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ABSTRACT

The chapter describes the application of prognostic techniques to the domain of structural health and 
demonstrates the efficacy of the methods using fatigue data from a graphite-epoxy composite coupon. 
Prognostics denotes the in-situ assessment of the health of a component and the repeated estimation of 
remaining life, conditional on anticipated future usage. The methods shown here use a physics-based 
modeling approach whereby the behavior of the damaged components is encapsulated via mathematical 
equations that describe the characteristics of the components as it experiences increasing degrees of 
degradation. Mathematical rigorous techniques are used to extrapolate the remaining life to a failure 
threshold. Additionally, mathematical tools are used to calculate the uncertainty associated with mak-
ing predictions. The information stemming from the predictions can be used in an operational context 
for go/no go decisions, quantify risk of ability to complete a (set of) mission or operation, and when to 
schedule maintenance.

INTRODUCTION

Prognostics is a core element of Prognostics and Health Management (PHM), which sets out to actively 
monitor and manage assets based on their state of health as opposed to scheduling periodic inspection and 
maintenance based on statistics of mean-time-to-failure or similar information. Prognostics is the science 
of determining the remaining useful life (RUL) of a component or subsystem given the current degree 
of wear or damage, the component’s load history, and anticipated load and environmental conditions. 
A quantification of the degree of a component’s wear or damage and the estimate of end-of-life (EOL) 
gives decision makers important information about the structural health of a system. This information 
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can be used for risk reduction in go/no-go decision, cost reduction through the scheduling of maintenance 
as-needed, and improved asset availability. Prognostics employs techniques that are often based on an 
analysis of historical data or an analysis of the fault modes and the modeling of the physics of both the 
component itself as well as the attributes that characterize the fault. Damage progression models include 
the effects of damage accelerators or stressors (such as load or environmental conditions). Algorithms that 
estimate the remaining life use estimation techniques that propagate the anticipated degradation into the 
future and provide as output the time where the component does no longer meet its desired functionality.

FUNDAMENTALS

Predictive information about a component fault/damage can be a valuable resource in determining an 
appropriate course of action to avoid failures. Potential of prognostics in positively contributing to safety 
and improving life-cycle costs is equally relevant to existing legacy systems and new system designs. 
Legacy systems adopt additional sensing and processing with a potentially high price of retrofitting and 
additional validation and/or certification costs to gain extended system life and safety factor. New system 
designs can significantly reduce these costs if prognostics and health management are adopted early in 
the design to facilitate a more optimal sensor placement for observability and coverage. This, however, 
requires integration of health management design into the systems engineering process. The following 
section briefly discusses various design considerations involved in design and development of PHM.

Design Considerations for Prognostics Health Management

With the term “design” one means in general a method of conceiving and planning to realize a solution 
to a particular engineering problem. This entails formulating a plan and drawing up a scheme how to 
realize the plan. Generally, the design process is partitioned into the stages

1. 	 Analysis,
2. 	 Concept, and
3. 	 Synthesis.

One needs to start out with having a good understanding of the underlying goals. That is, an under-
standing of what the prognostic system is meant to accomplish. This could be a reduction of life-cycle 
cost, or a safety improvement, or an optimization of uptime to better guarantee mission availability or 
commercial dispatch readiness. The design process is shown in Figure 1 and explained below.

During the Analysis phase, requirements for the overall system are created based on the stated goals. 
Requirements for prognostic system design are guided by the end use of prognostics (Saxena, Celaya, 
Saha, Saha, Roychoudhury, et al., 2010). There are different motivations for prognostics, such as improv-
ing safety, reducing costs, or increasing availability. However, to realize an effective health management 
system, requirements for prognostics and structural health monitoring (SHM) should be developed with 
those of the system. This requires forward thinking about what components or subsystems need monitor-
ing and accordingly determine an appropriate sensor network design, which then can be integrated into 
the structure design in a more cost-effective manner. The application scenario dictates what mitigation 
action will be most beneficial given a prognostic estimate of remaining-life-of a structure. At the same 



236

Prognostics Design for Structural Health Management
﻿

time the benefit achieved by using prognostics also depends on prediction performance. Decisions based 
on poor predictions can be detrimental in many ways. Late predictions (analogous to false negative) 
may result in system failures, whereas early predictions (analogous to false positive) trigger unnecessary 
maintenance actions.

From an engineering design perspective some key factors driving the requirements for prognostics 
include:

1. 	 Maximum allowable probability of failure of the prognostic system to bound the risk of loss due 
to failure,

2. 	 Maximum tolerable probability of proactive maintenance to bound unnecessary maintenance,
3. 	 Lead time to specify the amount of advanced warning needed for appropriate actions, and
4. 	 Required confidence to specify when prognosis is sufficiently good to be incorporated into the 

decision making process.

Keeping these factors in mind the top level system requirements can be translated into prognostic 
requirements. For instance, the risk posture assumed in a system determines how accurate predictions 
need to be without increasing the risk of loss beyond acceptable limits. A detailed discussion into deriv-
ing prognostics requirements from top level system goals is described in (Saxena et al., 2012). These 
requirements are generally specified in terms of prediction performance that prognostics must satisfy 
for desired level of safety or cost benefit.

Next, the functional needs and constraints are evaluated during the Concept phase. These will drive 
a potential solution for which a fault impact analysis will be conducted. This analysis will be used in 
conjunction with an understanding of the functional operation of the solution approach to define PHM 
functionality. To that end, functional diagrams representing the desired functions of the subsystem can 
be used to capture these properties.

Figure 1. Design process of PHM solution
(Goebel, 2014).
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During the Synthesis phase, the functionality is encapsulated in appropriate models and algorithms 
that characterize the core of the PHM solution. Checking the degree of fulfillment of requirements may 
result in changes to the solution before a final choice is made. A clear understanding and representation 
of the functions that have to be carried out is needed to provide the framework for capturing both how a 
system operates and how it can fail. It further provides the manifestations of the failure, its consequences, 
and its impact on the structure as a whole. As the design moves through the synthesis stage and the design 
takes on shape, the functional diagram is augmented with the failure modes of the physical system. The 
design is continually analyzed to assess the degree to which it satisfies its requirements. This analysis 
may evaluate (depending on the goals) observability (i.e., to what degree the detrimental effect can be 
“seen”); diagnosability (i.e., the ability of the designed PHM system to isolate an anomalous condition 
to a specific single failure mode or to a group of potential failures called an ambiguity group); cover-
age (ability of the PHM system to provide indication that the occurrence of a given failure is imminent 
through the use of prognostics or diagnostics of upstream failures); choice of a method for realizing the 
observations (e.g., through appropriate sensor placement and information processing); choice of a form 
of suitable output (status indicators, alarms, reports, etc.); and determination of intended mitigation ac-
tions (e.g., report only, decision support, reflexive reconfiguration, repair, etc.). An account of design 
considerations in the context of integrated vehicle health management is delineated in (SAE, ARP6407).

When PHM methods are applied to structures, which are often subject to a variety of fault modes 
(cracks, voids, delamination, bondline failures, corrosion, etc.), dedicated sensors and sensor networks 
are required for observability as no single sensor type can cover all. Composite structures present more 
challenges due to multiple simultaneous fault modes and their effects in the anisotropic material. There-
fore, it can be prohibitively expensive to cover all fault modes in large structures. Well-designed health 
management solutions carefully identify potential targets for diagnostics and prognostics to optimize 
costs and benefits. To that end it is a common practice to identify “hot spot” locations and critical fault 
modes to prioritize targets for prognostics. For instance, from a design perspective it may be decided 
that all identified hot spots are monitored for fault detection but only some critical ones are considered 
targets for prognostics. A common analysis tool often employed to identify risks and their consequences 
is Failure Modes, Effects, and Criticality Analysis (FMECA). Using FMECA system designers identify 
system components that are most likely to cause failures and therefore prioritize monitoring and prog-
nostic targets.

Realizing PHM functions typically includes the need to represent the components of interest with a 
model, which might be either based on the physical operation of the system or derived from operational 
data that adequately characterizes the system. This is done after a concept has been chosen. Signal pro-
cessing methods are employed to derive features from the sensor information that are correlated with 
the expected response from the model to arrive at an assessment of the health state. Some of the data 
sources that are utilized include sensor information from sensors that are placed on the components. As 
mentioned earlier, the sensor information needs to be processed to filter out noise and to derive features 
that are optimally correlated with the health information of interest. SHM literature covers a wide vari-
ety of modeling and sensing solutions for metallic as well as composite structures. A majority of these 
methods, however, focus on detection techniques and largely stop at damage localization and damage 
severity estimation. While most sensing and instrumentation commonly used for damage detection and 
identification in structures is also sufficient for prognostics, there are some unique elements in measurement 
that must be covered as well. Some of these aspects are discussed below in the context of prognostics.
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Sensing for Prognostics

Prognostics is a natural extension of structural health monitoring where the user is not only concerned 
with detecting, locating, and identifying a fault mode but also determining the remaining time at hand 
before a failure occurs. It is a continuous process and predictions must be regularly updated as the sys-
tem health state changes due to further usage. Therefore, operationally prognostics requires frequent 
measurement updates to continuously estimate structural health and revise predictions of remaining life. 
Consequently SHM sensors, that can interrogate the system periodically and assess any change in fault 
severity, are needed for prognostics. While non-destructive inspections can provide valuable trending 
information, this chapter focuses on largely automated SHM-based prognostics that makes use of per-
manently installed sensors built into the structure design. Prognostics broadly requires two categories 
of inputs from monitoring sensors:

1. 	 Damage response measurement;
2. 	 Operational and environmental loading measurement.

The choice of sensing methods or the sensors is primarily guided by what needs to be measured, but 
is significantly influenced by practical constraints given any application. For example weight, volume 
and power demand, and cost constraints for sensors onboard airspace systems results in a different sen-
sor choice than for industrial building or bridge structures. Sensor locations are chosen such that the 
expected type of damage produces known, observable, and statistically significant effects in features 
derived from the measurements at these locations, which is often determined through numerical simula-
tions or physical tests. Low-level local response caused by damage (e.g., cracks opening and closing) 
must be separated from large-amplitude global response such as that caused by aerodynamic loads on 
aircraft by determining required sensitivity and dynamic range through analysis or experimentation.

The following section describes these sensing requirements and common methodologies currently 
used. Additionally, the need for ground truth measurement for prognostic model development is discussed.

Damage Response Measurement

Prognostic models need information from sensors about degradation or damage in the structures through 
kinematic (strains, accelerations, etc.) response of the structure. These sensors are also called health moni-
toring sensors that can detect damage and damage growth, localize damage, assess damage severity, and 
identify damage types. A variety of sensing technologies has recently surfaced in addition to traditionally 
used strain and acceleration measurement methods. Among relatively new methods, SHM sensors based 
on piezoelectric or PZT discs are particularly useful for health monitoring in the context of prognostics. 
In pitch-catch mode they are used in active interrogation to assess type, location, and degree of damage 
(Chang et al., 2007; Y. Liu et al., 2010). Integrated into the structure on the surface or embedded into 
it, PZT sensors allow regular assessment of structural integrity through dynamic strain measurements. 
A time history of these measurements can inform damage growth model to make predictions of when 
the structure is expected to reach its failure threshold. Other similar embedded technologies include 
optical fiber based Fiber Bragg Gratings (FBG), vacuum tube networks, and micro-electro-mechanical 
systems (MEMS), to name a few.
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System Loading Measurement

The other class of sensors characterizes loadings on the system. This includes both operational loading 
and environmental loading, both of which have an impact on how fast any given damage type grows. 
These include measurements of static and dynamic loads that the system has experienced and also the 
environment it has been exposed to. As mentioned in the previous section, this could be achieved by 
stress monitoring at the key load bearing points identified as prognostic targets. Stresses can be indirectly 
measured using sensors like strain gauges or be inferred from load calculations using static/dynamic 
models of the structure and knowledge of the load profile. To characterize environmental loadings such 
as moisture, temperature, acidity (or pH), etc., the duration of exposure must be monitored. The effect 
of these factors is then incorporated in the damage growth models used for prognostics.

Damage Ground Truth Measurement

During design and development stages, fault modeling requires access to run-to-failure time series data 
to understand damage growth characteristics and for model validation. Such data are often difficult to 
come by as they are rarely collected in practice due to lack of adequate sensing or due to the fact that 
expensive and critical systems are not allowed to run-to-failure due to safety and cost considerations. 
Therefore, carefully designed experiments such as accelerated aging are often used to collect such data 
in representative operational conditions. Another aspect of data collection required for prognostics is 
measurement of ground truth through non-destructive evaluation (NDE) methods. Commonly used 
NDE techniques such as X-rays, thermography, ultrasonic A, B, C-Scans etc. are some of the common 
methods for ground truth measurement.

Performance Evaluations

Within the health management context there are a variety of prediction methods that are generally used 
to make predictions about system behavior (Saxena et al., 2014). Prognostics is one of those methods 
that predicts remaining useful life of a specific component or system based on its usage history inferred 
from monitoring data and expected future load profile. A variety of prognostic performance evaluation 
metrics have been defined (Saxena, Celaya, et al., 2010b), but as described in (Saxena et al., 2014), 
prognostic performance must account for three attributes of performance under the presence of uncer-
tainty, namely; Correctness, Timeliness, and Confidence. Correctness deals with accuracy and spread 
measures of predictions when compared to observed outcomes. Timeliness accounts for how quickly a 
prediction algorithm produces its outputs, in comparison to the fault growth rate and the time required for 
enabling a mitigation action. Confidence, on the other hand, is a measure of uncertainty in a prognostic 
algorithm’s output, which is key in making decisions about possible mitigating actions. These attributes 
are measured through the prediction horizon, the so-called α-λ accuracy (see Equation 1), and relative 
accuracy measures as described in (Saxena, Celaya, et al., 2010b). These measures not only assess accu-
racy of predictions but also track performance change with time as predictions are periodically updated.

Prognostics metrics are expressed on a time versus RUL graph, as shown in Figure 2 and Figure 3. 
Predicted RULs are plotted against time of prediction. The straight line with negative slope represents 
the true RUL that decreases linearly as time progresses. Ideally predictions should stay on this line as 
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they are updated with time or stay within the accuracy zones specified by parameter α. An advanced ver-
sion of these metrics considers RUL predictions in the form of PDFs rather than point estimates. These 
metrics are further parameterized by β, that specifies the minimum acceptable probability of overlap 
between the predicted RUL and the α accuracy bounds to consider a prediction accurate. Both α and β 
are design parameters to be determined based on application scenario. Based on these principles, three 
prognostic measures are briefly described below and further used in the example developed further below.

•	 Prognostics Horizon (PH): Determines the maximum advance warning a prediction algorithm 
can provide with desired confidence. It is defined as the maximum predicted RUL (or the first 
prediction) that falls within desired accuracy (α) bounds with an overlap probability larger than 
parameter β. It can be expressed as the largest RUL value that is accurate to the desired α level. 
Mathematically, it is defined as PH EOL t

p
= − ∗ , such that

t t RUL desired accuracyt
p p
∗ = ≥ ∈{ }( )min : *0 α .	

•	 α-λ Performance: Characterizes how well an algorithm’s performance (accuracy and precision) 
improves as EOL approaches. Improvement is measured against desired accuracy level (α) ex-
pressed as a percentage of RUL at any specified time (λ).

α λ
α

− =accuracy
if prediction falls inside the accuracy cone
other

1
0 wwise




	 (1)

•	 Relative Accuracy: Quantifies how accurate an algorithm is at any given time relative to the 
EOL. It is computed as RUL error normalized by actual RUL at any given time. It captures the 
notion that accuracy of prediction becomes more critical as EOL approaches.

Figure 2. Illustration of determining Prognostic Horizon metric for two prognostics estimations
(Source: Saxena et.al. 2010a).
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Prognostics Framework

The framework for prognostics hinges on the availability of several elements that are needed for a com-
plete solution. These include a model (typically for both the nominal behavior as well as for the damage 
behavior), a quantifiable criterion for what constitutes failure, an algorithm to propagate the model to 
the damage threshold, and a mechanism to deal with uncertainty.

Modeling

As mentioned above, underlying any prediction requires a model that describes how the component of 
interest behaves under nominal conditions and how it will evolve as it experiences wear or a fault condi-
tion. To that end, one needs to represent that process in the form of mathematical equations. This “model” 
may be derived from laws of physics, encapsulated by empirical relations, or learned from data. Models 
can also be formed using a combination of these approaches. For example, parts of a component that 
are well-understood may be constructed using physics-based models, with unknown physical parameters 
learned from data using appropriate system identification techniques.

Modeling of physics can be accomplished at different levels, for example micro and macro levels. At 
the micro level, physical models are embodied by a set of dynamic equations that define relationships, 
at a given time or load cycle, between damage (or degradation) of a component and environmental and 
operational conditions under which the component is operated. Since measurements of critical damage 
properties (such as delamination in a composite structure) are rarely available, sensed system parameters 
have to be used to infer the damage properties. Micro-level models need to account for the assumptions 
and simplifications in the uncertainty management.

In contrast, macro-level models are characterized by a somewhat abridged representation that makes 
simplifying assumptions, thus reducing the complexity of the model (typically at the expense of ac-
curacy). An example is a lumped parameter model which assumes that the attributes of the component 

Figure 3. Illustration of computation of α-λ accuracy for two prognostics estimations
(Source: Saxena et.al. 2010a).
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have idealized behavior and the non-ideal characteristics are characterized with equivalent elements that 
suffice for a first-order approximation. When such a system is designed well, it will often (but certainly 
not always) result in satisfactory results, depending on performance requirements. It should be noted that 
for complex systems (e.g., a structure with complex geometry and with many different materials), even 
a macro-level model may be rather time-consuming and labor intensive. The resulting simplifications 
may need to be accounted for via explicit uncertainty management, which may pose more performance 
limitations than for a micro-level model.

Nominal System Modeling

The component model describes the characteristics of the component under nominal conditions. Ideally, 
such a model should be able to factor in the effects of operational and environmental conditions as well 
as any other conditions that cause different system response under nominal conditions. The model should 
also be able to adapt to changes of the system that are not considered abnormal. To that end, the system 
model could learn system behavior from examples, for instance using machine-learning techniques, or 
it could integrate domain expertise and be implemented using rules.

Damage Propagation Modeling

A damage propagation model describes how the damage is expected to grow in the future. It should, 
similar to the nominal model, account for operational and environmental conditions as well as any other 
conditions that have an impact on the damage. Depending on the fault mode, damage propagation may 
exhibit different symptoms and it may then be necessary to consider dedicated damage propagation 
models for different fault modes.

Algorithms

The role of the prognostic algorithm is applying the damage propagation model into the future. It needs 
to ensure that it properly considers the effects of environmental and operational conditions, as well as 
how to account for the different sources of uncertainty. Depending on the implementation, the damage 
propagation model and the prognostic algorithm may not be separable. However, for the general case, 
the damage propagation model and the prognostic algorithm will be treated as separate.

Uncertainty Management

Since prognostics deals with predicting the future behavior of engineering components and systems, it 
is important to understand that there are several sources of uncertainty that influence future behavior. 
Therefore, an efficient design for prognostics needs to rigorously account for all these sources of uncer-
tainty to predict the remaining useful life. In the recent past, several researchers have developed differ-
ent types of methods for uncertainty quantification in prognostics. For example, the Damage Prognosis 
project (Farrar & Lieven, 2007) at Los Alamos National Laboratory discussed uncertainty in fatigue 
crack growth by considering different sources of variability, in the context of structural health monitor-
ing. Sankararaman et al. (Shankar Sankararaman et al., 2009) developed a computational approach to 
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account for variability, data uncertainty, and model uncertainty in crack growth prognosis. However, 
many of these methods are based on offline testing, i.e., testing before and after system operation, and 
not for condition-based prognostics and monitoring, i.e., prediction during system operation.

Developing methods for uncertainty quantification in the context of condition-based monitoring is 
challenging because uncertainty methods are generally computationally expensive, whereas condition-
based monitoring and prognostics require real time computational power and results for decision-making. 
An important aspect of condition-based monitoring is the prediction of remaining useful life, and several 
publications (Engel et al., 2000; Saha & Goebel, 2008) have discussed the importance of quantifying 
the uncertainty in remaining useful life prediction. Sankararaman et al. (S. Sankararaman et al., 2014) 
discussed sampling methods and analytical methods for estimating the uncertainty in the remaining 
useful life prediction for prognostics.

Interpreting Uncertainty in Prognostics

Though probabilistic methods have been widely used for uncertainty quantification and management 
in various engineering applications, the interpretation of probability is, at times, not straightforward. 
There are two major interpretations of probability: frequentist versus subjective. Frequentist probability 
assignments are based on the existence of inherent variability and are suitable only in the context of truly 
random experiments. Traditional statistical principles are primarily based on the concepts of frequentist 
probability. On the other hand, subjective probabilities express the degree of the analyst’s belief regard-
ing a particular statement and can be assigned even in the absence of inherent variability. Principles of 
Bayesian statistics are based on the concept of subjective probability and are widely used in a variety 
of engineering applications today.

In the context of health management, the frequentist interpretation of uncertainty is applicable only 
for testing-based methods. In other words, when several nominally identical specimens are tested, there 
is inherent variability across them and probabilistic methods are used to quantify this variability. On the 
other hand, in condition-based prognostics the focus is typically on one particular unit; at any time-instant, 
this particular unit is in a given state without any associated variability. The uncertainty regarding this 
state is simply reflective of the degree of belief. Bayesian tracking methods (Kalman filtering, particle 
filtering, etc.) used for state estimation are called “Bayesian” not only because they use Bayes’ theorem 
for state estimation but also because they are based on subjective probabilities. Similarly, the future 
loading conditions are also subjective estimates; hence, the resultant remaining useful life also needs to 
be interpreted subjectively. Thus, it can be clearly seen that the subjective interpretation of uncertainty 
is consistent across the entire domain of condition-based prognostics (S Sankararaman, 2014).

Sources of Uncertainty

To begin with, it is important to understand the various sources of uncertainty that affect calculations 
in prognostics. It has been conventional to classify the different sources of uncertainty into aleatory 
(physical variability) and epistemic (lack of knowledge), where epistemic uncertainty consists of data 
uncertainty and model uncertainty. However, in the case of condition-based monitoring, there is only 
one particular system being monitored, and not multiple realizations of a population, and therefore, it 
is not meaningful to discuss variability. For example, the system is at a particular state at any time in-



244

Prognostics Design for Structural Health Management
﻿

stant and there is nothing variable about it. Variability would need to be accounted for only in the case 
of reliability-testing methods where multiple components/systems are tested. Therefore, the sources of 
uncertainty in prognostics are classified into:

•	 Modeling Uncertainty: Predicting the future is the most important aspect of prognostics, and 
typically, a physics-based model or a data-driven model is used for predicting future behavior. 
This model is usually represented using state-space equations. Modeling uncertainty represents 
the difference between the predicted response and the true response (which can neither be known 
nor measured accurately), and comprises of several parts such as model parameters, model class, 
process noise, etc.

•	 Present Uncertainty: The first step of prognostics is to estimate the condition/state of the com-
ponent/system at any time instant. Output data (collected through sensors) is used to estimate the 
current state and many filtering approaches are able to estimate the state, and calculate the uncer-
tainty associated with the state estimate.

•	 Future Uncertainty: The most important source of uncertainty in the context of prognostics is 
due to the fact that the future is unknown, i.e. both the loading and operating conditions are not 
known precisely. The future behavior (i.e., the response of the system to the loading and operating 
conditions) needs to be estimated using a model; the usage of a model imparts additional uncer-
tainty as explained earlier.

Uncertainty-Related Activities in PHM

Having explained the various sources of uncertainty, it is important to define a series of activities that 
can be collectively used to address these sources of uncertainty in a systematic manner. In the context of 
prognostics and health management, uncertainty has been discussed from the perspectives of quantifica-
tion, representation, and management, in various publications (Orchard et al., 2008; Tang et al., 2009). 
While all the three are different processes, they are often confused with each other and interchangeably 
used (Celaya et al., 2012). For the purpose of clarity, four different uncertainty-related activities are 
detailed below:

1. 	 Uncertainty Representation and Interpretation: The first step is the representation of uncer-
tainty, which may be guided by the choice of the modeling and simulation framework. There are 
several methods for uncertainty representation that vary in the level of granularity and detail. A 
probabilistic framework is used for uncertainty representation in this chapter, and the interpretation 
of this uncertainty is discussed shortly.

2. 	 Uncertainty Quantification: The second step of uncertainty quantification deals with identifying 
and characterizing the various sources of uncertainty that can prospectively affect the prognostic 
calculations.

3. 	 Uncertainty Propagation: The third step of uncertainty propagation is most relevant to prognostics, 
since it accounts for all the uncertainties previously quantified and uses this information in order 
to predict the future behavior, remaining useful life, and the associated uncertainty.

4. 	 Uncertainty Management: The fourth and final step is uncertainty management, and it is un-
fortunate that, in several articles, the term “Uncertainty Management” has been used instead of 
uncertainty quantification and/or propagation. As a result, there are few publications that directly 
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address the issue of uncertainty management. In general, uncertainty management is a term used 
to refer to different activities that aid in managing uncertainty in condition-based maintenance 
during real-time operation. There are several aspects of uncertainty management. One aspect of 
uncertainty management attempts to answer the question: “Is it possible to improve the uncer-
tainty estimates?” The answer to this question lies in identifying which sources of uncertainty are 
significant contributors to the uncertainty in the RUL prediction. Another aspect of uncertainty 
management deals with how uncertainty-related information can be used in the decision-making 
process.

A PROGNOSTICS DESIGN SOLUTION

A general computational framework for prognostics and health management is presented in this section. 
Let us consider an engineering component or system such that, at any generic time-instant tP, it is desired 
to perform prognostics and predict the remaining useful life. Figure 4 provides a conceptual scheme of 
the proposed prognostics framework, which consists of the following three sub-problems:

1. 	 Present state estimation;
2. 	 Future state prediction;
3. 	 RUL computation.

In order to address the above problems, a generic time-dependent, state-space modeling framework is 
firstly presented. This framework needs to account for the different sources of uncertainty as explained 
in the previous section, and therefore, the state-space models also need to account for the various sources 
of uncertainty.

Stochastic System Modeling for Prognostics

Consider a general engineering component/system whose damage response can be modeled as

dx t
dt

g t x t u t v t
( )

, ( ), ( ), ( )= ( )+θ 	 (2)

where x t nx( ) ∈   is the state vector (that depicts the state of the system at any time instant), θ θ∈ n  is 
the parameter vector (parameters of the model), u t nu( )∈ �  is the input vector (loadings, environmental 
conditions, operating conditions, etc.), v t nx( )∈ �  is the model error vector (used to represent unmod-

Figure 4. Prognostics architecture; a description of the mathematical symbols is provided further below.
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eled random variations in the engineering component/system), and g nx∈   is the state transition equa-
tion.

The above differential equation simply predicts how the state of a system continuously progresses as 
a function of time, loading conditions, model parameters, etc. Typically, in the context of prognostics 
and health management, a state variable or a collection of state variables are used to represent the health 
state of the system. Usually, the health of a system deteriorates as a function of time, and therefore, it 
can be estimated by quantifying the states of the system; hence, tracking the states is essential to track-
ing the health of the system.

As discussed in the last section, there are several sources of uncertainty that affect the performance 
of the system, and all of these sources of uncertainty can be included in this modeling framework. For 
example, certain characteristics of the system are represented using parameters and it may not be able 
to know these quantities precisely; therefore the parameters (θ) are uncertain. In addition, external input 
factors (u) such as loading conditions, operating conditions, etc. may not be known precisely or cannot 
be controlled. In fact, all of the variables in the above state-space modeling framework are uncertain and 
need to be modeled using probability distributions. As mentioned earlier, in many cases, such uncertainty 
must not be confounded with variability, particularly in the context of condition-based prognostics. Due 
to these different sources of uncertainty, the state estimates available through the estimation procedure 
will also become uncertain. It is important that the state estimation procedure rigorously accounts for 
these sources of uncertainty and accurately computes their effect on the state estimate. As a result, the 
state estimation procedure represents the system state using probability distributions.

State estimation is accomplished by continuously collecting measurements of the output variables 
through sensors, where these measurements are available until the time of prediction denoted by t

P
. 

Then, along with the above state prediction model, an output-measurement model can also be defined 
as:

y t h t x t u t w t( ) , ( ), ( ), ( )= ( )+θ 	 (3)

where y t ny( )∈ �  is the output vector (measurements available through sensors until t t
P

= ), w t ny( )∈ �  

is the measurement noise vector, and h ny∈ �  is the output equation.
Using recursively Equations (2) and (3), the state estimate at time of prediction x t

P
( )  can be calcu-

lated using an accurate state estimation procedure, as shown further below.

Bayesian State Estimation

As stated before, many problems in a variety of areas of science and engineering can be expressed using 
a state space model, as defined by Equations (2) and (3). In general, for the purpose of prognostics, this 
state-space model is usually converted into a discrete-time system by using numerical integration over 
a sufficiently small time step ∆t , leading to a hidden Markov model, as follows:

x g x u v
n n n n n
= ( )+−1

, ,θ 	 (4)
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y h x u w
n n n n n
= ( )+, ,θ 	 (5)

wherex x n t
n
= ⋅( )∆  and y y n t

n
= ⋅( )∆  are the latent (or hidden) state and the measured response of 

the system at time n t⋅∆ ; and u u n t
n
= ⋅( )∆ , v v n t

n
= ⋅( )∆  and w w n t

n
= ⋅( )∆  are the input vec-

tor, model error and measurement error at time t n t= ⋅∆ , respectively. The sequence of states x n
n
; ∈{ }�  

is assumed to follow a hidden Markov process, while the observations y n
n
; ∈{ }�  are conditionally 

independent given the process x n
n
; ∈{ }� . From now on, time will be denoted by the index n since it 

is sufficient to indicate which time is being considered.
The goal of Bayesian state estimation is to sequentially estimate the PDF of the sequence of latent 

states x x x x
n n n0 0 1:

, , ,� …{ }−  given a sequence of measurements up to time n , denoted by 

y y y y
n n n0 0 1:

, , ,� …{ }− . This PDF is typically known as the posterior, expressed as p x y
n n0 0: :

| ,θ( ) , since 

it is obtained from the last available state estimation, known as the prior PDF, p x y
n n0 1 0 1: :

| ,− −( )θ . Here-

inafter, and without loss of generality, input parameters u
n

 will be dropped from the formulation for the 
sake of simpler notation.

In the state space modeling literature, the posterior PDF is commonly studied through one of its 
marginals, the so-called filtering distribution, p x y

n n
| ,

:0
θ( ) . To obtain this distribution, a two-stage 

recursive approach is typically formulated:

1. 	 The prediction stage, in which the one-step ahead predictive PDF p yx
n n

|
:0 1−( )  is estimated based 

on available data up to time n −1  using Total Probability Theorem, and
2. 	 The updating stage, in which the former PDF is updated to get the posterior PDF p yx

n n
|

:0( )  based 
on a new measurement at time n , using Bayes’ Theorem. That is:

p x y p x x p x y dx

p x y

n n n n n n n

n n

| , | , | ,

| ,

: :

:

0 1 1 1 0 1 1

0

− − − − −( ) = ( ) ( )∫θ θ θ

θθ
θ θ

θ θ
( ) = ( ) ( )

( ) ( )
−

−∫
p y x p x y

p y x p x y dx

n n n n

n n n n n

| , | ,

| , | ,

:

:

0 1

0 1

	 (6)

Continually iterating between the equations in (6) constitutes the basis of sequential state estimation. 
However, this recursive scheme is only a theoretical solution given that, in general, the integrals involved 
in these equations cannot be calculated analytically, except for some especial cases. The first special 
case is when Equations (4) and (5) involve linear functions and errors vn  and wn  are Gaussians. In this 
case, an analytical solution can be obtained for the recursions in (6) using the well-known Kalman filter 
(Kalman, 1960). The other case is when the state variable xn  can be represented by a discrete set of 
values, where grid-based methods (Arulampalam et al., 2002) can be applied to efficiently solve the 
system in (6). For the general case, Sequential Monte Carlo (SMC) methods (Doucet et al., 2001) can 
be used to efficiently solve these iterations avoiding the calculation of the aforementioned multidimen-
sional integrals, as shown further below.
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When the interest is instead in obtaining the posterior PDF p x y
n n0 0: :

|( ) , then Bayes’ Theorem can 
be applied to update the last posterior a time n −1 , as follows:

p x y p x y y

p y x y p x
n n n n n

n n n

0 0 0 0 1

0 0 1 0

: : : :

: : :

| , | , ,

| , ,

θ θ

θ
( ) = ( )
∝ ( )

−

− nn n

n n n n n n

last

y

p y x p x x p x y

| ,

| , | , | ,
:

: :

0 1

1 0 1 0 1

−

− − −

( )
∝ ( ) ( ) ( )

θ

θ θ θ
  updating

� �������� ��������

	 (7)

In equations (6) and (7) it is assumed that p x x p x x
n n n n

| | ,
:0 1 1− −( ) = ( )θ θ  since Equation (4) describes 

a Markov model of order one, i.e., the process is conditionally dependent on the past sequence only 
through the last state. In addition, it is assumed that the probability models for error terms v

n
 and w

n
 

are given, and as a consequence, the PDFs for the state transition equation and observation equation are 
prescribed. For example, when v

n
 and w

n
 are modeled as zero-mean Gaussian distributions, which is 

supported by the Principle of Maximum Information Entropy (PMIE) (Jaynes, 1983), then the transition 
equation and the observation equation in (4) and (5) can be expressed as Gaussian distributions, as:

p x x x x x x
n n

n

v n n

T

v n n
x

n n
| , ( ) | | exp−

−
−( ) = ( ) − −( ) −( )






1

1
2 12

1
2

θ π Σ Σ






	 (8)

p y x y y y y
n n

n

w n n

T

w n n
y

n n
| , ( ) | | expθ π( ) = ( ) − −( ) −( )






−
−2

1
2

1
2 1Σ Σ








	 (9)

where x g x u
n n n n
= ( )−1

, ,θ  and y h x u
n n n n
= ( ), ,θ , being Σ

v

n n

n

x x∈ ×�  and Σ
w

n n

n

y y∈ ×
�  the covariance 

matrices of the model error and the measurement error, respectively. As shown in Equations (6) and (7), 
the two last probability models p x x

n n
| ,−( )1

θ  and p y x
n n

| ,θ( )  are fundamental elements in the Bayes-
ian state estimation problem explained in this section.

Joint State-Parameter Estimation

To better estimate the current damage state of the system, and more importantly, to reduce the uncer-
tainty of the future predictions about the system, a followed solution is to sequentially update both states 
and model parameters using the sequential state estimation framework presented above. In doing so, the 
system equations g

n
 and h

n
 are expected to provide more accurate predictions as long as model param-

eters are allowed to learn from data. To deal with the Bayesian state estimation problem for both states 
and parameters, an augmented state z x

n n n

n nx= ( ) ∈ +,θ θ  is usually defined so that the same funda-
mental equations defined in (7) can be redefined to obtain the posterior PDF for the augmented state, 
i.e., p z y

n n0 0: :
|( ) , as follows:
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p z y p z y y

p y z y p z y
n n n n n

n n n n n

0 0 0 0 1

0 0 1 0 0

: : : :

: : : :

| | ,

| , |
( ) = ( )
∝ ( )

−

− −−

− − −

( )
∝ ( ) ( ) ( )

1

1 0 1 0 1
p y z p z z p z y

n n n n n n
| | |

: :

	 (10)

where

p z z p x x p
n n n n n n n

| | , |− − −( ) = ( ) ( )1 1 1
θ θ θ 	 (11)

p y z p y x
n n n n n

| | ,( ) = ( )θ 	 (12)

A key problem that typically arises when sequentially updating the joint state-parameter vector 
z x
n n n0 0 0: : :

,= { }θ  as an augmented state is the non-dynamics nature of θ , which makes it difficult to 

obtain the required PDF p
n n

( | )θ θ −1
 and therefore, to explore the space of parameters. A common solu-

tion consists in adding an independent random perturbation ξ
n

 to the set of updated parameters at time 
n −1 , before evolving to the next state at time n , i.e., θ θ ξ

n n n
= +−1 . This induces a Markovian-type 

artificial dynamics (Gordon et al., 1993; J. Liu & West, 2001) to model parameters, from which the PDF 
p

n n
θ θ| −( )1  is prescribed. For example, in the common case of ξ

n
 being modeled as a white noise 

(zero-mean Gaussian), the PDF for artificial evolution of model parameters can be obtained as:

p
n n n n
θ θ θ ξ| ,− −( ) = ( )1 1

 Σ 	 (13)

where Σξ θ θ

n

n n∈ ×�  is the covariance matrix of the random walk defined in the last equation. Observe 

that by using this method the model parameters are virtually time evolving although they are essen-
tially not dependent on time. This time varying imposes a loss of information in θ  over time (i.e. larger 
spread) since additional uncertainties are artificially added to model parameters, which ultimately influ-
ences the precision of the state estimation. There exist several methods in the literature to overcome this 
drawback, being the most popular those that impose some kind of shrinkage over Σξn  as long as new 

data is collected (J. Liu & West, 2001). An efficient method in this direction has been recently proposed 
by Daigle and Goebel (M. J. Daigle & Goebel, 2013) consisting in modifying the variance of the random 
walk by adding a negative scalar proportional to the relative difference between the actual and the target 
spread of the marginal posterior p y

n j n
θ

, :
|

0( ) , with θ
n j,

 the j th  component of the parameter vector θ
n

, 
as follows:

σ σ
θ

θξ ξn j n j
P
RMAD RMAD

RMADj

n j j

n j
, ,

* ,
*

,

2 2

1
1= −

( )−
( )












−


	 (14)
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where RMAD θ
n j,( )  is the Relative Median Absolute Deviation of p y

n j n
θ

, :
|

0( ) , RMADj*  is the required 

or target RMAD for p y
n j n
θ

, :
|

0( ) , and P
j
* ,∈ 


0 1  is a constant that tunes the speed of convergence to 

RMAD
j
* . The reader is referred to (M. J. Daigle & Goebel, 2013) for details about the optimal choice 

for P
j
*  and RMAD

j
* . The term RMAD( )

,
θ
n j

 can be readily calculated using samples from the mar-

ginal posterior �θ θ θ θ θ
n j n j n j

k
n j
K

n j n
p y

, ,
( )

,
( )

,
( )

, :
, , , , ~ |= … …{ } ( )1

0
, as follows:

RMAD
median median

medn j

n j
k

n j
k

K

θ
θ θ

,

,
( )

,

( ) =
− ( ){ }







=

�
1

iian
n j
�θ

,( )
	 (15)

The proposed method for joint state-parameter estimation is presented as Algorithm 1 at the end of 
this section.

Future State Prediction

Having calculated the probability distribution of the state estimate at the time of prediction n, the next 
step for prognostics is to predict the distribution of future states of the system  steps forward in time 
(measured using time-indices) in absence of new measurements.

In this context, the resultant distribution is known as the �− step-ahead predictive PDF, defined 
mathematically as p z y

n n+( )�
|

:0
 where � �∈ > 1 . Using the up-to-date information of the system based 

on the filtering distribution p z y
n n

|
:0( )  and the dynamics of the system, which is encapsulated in the 

state transition equation defined in Equation (11), the �− steps-ahead prediction of the system health 
state p z y

n n+( )�
|

:0
 can be formulated using Total Probability Theorem as follows:

p z y p z z p z y dz

p

n n n n n n n n n n+ + + − + − + −( ) = ( ) ( )
=

∫� � � � �
| | |

: : : : :0 1 1 0 1

ll n

n

l n n n nl
z z p z y dz

= +

+

− + −∏∫ ( ) ( )
1

1 0 1

�

�
| |

: :


	 (16)

It should be noted that the last multidimensional integral is analytically intractable, however it can 
be readily approximated by the use of sampling-based methods, as shown further below in this section.

Defining EOL and RUL

At this juncture, once the problem of future state prediction has been assessed, the next natural step for 
prognostics is to estimate the EOL and RUL of the engineering component/system. To this end, a math-
ematical description of the aforementioned terms EOL and RUL is previously introduced. For the sake 
of generality, these concepts are explained here using continuous time notation instead of the discrete-
index notation, useful from the implementation perspective. However, recall that there exist a one-to-one 
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mapping between continuous time t and discrete time-index n (e.g., t n t= ⋅∆ , being ∆t  a sufficiently 
small time-step) and thus the EOL and RUL could also be expressed in terms of discrete time.

Let define the region   of acceptable performance as a subspace of the joint state-parameter-inputs 
space  ⊂ × ×� � �n n nx uθ . This region can be defined by means of a set of n

c
 constrains or thresholds, 

C c
EOL i i

nc= { }
=1

, where each threshold c C
i EOL
∈  is a function that maps a given point x t t u t( ) ( ), ( ),θ( ) ∈   

into the Boolean domain  � { , }0 1 , i.e. c
i
: Z B→ , being c x t t u t

i
( ) ( ), ( ),θ( ) = 1  when the constrain 

is satisfied and 0 otherwise (Shankar Sankararaman et al., 2013). These individual constrains may be 
combined into a single threshold function T

EOL
: Z B→  that can be mathematically defined as:

T x t
if c x t

otherw
t u t

t u t
EOL

i i

nc

( )
( )

, ( ), ( )
, ( ), ( )

θ
θ

( ) =
∈ ( ){ }

=
1

0

0
1

iise










	 (17)

In other words, T
EOL
= 1  when any of the constraints is violated, and 0 otherwise. Therefore, the 

End-of-Life at the time of prediction t
p

, denoted by EOL t
p( ) , can be calculated as the earliest time 

t t
p

≥  for which T
EOL
= 1 . In mathematical terms:

EOL t t t t T x t t u t
p p EOL( ) = ∈ ≥ ∧ ( ) ={ }+inf : ( ), ( ), ( )� θ 1 	 (18)

In Figure 5, a schematic illustration of the trajectory of a general state x t( )  is provided along with 
the region   of acceptable performance (in gray color). Note that the state is propagated forward in 
time from the time of prediction t

p
 until the boundary of the acceptable performance region is reached. 

The first “hitting” time t  at which that happens defines the EOL. Having computed the EOL, the re-
maining useful life at the time of prediction can be readily calculated as:

RUL t EOL t t
p p p( ) = ( )− 	 (19)

Note from Equation (19) and preceding equations that an estimation of RUL at an arbitrary time of 
prediction depends on the following quantities:

•	 State estimate at time of prediction, x t
p

( ) .
•	 Future loading conditions u t( ) , where t t

p
≥ . Both environmental and operating conditions may 

be described along with loading conditions by the vector u t( ) .
•	 Future values for model parameters, θ( )t .
•	 Future values for model error, v t( ) .

For the purpose of RUL prediction, all of the above quantities are functionally independent of each 
other; hence, RUL becomes a functionally dependent quantity, as shown in Figure 6. Let X X X X

m
= ( )1 2

, ,...,  
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denote the vector of all of the above quantities, where m is the length of the vector X, i.e., the number 
of quantities influencing the RUL prediction. Then, the RUL can be expressed analytically by:

RUL f X= ( ) 	 (20)

In view of Equation (20), for every realization of X it is possible to compute the corresponding real-
ization of RUL. However, as explained earlier, all of these quantities are uncertain and therefore, RUL 
is unavoidably uncertain. In order to account for the uncertainty in the remaining useful life estimation, 
it is necessary to propagate the uncertainty in X through f. It has been recently demonstrated that such 
uncertainty propagation is non-trivial even when the state-space models are linear and the uncertain 
variables follow Gaussian distributions. This is because the combination of the state-space model and 
the threshold function will always render f as a non-linear function (S. Sankararaman et al., 2014). Hence, 
it is necessary to resort to statistical approaches in order to estimate the probability distribution of RUL. 
These methods can be roughly classified into three types: sampling-based methods, analytical methods, 
and hybrid methods. While some of them may calculate the cumulative distribution function (CDF) of 
RUL, denoted by F t P RUL tRUL ( ) = ≤( ) , other methods directly generate samples from it and use these 
samples to construct an estimation of the probability density function of RUL, denoted by p RUL( ) . 
These methods are summarized below.

Sampling-Based Methods

The most intuitive method for uncertainty propagation is to make use of Monte Carlo simulation (MCS). 
The fundamental concept of MCS (Caflisch, 1998) is to generate pseudo-random number that is uni-
formly distributed on the interval [0, 1]; therefore the CDF of X is inverted to generate several random 

Figure 5. Conceptual two-dimensional example of system trajectory to EOL
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realizations of X whereby the corresponding random realizations of RUL are computed. Then the CDF 
F t
RUL ( ) is calculated as the proportion of realizations such that RUL t≤ . The generation of each real-

ization requires one evaluation/simulation of Equation (20). Several thousands of realizations may often 
be needed to calculate the entire CDF, especially for very high/low values of t . Error estimates for the 
CDF in terms of the number of simulations are well-known in the literature, see for example (Haldar & 
Mahadevan, 2000). Alternatively, the PDF p(RUL) can be computed based on the available samples 
from Equation (20) using kernel density estimation (Rosenblatt & others, 1956).

More sophisticated methods such as particle filtering (PF) (Gordon et al., 1993) can be used to simply 
propagate the resultant “particles” into the future. Such approach is only slightly different from MCS 
where the difference resides in that the particles have their own weights. In order to accurately capture 
the entire probability distribution of RUL, it may be necessary to employ large amounts of “particles” 
which necessarily increases the computational cost. Henceforth, such an approach may not be suitable 
for online health monitoring and prognostics in complex systems. This is why it is necessary to further 
investigate new efficient sampling-based methods that can significantly improve the computational ef-
fort. Some of these sampling-based methods are:

•	 Importance Sampling: This algorithm (Glynn & Iglehart, 1989) does not generate random re-
alizations of X from the original distribution. Instead, random realizations are generated from a 
proposal density function. Statistics of RUL are estimated and then corrected based on the values 
from the original density and the proposal density.

•	 Adaptive Sampling: This method (Bucher, 1988) is an advanced sampling technique where the 
efficiency of importance sampling is continuously improved by updating the proposal density 
function based on the information obtained after evaluating f for a few samples. Two classes of 
adaptive sampling methods are multi-modal sampling (Karamchandani et al., 1989) and curva-
ture-based sampling (Wu, 1994). It has been demonstrated (Haldar & Mahadevan, 2000) that 
adaptive sampling techniques can accurately estimate the failure probability using hundreds of 
samples whereas traditional Monte Carlo techniques typically require several hundreds of thou-
sands of samples.

Figure 6. Scheme for RUL computation
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•	 Stratified Sampling: In this sampling approach, the overall domain of X is split into multiple sub-
domains and samples are independently drawn from each sub-domain. The process of dividing the 
overall domain into multiple sub-domains is referred to as stratification. This method is applicable 
when subpopulations within the overall population are significantly different.

•	 Latin Hypercube Sampling: This is a sampling method commonly used in design of computer 
experiments (Loh, 1996). When sampling a function of m

1
 variables, the range of each variable 

is divided into m
2

 equally probable intervals, thereby forming a rectangular grid. Then, sample 
positions are chosen such that there is exactly one sample in each row and column of this grid. 
Each resultant sample is then used to compute a corresponding realization of RUL, and thereby the 
PDF p(RUL) can be calculated.

•	 Unscented Transform Sampling: Unscented transform sampling (M. Daigle et al., 2012; Van 
Zandt, 2001) is a sampling approach that focuses on estimating the mean and variance of RUL, 
instead of the entire probability distribution. Certain pre-determined sigma points are selected in 
the X-space and these sigma points are used to generate corresponding realizations of RUL. Using 
weighted averaging principles, the mean and variance of RUL are calculated.

•	 Subset Simulation: Subset Simulation is an adaptive stochastic simulation approach originally 
conceived to compute small failure probabilities of engineering systems (Au & Beck, 2001). The 
conceptual idea behind Subset Simulation is to represents a small failure probability as a product 
of larger probabilities. Recently, (M. Chiachio et al., 2014) have proposed a new algorithm called 
“PFP-SubSim” that exploits the benefits of Subset Simulation into the prognostics procedure, and 
has demonstrated high efficiency for the prognostics of rare-events.

Analytical Methods

A class of analytical methods was developed in the field of structural engineering to perform uncer-
tainty propagation without the need to employ repetitive evaluations. These methods facilitate a quick 
(in terms of number of evaluations of function f) and efficient (reasonably accurate) calculation of the 
probability distribution of RUL.

•	 First Order Second Moment Method: This method (Dolinski, 1983) uses only the mean and 
variance of all the uncertain quantities and the first-order Taylor’s series expansion of f, in order 
to calculate the mean and variance of the response quantity RUL.

•	 First Order Reliability Method: This method calculates the CDF function F t
RUL ( )  by lineariz-

ing f around the so-called most probable point (Haldar & Mahadevan, 2000; M Hohenbichler & 
Rackwitz, 1983; Shankar Sankararaman et al., 2013). By repeating this calculation for multiple 
values of t, the entire CDF can be obtained. While this approach is an approximation, it has been 
demonstrated that it can estimate the CDF with reasonable accuracy in many practical applica-
tions (Haldar & Mahadevan, 2000; Shankar Sankararaman et al., 2013).

•	 Inverse First Order Reliability Method: This method is the inverse of the first-order reliability 
method, i.e., it calculates the value of t that corresponds to a given value of β such that F t

RUL ( ) = β . 
By repeating this approach for several values of β, the entire cumulative distribution function of 
RUL can be easily calculated, thereby estimating the uncertainty in RUL.
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•	 Second Order Reliability Method: The second order reliability method (Der Kiureghian et al., 
1987) improves the estimate of the first-order reliability method through a quadratic approxi-
mation of f, instead of using a linear approximation. There are different types of quadratic ap-
proximations and corresponding second-order reliability estimates, thereby leading to a variety 
of computational methods as those proposed by Kiureghian et al. (Der Kiureghian et al., 1987), 
Tvedt (Tvedt, 1989), Hohenbichler and Rackwitz (Michael Hohenbichler & Rackwitz, 1988), etc.

Hybrid Methods

In addition to the sampling-based methods and analytical methods, there are also a class of methods 
called hybrid methods that combine both sampling and the use of analytical tools. Typically these 
methods are of the form of surrogate models where few samples of X and the corresponding values of 
RUL are computed and further used by basis functions (or interpolating functions) in order to facilitate 
the evaluation of f at untrained locations of X. Such surrogate modeling approaches include regression 
techniques (Haldar & Mahadevan, 2000) polynomial chaos expansion (Najm, 2009), kriging (Dwight 
& Han, 2009), among others.

Summary

In summary, while the aforementioned uncertainty propagation methods have been used in different types 
of engineering applications, it is still necessary to investigate their applicability to prognostics. Further, 
note that uncertainty propagation is still a challenging problem in several practical applications due to 
the limitations of the aforementioned methods. It is rarely possible to accurately calculate the actual 
probability distribution of RUL by analytical methods. Accurate calculation is possible when using in-
finite samples by Monte Carlo sampling. Any other method (even the use of a limited, finite number of 
samples) will lead to uncertainty in the estimated probability distribution, and this additional uncertainty 
is referred to as prediction-method uncertainty. It is possible to decrease (and maybe, eventually eliminate) 
this type of uncertainty either by using advanced probability techniques or powerful computing power.

Algorithms for Prognostics

Having discussed a variety of methods for prognostics, this section presents two algorithms for sequen-
tial state estimation and RUL prediction, respectively. Both of them are widely used by the prognostics 
community for their versatility and ease of implementation.

As explained before, the Bayesian state estimation methodology presented earlier in this section is 
analytically intractable except some especial cases mentioned above (Arulampalam et al., 2002). An 
alternative for the general case of both non-linear and non-Gaussian state-space models, and non-dis-
cretizable state variable, is by the use of Sequential Monte Carlo (SMC) methods (Arulampalam et al., 
2002; Cappé et al., 2007; Doucet et al., 2001; Gordon et al., 1993) for drawing samples from the pos-
terior PDF p z y

n n0 0: :
|( )  avoiding the calculation of the multidimensional integrals in Equations (6) and 

(7). A comprehensive treatment of SMC methods can be found in (Doucet et al., 2001). As a special 
case of SMC methods, particle filters (PF) (Gordon et al., 1993) emerge as the state-of-art of SMC al-
gorithms for sequential state estimation. These methods share a common principle of approximating the 
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required posterior PDF through a set of N  discrete samples or particles z
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where δ  is the Dirac delta.
In practice, it is not possible to efficiently sample from the true posterior p z y

n n0 0: :
|( ) , given that it 

is seldom known exactly. To overcome this problem, a Sequential Importance Sampling (SIS) approach 
can be adopted. To this end, an importance density PDF q z y

n n0 0: :
|( )  defined over a support region 

including that of the true posterior PDF can be conveniently defined so that samples can be efficiently 
generated from it. Thus, to compensate for the difference between the importance density and the true 
posterior density, the unnormalized particle weights are computed as:
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It follows that the choice of the importance density is crucial for the particle filter algorithm, so that 
a bad election may lead to a poor algorithm performance (i.e. larger variances of the particle-based 
estimation). There is a vast literature dealing with optimal choice of importance density (Arulampalam 
et al., 2002; Doucet et al., 2001) however in most of the practical applications the importance density 
is conveniently chosen as q z y q z y

n n n n0 0 0 0 1: : : :
| |( ) = ( )− , so that it can be factorized as 

q z y q z z q z y
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| | |− − − −( ) = ( ) ( ) (Arulampalam et al., 2002). Thus, by substituting Equation 

(10) into Equation (22), the unnormalized weight for the ith  particle at time n  can be rewritten as:
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Typically, the PDF q z z
n n

| −( )1  in Equation (23) is chosen to coincide with the state transition equa-

tion p z z
n n

| −( )1  (Gordon et al., 1993; Tanizaki & Mariano, 1998) since it is easy to evaluate. In this 
case the last equation simplifies to
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ˆ |( ) ( ) ( )ω ω
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	 (24)

and the resulting algorithm is commonly known as “bootstrap filter”, after (Gordon et al., 1993).
A well-known and unavoidable problem when using particle filters based on SIS is the weight de-

generacy, by which the normalized probability mass tends to concentrate over a decreasing number of 
particles as long as the number of iterations increases (Arulampalam et al., 2002; Cappé et al., 2007). 
A common solution is to introduce a resampling step whenever a significant degeneracy is observed 
(e.g., by quantifying the effective sample size, ESS, (Kong et al., 1994)). By the resampling, the particles 
with higher weights are replicated while those with low weights are removed, using the normalized 
weights as probabilities of selection. After the resampling step, the normalized importance weights are 
reset to 1 N . A pseudocode implementation for a SIS particle filter with resampling and parameter 
regeneration is provided in Algorithm 1.

Finally, given the current state estimation based on particle filters, a filtered estimation of the predic-
tive PDF p z y

n n
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:+� 0
 can be obtained by replacing p z y
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:0( )  in Equation (16) by its particle-filter 
approximation (as a marginal of the updating PDF in Equation 21) as follows:
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Note that the last equation cannot be solved analytically, however it can be sampled by drawing one 
conditional sample trajectory z z z z

n n
i

n
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n
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n
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� �
 from each of the N  multidimensional 

integrals appearing in Equation (25). This can be readily achieved by conditional sampling, using the 
one-step transition equation defined in Equation (11), i.e.: first sample z

n
i
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( )  using the aforementioned 

state transition equation conditional on a sample from the filtered state z
n
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then sample the succeeding state conditional on the previous sample, i.e. z p z z
n
i

n n
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repeat the same process until the target time n + �  is reached. Finally, an estimate of the �− step pre-
dictive ahead PDF can be expressed as
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where ω
n
i( )  is the weight of ith  particle at time of prediction n .
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continued on following page

Algorithm 1. SIS particle filter with parameter adaptation
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Having estimated the current state of the system and the future state �− steps ahead, Algorithm 2 
can be used for predicting the RUL and EOL of the system. Using the updated weights of the particles 
at time of prediction n n

p
= , a probabilistic estimation of the EOL can be obtained as:
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where ω
n
i

p

( )  is the normalized weight of the ith  particle at time of prediction n
p

. From the EOL estima-

tion of the ith  particle, denoted as EOL
n
i
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( ) , the remaining useful life for that particle can be readily 

obtained asRUL EOL n
n n

i
p

i
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( ) ( )= − . By adopting the same normalized weights than those used for EOL 

estimation, a probability-based estimation of RUL can be obtained as:
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The details of the method for EOL and RUL prediction are summarized in Algorithm 2.

PROGNOSTICS EXAMPLE ON COMPOSITE MATERIALS

The proposed framework is exemplified using SHM data obtained from a set of carefully designed run-
to-failure fatigue experiments in cross-ply graphite-epoxy laminates. This example is motivated by the 
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Algorithm 2. EOL and RUL prediction

Inputs: x
n
i

n
i

n
i

i

N

p p p

( ) ( ) ( ), ,θ ω( ){ }
=1

Outputs: EOL RUL
n
i

n
i

n
i

i

N

p p p

( ) ( ) ( ), ,ω{ }
=1

1: n n
p

←

2: for i = 1 to N

3: while T x
EOL n

i
n
i( ) ( ),θ( ) = 0

4: Sample: θ θ θ
n n n
i ip+ +( )1 1

( ) ( )~ | ;

5: Sample: x p x x
n n n n
i i i
+ + +( )1 1 1

( ) ( ) ( )~ | ,θ ;

6:  x x
n n
i i

n
i

n
i( ) ( ) ( ) ( ), ,θ θ( )← ( )+ +1 1

7:  n n← +1

8: end while

9: EOL n
n
i

p

( ) ←

10: RUL EOL n
n
i

n
i

p p

( ) ( )= −

11: end for



261

Prognostics Design for Structural Health Management
﻿

high dispersion that can be observed when degradation data are obtained from fatigue tests in compos-
ite materials, even for tests of nominally identical specimens. This highlights the need of integrating the 
SHM system within a Bayesian prognostic framework to deal with RUL prediction along with its quan-
tified uncertainty. In this exercise, Torayca T700G unidirectional carbon pre-preg material was used for 
15 24 25 4. [ ] . [ ] cm    cm×  coupons with dog-bone geometry and 0 90

2 4
/


s  stacking sequence, whose 

mechanical properties are listed in Table 1 (at this point, see only the nominal values in the 3rd column). 
A notch (5 1 19 3. [ ] . [ ] mm    mm× ) was created in these coupons to induce damage modes others than 
matrix-cracks, such as delamination, thereby introducing additional sources of uncertainty and then 
demonstrating the proposed framework under more realistic conditions.

Description of Experiment Set-Up and SHM Data

SHM data for this numerical example consist of periodically measurements for laminate stiffness reduc-
tion, as a measure of macro-scale manifestation of damage, along with micro-crack density and de-
lamination area, as micro-scale manifestation of damage. Fatigue tests were conducted under load-
controlled tension-tension cyclic loading with a maximum applied load of 31 13.  [KN] , a frequency 
f = 5 [Hz] , and a stress ratio R = 0 14.  (relation between the minimum and maximum stress for each 
fatigue cycle). Monitoring data were collected from a network of 12 piezoelectric (PZT) sensors SMART 
Layer® from Acellent Technologies Inc. using Lamb wave signals and three triaxial strain-gages. Ad-
ditionally, periodic X-rays were taken to visualize and characterize subsurface damage features, in 
particular, the micro-cracks density. This information was then used to develop a mapping between PZT 
raw signals and micro-cracks density, as reported in Larrosa and Chang (Larrosa & Chang, 2012). More 
details about these tests are reported in the Composite dataset, NASA Ames Prognostics Data Reposi-
tory (Saxena et al., 2013). Damage data used in this example correspond to laminate L1S19 in (Saxena 
et al., 2013).

Table 1. Nominal values and prior uncertainty for main parameters used in calculations; parameters 
selected for sequential updating are identified in parentheses. The nominal values for fitting and error 
parameters have been defined through initial fitting tests. See Table 2 for nomenclature description.

Type Parameter Nominal Value Units Prior PDF

Mechanical E1 (θ1) 127.55 GPa LogN(ln(127.55), 0.1)

E2 (θ2) 8.41 GPa LogN(ln(8.41), 0.1)

G12 6.20 GPa LogN(ln(6.20), 0.1)

ν12 0.31 -- LogN(ln(0.31), 0.1)

G23 2.82 GPa LogN(ln(2.82), 0.1)

d (θ3) 1.5⋅10-4 m LogN(ln(1.5⋅10-4), 0.1)

Fitting α (θ4) 1.8 -- LogN(ln(1.8), 0.2)

A 10-4 -- LogN(ln(10-4), 0.2)

Error σv1 (θ5) -- cracks/(m × cycle) U(0.5,1.5)

σv2 (θ6) -- -- U(0.001,0.003)
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Damage Model

The rate of change of internal damage per cycle can be evaluated by the modified Paris’ law (Nairn & 
Hu, 1992) as follows:

d
dn

A G
ρ α= ( )∆ 	 (29)

where ρ  is the matrix micro-crack density, and α  and A  are fitting parameters. The term ∆G  is the 
increment in energy release rate G  evaluated for the maximum and minimum stress in the cyclic load 
series: ∆G G G

max min

= −
σ σ

. For a given axial tension σ
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, the energy released by the formation of a 

new crack between two existing cracks can be calculated using the following expression:
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where h  and t
90

 are the laminate and 90º-sublaminate half-thickness, respectively. The term E
x
*( )ρ , as 

a function of crack density ρ , is the effective laminate Young’s modulus due to the current damage state. 
Several micro-damage mechanic models from the literature (Talreja & Singh, 2012) can be adopted to 
evaluate E

x
*( )ρ , e.g. shear-lag models (Garrett & Bailey, 1977; Highsmith & Reifsnider, 1982) varia-

tional models (Hashin, 1985), and crack opening displacement based models (Gudmundson & Weilin, 
1993; Lundmark & Varna, 2005), among others. The shear-lag approach is adopted in this work for be-
ing simpler and well suited for symmetric cross-ply laminates (J. Chiachio et al., 2015), which is the 
laminate type used for this study. Following this approach, E

x
*( )ρ  can be obtained as (Joffe & Varna, 

1999):
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In the last equation, E
x ,0

 is the initial (undamaged) longitudinal Young’s modulus of the laminate; 
l  is the half crack-spacing normalized by the 90°  sub-laminate thickness, i.e., l l t= ρ

90
 where l = 1 2ρ ; 

and a  is a known function of the laminate mechanical and geometrical properties, defined as follows:
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Regarding the initial Young’s modulus of the laminate E
x ,0

, it can be approximated for this example 
using a simple rule of mixtures as

E
t E t E

t tx ,0
0 1 90 2

0 90

=
+
+

	 (33)

The function R l( )  in Equation (31) is known as the average stress perturbation function (Joffe & 
Varna, 1999), and it is defined as:

R l l( ) = ( )2
ξ

ξtanh 	 (34)
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and λ = h h
0 90

 . For the sake of clarity, a description of the terms involved in Equations (32) and (35) 
is provided in Table 2.

At this standpoint, it is easy to understand that a closed-form solution for the resulting Paris’ Law 
equation is difficult to obtain. This is due to the complexity of the expression for ∆G , which involves 
the underlying micro-damage mechanics model for the computation of E

x
*( )ρ . To overcome this draw-

Table 2. Nomenclature description for main geometric and mechanical parameters

Level Parameter Description

Laminate Ex Longitudinal Yong’s modulus

Ex* Effective long. Young’s modulus

h Laminate half-thickness

t90 90º-sublaminate half-thickness

t0 0º-sublaminate thickness

Ply E1 Longitudinal Young’s modulus

E2 Transverse Young’s modulus

ν12 In-plane Poisson ratio

G12 In-plane shear modulus

G23 Out-of-plane shear modulus

d Ply thickness
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back, the resulting differential equation in (29) can be solved by approximating the derivative using 
“unit-cycle’ finite differences by assuming that damage evolves cycle-to-cycle as:

ρ ρ ρ
α

n n n
A G= + ( )( )− −1 1
∆ 	 (36)

where ρ
n

 denotes the matrix micro-cracks density at cycle n .

Stochastic Embedding of Damage Models

In this section, the PF-based prognostic framework presented above is specialized to the fatigue damage 
modeling approach explained in the last section. To this end, let consider that the progression of damage 
is studied by focusing on the matrix-cracks density ρ

n
, and the normalized effective stiffness, defined 

as D E E
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where x x x
n n n
= ( ) ∈1 2

2
, ,
, �  is the system response at cycle n, and v v v

n n n
= ( ) ∈1 2

2
, ,
, �  is the model 

error vector for the overall system. Subscripts 1 and 2 correspond to each of the damage subsystems, 
namely, matrix-crack density and normalized effective stiffness, respectively. A key concept here is the 
consideration of model errors v

n1,
 and v

n2,
 as stochastically independent, even though the models cor-

responding to the damage subsystems g
1
 and g

2
 are mathematically related, as shown in Equation (37). 

It follows that the covariance operator Σ
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 in Equation (8) is a diagonal matrix, i.e., Σ
v v vn n n
diag= ( )σ σ

1 2, ,
, , 

where σ
v n1,

 and σ
v n2,

 are the corresponding standard deviations of errors v
n1,

 and v
n2,

 respectively. 

Therefore, the state transition equation of the overall system can be readily expressed as a product of 
univariate Gaussians, as:
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In the last equations the model parameters θ  are selected among the complete set of mechanical and 
geometrical parameters describing Equations (29) to (35) (see Table 1) through a Global Sensitivity 
Analysis following the methodology proposed by (Saltelli et al., 2008). The ply properties { , , }E E t

1 2
 

together with the fitting constant α  emerged as sensitive parameters to model output uncertainty (J. 
Chiachio et al., 2015). To the last cited selection, the standard deviations of the model errors v

n1,
 and 

v
n2,

 are added since they are uncertain a priori, resulting in θ α σ σ= ( ) ∈, , , , ,
, ,

E E t
v vn n1 2

6

1 2
� . The rest 

of parameters are fixed at any point within their range of variation, (e.g. the mean value) without sig-
nificantly influencing the output uncertainty.

To allow the incorporation of SHM measurement to the stochastic system, the following measure-
ment equation is considered:
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2
, ,
, �  is the vector of measurement errors. As 

stated before, the PMIE is used to choose w
n

 as Gaussian PDF with covariance matrix Σ
wn

. Thus, the 

measurement equation defined in Equation (40) can be expressed in probabilistic terms as:
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Since the measurements of each subsystem (micro-cracks and stiffness loss) are considered as sto-
chastically independent, then Σ

w w wn n n
diag= ( )σ σ

1 2, ,
, . Here σ

w n1,
 and σ

w n2,
 are the standard deviation of 

the corresponding measurement errors w
n1,

 and w
n2,

 respectively. Thus, the measurement equation 
defined in (41) can be readily expressed as:
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Finally, by substituting the Equation (42) into (24), the formula for updating the particle weights 
leads to the next expression:

ω ω ρ ρ
n
i

n
i

n n
i

n n
ip p D D( ) ( ) ( ) ( )ˆ | ˆ |∝ ( ) ( )−1

	 (44)

Results for RUL Prediction

This section presents RUL prediction results on the composite fatigue example and also illustrates the 
use of prognostics metrics for prediction performance evaluation. As fatigue data become available, 
the prognostic algorithm makes predictions of when micro-cracks density and the normalized effective 
stiffness reach their respective thresholds, defining the EOL and RUL for this experiment.

Every time new data arrive, the damage variables x D
n n n
= ( )ρ ,  together with model parameters θ

n
 

are updated using Algorithm 1 with N = 5000  particles. The scaling variables RMAD
j
*  and P

j
*  (see 

Algorithm 1) are fixed to 0 3
0

.
,

RMAD
j
 and 0.001, respectively, where RMAD

j0,
 is calculated accord-

ing to Equation (15) using samples from the marginal prior p
j

( )θ , j = 1 6, ,… . The prior PDFs of 
model parameters are specified in Table 1. The diagonal elements of the covariance matrix Σξ0,j

 (recall 

Equation (13)) are appropriately selected through some initial test runs and set at 0 5. %  of the 5th-95th 
inter-percentile range of the prior PDFs for each of the j th  component of θ . For this example, the sys-
tematic importance resampling (SIR) version of the SIS algorithm is adopted whereby the resampling 
step is run every time new data are collected, hence ESS N= . Damage states are initialized at 
x D

0 0 0
= ( )ρ , , being ρ

0
0 1= 



.  cracks mm  and D

0
1=  (dimensionless). The standard deviation of 

the measurement error parameters are set to σ
w n

cracks mm
1

0 05
,

.= 



  and σ

w n2
0 01

,
.= , taking them 

as known. At each time n , the updated damage states are further propagated into the future using the 
models to compute the remaining useful life of the laminate, calculated as RUL EOL n

n n
= − , follow-

ing the methodology described above. The region of acceptable performance is defined in this example 
as  � �( , ) [ , . ] [ . , ]ρ D ∈ ×{ }⊂0 0 42 0 88 1 2 , where ρ  is expressed in cracks mm



  and D  is dimension-

less.
Figure 7 shows the results for damage state estimation and multi-step ahead prediction at fatigue 

cycles n = ×{ , , }1 3 8 104  for both, micro-cracks density and relative stiffness loss. While predictions 
are generally updated at regular intervals, for the sake of conciseness and clarity only three predictions 
are presented here. The solid black markers indicate the measurement data available until time of predic-
tion n . For comparison purposes, the upcoming data are also represented using hollow markers. The 
multi-step ahead predictions for both damage features are shown in solid lines. Additionally, two cred-
ibility interval ranges, 25%-75% (dark dashed lines) and 5%-95% (light dashed lines), are included to 
show the uncertainty in the predicted estimates. Since predictions are updated at regular intervals, the 
uncertainty reduction is clearly revealed by comparing the credibility intervals at increasing prediction 
times.

The results for remaining useful life are plotted in Figure 8, where RUL predictions made at different 
times (about every 10,000 cycles) are plotted with corresponding uncertainties represented as error bars. 
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Two cones of accuracy at 10%  and 20%  of true RUL, denoted as RUL*, are included to interpret per-
formance with regards to prediction accuracy and precision.

Observe that the RUL prediction is significantly inaccurate for the first few predictions during the 
early stages of the fatigue process, which is attributed to the time lapse required for SHM data to train 
model parameters. From this period, not only the prediction precision clearly improves with time (values 
closer to RUL* line), but also the prediction uncertainty gradually tends to diminish. This visualization 
allows assessment of how prediction performance changes over time in terms of correctness (accuracy 
and precision). Also, by assessing how quickly performance converges within desired accuracy levels 
one can estimate the prediction horizon, as defined in Fundamentals. In particular for this example, the 
PH for 0.2 as α-accuracy is PH=8⋅104-1⋅103=7.9 ⋅104 cycles.

Furthermore, the error bars and their pattern of shrinkage contribute to the confidence in predictions 
vis-à-vis and their usage in decision making. It is also noteworthy in Figure 8 that accuracy seems to 
depart from true RUL at the final stages of the fatigue process, which indicates that the model and its 
variance structure do not fully capture the damage dynamics towards the end of the damage process. 
Such behavior has been previously reported in (Saxena, Celaya, et al., 2010a) and may be related to the 
difficulty of obtaining adequate amount of measurements to account for behaviors when the damage 
process has reached asymptotic growth behavior.

Figure 7. Example results for sequential state estimation and multi-step ahead prediction made at pre-
diction times n = ×{ , , }1 3 8 104
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CONCLUSION

This chapter presented a generic framework for prognostics and remaining useful life prediction. First, 
an architecture for prognostics was developed; in this architecture, prognostics was broken down into the 
three important problems of state estimation, future state prediction, and remaining useful life prediction. 
Stochastic state-space system models were used to depict the degradation of system health that was in 
turn represented using the states of the system. These states were estimated using output measurements 
and the estimated states were used to forecast state values and hence, the health of the system. The end 
of life was defined using a multi-dimensional threshold function and the time-instant at which the system 
reaches end of life was calculated.

A key feature of the above methodology was a systematic treatment of the various sources of uncer-
tainty. Since prognostics deals with the prediction of future events, it is important to understand that it 
is almost impossible to make precise predictions due to the various uncertainties that cloud the future. 
To being with, the interpretation of uncertainty was discussed in detail. The traditional frequentist ap-
proach is not suitable for understanding uncertainty in condition-based prognostics and it is necessary to 
adopt a subjective approach for interpreting uncertainty in this context. Therefore, a Bayesian approach 

Figure 8. Using RUL vs. time plot to assess Remaining Useful Life prediction performance for compos-
ites under fatigue aging
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that is based on the concept of subjective probability is extremely suitable for investigating uncertainty 
in prognostics.

The various sources of uncertainty in prognostics include system inputs (loading, environmental, 
operational conditions), system parameters, state-space models, etc. As a result of these sources of un-
certainty, the state estimates, future state predictions, and the remaining useful life are all uncertain. It is 
necessary to understand that these quantities are simply dependent on the different sources of uncertainty 
and hence, it is important to systematically quantify the effect of the various sources of uncertainty on 
prognostics and remaining useful life prediction. This was accomplished through the use of Bayesian 
state estimation that can compute the probability distribution of the system states by accounting the 
different sources of uncertainty. Then, it was illustrated that, in order to accurately calculate the prob-
ability distribution of remaining useful life, the prediction of remaining useful life needs to be posed as 
an uncertainty propagation problem that can be solved using a variety of statistical techniques. Some 
of these methods were briefly discussed, and algorithms were provided for both state estimation and 
RUL prediction.
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KEY TERMS AND DEFINITIONS

Coverage: A quantitative measure expressed as the ratio of failures detected to the entire theoretically-
detectable failure population.

Diagnosability: A measure for how well system faults can be detected and isolated without ambiguity 
given a system’s definition and it sensors.

Diagnostics: Detection of anomaly or a fault and determining the possible locations and/or causes.
Failure Threshold: A design parameter specified to indicate maximum threshold beyond which a 

component is not expected to perform its intended function within specifications and/or is outside safe 
limits.

Fault Isolation: The process of determining the location of a fault to the extent necessary to effect 
repair.

Observability: A measure for how well internal states of a system can be inferred by knowledge of 
its external outputs measured through sensors.

Prognostics: Prediction of a system’s future health states, degradation, and remaining useful life 
(RUL) based on its usage history and anticipated future load profile.


