as will be shown further below.

3.5. Parameter selection by Global Sensitivity Analysis

The Bayesian approach to model parameter estimation and model class selection involves an inference

problem defined over a multi-dimensional parameter space Θ ⊂ Rd. It is clear that the higher d, the higher

the complexity and computational cost of the updating process. At the same time, adopting a predetermined
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set of model parameters may lead to an unjustified uncertainty reduction [42]. Sankararaman et al. [43]

addressed this issue for fatigue crack growth prediction in metals, where GSA was used to select the model

parameters that were further updated using Bayes’ Theorem. A similar approach has been recently adopted

by Gobbato et al. [44] also in the context of fatigue crack growth prediction in metals, but in this case,

they use a partial-derivate approach for the sensitivity analysis. In this paper, a variance-based approach for

GSA is adopted following the approach by [43] , i.e. simplify the model parameterization by identifying the

subset of parameters that can be fixed at any given value (e.g., the mean or nominal value) of their range

of variation without affecting the uncertainty of the model output.

For the sake of illustration, let consider the model output g : g(ψ) defined in Section 3.1, as a function

of the set of parameters ψ = {u,m} = {ψ1, . . . , ψi, . . . , ψNp} ⊂ RNp=Ni+Nm . Each component ψi is defined

over a non-null range of variation or uncertainty determined by the prior PDF. The goal is to identify

u ⊂ ψ, as the subset of non-influential parameters. The necessary and sufficient condition for parameter ψi

to be non-influential is that STi = 0 [42], where STi is the total effects index of parameter ψi, which can be

computed as [18]:

STi =
Eψ∼i(Vψi(g|ψ∼i))

V (g)
(21)

with STi ∈ [0, 1] and
∑Np
i=1 S

T
i > 1. The numerator of the right hand side of Equation 21 can be evaluated

using double-loop MC sampling, although single-loop MC sampling approaches have also been discussed in

the literature [18]. In the inner loop, the conditional variance Vψi(g|ψ∼i) is calculated by evaluating the

model considering random variations in ψi, when the parameters other than ψi (denoted by ψ∼i) are fixed

at a random value sampled from the associated prior PDFs. The outer loop considers random variations in

ψ∼i and computes the expectation of the aforementioned variance. Finally, the result is divided by V (g), the

unconditional variance of the model response, which can be readily obtained by evaluating the model using

samples from the prior of the complete set parameters ψ. As stated before, the lower the total effects index

of the particular parameter ψi, the smaller its influence for Bayesian updating. Therefore, parameters with

low sensitivity are left out of the updating procedure, thereby reducing the dimensionality of the problem.

This procedure is applied for each candidate damage model and, as a result, a subset m ⊆ ψ of model

parameters arises for each model class. The rest of non-influential parameters are then used as deterministic

input parameters u, hence they can be fixed anywhere within their range of variation. As stated in Section

3.1, the vector m of model parameters is augmented with the parameters v of the error function e, resulting

in a set of model parameters for Bayesian updating defined by θ = {m,v} ∈ Θ ⊂ Rd=Nm+Ne .

3.6. Bayesian model-class selection

The probabilistic approach of model class selection is motivated by the fact that the model itself

may not necessarily reproduce the observed system, but it is just an approximation [14, 45]. The goal
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is to use the available damage data D to asses the probability of the jth model class within the set

M = {M1, . . . ,Mj , . . . ,MNM } of candidate classes for representing the system. Probabilities can be ob-

tained using Bayes’ Theorem at the model class level as:

p(Mj |D,M) =
p(D|Mj)p(Mj |M)

∑NM

i=1
p(D|Mi)p(Mi|M)

(22)

where p(Mj |M) is the prior probability of each model class, that expresses the initial modeler’s judgement

on the relative degree of belief on Mj ∈ M. The factor p(D|Mj) is the evidence (or marginal likelihood)

for the model class Mj , and expresses how likely the observed data are reproduced if model class Mj is

adopted. Note that the evidence is equal to the normalizing constant in establishing the posterior PDF in

Equation 14, so that it can be obtained as:

p(D|Mj) =

∫

Θ

p(D|θ,Mj)p(θ|Mj)dθ (23)

However the evaluation of the last multi-dimensional integral is nontrivial except for some cases where the

Laplace’s method of asymptotic approximation can be used [46]. In this work, a recent technique based on

samples from the posterior is adopted to numerically solve this integral [47].

3.7. Information-theory approach to model-class selection

In addition to compute the plausibility of a particular model class, it is also of much interest to know

the quality of the data-fit in relation to the complexity of such model class, i.e., the amount of information

extracted from data, to avoid the extremes of over-fitting or under-fitting. A common principle enunciated

is that, if data are explained equally well by two models, then the "simpler" one should be preferred (often

referred to as Ockham’s razor [14]). To tackle this problem, Muto and Beck [48] proposed an information-

theoretic interpretation of the evidence for a model class, as follows:

log p(D|Mj) =

∫

Θ

[log p(D|θ,Mj)] p(θ|D,Mj)dθ −
∫

Θ

[
log

p(θ|D,Mj)

p(θ|Mj)

]
p(θ|D,Mj)dθ (24)

= E[log p(D|θ,Mj)]− E
[
log

p(θ|D,Mj)

p(θ|Mj)

]

where E is the expectation respect to the posterior p(θ|D,Mj).

The first term of Equation 24 is a measure of the average goodness of fit (AGF) of the model classMj

to the data D. The second term is the relative entropy between the posterior and the prior PDFs, which

measures the "difference" between those PDFs [49]. This term determines the expected information gained

(EIG) about the model classMj from the data and it is, by definition, always non-negative. Therefore, the

log-evidence of a model class is comprised of a data-fit term and a term that provides a penalty against

more complex model classes, that are those that extract more information from the data to update their

prior information. It allows us to find a correct trade-off between fitting accuracy and model complexity, and
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gives an intuitive understanding of why the computation of evidence automatically enforces a quantitative

expression of the Principle of Model Parsimony or Ockham’s razor [14].

4. Implementation details

The proposed Bayesian methodology involves the evaluation of multi-dimensional integrals of the type

occurring in Equations 14, 18 and 23. The direct Monte Carlo method may be used to estimate these integrals,

although with some known drawbacks of inefficiency and instability [15]. As explained in Section 4.1, Markov

Chain Monte Carlo (MCMC) methods can deal with these difficulties, however they are not straightforward

to implement. In particular, for this research work, there are some implementation issues such as those

shown in Section 4.2, that must be conveniently treated to avoid heavy computation.

4.1. Metropolis-Hastings algorithm for Bayesian model updating

The goal of MCMC methods in Bayesian updating is to generate parameter samples which are distributed

according to the target posterior PDF p(θ|D,Mj). A particular advantage of these methods is that they

only requires specification of the target up to a constant, which avoids the calculation of the normalization

constant in Equation 14. Several MCMC algorithms have been proposed in the literature, such as the

Metropolis-Hastings (M-H) and Gibbs Sampler, among others [50].

In this work, the M-H algorithm [51, 52] is used for its versatility and implementation simplicity. This

algorithm generates samples from a specially constructed Markov chain whose stationary distribution is the

posterior PDF. By sampling a candidate model parameter θ
′
from a proposal distribution q(θ

′ |θ), the M-H

obtains the state of the chain at ζ + 1, given the state at ζ, specified by θ(ζ). The candidate parameter

θ
′
is accepted (i.e. θζ+1 = θ

′
) with probability min{1, r}, and rejected (θ(ζ+1) = θ(ζ)) with the remaining

probability 1−min{1, r}, where:

r =
p(D|θ′ ,Mj)p(θ

′ |Mj)q(θ
(ζ)|θ′)

p(D|θ(ζ),Mj)p(θ
(ζ)|Mj)q(θ

′ |θ(ζ))
(25)

The process is repeated untilNs samples have been generated. More details about this algorithm are provided

in Section 5.2 in the context of the case study presented in this article.

4.2. GPU acceleration of M-H algorithm

It can be observed from Equation 25 that each MCMC step requires the evaluation of the overall like-

lihood function, which (recall Equation 17) involves the evaluation of multi-dimensional integrals such as

those defined by Equation 18. The MC method is applied to numerically solve these integrals, as shown in

Equation 19, however it requires the simulation of T (large enough) damage growth sequences
{

Γ̃
nl,(i)
nk

}T
i=1

,

which increases the computational complexity dramatically.
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To speed up these computations, the evaluation of the heaviest part of the likelihood is carried out in

parallel on the Graphics Processing Unit (GPU), utilizing the Compute Unified Device Architecture (CUDA)

code from NVIDIA using Matlab®. Figure A.1 provides a scheme of the M-H algorithm implementation

using the GPU. Observe that the simulation of the T damage growth sequences,
{

Γ̃
nl,(i)
nk

}T
i=1

, together with

the evaluation of the PDFs {p(ρnl |ρ̃
(i)
nl−1,θ)}Ti=1 (recall Equation 20), are performed using the GPU. The

summation of the individual probability density values of Equation 20 together with the remaining part of

the likelihood function are handled by the CPU. The CPU also takes charge of the rest of the M-H steps.

An averaged speed-up factor of up to 900, compared to an equivalent serial computation on the CPU, is

observed while updating each model class using a GPU NVIDIA GeForce GTX 680 (1536 CUDA cores) and

a 3.2 GHz CPU system.

5. Case study

In order to investigate the performance of the proposed approach, SHM data obtained from a set of

carefully designed run-to-failure fatigue experiments were used. Both stiffness data and NDE measurements

of internal damage, such as micro-crack density and delamination area, were periodically measured during

the fatigue test [20]. Torayca T700G uni-directional carbon-prepreg material was used for 15.24 cm × 25.4 cm

coupons with dogbone geometry and [02/904]s stacking sequence. The mechanical properties of such coupons

are listed in Table A.2. A notch (5.1 mm × 19.3 mm) was created in the central section of these coupons

to induce damage modes others than matrix-cracks, such as delamination, thereby introducing additional

sources of uncertainty and then demonstrating the proposed framework under more realistic conditions.

Fatigue tests were conducted under load-controlled tension-tension cyclic loading, with a maximum applied

load of 31.13 KN, a frequency f = 5 Hz, and a stress ratio R = 0.14 (relation between the minimum

and maximum stress for each cycle). Monitoring data were collected from a network of 12 piezoelectric

(PZT) sensors using Lamb wave signals and three triaxial strain-gages. Additionally, periodic X-rays were

taken to visualize and characterize subsurface damage features, in particular, the micro-crack density. This

information was then used to develop a mapping between PZT raw signals and the observed micro-crack

density, as reported in Larrosa and Chang [53]. Damage data used in this example correspond to laminate

L1S19 in [19], (see a summary in Table A.1). The experimental set-up is shown in Figure A.2. More details

about these tests are reported in the Composite dataset, NASA Ames Prognostics Data Repository [19].

5.1. Definition of model classes

Five model classes are considered for the inference, so NM = 5 in Equation 22. Three of them are based

on the shear-lag analysis (M1: classical, M2: bidimensional, M3: interlaminar), the rest are based on the

variational (M4) and COD (M5) approaches, respectively. Observe that model classesM1 toM5 have an

increasing level of analysis complexity.
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5.1.1. Probabilistic representation of parameters

Table A.2 lists the prior information (namely, the prior PDF) of parameters, including the fitting pa-

rameters in the modified Paris’ law and the model error parameters. Since the mechanical and fitting

parameters m ⊂ θ are non-negative, their associated prior information can be modeled as a lognormal dis-

tribution, i.e., p(θi|M) = LN (µθi , σθi), i = 1, . . . , Nm, with µθi = ln θ̄i, being θ̄i the nominal value of θi ∈ θ
(e.g., the mean), and σθi the shape parameter of the lognormal distribution. Both, the nominal values and

shape parameters are listed in Table A.2. For the error parameters v ⊂ θ, a uniform distribution defined over

a sufficiently-large predefined interval (chosen after some initial test runs), is selected as prior PDF. This

choice is preferred instead of the common choice of using a "non-informative" prior [14] (e.g., a uniform

distribution over a very large interval), which would better represent our prior state of complete ignorance

about these parameters. While such a choice may not significantly influence the form of the posterior PDF

of model parameters, the use of excessively diffuse priors may lead to a markedly high information gain from

data which would cause a bias in the model-class selection problem [15]. Note also that our assumptions

about these prior PDFs, given in Table A.2, can be conveniently updated if more information is available,

for example from expert judgement.

5.1.2. Model parameterization

As explained in Section 3.5, GSA aims at selecting the influential model parameters among the mechanical

and fitting parameters listed in Table A.2, which are further updated using Bayes’ Theorem. To evaluate

Equation 21, a double-loop Monte Carlo algorithm is implemented using 103 and 104 samples for the inner

and outer loops, respectively. Results from GSA are shown in Figure A.3 for model classesM1 toM5.

To obtain the set of parameters to be updated by Bayes’ Theorem, namely θ, the set of model error

parameters v = {µe1 , σe1 , µe2 , σe2} is added to m, the subset of sensitive model parameters identified

by GSA. To serve as an example, the model parameter vector for the shear-lag model class M1 would

be θ = {α,E1, E2, t, µe1 , σe1 , µe2 , σe2}. The rest of parameters are added to the set of constant parameters,

i.e., u = {A,G12, G23, ν12}, which may be represented by their nominal values (specified in Table A.2)

without any associated uncertainty. The set of parameters that compound the model parameters vector for

each model class is shown in Table A.4.

It is important to remark here that, for all model classes, the influence of the modified Paris’ law fitting

parameter A is found to be insignificant in relation to other mechanical parameters (see Figure A.3). This

is especially convenient given that mechanical parameters are usually benefited from less uncertain prior

information. In other words, mechanical parameters are likely to capture much less information from data

as compared to fitting parameters, which (recall Equation 24) leads to model parameterizations with lower

associated EIG terms. As discussed further below, this results in more robust model classes, i.e., with a

lower dependence on the details of data.
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Finally, in view of Figure A.3, a possible question that arises is that what would be the choice if any of

the candidate parameters ψi becomes influential but only for a certain stage of the process (e.g., the initial or

the final stage). In this case, the authors’ recommendation is to consider ψi as influential for all the process

since the increase of "unnecessary" model uncertainty incurred when considering ψi as influential, when it

is actually non-influential, is by definition null or at least negligible [18]. As stated before, a non-influential

parameter can be fixed anywhere of their range of variation without effect in the output uncertainty.

5.2. Model parameter updating

As presented in Section 3.3, the posterior PDF of model parameters is obtained from the prior PDF and

the likelihood function, using Bayes’ Theorem given in Equation 14. The M-H algorithm is applied with a

multivariate Gaussian for the proposal PDF, i.e. q(θ
′ |θ) = N (θ,Σq), where Σq ∈ Rd×d is the covariance

matrix of the random walk. Given that model parameters are assumed to be stochastically independent

a priori (recall Section 3.2), Σq will be a diagonal matrix, i.e., Σq = diag(σ2
q,1, · · · , σ2

q,d). The diagonal

elements of Σq are appropriately selected through initial test runs such that the monitored acceptance rate

is within the suggested range r̄ ∈ [0.2, 0.4] for M-H algorithm [54]. See algorithm configuration in Table A.3.

As an example, the prior and updated distributions of model parameters are presented in Figure A.4

for the most plausible model class M1, as shown further below. The mean and standard deviation of the

updated parameters for model classes M1 to M5 are further summarized in Table A.4. As a comment,

observe in Table A.4 that the estimated posterior mean of the bias parameter for the stiffness reduction

model, µe2 , takes non-zero values for all model classes. The corresponding posterior mean values for the bias

parameter µe1 are also non-zero although they take relative lower values. It is interpreted as a systematic

discrepancy between the model response and the data, that may be attributed to missing damage modes

like delamination (see Figure A.2), among other causes. Thus, if a delamination model would have been

considered, it would probably have captured a part of such bias, leading to better inferences.

5.3. Model class assessment

According to the theory presented in Section 3.6, the choice for the most plausible model class among

the set of candidate model classes is based on higher posterior probabilities, p(Mj |D,M). Results for model

class assessment are shown in Table A.5 for classesM1 toM5 using a uniform prior p(Mj |M) = 1/5 (i.e. all

model classes are considered equally plausible a priori). Model classM1 (classical shear-lag) is revealed as

the most evident to explain the observed damage data, hence the one that shows the best trade-off between

datafit and model complexity, thus resulting in the highest posterior probability. In contrast, models classes

like M3 (interlaminar shear-lag) and M5 (COD), that involve more model parameters and more complex

analysis, show negligible posterior probabilities through relatively low evidence values. A forward model

simulation usingM1 is shown in Figure A.5, compared to experimental damage data.

16



6. Discussion of case study results

The proposed Bayesian approach for model class selection is exemplified using the case study presented

in the previous section. Several competing damage mechanics models were selected from the composites

damage literature, which represent physically different models with different degrees of non-linearity and

dimensionality. As apparent from the results, the model classes that involve more complex analysis (i.e.,

variational and COD analysis,M4 andM5 respectively) do not necessarily provide higher probabilities in

explaining the observed damage response. This result contradicts the general conception that more complex

analysis may be necessary to capture the various fatigue damage mechanisms and thus, to obtain better

predictive performance. It is an example of the Principle of Model Parsimony in the context of fatigue damage

modeling in composites, that comes into play through the model selection approach by Equation 24. However,

these results are based on data for one particular laminate configuration, so further investigations are needed

to validate the results on other layups for a broader generalization.

More specifically, it can be observed in Table A.5 that the evidence reaches the lowest values for either

models classes that involve more complex damage-mechanics analysis, like M5, or models classes that

involve parameters which are difficult to establish priors for, like M3. These low values for the evidence

can be explained based on the likelihood function, that is actually evaluated using prior samples from a

region of the parameters space far from the region of high likelihood (recall Equation 23). It is a consequence

of (1) using high-sensitivity parameters as model parameters within the model class, which favors a narrower

concentration of the high-likelihood region over the parameter space, and (2) having diffuse prior information

for some of those parameters (such as the normalized shear modulus G
d0

in M3). This, in turn, enforces a

larger distance between the prior and the posterior PDFs that leads to a larger EIG term, thereby penalizing

the evidence by Equation 24.

Notwithstanding, it should be noted that the use of high-sensitivity parameters does not automatically

force the model class to extract more information from the data. It will ultimately depend on the "distance"

between the likelihood function p(D|θ,Mj) and the prior information p(θ|Mj) PDFs. In other words,

the data make a difference only when they tell us something about the model parameters that the prior

information does not [14]. This is typically the case for "fitting" parameters, that tend to capture much

more information from data than other parameters, such as mechanical or physical parameters, as shown

in Figure A.4. In this sense, the choice of widely dispersed priors for high-sensitivity parameters, such as

non-informative priors, should be avoided since it leads to a huge information gain from the data, which

may create a bias in the model-class assessment problem [15]. Therefore, if such model class is utilized for

future prediction, as arises in prognostics, the results are expected to significantly depend on the details of

the data.

In summary, the results have highlighted the relevance of the information-theoretic approach for model
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class assessment in the context of fatigue damage modeling in composites. The amount of information that

the model class needs to extract from data to update its prior information emerges as a key variable for

model class assessment. It actually determines the "information-theoretic complexity" of the model class,

rather than the use of a more complex damage-mechanics approach or a larger number of parameters. Then

the evidence of the model class accounts for such information gain as a penalty term and implicitly enforces a

quantitative Ockham’s razor, such that simpler models that are consistent with the data are favored through

a healthy balance between the information gained from the data and the average goodness of fit of the model

class.

7. Conclusion

A Bayesian approach for quantifying modeling uncertainty is presented in application to several damage

mechanics models in composites. A case study is presented using experimental fatigue damage data to

illustrate the proposed methodology. The best class of models is chosen based on relative probability among

all other candidate models. This probability is computed through Bayes’ Theorem using the evidence for the

model class given by data and the modeler’s choice of prior probability for each model class. A key finding

from this study is that the most simple shear-lag model turns out to be the most probable candidate when

selected by striking a balance between average goodness of fit and amount of information extracted from

data. More research effort is needed to incorporate the effects of other manifestations of damage such as

delamination, and in general, to extend this approach to other laminate layups.
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Appendix A. Nomenclature and basic relations

For ply and laminate properties, the nomenclature exposed in Table A.6 is adopted in this work. Notice

that the subscripts {1, 2, 3} refer to ply properties defined in local axis while the subscripts {x, y, z} refer

to sub-laminate or laminate properties defined in global axis, that corresponds to the laminate coordinate
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system. The first local direction "1" coincides with fibers direction in a given ply or lamina, while directions

"2-3" are the in-plane and out-of-plane transverse directions. For global axis, "x" refers to the fatigue loading

direction, while "y-z" refers to the in-plane and out-of-plane transverse directions, respectively. In addition,

the superscript (φ) denotes: "property referred to the
[
φnφ

2

]
-sublaminate".

The function a in Equation 1 is defined as a function of the laminate and ply properties listed in

Table A.6, as follows:

a =
E2t90

E1tφ


1− ν(φ)

xy

ν(φ)
xy t90

E
(φ)
y

+
ν12tφ
E2

t90
E

(φ)
y

+
tφ
E1


 1− ν12ν

(φ)
xy

1− ν2
12
E2

E1

(A.1)

The constants α1, α2 involved in Equation 2b are defined as α1 = 1
2

√
2
√
q − p and α2 = 1

2

√
2
√
q + p,

where p and q are known functions of the ply properties defined as p = C2−C4

C3
, q = C1

C3
. The terms Ci, i :

{1, . . . , 4} are calculated as follows:

C1 =
1

E2
+

1

λE
(φ)
x

(A.2)

C2 =

(
λ+

2

3

)
ν23

E2
− λν

(φ)
xz

3E
(φ)
x

(A.3)

C3 = (1 + λ)
(
3λ2 + 12λ+ 8

) 1

60E2
(A.4)

C4 =
1

3

(
1

G23
+

λ

G
(φ)
xz

)
(A.5)

In the last equations, λ =
tφ
t90

and ν23 and G23 are the out-of-plane Poisson ratio and shear modulus of

the ply, respectively. Both can be related as G23 = E2

2(1+µ23) . For cross-ply laminates, as the case study

considered in Section 5, φ = 0◦, and the laminate and sub-laminate global axis {x, y, z} coincide with ply

local axis {1, 2, 3}. In this particular case, the following identities hold:

E(0)
x = E1; E(0)

y = E2; ν(0)
xy = ν12; G(0)

xy = G12; G(0)
xz = G12

The rest of the properties that appear in Equations A.1 to A.5 are defined in Table A.6. The initial longi-

tudinal Young’s modulus of the laminate Ex,0 can be obtained using the classical laminate plate theory [38]

however, for the laminate considered in the case study it can be readily approximated using a simple rule

of mixtures:

Ex,0 ≈
t0E1 + t90E2

t0 + t90
(A.6)

Regarding the COD-based model [27], the matrices Ak are given by (k means that it is referred to the

kth ply):

Ak = Nk
I (Sk)−1 (A.7)

where Sk is the in-plane compliance matrix of ply k and Nk
I is a matrix defined by the vector normal to the
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surface of transverse crack, nk, as:

Nk
I =




nk1 0 nk2

0 nk2 nk1

0 0 0


 ,nk =




nk1

nk2

0


 (A.8)

The matrix βki is related to the average crack opening displacement of matrix cracks and also with the

tension on the crack surface:

βki = 0,∀k 6= i; βkk =




βk1 0 0

0 βk2 0

0 0 βk3


 (A.9)

where

βk1 =
4

π
γ1

ln
(

cosh
(
πtkρk

2

))

(tkρk)2
(A.10a)

βk2 =
π

2
γ2

10∑

j=1

aj
(1 + tkρk)j

(A.10b)

βk3 =
π

2
γ3

9∑

j=1

bj
(1 + tkρk)j−2

(A.10c)

γ1 =
1

2G12
(A.10d)

γ2 = γ3 =
1

E2
− ν2

12

E1
(A.10e)

The constants aj and bj can be found in the literature (see for example Table 1 in [27] or Table 4.2 in [16]).
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Figure A.1: Diagram of implementation of M-H algorithm using the GPU to accelerate the computation of the likelihood
function. Note that M-H runs serially on the CPU, while the GPU executes a part of the likelihood in parallel. A GPU NVIDIA
GeForce GTX 680 (1536 CUDA cores) is used together with a 3.2 GHz CPU system.

Figure A.2: Fatigue experiment for a T700G CFRP [02/904]s laminate. Shown in the left is the in situ set-up of the specimen
on the testing machine. Observe the SHM system based on PZT sensors (SMART Layer® from Acellent Technologies Inc),
which are placed on top and bottom of the specimen. The right panel shows a X-ray image of the specimen after 100 fatigue
cycles. The bright white areas denote delaminated interfaces whereas the horizontal white lines are matrix cracks.
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(g) Paris’ law (M4)
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(h) Paris’ law (M5)
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Figure A.3: Total effects index ST
i for parameters of both matrix-cracks evolution model (Paris’ law, Eq. 7) and stiffness

reduction model (Eqs. 1 to 4), using the following damage mechanics approaches: (a) & (d) classical shear-lag, (b) & (e)
bi-dimensional shear-lag, (c) & (f) interlaminar shear-lag, (g) & (i) variational, (h) & (j) COD. Observe that the ply properties
E1, E2 and t are revealed as influential parameters in all model classes.
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Figure A.4: Normalized histograms for the marginalized posterior PDF p(θi|D,M1), i = 1 . . . 8, after updating model class
M1 (classical shear-lag). The posterior mean estimate for each parameter is represented by the vertical-dashed line. Note that
the "difference" between the prior and the posterior PDFs is larger for the fitting parameter α than for mechanical parameters
E1, E2, t.
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Figure A.5: Simulated damage response using the posterior PDFs of parameters for model classM1 (classical shear-lag). Observe
that bounds cover well the experimental realizations.
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Fatigue cycles, n 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρn [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dn 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

Table A.1: Experimental sequence of damage for cross-ply [02/904]s Torayca T700 CFRP laminate taken from the Composite
dataset, NASA Ames Prognostics Data Repository [19], corresponding to specimen L1S19 in the dataset. The data are presented
for micro-cracks density (ρn) and normalized effective stiffness (Dn).

Type Parameter Nominal value Units Prior PDF

Mechanical E1 127.55 · 109 Pa LN (ln(127.55 · 109), 0.1)
E2 8.41 · 109 Pa LN (ln(8.41 · 109), 0.1)
G12 6.20 · 109 Pa LN (ln(6.20 · 109), 0.1)
Gm
d0

1 · 1014 Pa/m LN (ln(1 · 1014), 0.5)

ν12 0.31 – LN (ln(0.31), 0.1)
G23 2.82 · 109 Pa LN (ln(2.82 · 109), 0.1)
t 1.5 · 10−4 m LN (ln(1.5 · 10−4), 0.1)

Fitting α 1.80 – LN (ln(1.80), 0.2)
A 1 · 10−4 – LN (ln(1 · 10−4), 0.2)

Errors µe1 Not applicable # cracks
m·cycle U(−2, 2)

σe1 Not applicable # cracks
m·cycle U(0.5, 8)

µe2 Not applicable – U(−0.08, 0)
σe2 Not applicable – U(0.001, 0.02)

Table A.2: Prior information of main parameters used in calculations. The rest of parameters in damage mechanics mo-
dels (Eq. 1 to 4) can be obtained using the classical laminate plate theory [38] and the relations given in Appendix A.
The nominal values for fitting parameters have been defined through initial fitting tests.

M1 M2 M3 M4 M5

σq,i (Prop. std. dev.) 4% 4% 2% 3.5% 1.5%
Ns (M-H samples) 5 · 105 5 · 105 106 5 · 105 106

T (Eq. 19) 104 104 104 104 104

Table A.3: Metropolis Hastings algorithm configuration for models classes M1 to M5. The diagonal elements σq,i of the
covariance matrix Σq are defined as the specified percent (1st row) of the 5th-95th inter-percentile range of the prior PDFs for
each of the ith component of the parameter vector, i = 1, . . . , d.
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Fitting param. Mechanical parameters Error param.

α E1 E2 t Gm
d0

G23 µe1 σe1 µe2 σe2
(×109) (×109) (×10−4) (×1014) (×109) (×10−1) (×10−2) (×10−3)

M1 mean 1.86 123.16 8.72 1.52 – – 0.05 4.25 -2.92 8.1
std 0.13 10.3 0.73 0.14 – – 2.02 0.99 0.64 1.9

M2 mean 1.96 116.21 9.28 1.61 – – -2.35 4.27 -3.95 8.7
std 0.15 10.2 0.81 0.14 – – 3.22 1.00 0.64 2.2

M3 mean 2.03 134.43 9.98 1.59 0.25 – -6.37 4.41 -4.9 10.4
std 0.21 10.9 0.96 0.15 0.13 – 6.89 1.03 1.01 3.1

M4 mean 1.89 124.54 8.59 1.54 – – -1.52 3.95 -3.55 8.4
std 0.12 10.4 0.75 0.14 – – 2.86 0.68 0.58 2.1

M5 mean 1.99 133.21 7.60 1.46 – 2.99 -13.6 4.30 -3.08 8.3
std 0.15 12.3 0.52 0.14 – 0.28 7.93 0.98 0.62 1.9

Table A.4: Mean and standard deviation of the updated model parameters for models classes M1 to M5, estimated from
samples of the marginal posterior PDFs. Units are specified in Table A.2. In this table, the set of parameters that compound
each model class is also found, e.g., forM5, θ = {α,E1, E2, t, G23, µe1 , σe1 , µe2 , σe2}

Model class Log evidence EIG AGF Posterior Probability
M1 (classical SL) -9.99 3.73 -6.26 0.745
M2 (2D-SL) -10.80 4.22 -6.58 0.115
M3 (interlaminar SL) -16.62 8.88 -7.74 1.75·10−7

M4 (variational) -10.72 4.47 -6.25 0.139
M5 (COD) -14.16 7.95 -6.21 5.02·10−5

Table A.5: Results of the terms in Equation 24 for each model class. The 2nd column is the difference of the next two columns
(EIG= Expected Information Gain, AGF= Average Goodness of Fit). The 5th column is the estimated posterior probability
of each model class, i.e., p(Mj |D,M), using a uniform prior p(Mj |M) = 1/5. Note that M5 provides a neglible posterior
probability even though it reaches the best average goodness of fit.

Laminate Ex,0 Initial longitudinal Young’s modulus tφ [φnφ
2

]-sublaminate thickness
E∗
x Effective long. Young’s modulus Ply t Ply thickness

h Laminate half-thickness d0 Interlaminar layer thickness
B Laminate half-width Gm Interlaminar layer shear modulus

Sublaminate E
(φ)
x Longitudinal Young’s modulus E1 Longitudinal Young’s modulus

E
(φ)
y Transverse Young’s modulus E2 Transverse Young’s modulus

ν
(φ)
xy In-plane Poisson ratio ν12 In-plane Poisson ratio
G

(φ)
xy In-plane shear modulus ν23 Out-of-plane Poisson ratio

G
(φ)
xz Out-of-plane shear modulus G12 In-plane shear modulus

t90 [90n90
]-sublaminate half-thickness G23 Out-of-plane shear modulus

Table A.6: Nomenclature table. Nominal values of main ply and geometry parameters are provided in Table A.2
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