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a b s t r a c t 

The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of industrial 

components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive because 

of their capability of handling the system dynamic behavior, the measurement noise, and the stochastic- 

ity of the degradation process. In particular, in this paper we originally resort to an ensemble of ESNs, 

for enhancing the performances of individual ESNs and providing also an estimation of the uncertainty 

affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL prediction 

are: i) the use of the individual ESN memory capacity within the dynamic procedure for aggregating of 

the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, within the Mean 

Variance Estimation (MVE) approach. With these novelties, the developed approach outperforms a static 

ensemble and a standard MVE approach for uncertainty estimation in tests performed on a synthetic and 

two industrial datasets. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Prognostics is the engineering discipline concerned with the

rediction of the time left before the equipment will no longer

erform its intended function, i.e., its Remaining Useful Life (RUL).

uch prediction is typically performed starting from the current

ealth state of the equipment and taking into account its past

istory and future operation. The capability of RUL prediction en-

bles the possibility of identifying equipment problems at an early

tage and timely performing maintenance to anticipate failures

41,65,68] . In this view, prognostics represents an important op-

ortunity for industry, in terms of efficient and agile maintenance

anagement, in principle providing the right part to the right

lace at the right time, with the necessary resources [23] . 

Prognostics require the availability of models capable of pro-

iding accurate RUL predictions and the associated uncertainty
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46,88] . Prognostics models should take into account the differ-

nt sources of uncertainty affecting RUL predictions [9,87] : ( i ) ran-

omness in the equipment future degradation path, due to the in-

rinsic stochasticity of the degradation process and the unknown

uture operation and environmental conditions; ( ii ) inaccuracy of

he prognostic model; ( iii ) measurement noise; and ( iv ) imperfect

nowledge of the degradation initiation time. 

Prognostic methods are typically classified as model-based,

ata-driven and hybrid [16] . Model-based methods use an explicit

athematical model of the degradation process to predict the fu-

ure evolution of the degradation state and, thus, the RUL of the

ystem [55] . In practice, even when the model of the degrada-

ion process is known, the RUL estimate may be difficult to obtain,

ince the degradation state of the system may not be directly ob-

ervable and/or the measurements may be affected by noise and

isturbances. In these cases, model-based estimation methods aim

t inferring the dynamic degradation state and provide a reliable

uantification of the estimation uncertainty on the basis of the se-

uence of available noisy measurements [27,28,44] . 

On the other side, data-driven methods are used when an

xplicit model of the degradation process is not available, but

ufficient historical data have been collected. These methods are
echo state networks for remaining useful life prediction, Neuro- 
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based on statistical models that ‘learn’ trends from the data

[80] . In this respect, Artificial Neural Networks (ANNs) are often

used [16,33,66] ; other examples are Autoregressive Moving Aver-

age techniques [74] , Relevance Vector Machines [25,33,74] , fuzzy

similarity-based methods [98] . Finally, hybrid approaches combine

physics-based models of the degradation process with the use of

historical data collected from degrading components [80] . 

Among these data-driven approaches, ANNs have often been

used for time series forecasting, due to their capability of approxi-

mating non-linear complex functions [33] . Feedforward ANNs have

been used in prognostics for the prediction of rotating machineries

[56] and Lithium-ion batteries [77] RUL. However, the use of feed-

forward ANNs in prognostics is limited by the fact that they are di-

rect models characterized by oriented connections among neurons,

without feedback and loop connections. Therefore, since the out-

put of any layer does not affect the same layer, feedforward ANNs

are not able to catch the system dynamic behaviors. An attempt

to provide the system dynamics in input to feedforward ANNs has

been proposed in [93] , where the models receive in input the cur-

rent and past signal values collected in a time window. The main

limitations of this approach are the difficulty in identifying the

proper lengths of the time window and the largely increased num-

ber of model inputs. 

Local field NNs [37,92] , whose dynamics is based on the lo-

cal field states of their neurons, have also been exploited for time

series predictions. Their local associative memory properties have

been applied with success to the problem of predicting ground-

water levels [96] , but, at the best of the authors knowledge, they

have not been applied to prognostic problems. Alternatively, Spik-

ing NNs, based on the use of spiking neurons characterized by

internal states which change with time, are attractive for inher-

ent dynamic problems such as those typical of prognostics [57] .

General shortcomings of SNNs are the computational burden and

the sensitivity of gradient descent-based learning algorithms to the

SNN initial state [57] . Although significant advances have recently

been made, these issues have not been fully resolved [32] . 

An alternative solution to the problem of learning the sys-

tem dynamic using ANNs is given by Recurrent Neural Networks

(RNNs). Since the RNNs internal states are characterized by cyclic

connections and feedbacks among neurons, they are capable of en-

capsulating into their neurons a nonlinear transformation of the

input history [18,21,45,54] . This provides memory properties to

RNNs, enabling them to handle sequential tasks, such as time se-

ries prediction [79] . RNNs have been applied to different prognos-

tic problems, such as the prediction of machine deterioration evo-

lution using vibration data [86] and of helicopter drivetrain system

gearbox [75] and turbofan engines [35] RULs. However, the appli-

cation of traditional RNNs in time series forecasting problems is

limited by the difficulty of optimizing their numerous internal pa-

rameters and the significant computational effort of the training

process [53] . To overcome this problem, we exploit the use of Echo

State Networks (ESNs), a relatively new type of RNNs. An ESN is an

RNN trained by using a Reservoir Computing (RC) method based on

the random generation of a RNN, called reservoir, which remains

unchanged during the training phase and is passively excited by

the input patterns. Since the only weights of the ESN to be opti-

mized are those of the connections among the reservoir internal

states and the output, RNN training is computationally more effi-

cient [53] . 

Although ESNs have been shown to provide good generaliza-

tion capabilities [47] , few applications of ESNs for RUL prediction

have been proposed. In [58] , an ESN-based approach for the pre-

diction of the RUL of industrial Fuel Cells has been developed. In

[29] , a hybrid approach combining ESN and Conditional Restricted

Boltzmann Machines (CRBM) for predicting the occurrence of

railway operation disruptions has been proposed. A possible rea-
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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on for the limited use of ESNs in prognostics is the difficulty of

etting of the ESN architecture parameters, which heavily influence

he ESN modeling capability and typically requires a high level of

xpertise. 

Ensemble of models has been used in many application fields

or prediction accuracy improvement and uncertainty quantifica-

ion [7,14,22,42,52,69] . The basic idea is that the diverse mod-

ls in the ensemble complement each other by leveraging their

trengths and overcoming their drawbacks. Thus, the combination

f the outcomes of the individual models in the ensemble im-

roves the accuracy of the predictions compared to the perfor-

ance of a single model [10,14,17,39] . Also, the distribution of the

ndividual model outcomes provides information on the ensem-

le modeling error [42,97] . Different methods, such as ANN [11] ,

upport Vector Machine (SVM) [51] and kernel learning [52] , have

een used with success to build the individual models. For exam-

le, it has been shown that the use of an ensemble of just-in-time

ernel learning models has allowed reducing the root mean square

rror of the prediction of the crystal size distribution in crys-

allization processes by 26% with respect to an individual model

52] . 

With respect to improving accuracy in prognostics, an ensem-

le of feedforward Artificial Neural Network (ANN) has been em-

edded into a Particle Filter (PF) for the prediction of crack length

volution [9] and an ensemble of data-driven regression models

as been exploited for the RUL prediction of lithium-ion batteries

91] . 

As far as the authors know, the only application of ensem-

les of RNNs in prognostics has been presented in [39] , where

he RUL predicted by various data-driven models, including a RNN,

ere aggregated considering three different methods, and the de-

eloped procedure was applied to RUL prediction of turbofan en-

ines, power transformers, and cooling fans. RNN-based ensembles

ave also been used for time series forecasting in [6,83] and in

94] , where the considered RNN models were ESN. 

In this work, we develop an ensemble of ESNs, whose model

rchitecture is optimized by Multi-Objective Differential Evolution

DE) [73] . Differently from [73] , where the ESN architecture cor-

esponding to the DE chromosome giving the most accurate RUL

redictions is selected, a novelty of this work is the use of the en-

emble of ESNs whose architectures are given by the chromosomes

f the Pareto front reached at DE convergence. This allows in-

reasing prediction accuracy and estimating prediction uncertainty

14] . 

Once the individual models of the ensemble have been gener-

ted, it is also necessary to define a strategy for the aggregation of

heir outcomes. Aggregation methods are typically classified into

tatic or local [14] : a static ensemble assigns the same weight to

ach model, regardless of the input pattern under test, whereas a

ocal ensemble assigns a dynamic weight to each model accord-

ng to its local performance measured considering input patterns

imilar to that under test, such as the nearest neighbors in a val-

dation set. The accuracy of local ensembles has been reported to

e more satisfactory than that of static ensembles in several ap-

lications [14,52,53,63,85] . The challenge for the application of lo-

al aggregation methods to ensembles of recurrent models, such as

SNs, is the evaluation of the local performances of the individual

odels. Since the ESN output does not depend only on the cur-

ent input pattern but also from the previous input pattern history,

ue to its memory property, the identification of similar patterns

s not straightforward. For example, if an ESN has large memory,

.e., the current output depends on a large input history, the in-

ut time window to be considered for the identification of the test

attern nearest neighbors should be long. On the contrary, if an

SN has low memory, i.e., the current output depends on a short

nput history, the input time window to be considered should be
echo state networks for remaining useful life prediction, Neuro- 
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hort. This problem has been here overtaken by proposing a novel

ocal aggregation method which associates to each ESN a specific

nput time window whose width is directly related to its mem-

ry property, computed according to the method proposed in [48] .

ccording to the author’s best knowledge, the memory property

as never been used for the aggregation of the ensemble individ-

al model outcomes. 

The second challenge addressed in this work is the quantifica-

ion of the uncertainty affecting the RUL predictions. This is typi-

ally accomplished by providing Prediction Intervals (PIs), i.e. inter-

als of values within which the actual RUL is expected to lie with a

redetermined probability [1,4,42,43] . In [36] and [97] , a method to

uantify the ensemble prediction uncertainty has been proposed,

hich distinguishes between the contributions due to the mod-

ling error, estimated considering the distribution of the individ-

al model outcomes, and to the other sources of uncertainty, es-

imated by a properly developed neural model. In [97] the Mean

ariance Estimation (MVE) method has been proposed, which di-

ectly estimates the output uncertainty using a feedforward ANN.

ractical applications of PI estimations can be found in [81] , where

he uncertainty of the estimation of safety parameters is quantified

sing bootstrapped ANNs; in [71] , where the Lower Upper Bound

stimation method [43] is applied to electricity load prediction for

eparately estimating the lower and the upper bound of the pre-

iction interval; in [8] , where the PIs of the predicted turbine blade

reep growth are estimated; in [1] , where ANN is trained to pro-

ide the PIs of scale deposition rate in oil and gas equipment; in

38] , where an ANN ensemble procedure embedding the Lower Up-

er Bound Estimation approach and Genetic Algorithm is used to

mprove the quality of PIs by optimizing the aggregation weights;

n [2] , where an ANN is used for the uncertainty quantification of

hort-term wind speed prediction. For a comprehensive review of

NN-based PIs, the interested reader can refer to [42] . 

The main difficulty to be tackled for quantifying the uncertainty

ffecting the RUL prediction provided by an ensemble of ESNs is

he definition of the input of the model dedicated to the PI esti-

ate, which should take into account the previous input history.

he novelty of this work with respect to the estimation of the un-

ertainty associated to the RUL prediction is the use of an ESN

odel for the PIs estimation which, thanks to its memory prop-

rty, allows automatically taking into account the memory of the

nsemble. According to the authors best knowledge, RNNs have

ever been used within ensemble local aggregation methods nor

or PIs estimation. 

The proposed approach is verified with respect to synthetic,

xperimental and industrial case studies. The experimental case

tudy concerns the prediction of the RUL of a fleet of turbofan en-

ines working under variable operating conditions, whose data are

aken from the NASA Ames Prognostics CoE Data Repository [76] .

he industrial case study concerns the RUL prediction of a set of

ndustrial knives used for packaging applications. 

The results obtained on the considered case studies in terms

f prediction accuracy and uncertainty estimation are compared

o those obtained by using a static ensemble and the feedforward

NN-MVE approach, respectively. 

The remaining part of the paper is organized as follows:

ection 2 illustrates the work objectives and states the problem.

ection 3 illustrates the developed method for RUL prediction

nd PI estimation, providing also a basic background on ESN and

VE. Section 4 shows the application of the proposed methodol-

gy to the two considered case studies and discusses the obtained

esults. Finally, in Section 5 , some conclusions and remarks are

rawn. 

u  

w  

w  
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. Notation and work objectives 

We assume the availability of R run-to-failure trajectories de-

cribing the degradation of R similar components. The generic r th

un-to-failure trajectory, r = 1,.., R, consists of the time series of L

ignals collected through sensors from the degradation onset until

he component failure time t r 
f 
. For the r th trajectory, the measure-

ent of the L signals at the generic time t after the onset of the

egradation process is indicated by: 

  

r 
t = [ x r, 1 t x r, 2 t .... x r,L t 

] t = 1 , .., t r f (1)

The objective of this work is the development of a prognostic

odel for the prediction of the RUL of a degrading industrial com-

onent [64] , i.e., time span between the current time t and the

ime at which the component will not be able to perform its in-

ended function. Therefore, the model receives an input �
 x r 
1: t 

, i.e.

he measurements of the signals collected from the degradation

nset until the present time t and provides in output an estima-

ion R ̂  U L t of the component groundtruth RUL RUL GT 
t . Furthermore,

his work also aims at estimating the uncertainty of the RUL pre-

iction in the form of a PI [ L α ; U α], i.e. an interval of values within

hich the groundtruth RUL, RUL GT 
t , is expected to lie with a pre-

etermined probability (1 −α). 

. Method 

We have developed a method for RUL prediction and PI esti-

ation based on an ensemble of ESNs. Section 3.1 describes the

ndividual ensemble models and how diversity among the mod-

ls is obtained; Section 3.2 illustrates the procedure used to aggre-

ate the individual model outcomes and Section 3.3 presents the

ethod for the estimation of the RUL prediction uncertainty. 

.1. Individual models 

The individual models considered in this work are ESNs. The

hoice of this modeling technique is due to the capability of encap-

ulating the dynamic temporal behavior and preserving informa-

ion about the input time history; this is obtained by using feed-

ack connections between the neurons of a layer and those of the

receding layers [60] . Thanks to this, ESNs have intrinsic memory

roperties, i.e., the system output depends on the observed input

ime history [47] , which is a desirable characteristic for prognostic

odels of dynamic degradation processes. 

ESNs are a relatively new type of RNNs [47] . The difference

rom the traditional RNNs lies in the conceptual separation be-

ween the reservoir, a randomly created RNN used as nonlinear

emporal expansion function, and a linear recurrence-free read-

ut for synthesizing the expansion and producing the desired out-

ut ( Fig. 1 ); notice that this latter is the only part of the ESN

o be trained, which brings significant computational savings [53] .

he critical part of the ESN is the reservoir , which is suggested to

e generated of large dimension N but with sparse connections

mong the internal neurons in order to produce a rich set of dy-

amics [47,49] . 

In this work, we consider a discrete-time ESN with L input

nits receiving at time t the current signal measurements �
 x t =

 x 1 t x 2 t .... x L t ] . The reservoir is characterized by N internal net-

ork units whose internal states are represented by the vector

�
  t = [ u 1 t u 2 t ... u N t ] and one output unit producing the output

ignals y t = RUL t . The activation of internal units u t at time t is ob-

ained using: 

�
  t = f̄ ( W 

in �
 x t + W 

�
 u t−1 + W 

back y t−1 ) (2)

here f̄ = (f 1 … f N ) are the internal units activation functions,

hich are typically sigmoidal, W 

in = ( w 

in 
i j 

) is the N × L input
echo state networks for remaining useful life prediction, Neuro- 
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Fig. 1. Basic architecture of the ESN [67] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

ESN architecture parameters. 

ESN architecture parameters 

Size of the reservoir (S) 

Spectral radius (SR) 

Connectivity (C) 

Input scaling (IS) and shifting (IF) 

Output scaling (OS) and shifting (OF) 

Output feedback (OFB) 

M  

w  

v  

a  

f  

r  

c  

a  

m  

m  

m  

t  

m  

t  

f  

t  

c  

m  

[

 

s  

(  

a  

a  

t  

t  

c  

m  

m  

t  

d  

3

 

c  
weights matrix, W = ( w 

i j 
) is the N × N internal weights matrix, and

W 

back = ( w 

back 
i j 

) is the N × P output feedback weights matrix, where

P represents the output channels (in this case P = 1, i.e. the compo-

nent RUL) . The input weights W 

in and the output feedback weights

W 

back are randomly generated from a uniform distribution. In or-

der to deal with a specific task, both W 

in and W 

back can be scaled:

the scaling of W 

in ( IS ) and shifting of the input ( IF ) depend on how

much nonlinearity of the processing unit the task needs. If the in-

puts are close to 0, the sigmoidal neurons tend to operate with

activations close to 0, where they are essentially linear, while in-

puts far from 0 tend to drive them more toward saturation, where

they exhibit more nonlinearity; the same idea drives the choice of

the output scaling ( OS ) and shifting ( OF ), whose values affect the

range of the trained W 

out and might lead to an unstable condi-

tion. Finally, the scaling of W 

back ( OFB ) is, in practice, limited by a

threshold at which the ESN starts to exhibit an unstable behavior,

i.e., the output feedback loop starts to amplify the output entering

into a diverging generative mode [48] . The output provided by the

ESN is: 

y t = f̄ out 

(
W 

out ( � x t , � u t , y t−1 ) 
)

(3)

where f̄ out = ( f 1 out ... f P out ) are the output units activation functions,

which are typically linear, and W 

out = ( w 

out 
i j 

) is the P × (L + N + P)

output weights matrix. The ESN training aims at finding optimal

values for W 

out and is performed through a Least Squares linear

regression step to minimize the error between the network output

and a target signal on a set of training data. Once the ESN has been

trained, it can be used to predict the output y t = RUL t , applying Eqs.

(2) and ( 3 ) to the input �
 x t . 

The ESNs are characterized by the echo state property [47] ,

which states that the effect of a previous state �
 u t and a previ-

ous input � x t on a future state � u t+ j should vanish gradually as time

passes, and not persist or even get amplified. This property is prac-

tically assured if the reservoir weight matrix W is scaled so that its

spectral radius ( SR ) ρ( W) (i.e., the largest absolute eigenvalue of W )

satisfies ρ( W ) < 1. For a detailed description of the ESN theory and

application, the interested reader can refer to [47,49] . 

3.1.1. Multi-objective differential evolution for ESN architecture 

optimization 

One main difficulty for developing an ESN model is the setting

of the architecture parameters ( Table 1 ); according to [49] , this

task requires a great level of expertise. 

We adopt a Multi-Objective Differential Evolution (MO-DE)-

based approach for the optimization of the ESN architecture.
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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O-DE is a parallel, direct, genetic-algorithm-based search method

hich manipulates a population of NP vectors of decision variable

alues v i,G , i = 1, 2, . . ., NP , called chromosomes , through an iter-

tive search for solutions optimal with respect to some objective

unctions [84] . The initial population of chromosomes is sampled

andomly from uniform probability distributions covering the de-

ision variables range of values. Then, the DE approach is based on

 three-step procedure: ( i ) mutation , which generates new chro-

osomes by adding the weighted difference between two chro-

osomes to a third chromosome, where each of these three chro-

osomes has been randomly selected; ( ii ) crossover, which mixes

he mutated chromosome values with those of another predeter-

ined chromosome, the target chromosome, to yield the so-called

rial chromosome; and ( iii ) selection, which evaluates the objective

unctions of the trial chromosome and, if their values are better

han those obtained with the target chromosome, keeps the trial

hromosome in the population for the new generation in replace-

ent of the target one. Details on DE can be found in Storn et al.

84] . 

As objective functions to be maximized, in this work we con-

ider the Cumulative Relative Accuracy (CRA) and Alpha-Lambda

 α −λ) accuracy prognostic metrics [78] . The CRA provides an aver-

ge estimation of the RUL prediction relative error and, being a rel-

tive measure, tends to enlarge errors made at the end of the sys-

em life; on the other side, the α −λ accuracy indicates how many

imes, on average, the RUL prediction falls within two relative

onfidence bounds, without providing any information about how

uch this prediction is close to the target value. Since these two

etrics estimate the RUL accuracy from different points of view,

hey have been chosen due to their complementarity. A detailed

escription of the considered metrics can be found in Appendix A .

.1.2. Generation of an ensemble of diverse ESNs 

According to [14] , the accuracy of the overall ensemble model

an be improved by enhancing the diversity among the individual
echo state networks for remaining useful life prediction, Neuro- 
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(  
odels of the ensemble. In this work, model diversity is obtained

y using ( i ) ESNs characterized by different architectures and ( ii )

SNs trained using different datasets. With respect to ( i ), we build

he models of the ensemble with the architecture parameters en-

oded in the chromosomes of the Pareto-optimal solutions found

y the MO-DE optimization. Indeed, as the optimization is done

ith respect to two objectives, the optimal solutions are character-

zed by different trade-offs among them, and this leads to different

areto-optimal solutions. Our approach is similar to that employed

n [50] , where an ensemble of ANNs has been developed by using

he models contained in the last population of an Evolutionary Al-

orithm search, and in [83] , where the RNN models of the ensem-

le have been chosen among those belonging to the Pareto-optimal

olutions found by a multi-objective Evolutionary Algorithm. In our

ork, the diversity of the models is further enhanced by training

ach model on a different training set, randomly generated using

he bagging algorithm [15] . 

.2. A local approach for the aggregation of the individual ESNs 

utcomes 

Static and local aggregations are the two most used procedures

or the combination of the individual model outcomes into the en-

emble aggregated outcome [14,69] . Static aggregation assigns a

xed weight to each model of the ensemble, independently from

he input pattern. The weights can be equal for all the models or

an be proportional to a measure of the individual model perfor-

ance properly estimated on a set of input–output data. On the

ontrary, local aggregation dynamically assigns a weight to each

odel according to its local performance typically evaluated con-

idering a fraction of the available historical input–output patterns

haracterized by input signal values similar to that of the test pat-

ern [14,52] . The idea behind local aggregation is that the individ-

al model performance is typically different in the different parts

f the input domain. 

In prognostics, local aggregation requires the computation of

he local performance of the individual models on a set of

 Test run-to-failure degradation trajectories not previously used for

raining. In Section 3.2.1 the standard local aggregation procedure

or non-recursive models is described, whereas in Section 3.2.2 we

escribe the new procedure purposely developed in this work for

ecursive models. 

.2.1. The local aggregation procedure 

Considering an ensemble constituted by M ESNs that provide

he RUL predictions R ̂  U L m 

t , m = 1,.., M , in correspondence of the re-

eived input pattern 

�
 x t , the local aggregation is based on the fol-

owing steps: 

1. Identify the input pattern 

�
 x 
r Test 
Nearest 

of each one of the R Test trajec-

tories with the minimum Euclidean distance from 

�
 x t : 

�
 x r Test 

Nearest 
= min 

j=1 ,..,t 
r Test 
f 

{
d( � x t , � x r Test 

j 
) 
}
, j = 1 , .., t r Test 

f 
; r Test = 1 , .., R Test ;

(4) 

2. Among the R Test trajectories, identify the K trajectories r Test, k ,

k = 1 ,..,K, with the corresponding �
 x 
r Test,k 

Nearest 
minimum Euclidean

distances from 

�
 x t . 

3. Evaluate the absolute error, LE k m 

, k = 1,.., K, m = 1,.., M, of each of

the M models on the set of K identified input vectors � x 
r Test,k 

Nearest 
. 

LE k m 

= 

∣∣RU L GT 
(
�
 x r Test ,k 
Nearest 

)
− RU L m 

(
�
 x r Test ,k 
Nearest 

)∣∣ (5) 

where RU L GT ( � x 
r Test ,k 

Nearest 
) is the groundtruth RUL in correspon-

dence of the k th identified nearest � x 
r Test,k 

Nearest 
. 
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 

computing (2017), https://doi.org/10.1016/j.neucom.2017.11.062 
4. Compute the Local Error of each model ( LE m 

) as the sum of the

K local errors: 

L E m 

= 

K ∑ 

k =1 

LE k m 

(6) 

5. Assign to each model a weight inversely proportional to its lo-

cal error: 

ω m 

= 

1 
L E m 

M ∑ 

j=1 

1 
L E j 

(7) 

6. With the previously computed weights ( Eq. (7 )), compute the

aggregated ensemble output R ̂  U L t for the input pattern 

�
 x t as the

weighed sum of each model output R ̂  U L m 

t : 

R ̂

 U L t = 

M ∑ 

m =1 

ω m 

·R ̂

 U L m 

t (8) 

With respect to steps 4 and 5 of the procedure, notice that they

re analogous to that proposed in [14] and [52] . 

.2.2. Local aggregation: procedure for ensemble of recurrent models 

The application of a local approach to an ensemble of recur-

ent models requires the definition of a proper distance measure

etween the observed input patterns and those of the test set

Step 1 of the procedure of Section 3.2.1 ). Since our ensemble

s formed by recurrent models, for which the model output de-

ends not only from the present input pattern but also from pre-

ious input patterns [48] , the distance cannot be computed by

ust taking into account the present input pattern as it is done

hen ensemble of feedforward ANNs are used. Therefore, we pro-

ose to compute the similarities considering signal time windows
 

 

Win 
t = [ � x t−W 

I Win +1 , � x t−W 

I Win +2 , .., � x t ] of the input signals �
 x t , whose

idth, W I Win , depends from the memory property of the recurrent

odel. To this aim, we fix W I Win equal to the model Memory Ca-

acity (MC) measure [48] , which quantifies the memory span of

he ESN by measuring its capability of encapsulating a certain in-

ut span within its internal states, being able to “remember” and

ecall it. Details about the Memory Capacity computation can be

ound in Appendix B . 

Considering the procedure in Section 3.2.1 , the first step re-

uires the identification of the input window of the generic

 Test th test trajectory, r Test = 1,.., R Test , characterized by the mini-

um distance to the present input time window 

�
 I Win 
t (dashed

ox in Fig. 2 ). This requires the computation of the Eu-

lidean distances between 

�
 I Win 
t and all the time windows � I Win 

t r Test 
=

 

�
 x t r Test 

−MC+1 , � x t r Test 
−MC+2 , .., � x t r Test 

] with t r Test 
= MC,…, t 

r Test 

f 
, that can

e extracted from the r Test th test trajectory (boxes delimited by the

ontinuous lines in Fig. 2 ). Since different ESN individual models

re characterized by different memory capacities, the width of the

imilarity time windows associated to the different models will be

ifferent. 

.3. Ensemble uncertainty estimation 

In this Section we present the method proposed for the esti-

ation of the RUL PI, i.e. an interval defined by a lower and an

pper bound [ L α( � x t ) , U α( � x t ) ] , in which the unknown value of the

roundtruth RUL at time t, RUL GT 
t , is expected to lie with a prede-

ermined confidence level (1 −α) [31,42,43] : 

r 
(
L α( � x t ) < RUL GT 

t < U α( � x t ) 
)

= 1 − α (9) 

Several methods, such as the Gaussian Process Regression

GPR) [72] , the Delta method [40] , the Bootstrap method [36] ,
echo state networks for remaining useful life prediction, Neuro- 

https://doi.org/10.1016/j.neucom.2017.11.062


6 M. Rigamonti et al. / Neurocomputing 0 0 0 (2017) 1–18 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; December 9, 2017;19:29 ] 

Fig. 2. Example of input time window (dashed) and time windows of the test trajectories used for the similarity comparison (solid lines). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a  

s  

g

 

t  

b

[
 

w  

s  

s  

o

 

t  

fi  

v  

p  

a  

a  

i

 

b

i  

r  

t

w  

w  

T  

c  

h  

t  

e  

i  

a

 

i  

w  

e  

i  

l  
the Lower Upper Bound Estimation method [43] and the MVE

method [61] , have been presented in literature for PI estimation

[70,82,89,90,95] . 

In particular, GPR [72] is a probabilistic technique for

non-linear, non-parametric regression that estimates the prob-

ability distribution of the output quantity based on Baye-

sian inference. It has been used in prognostics for the estimation

of component future degradation, from which the component RUL

can be estimated by referring to a failure threshold. In [12] , GPR

has been used for the estimation of the PIs of the predicted RUL

of a condenser filter subject to clogging, without the need of any a

priori hypothesis on the RUL distribution. The difficulty of this ap-

proach, however, is that it requires the setting of a failure thresh-

old, which is often not feasible in practical prognostic problems. 

Delta, MVE and Bootstrap methods assume that the prediction

error, i.e. ε t = RUL GT 
t − R ̂  U L t , which will be referred to as predic-

tion residual, is an uncertain variable distributed according to a

zero-mean Gaussian distribution whose variance σ 2 
ε t 

( � x t ) has to be

estimated. Since Delta method assumes that the variance of the

prediction error is constant for all the input patterns, it is not apt

for prognostic application where the prediction is expected to be

more uncertain at the beginning of the component life than that

at the end. 

In this work we consider the MVE method, because it can be

easily embedded within a local ensemble framework. The funda-

mental assumption of this method is the dependence of the tar-

get variance σ 2 
ε t 

from the input pattern 

�
 x t , i.e., the distribution of

the prediction residuals depends on the region of the input do-

main to which the input � x t belongs [42] . Within the MVE approach,

the target residual variance is estimated by developing a dedicated

feedforward ANN with an exponential activation function that pro-

vides a strictly positive variance estimation. Notice that, since the

true residual variance is not a priori known, it is not possible to

uniquely estimate the residual associated to a given input pattern,

but only the variance of the associated Gaussian probability dis-

tribution. Thus, the feedforward ANN dedicated to uncertainty es-

timation cannot be trained using error-based minimization tech-

niques; rather, it is trained to maximize the likelihood function

[42,61] : 

P 
(
RUL GT 

i | � x i 
)

= 

1 √ 

2 π ˆ σ 2 
ε i 

e 
− ( RUL GT 

i 
−R ̂ U L i ) 

2 

2 ̂ σ2 
ε i (10)
m
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here, given the input vector � x i , ˆ σ 2 
ε i 

is the estimated residual vari-

nce (the feedforward ANN output), ( RUL GT 
i 

− R ̂  U L i ) 
2 represents the

quared RUL prediction residuals, and RUL GT 
i 

is the prediction tar-

et value (i.e., the groundtruth RUL of the component). 

Considering the hypothesis that the residuals are normally dis-

ributed, the PI with a confidence level equal to (1 − α) is given

y: 

R ̂

 U L t − k α ˆ σε t , R ̂

 U L t + k α ˆ σε t 

]
(11)

here ˆ σε t is the residual distribution variance estimated in corre-

pondence of the input pattern 

�
 x t and k α is the parameter repre-

enting the ( α/2) quantile of a Student t -distribution with a degree

f freedom equal to the number of ensemble models M [36,42] . 

Notice the assumption that the prediction residual is locally dis-

ributed according to a zero-mean Gaussian distribution may not

t some practical applications, in which case the prediction inter-

als obtained could be affected by errors. In the case of the em-

irical distribution of the prediction error, the MVE method can be

dapted by properly modifying the likelihood function in Eq. (10 )

nd the k in Eq. (11 ). For the case of exponential distributions, the

nterested reader can refer to [89,90] . 

The main issue to tackle the computation of the PI provided

y an ensemble of recursive models is that the input pattern 

�
 x t 

nfluencing the RUL prediction R ̂  U L t and, thus, the corresponding

esidual ɛ t is not clearly defined. In practice, at each time step t

he model receives in input the current signal measurements �
 x t 

hich, thanks to the memory properties of the recurrent models,

ill continue to influence the future output predictions R ̂  U L τ , τ > t .

herefore, for obtaining accurate estimations of the prediction un-

ertainty, it is necessary to consider the significant previous input

istory, which results in the need of identifying the input vector of

he feedforward ANN-MVE. Since the ensemble is formed by sev-

ral models, each one characterized by a different Memory Capac-

ty, the problem cannot be tackled by considering a time window,

s in the previous section. 

In order to overcome this problem, another novelty of this work

s the use of another ESN for the estimate of the residuals variance,

hich will be referred to as ESN-MVE. Thanks to its memory prop-

rty, the ESN-MVE will automatically take into account the signif-

cant previous input history, providing more reliable and accurate

ocal PIs. Notice that the ESN-MVE output weights W 

out are opti-

ized to maximize the likelihood objective function in Eq. (10 ). 
echo state networks for remaining useful life prediction, Neuro- 

https://doi.org/10.1016/j.neucom.2017.11.062


M. Rigamonti et al. / Neurocomputing 0 0 0 (2017) 1–18 7 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; December 9, 2017;19:29 ] 

Fig. 3. Evolution of the health indicator during the 250 simulated degradation tra- 

jectories. 
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Fig. 4. Influence of the number of ESN models on the ensemble α − λ accuracy. 
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. Case study 

The developed prognostic approach for RUL prediction and un-

ertainty estimation has been verified considering both a synthetic

nd an experimental case study. 

.1. Synthetic case study 

The synthetic case study mimics the degradation of a fleet of

50 similar components from pristine conditions until failure. The

alues of a health indicator, x H , are measured with time interval

t = 1 in arbitrary units, during each one of the 250 run-to-failure

rajectories. The data have been simulated by using a 10 time steps

uto Regressive (AR) process [3] : 

 

H 
t = 

�
 a · � x H t −10: t −1 + v (12) 

here x H t indicates the value of the health indicator at time t , �a

s a vector of 10 parameters randomly sampled from a uniform

istribution in [0.12: 0.17] for each degradation trajectory, � x H 
t −10: t −1 

epresents the vector containing the values of the health indicator

etween ( t − 10) and (t − 1) , and ν represents a normally dis-

ributed zero-mean process noise, whose standard deviation has

een set equal to σ = 0.2 and which is sampled at each time step.

otice that the sampled vector �
 a is kept fixed for a whole run-

o-failure trajectory to represent the individual characteristics of

he degrading component, whereas the random noise has been in-

roduced to represent the stochasticity of the degradation process.

ig. 3 shows the degradation indicator time evolution for the 250

imulated degradation trajectories. 

Notice that although the different degradation trajectories are

haracterized by similar functional behaviors, they show very dif-

erent growth rates, leading to quite spread values of the corre-

ponding failure times (i.e., between t = 46 and t = 90). Since the

egradation evolution at time t described by Eq. (12 ) depends not

nly from the degradation value at the previous time (t −1), but

lso from the past degradation history until time (t − 10 ) , it is not

ossible to properly predict the future evolution and the failure

ime relying only on the last observed value x H t , but it is necessary

o take into account also the previous history of x H . 

The simulated dataset has been divided into the following sub-

ets: 

• Training Set : 60 trajectories used to train the ESN models. 

• Test Set : 50 trajectories used for: i ) optimizing the ESN archi-

tecture and the ensemble parameters, such as the number of
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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ensemble models M and the number of trajectories in the bag-

ging training set, ii ) computing trajectory similarities within the

local aggregation procedure and iii ) training the ESN-MVE for PI

estimation. 

• Validation Set: 140 trajectories used to evaluate the proposed

method performance. 

.1.1. Ensemble RUL prediction 

According to Section 3.1.1 , the ESN parameters have been au-

omatically optimized by using a MO-DE algorithm with CRA

 Eq. (A.1) ) and the α − λ accuracy ( Eq. (A.3) ) [77] as objective

unctions to be maximized. The Differential Am plification Factor

F) and Crossover Rate (CR) used by the DE search have been set

qual to 0.75 and 0.5, respectively, according to the guidelines in

13,34] and [5] and trial and error experiments using the Test Set

ata. The DE population has been taken of 200 chromosomes and

as evolved for 50 generations. 

According to the local aggregation procedure described in

ection 3.2.1 , we have selected M = 25 ESNs corresponding to all

he 7 solutions of the Pareto optimal front, all the 12 solutions

f the second layer of the Pareto front and 6 solutions randomly

hosen among the 16 solutions belonging to the third layer of the

areto front. The diversity among the ensemble individual models

as been further increased through the use of the bagging pro-

edure [15] , which resulted in training each selected ESN with 5

andomly chosen training trajectories. The number of models M

nd the number of trajectories in the training set have been fixed

y adopting a trial and error procedure on the test set trajecto-

ies. Fig. 4 shows the influence of the number M of ESN models

n the ensemble α − λ accuracy. Notice that although the trend of

he performance metric is monotonously increasing with the num-

er of ensemble individual models, the performance improvement

ecomes small when we use more than 10 models. Therefore, to

btain a good compromise between ensemble prediction accuracy

nd computational time of the ESN ensemble, we have built an en-

emble made by M = 25 ENS models. 

To apply the proposed local aggregation approach described

n Section 3.2.1 , we have computed the Memory Capacity mea-

ures of the 25 generated ESNs and used them for defining the

orresponding time window width W 

m 

I Win , m = 1,..,25, employed by

he local aggregation technique according to the procedure de-

cribed in Section 3.2.2 . Table 2 compares the prognostic perfor-

ance provided by the proposed local ensemble, provided by an

ndividual ESN model, selected among the optimized models by
echo state networks for remaining useful life prediction, Neuro- 
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Table 2 

Comparison of the prognostic performance provided by the individual ESN, the static and the proposed local ESN 

ensemble. 

RUL prediction Individual ESN model Static ensemble Proposed local ensemble 

Cumulative relative accuracy (CRA) 0.913 0.914 0.941 

Alpha–Lambda accuracy ( α = 20%) 0.939 0.943 0.981 

Fig. 5. Ensemble performance in terms of CRA (left) and α − λ accuracy (right) as a function of the similarity time window width. 
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9

applying the Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) [20,62] , and that provided by a static en-

semble which assigns the same weight to each model, indepen-

dently from the location of the training pattern. 

Notice that the proposed local aggregation procedure allows ob-

taining an improvement of 3% of the CRA metric and of 4% of

the α − λ accuracy with respect to both the individual ESN and

the static ensemble. The influence of the similarity time window

width on the ensemble performance has been further investigated

by considering a new ensemble of ESNs all with the same architec-

ture corresponding to that of the TOPSIS solution and, therefore, by

the same Memory Capacity of 9.6. 

Fig. 5 shows the performance of the ensemble obtained by

changing the similarity time window width. The α − λ accuracy

(right) significantly increases until the similarity time window

width reaches 10, i.e., the closest integer to the ESN Memory Ca-

pacity value. With respect to the CRA, for similarity time windows

width larger than 10 the performance continues to slightly increase

showing the beginning of an asymptotic behavior. Notice, however,

that increasing the width of the similarity time window over the

corresponding ESN’s Memory Capacity does not allow significantly

improving the ensemble predictive performance, while it requires

to wait a larger time interval before providing an RUL prediction.

Therefore, the obtained results confirm that the choice of a similar-

ity time window width equal to the memory capacity of the ESN

allows properly representing the recurrence of the ESN within the

local aggregation procedure. 

4.1.2. RUL prediction uncertainty: prediction intervals estimation 

In this Section, we compare the approach proposed in Section

3.3 to properly estimate the RUL prediction uncertainty with a lit-

erature approach based on the use of a feedforward ANN within

the MVE method. To this aim, we assess the quality of the esti-

mated PIs by considering the coverage probability and the predic-

tion interval width [59] . The coverage probability is evaluated by

the Prediction Interval Coverage Probability (PICP) metric, which

quantifies the probability that the estimated PI values contain the
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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roundtruth RUL values, and is estimated by: 

 ICP = 

1 

N targ 

N targ ∑ 

i =1 

c i with 

{
c i = 1 i f RUL GT 

i 
∈ [ L α( � x i ) , U α( � x i ) ] 

c i = 0 otherwise 

(13)

The Normalized Mean PI Width (NMPIW) metric quantifies

he average PI’s width normalized with respect to the target

alue [42] : 

MP IW = 

1 

N targ 

N targ ∑ 

i =1 

( U α( � x i ) − L α( � x i ) ) 

RUL GT 
i 

(14)

Since the objectives are to have the smallest PIs with the largest

ossible probabilities of containing the true component RULs, one

hould therefore aim at simultaneously maximizing the PICP and

inimizing the NMPIW [1] . 

The architecture of the ESN for RUL uncertainty estimation has

een optimized using a DE algorithm with objective the maximiza-

ion of the likelihood function defined in Eq. (10 ). To this aim, the

est Set has been divided into two subsets used for ESN training

nd estimation of the objective function, respectively. It is worth

oting that the ESN model for RUL uncertainty estimation is fed

y only the current values of the prognostic signals (i.e., in this

ase, the current health indicator value x H t ). With respect to the

evelopment of the MVE approach using a traditional feedforward

NN, we have considered time windows [ x H t , x H 
t−1 

,.., x H t−n ] of differ-

nt width ( n + 1) as input to the feedforward ANN model devel-

ped for the RUL uncertainty estimation. 

The results in Fig. 6 show that the 90% PI confidence provides

atisfactory coverage values independently from the time window

idth, whereas the narrowest PI is obtained by using a time win-

ow width of 10 time units. This confirms that the significant part

f trajectory to be considered in order to provide accurate estima-

ion of the current RUL and of the associated uncertainty is equal

o 10, which corresponds to the grade of the AR process used to

imulate the data. Satisfactory coverage values are also obtained

hen different PI confidence values are used (e.g. 80%, 95% and

8%). 
echo state networks for remaining useful life prediction, Neuro- 
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Fig. 6. PICP (left) and NMPIW (right) obtained by using feedforward ANN-MVE with different input window width. 

Fig. 7. Prediction of the RUL (solid line) and of the PIs provided by the feedforward ANN-MVE method (dashed line) and the ESN-MVE method (dot-dashed line) for 3 

representative test trajectories. 

Table 3 

PIs performance comparison between the proposed ESN-MVE approach and 

the traditional feedforward ANN-MVE approach with the time window width 

of 10 time units. 

Prediction interval 90% confidence Feedforward ANN-MVE ESN-MVE 

PICP (average coverage) 0.91 0.93 

NMIPW (average relative width) 0.44 0.42 
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Fig. 8. Health Indicator evolution of the three verification trajectories. 
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With respect to the comparison of the PI performance provided

y the feedforward ANN-MVE and proposed ESN-MVE methods,

able 3 reports that the proposed approach allows improving the

Is coverage probability (PICP is increasing of 2%) while reducing

he PIs width (NMPIW is decreasing of 2%). 

Fig. 7 shows 3 examples of RUL prediction provided by the pro-

osed local ensemble and the corresponding PIs provided by both

he feedforward ANN-MVE (dashed line) and the ESN-MVE (dot-

ashed lines) approaches. Notice that when the difference between

he predicted and the groundtruth RUL (dotted line) is relatively

arge (left and right Figures at the beginning of the component

ife), the ESN approach provides a PI larger than that provided

y the feedforward ANN approach, whereas when the prediction

esidual is low (central Figure), the PI provided by the ESN is much

arrower than that provided by the feedforward ANN. 

To further investigate the capability of the ESN-MVE method

f properly representing the local RUL prediction uncertainty, we

ave investigated the capability of the method of properly estimat-

ng the variance σ 2 
ε t 

of the residual ε t = RU L t − R ̂  U L t considering

he three degradation trajectories reported in Fig. 8 , characterized
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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y very different end-of-life time instants, i.e., t f = 56, t f = 73 and

 f = 77, at 7 time instants between t = 20 and t = 50. 

In this synthetic case study, the (true) residual variance σ 2 
ε can

e estimated by simulating 10 0 0 degradation trajectories using Eq.

12 ), all starting from the same degradation value and with the

ame � a vector characterizing the degrading component. Then, the

true) residual variance σ 2 
ε is approximated by the variance of the

esiduals between the RUL prediction provided by the ensemble

nd the 10 0 0 RULs of the simulated trajectories. 

Fig. 9 shows the comparison among the real RUL prediction

esiduals variance (circle-solid lines) computed trough the de-
echo state networks for remaining useful life prediction, Neuro- 

https://doi.org/10.1016/j.neucom.2017.11.062


10 M. Rigamonti et al. / Neurocomputing 0 0 0 (2017) 1–18 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; December 9, 2017;19:29 ] 

Fig. 9. True RUL prediction residuals variance (solid line), feedforward ANN estimated variance (dashed line), ESN estimated variance (dot-dashed line) for the 3 verification 

trajectories at times (20:10:70). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Pre-processed and filtered behavior of Signal 11 of a run-to-failure trajec- 

tory. 
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scribed Monte Carlo simulation ( Eq. (12) ), the variance estimated

by the feedforward ANN-MVE approach (square-dashed lines) and

that estimated by the proposed ESN-MVE approach (dot-dashed

crossed lines). 

The results confirm that the local variance estimated by the

ESN-MVE is always closer to the true RUL prediction residuals vari-

ance than that estimated by the feedforward ANN-MVE. 

4.2. CMAPPS case study 

The proposed methods for RUL prediction and PI estimation

have been further verified considering data describing the degra-

dation of a fleet of turbofan engines working under variable oper-

ating conditions. 

The dataset has been taken from the NASA Ames Prognostics

CoE Data Repository [76] , and consists of 218 run-to-failure trajec-

tories. Each trajectory is a 24-dimensional time series of different

length, formed by 21 signals describing the component operation

and 3 signals referring to the turbofan engines operating condi-

tions (Altitude, Mach number and Throttle Resolver Angle). These

latter signals define six different operating conditions which signif-

icantly influence the values of the other 21 measured signals. The

run-to-failure trajectories have been generated using the Commer-

cial Modular Aero-Propulsion System Simulation (C-MAPSS) model

that receives as input an evolving health indicator (i.e., a param-

eter representing the degradation level of an engine component)

and provides as output the values of the signals [30] . Process noise

has been added and percolated throughout the different stages of

the simulation model and random measurement noise added to

the output signals. This multi-stage noise contamination process

has produced complex noise characteristics similar to those often

observed in real data, thus posing a realistic challenge to the RUL

prediction. In this work, we have considered the data belonging

to the training set of the 2008 PHM Challenge Dataset, which are

characterized by the occurrence of a single failure mode caused by

the degradation of the High Pressure Compressor (HPC) of the en-

gine. 

The dataset, containing 218 run-to-failure trajectories, has been

partitioned into the following 3 subsets: 

• Training Set : 60 trajectories used to train the ESN models. 

• Test Set : 50 trajectories used for: ( i ) optimizing the ESN ar-

chitecture and the ensemble parameters, ( ii ) computing trajec-

tory similarities within the local aggregation procedure, and ( iii )

training the ESN-MVE for PI estimation. 

• Validation Set: 108 trajectories used to evaluate the prognostic
and the uncertainty estimation performances. t  

Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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A three-step preprocessing procedure, which includes ( i ) the

ormalization of the signals with respect to the operating condi-

ions, ( ii ) the filtering of the normalized signals, and ( iii ) the iden-

ification of the most significant prognostic signals to be used as

nput of the prognostic model, has been applied to deal with the

omplexity of the data [73] . As an example, Fig. 10 shows the time

volution of pre-processed and filtered signal 11 of a run-to-failure

rajectory. 

With step ( iii ), we have identified the 6 most significant prog-

ostic signals to be used as input to the prognostic models. Finally,

e have considered that only the accelerated degradation phase

f the run-to-failure trajectories has a strict physical relationship

ith the component RUL; therefore, we have applied the Z-Test

24] to identify the elbow point of the considered trajectory, i.e.

he time instant at which the accelerated degradation phase be-

ins, and have considered only the data subsequent to the detected

lbow point time instant. More details on the 3 steps preprocess-

ng procedure and elbow point identification can be found in [73] . 

.2.1. RUL prediction 

An ensemble of 50 models has been developed by applying

he procedure of Section 3 . The MO-DE search has produced 200

areto solutions, each one corresponding to an ESN architecture

haracterized by a different trade-off between the two objectives

CRA and α − λ accuracy) and different classes of dominance. The

O-DE search has required 50 h of computation using an In-

el Core i7 4700HQ CPU @ 2.40 GHz Personal Computer. Among

he 200 identified solutions, we have selected the M = 50 ESN
echo state networks for remaining useful life prediction, Neuro- 
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Fig. 11. Histogram of the reservoir dimensions (upper-left), spectral radii (upper-right) and memory capacities (bottom) of the ensemble individual models. 
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rchitectures with the most satisfactory trade-off between the ob-

ectives, i.e. the solutions of the first layers of the Pareto front (16

olutions of the Pareto optimal front, 23 belonging to the second

ayer of the Pareto front and 11 solutions randomly chosen among

hose belonging to the third layer of the Pareto front). Notice that

he first source of diversity within the ensemble individual models

s given by the different ESN architectures provided by the MO-DE

earch. Fig. 11 shows the diversity of the ensemble models in terms

f the spread among the reservoirs dimension N , the spectral radii

R and the obtained Memory Capacities. 

Models diversity has been further enhanced by training each

SN model with 5 trajectories randomly sampled by the bagging

rocedure [15] from the 60 trajectories of the training set. 

The developed local ensemble has been applied to the predic-

ion of the RUL of the Validation Set trajectories, and the obtained

erformances have been compared to that provided by the best

ingle ESN predictor (i.e., the TOPSIS solution), by a local ensemble

f M = 50 ESNs all characterized by the TOPSIS architecture and

rained using different, randomly chosen, degradation trajectories

ccording to the bagging procedure (i.e., the TOPSIS local ensem-

le), and by the DE static ensemble, whose output is the average

f the ensemble models outcomes. Being the ESN training proce-

ure very fast, the computational time required for training and

esting all the developed predictive models has been of only 200 s

sing an Intel Core i7 4700HQ CPU @ 2.40 GHz Personal Computer.

The obtained results are reported in Table 4 . 

Considering the large number of validation trajectories,

 Val = 108, we can conclude that the proposed ESN-DE local en-

emble provides a statistically significant improvement of the pre-

ictive performance: CRA increases by 15% with respect to the

est performing ESN model, by 11% with respect to the DE static
 m  
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nsemble and by 7% with respect to the TOPSIS local ensemble.

urthermore, the proposed ESN-DE local ensemble allows slightly

ncreasing the alpha-lambda accuracy with respect to all the other

onsidered approaches. 

To further investigate the performance of the proposed ESN-DE

nsemble, we quantify its models diversity by resorting to the Am-

iguity Decomposition index proposed in [17] which distinguish

etween the accuracy and the diversity of the M ensemble indi-

idual models. 

The Individual Error Term quantifies the accuracy of the ensem-

le individual models with respect to the prediction target: 

ndividual error term : 

M ∑ 

m =1 

w m 

(
R 

� 

U L m − RU L GT 
)2 

(15) 

hereas the Ambiguity Term measures how much the individual

odels predictions are spread around the predicted RUL: 

mbiguity term : 

M ∑ 

m =1 

w m 

(
R 

� 

U L m − R 

� 

U L 

)2 

(16) 

Table 5 compares the Individual Error and Ambiguity terms of

he TOPSIS and of the DE-ESN ensembles. 

The results show that the more satisfactory performance of the

SN-DE ensemble is due to the larger diversity of its individual

odels (Ambiguity Term) which is able to compensate the larger

rrors of the ensemble individual models (Individual Error Term).

hus, the use of an ensemble made by ESNs with different archi-

ectures (ESN-DE ensemble) allows obtaining better performances

y improving the models diversity. 

An example of the improvement brought by the proposed

ethod with respect to the RUL prediction accuracy is shown in
echo state networks for remaining useful life prediction, Neuro- 
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Table 4 

Comparison among the RUL prediction performance provided by the considered approaches. 

RUL prediction Best ESN TOPSIS local ensemble ESN-DE static ensemble ESN-DE local ensemble 

CRA 0.49 0.59 0.55 0.66 

α − λ accuracy ( α = 20%) 0.38 0.42 0.41 0.43 

Fig. 12. Comparison between the RUL prediction provided by the best ESN individual model (dotted line), the DE-ESN static ensemble (dash-dotted line), the TOPSIS local 

ensemble (dashed line) and the proposed DE-ESN local ensemble (solid line). 

Table 5 

Ambiguity decomposition. 

TOPSIS local ensemble ESN-DE local ensemble 

Individual error term 843 1234 

Ambiguity term 347 815 

Table 6 

Comparison among the PI estimation performance provided by MVE and ESN- 

based approach. 

Prediction interval 90% confidence Feedforward ANN-MVE ESN-MVE 

PICP 0.70 0.67 

NMIPW 1.13 0.89 
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Fig. 12 for a given validation trajectory, where the local RUL pre-

diction (solid line) is compared to that provided by both the best

ESN model (dotted line) and the static ensemble (dash-dotted line).

4.2.2. RUL prediction uncertainty: prediction interval estimation 

The ESN-MVE approach has been applied by dividing the Test

Set into two subsets: the first, formed by 30 trajectories, has been

used for training the ESN model; the second, formed by the re-

maining 20 trajectories, has been used for evaluating the ESN per-

formance within a DE-optimization scheme aiming at maximizing

the likelihood function of Eq. (10 ). The performance of the ESN-

MVE approach has been compared to that of a feedforward ANN-

MVE approach employing an optimal (by trial and error) time win-

dow width of 20. Table 6 reports the obtained PI performance in

terms of PICP and NMPIW. 

The feedforward ANN-MVE approach is seen to provide a PICP

that is 3% larger than that provided by the proposed ESN-MVE

approach, and its PIs are on average 24% larger than those pro-

vided by our method (NMIPW = 0.89). Similar coverage values are

obtained when different PI confidence values are used (e.g. 80%,

95% and 98%). Fig. 13 shows the DE-ESN based local ensemble RUL
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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rediction for one validation trajectory and the associated 90% PI

onfidence bounds provided by both the feedforward ANN-MVE

nd the ESN-MVE approaches. 

Notice that the ESN-MVE PI width shows the expected behavior

f being wider at the beginning of the component life, when there

s more uncertainty on the failure time, and narrower at the end

f life. With respect to the discrepancy between the expected cov-

rage and that provided by the two methods (90% against 67% for

NN-MVE and 70% for ESN-MVE), notice that one of the drawback

f the MVE method is that it assumes that the ensemble precisely

stimates the true expected value of the RUL, i.e. the expected

alue of the RUL over all the possible degradation trajectories char-

cterized by the current input vector observations. This assumption

an be violated in practice because of a number of reasons, includ-

ng the existence of a bias in the ensemble individual model pre-

ictions due to omission of important input quantities affecting the

omponent RUL [42] . In these cases, it has been reported that the

VE PI estimation tends to be narrower than the true one, and,

hus, the obtained coverage values are low [26] . Another possible

ause of the low coverage value is the fact that the RUL prediction

esiduals may not be distributed according to a Gaussian distribu-

ion, as shown in the examples reported in Fig. 14 . In such case,

he estimation of the RUL percentiles obtained from the residual

ariance provided by the MVE approach may not be precise. 

.3. Industrial case study 

We have considered an industrial case study regarding the pre-

iction of the RUL of cutting knives used in the packaging indus-

ry. The time evolution of a physical quantity indirectly related to

he knife degradation has been periodically measured with knife in

peration. Such signal measurements have been taken only a lim-

ted number of times during each single run-to-failure degradation

rajectory (10 trajectories in total). To deal with this type of data,

e applied a pre-processing procedure followed by a feature ex-

raction step, which has allowed the identification of two features
echo state networks for remaining useful life prediction, Neuro- 
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Fig. 13. Local Ensemble RUL prediction with the corresponding MVE and ESN 90% confidence bounds. 

Fig. 14. Distribution of the local residuals in two different test trajectories. 

Table 7 

Comparison of the RUL prediction performances provided by the considered approaches. 

RUL prediction Best ESN ESN-DE static ensemble ESN-DE local ensemble 

CRA 0.58 0.60 0.70 

α − λ accuracy ( α = 20%) 0.41 0.32 0.44 
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ignificant for the prognostic task. More details on the dataset can

e found in [19] ; Fig. 15 shows the evolution of the two extracted

eatures in the 10 available run-to-failure degradation trajectories. 

A local ensemble of 50 ESNs, whose architectures have been

ptimized using the MO-DE approach, has been developed. Given

he limited number, R = 10, of run-to-failure trajectories, we have

esorted to a leave-one-out procedure for evaluating the perfor-

ance of the proposed method. Table 7 compares the performance

f the proposed approach with those of the TOPSIS best ESN and
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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f a static ensemble; the values reported in the Table are the av-

rages over the 10 leave-one-out iterations of the method, each of

hem performed considering 5 training trajectories, 4 test trajecto-

ies and 1 validation trajectory. Notice that the proposed approach

utperforms the others in terms of both CRA and α − λ accuracy.

ig. 16 shows an example of obtained RUL prediction. 

With respect to the RUL PI estimation, notice that the consid-

red case study is characterized by the availability of a very limited

umber of degradation trajectories, each one formed by very few
echo state networks for remaining useful life prediction, Neuro- 
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Fig. 15. Evolution of the two identified degradation features in the 10 available run-to-failure degradation trajectories (left— Feature 1; right—Feature 2). 

Fig. 16. Local ensemble RUL prediction for the validation trajectory number 2. 
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patterns (between 8 and 17). Therefore, the available 4 test trajec-

tories do not allow developing an accurate ESN for the estimation

of the prediction residuals. 

5. Conclusion 

In this work we have developed a local ensemble of ESNs for

predicting the RUL of an industrial component and estimating the

associated uncertainty. ESNs have been chosen due to their capa-

bility of catching the system dynamic behavior, combined with a

very fast training procedure. 

From the methodological point of view, the main novelties of

the proposed approach are: ( i ) a new local aggregation procedure

for combining the individual models outputs, which takes into ac-

count the individual ESNs memory capacities; ( ii ) the use of an

ESN within the MVE approach for estimating the RUL prediction

uncertainty. 

From the practical point of view, a further novelty of the work

is the application of an ensemble of ESNs, whose architectures

have been optimized by using a MO-DE algorithm, which allows

enhancing the diversity between the individual models of the

prognostic ensemble. 

The proposed approach has been verified with reference to a

synthetic case study, an experimental case study concerning the

RUL prediction of turbofan engines, taken from the NASA Ames

Prognostics CoE Data Repository, and an industrial case study re-

garding the RUL prediction of industrial knives used in the pack-

aging industry. With respect to the RUL prediction accuracy, the

proposed method has outperformed an individual ESN predic-

tor model and a classical static ensemble; with respect to the
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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stimation of the RUL prediction uncertainty, the performance of

he proposed approach has outperformed that of a feedforward

NN-MVE approach in the synthetic and in the turbofan engine

ases, which are characterized by the availability of a large num-

er of run-to-failure trajectories, whereas the performance is not

atisfactory in the considered industrial case, which is character-

zed by the availability of too few data for training the dedicated

SN. 

The satisfactory results obtained and the generality of the

roposed approaches encourage the application to real industrial

ases, aiming at improving maintenance for increasing the safety

nd the availability of the monitored systems while reducing the

aintenance costs. 

ppendix A. Prognostic metrics 

The Cumulative Relative Accuracy is the normalized weighted

um of Relative Accuracy (RA) values, computed at specific t λ time

nstances. 

RA = 

1 

| p λ| 
∑ 

i ∈ p λ
R A λ (A.1)

here p λ is the set of all time instants at which an RUL prediction

s made for a degradation trajectory (in this work, all the available

rediction points), | p λ| is the cardinality of the set, and RA λ is de-

ned as: 

 A λ = 1 −
∣∣R ̂

 U L λ − RU L λ
∣∣

RU L λ
, (A.2)

here R ̂  U L λ is the predicted RUL at time t λ and RUL λ is the

roundtruth for RUL at time t λ . Values of RA λ close to 1 indicate

ore accurate predictions. 

α−λ Accuracy : The α − λ accuracy evaluates the average frac-

ion of predictions which falls within specified α-bounds, which

re expressed as percentage of the actual RUL λ at t λ. It is defined

s: 

− λ = 

1 

| p λ| 
| p λ| ∑ 

λ=1 

α − λt λ (A.3)

here α − λt λ
is a binary value defined as: 

− λt λ = 

{
1 if ( 1 − α) · RU L λ ≤ R ̂

 U L λ ≤ ( 1 + α) · RU L λ
0 Otherwise 

(A.4)

In the latter equation, λ refers to the t λ ε p λinstant at which

he prediction is performed and α is the percentage value defining
echo state networks for remaining useful life prediction, Neuro- 
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Fig. B.1. Example of STM computation for an ESN. 
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Fig. B.2. k-delay determination coefficient versus k-delay. 
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he acceptance confidence bounds, which in this work has been set

qual to 20%. 

ppendix B. ESN memory capacity computation 

The Memory Capacity (MC) metric aims at quantifying the

imit of the memory span and the precision of the prediction at

hich an ESN is able to generate as its output the delayed version

(t −k) of a single-channel input ν(t) . In particular, in order to only

ocus on the memory property on the ESN, the single-channel in-

ut ν(t) has to be a sequence of i.i.d. values: by doing this, since

here is no mathematical relation between the input and the de-

ayed output, the only possibility for the network to provide as

utput the delayed input is that the network has been able to en-

apsulate the input into its internal states, i.e., it can remember it. 

According to this, with respect to a certain delay k , [48] define

he k -delay determination coefficient, i.e., MC k as: 

 C k = 

cov 2 ( ν(t − k ) , y k (t) ) 

σ 2 ( ν(t) ) σ 2 ( y k (t) ) 
(B.1) 

here ν(t −k) represents the input delayed by k time steps and

 k (t) represents the provided output, trained to be equal to the

nput delayed by k time steps. Basically, the determination coeffi-

ient is the squared correlation coefficient of two signals. It ranges

etween 0 and 1 and represents the fraction of variance explain-

ble in one signal by the other [48] . In order to have an indication

bout the overall memory of the ESN, [48] defined also the overall

TM capacity, which is a sum of the determination coefficients for

ll the possible time delay k : 

 C = 

∞ ∑ 

k =1 

M C k = 

∞ ∑ 

k =1 

cov 2 ( ν(t − k ) , y k (t) ) 

σ 2 ( ν(t) ) σ 2 ( y k (t) ) 
(B.2) 

For ease of comprehension, in Fig. B.1 we reported the ESN re-

ligned outputs with respect to the same random single-channel

nput for different k values of the considered delay. It is possible
Please cite this article as: M. Rigamonti et al., Ensemble of optimized 
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o observe that the considered ESN is able to perfectly reproduce

he input with a delay k = 1; when the delay is k = 5, the network

s able to reproduce the behavior of the input, but the prediction

ccuracy starts to decrease; when the delay is k = 10, the ESN is

ble to partially remember the general trend of the input, but the

rediction accuracy is very bad; finally, when the delay is k = 15,

t is possible to observe that the network is not able to reproduce

he input anymore. 

In Fig. B.2 the behavior of the MC k is reported with respect to

he k delay of the input to be recalled: it is possible to observe that

he MC k value is equal to 1 when the delay is k = 1, i.e. it reflects

hat the delayed input is reproduced perfectly; on the contrary,

hen the delay is k = 15, i.e. when the network is not able any-

ore to reproduce the delayed input, the value of the correspond-
echo state networks for remaining useful life prediction, Neuro- 
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ing MC k falls below 0.1, thus indicating very bad performance for

that specific delay value. 

According to Section 3.2.1 , and in particular with respect to

the local aggregation procedure for the ESN-based ensemble, since

the Memory Capacity represents a direct measure of the memory

property of a certain ESN, we consider that this measure can be

indicative of the input time span on which the actual ESN output

depends on. In particular, we assumed that the Memory Capacity

of an ESN is representative of how much the output of the net-

work depends on the previous input history, and thus we decided

to consider a similarity time input window whose width (in time

steps) was equal to the computed Memory Capacity. By doing this,

if the ensemble is constituted by the same model which has been

trained with different subsets of the training set, i.e., the typical

bagging approach, [15] , it is possible to consider the same simi-

larity time window width for every model; on the contrary, if the

ensemble is constituted by different ESNs with different memory

properties, for each model we should take into account the proper

width for the similarity time window. For example, for the ESN re-

ferring to the results shown in Fig. B.2 , i.e. the TOPSIS solution of

the synthetic case study of Section 4.1 , the overall Memory Capac-

ity is equal to 9.6: thus, according to our assumptions, the optimal

width of the similarity time window to be considered is expected

to be equal to 10. 
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