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Degradation Modeling and
Remaining Useful Life
Prediction of Aircraft Engines
Using Ensemble Learning
Degradation modeling and prediction of remaining useful life (RUL) are crucial to prog-
nostics and health management of aircraft engines. While model-based methods have been
introduced to predict the RUL of aircraft engines, little research has been reported on esti-
mating the RUL of aircraft engines using novel data-driven predictive modeling methods.
The objective of this study is to introduce an ensemble learning-based prognostic
approach to modeling an exponential degradation process due to wear as well as predict-
ing the RUL of aircraft engines. The ensemble learning algorithm combines multiple base
learners, including random forests (RFs), classification and regression tree (CART),
recurrent neural networks (RNN), autoregressive (AR) model, adaptive network-based
fuzzy inference system (ANFIS), relevance vector machine (RVM), and elastic net (EN), to
achieve better predictive performance. The particle swarm optimization (PSO) and
sequential quadratic optimization (SQP) methods are used to determine optimum weights
that are assigned to the base learners. The predictive model trained by the ensemble learn-
ing algorithm is demonstrated on the data generated by the commercial modular aero-
propulsion system simulation (C-MAPSS) tool. Experimental results have shown that the
ensemble learning algorithm predicts the RUL of the aircraft engines with considerable
robustness as well as outperforms other prognostic methods reported in the literature.
[DOI: 10.1115/1.4041674]
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1 Introduction

Aircraft or turbine engine failures may result in significant eco-
nomic losses and even accidents in extreme cases. While the reli-
ability of turbine engines in use on modern turbine-powered
aircrafts has been improved over the past few decades, abnormal
engine degradation can occur at any time because of a variety of
mechanical problems. According to a report by the International
Development Consulting, global maintenance, repair, and over-
haul (MRO) spend on commercial aircraft engines in 2016 was
valued at $27 billion [1]. The global maintenance, repair, and
overhaul market size is expected to grow by 4.1% annually, reach-
ing over $40 billion in 2026. For example, due to three engine
failures in 2016, the Japanese airline ANA will refurbish 100
Rolls-Royce Trent 700 engines on its 50 Boeing 787 Dreamliners.
These engine failures were caused by corrosion and cracking of
turbine blades.

Predictive maintenance enables airlines to avoid costly equip-
ment downtime and reduce maintenance costs by performing
just-in-time maintenance actions [2]. Predictive maintenance
determines the condition of in-service equipment in order to pre-
dict equipment failure or remaining useful life (RUL). The RUL
of an aircraft engine is defined as the amount of time in hours or
cycles from the current time to the end-of-life in which an aircraft
engine is expected to serve its intended function. Predictive
maintenance requires health monitoring systems and predictive
modeling technologies. The existing literature pertaining to RUL
prediction for aircraft engines can be classified into two catego-
ries: model-based and data-driven prognostics [3–5]. Model-based

prognostic methods describe system behavior and system degrada-
tion using physics-based models typically in combination with
state estimators such as the Kalman filter, the particle filter, and
the hidden Markov model [6]. While model-based prognostic
methods provide closed-form solutions, certain assumptions must
be made. To address this issue, data-driven prognostic methods
represent the system degradation process using machine learning
algorithms. Current data-driven methods are developed based on
classical machine learning algorithms such as neural networks,
support vector machines (SVM), and decision trees. One of the
primary limitations associated with classical machine learning
algorithms is that they are not able to predict the RUL of aircraft
engines with sufficient accuracy. In addition, it is difficult to
determine which or what type of learning algorithm should be
selected among many competing learning algorithms. Therefore, a
novel ensemble learning-based prognostic approach is introduced
to model the degradation process of aircraft engines due to wear
as well as to predict the RUL. The unique advantage of ensemble
learning is that it can select machine learning algorithms with bet-
ter performance. Using an ensemble of multiple learning algo-
rithms instead of a single algorithm, one can reduce the risk of
choosing a learning algorithm with poor performance. The ensem-
ble learning-based prognostic approach is demonstrated on one of
the datasets (i.e., FD004) collected from the commercial modular
aero-propulsion system simulation (C-MAPSS) tool.

The remainder of this paper is organized as follows: Sec. 2
reviews the related work on degradation modeling and prognostics
of aircraft engines. Section 3 presents the ensemble learning-
based prognostic approach. Section 4 presents a case study. Sec-
tion 5 provides conclusions and future work.

2 Related Work

This section reviews the related work on degradation modeling
and prognostics of aircraft engines. The datasets generated by

1Corresponding author.
Manuscript received May 13, 2018; final manuscript received October 2, 2018;

published online November 16, 2018. Assoc. Editor: Liang Tang.
This work is in part a work of the U.S. Government. ASME disclaims all interest

in the U.S. Government’s contributions.

Journal of Engineering for Gas Turbines and Power APRIL 2019, Vol. 141 / 041008-1
Copyright VC 2019 by ASME

Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 11/27/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



NASA’s C-MAPSS tool have been widely used to evaluate the
performance of prognostic algorithms [4]. For example, Mosallam
et al. [7] introduced a method based on an unsupervised variable
selection method and k-nearest neighbors (KNN) classifier. Exper-
imental results have shown that a mean absolute percentage error
of 12.19% can be achieved. Liu and Huang [8] developed a data-
level fusion method to construct a health index (HI) that can char-
acterize the condition of aircraft engines. This data fusion method
allows for minimizing model fitting errors and the variance in the
failure threshold simultaneously. Experimental results have shown
that the HI outperforms that of existing data-level fusion methods.
Nieto et al. [9] introduced a hybrid particle swarm optimization
(PSO)-SVM-based model to predict the RUL of aircraft engines.
This method integrates support vector regression (SVR) with the
PSO techniques. The experimental results have shown that a coef-
ficient of determination of 0.9 can be achieved. Khelif et al. [10]
introduced an SVR-based predictive modeling method that pre-
dicts the RUL of aircraft engines. A variable selection method
was developed to perform feature selection. Experimental results
have shown that this method outperforms some of the current
methods in terms of S-score. Yu [11] developed a method that
combines logistic regression and particle filtering techniques for
engine health assessment and prediction. A HI-based on logistic
probability was introduced to characterize the health conditions of
aircraft engines. A data-level fusion method was developed to
correlate the HI with sensor signals. Hu et al. [12] proposed a
data-driven prognostic approach that combines multiple member
algorithms with a weighted-sum formulation. Three weighting
methods, including the accuracy-based weighting, diversity-based
weighting, and optimization-based weighting, were used to deter-
mine the weights of member algorithms. Experimental results
have shown that the method can predict the RUL with sufficient
accuracy using cross valuation. Ramasso and Gouriveau [13]
introduced a data-driven method that predicts the RUL of aircraft
engines using a neuro-fuzzy system and the Dempster–Shafer
theory. Eight features were extracted using a feature selection
method based on the Kullback–Leibler divergence. Experimental
results have shown that the prediction accuracy ranges between
74.4% and 92.2%. Li et al. [3] developed an ensemble learning-
based method that takes into account the effects of time-dependent
degradation. Experimental results have shown that the method can
predict the RUL of aircraft engines with an S-score of 5.75. While
model-based and data-driven prognostic approaches have been intro-
duced to predict the RUL of aircraft engines, little research has been
reported on degradation modeling and RUL prediction of aircraft
engines using novel learning techniques. To fill the research gap, this
paper presents an ensemble learning-based prognostic approach to
degradation modeling and RUL prediction of aircraft engines.

3 Ensemble Learning-Based Predictive Modeling

Ensemble learning methods are meta-algorithms that combine
multiple base learners into a single predictive model in order to
improve prediction performance [3]. Ensemble learning methods
are classified into two categories: parallel and sequential ensemble
methods. The parallel ensemble methods such as random forests
(RFs) build multiple base learners independently and then average
their predictions or take a weighted sum of their predictions. Par-
allel ensemble learning methods can be implemented, for exam-
ple, using a Bayesian [14] or a Dempster–Shafer framework [15]
where the weights are interpreted as probabilities. In contrast,
sequential ensemble methods such as AdaBoost construct base
learners sequentially and then reduce the bias of the combined
base learners. In this study, the parallel ensemble method will be
used to develop the ensemble learning algorithm.

Figure 1 illustrates a computational framework of the ensemble
learning-based prognostic approach. This framework consists of
variable selection, model training, and model validation and test
phases. The training dataset X¼ [x1, x2, …, xN]T contains the
observations of N different run-to-failure units Each observation

xi¼ [x1, x 2, …, xP] (i¼ 1, …, N) consists of P variables acquired
from P variables. Because not all of the P variables are significant
for RUL prediction, a machine learning algorithm (i.e., RFs) is
used to select the most important variables. In the model training
phrase, cross-validation (CV) is conducted to train predictive
models (i.e., base learners) using the base learning algorithms.
PSO and sequential quadratic optimization (SQP) methods are
used to optimize the weigh vector w for the base learners. In the
model validation phase, the weighted sum of the predictions of
individual base learners is used with a weight vector w to obtain
the predicted RULs of the test units. The pseudocode of the
ensemble learning algorithm can be found in Table 1. In this
study, the base learning algorithms are combined using the fol-
lowing parallel ensemble method:

L̂
T

i ¼
XJ

j¼1

wjL̂
j

i (1)

where L̂
T

i denotes the ensemble prediction of ith training dataset,
wj (j¼ 1, 2, …, J with J being the number of base learners)

denotes the optimum weight assigned to jth base learner, and L̂
j

i
denotes the predicted RUL of ith training dataset using jth base

learner. Equation (1) can be written in matrix form as L̂
T ¼ wTL̂,

where L̂
T¼ ½L̂T

1 ;…; L̂
T

N] (N is the total number of training data-

sets), w¼ [w1, w2, …, wJ]
T, L̂ ¼ ½L̂1

; L̂
2
;…; L̂

7�T and L̂
j ¼

½L̂j

1;…; L̂
j

N � (j¼ 1, 2, …, J).
The PSO and SQP methods are used to determine optimum

weights algorithm is used to obtain the optimum weight vector w
[16]. The objective of the optimization methods is to minimize the
prediction error eCVof the weighted sum of the predicted RULs.

argmin
w

eCV ¼
1

N

X
C
�

wTL̂; L̂
T
�

subject to
XJ

j¼1

wj ¼ 1

8>>>><
>>>>:

(2)

where w (¼ [w1, w2, …, wJ]
T) is the weight vector and C(�) is a

predefined error criterion that measures the discrepancy between

the predicted RUL (L̂
T
) and the true RUL (LT). A greater weight

will be assigned to the base learner with better performance.

3.1 Variable Selection. The RFs algorithm is used to select
the most important variables or features from the original twenty-
one (21) variables based on a measure called variable importance
[17]. Variable importance is measured by averaging the sum of
the weighted reduction in residual sum of squares for all of the
nodes where a variable is used over all of the decision trees of a
random forest. The reason why dimensionality reduction is impor-
tant is that selecting a subset of relevant variables or features for
training predictive models can increase prediction accuracy and
computational efficiency as well as avoid overfitting.

3.2 Base Learning Algorithms. To improve the prediction
accuracy of the ensemble learning algorithm, the base learning
algorithms should be as diverse as possible. As shown in Table 2,
the ensemble learning algorithm combines seven machine learn-
ing algorithms of different type, including RFs, classification and
regression tree (CART), recurrent neural networks (RNN), autore-
gressive (AR) model, adaptive network-based fuzzy inference sys-
tem (ANFIS), relevance vector machine (RVM), and elastic net
(EN). The theories behind these algorithms can be referred to
Refs. [17–25], respectively.

3.3 Model Training and Validation. The predictive model
is trained on the training dataset using the ensemble learning
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method and then validated on the test dataset. The model training
process consists of the following two steps:

Step 1: Generate a new training dataset from the original train-
ing dataset using random sampling. The T-matrix transformation
method [12] is used to transform the Q-dimensional measurement
signal into one-dimensional HI. Q denotes the number of variables
in the measurement data. The T-matrix transformation can be
defined as follows:

T ¼ ðFTFÞ�1
FTSoff (3)

where F, an N�Q matrix, denotes the Q-dimensional measure-
ment data, N is the number of cycles of the measurement. F can
be further divided into two parts (F¼ [Fo; F1]) where subscripts 0
and 1 denote failure and healthy states. The dimension of the
matrix Fo is N0�Q. The dimension of the matrix F1 is N1�Q. N0

and N1 (N¼N0þN1) denote the number of cycles. The matrix
Soff¼ [So; S1] where So is a 1�N0 zero-vector and S1 is a 1�N1

unit vector. The one-dimensional normalized HI can be calculated
by H¼F�T.

A new training data point is generated for each training unit by
randomly selecting the number of cycles and the corresponding
HI. The number of cycles ranges between the minimum and

Fig. 1 A computational framework for the ensemble learning-based prognostics

Table 1 Pseudocode of the ensemble learning algorithm

Input: Training units X¼ [x1, x2, …, xN]T

1. Select the most important variables
2. Generate CV-test units from X with random truncations
3. Perform k-fold CV to obtain the predicted RUL of the CV-test units
4. Compute the optimal weight vector
Output: An optimal weight vector w¼ [w1, w2, …, wJ]

T

Table 2 Base learning algorithms

Category Selected algorithm

Ensemble tree-based RFs
Decision tree-based CART
ANN-based RNN
Stochastic model-based AR
Association rule learning-based ANFIS
Bayesian-based RVM
Regularization-based EN
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maximum number of cycles. 2 illustrates how to generate the new
training data points for the training unit ID-1. A truncation point E
(L1

T, H1
E) with L1

E cycles is randomly selected between the mini-
mum and maximum number of cycles (L1

min and L1
max). H1

E is the
HI associated with the truncation point E. The new training data
points can be defined as the HI values corresponding to cycle L1

min

to cycle L1
E. The RUL associated with these health indicators is

L1
T¼ L1

max� L1
E. Similarly, new training data points can be defined

by randomly truncating the time series for the remaining training
units.

Step 2: Predict the RULs using the ensemble learning algo-
rithm. To avoid overfitting, k-fold CV is conducted. The CV-test
units are randomly grouped into k disjoint subsets. Each subset
contains approximately the same number of units. In cross-
validation, only one subset of the CV-test units from the k subsets
is used for testing; the remaining units are used for training. To
improve the performance of the ensemble learning algorithm, the
PSO and SQP methods are used to determine the optimal weights
for the base learners.

Model validation is performed to evaluate the performance of
the predictive model trained by the ensemble learning algorithm.
Each base learning algorithm predicts the RUL of the validation
or test units. The final prediction is generated using the following
weighted-sum function:

L̂
P

t ¼
XJ

j¼1

wjL̂
j

tðxt;XÞ (4)

where xt is a validation or test unit; L̂
P

t is the ensemble RUL for xt;
wj (j¼ 1, 2, …, J) is the optimum weight assigned to the jth

algorithm member; L̂
j

t(xt, X) denotes the predicted RUL of xt by
the jth algorithm member trained by the dataset X. The predicted
RULs by the base learners are aggregated by taking a weighted
sum to produce the final prediction. It should be noted that a posi-
tive weight would be assigned to an effective base learner in the
ensemble. If any base learner does not help to improve the per-
formance, it would be assigned a zero-value weight. In other
words, this base learner would not be considered at all in the
ensemble.

4 Case Study

4.1 Data Description. In this section, the ensemble learning-
based prognostic approach is demonstrated on the FD004 dataset
provided by the NASA Prognostics Data Repository. The run-to-
failure data in the FD004 dataset were generated by the C-
MAPSS tool developed by NASA. The ensemble learning-based
prognostic approach is used to model the performance degradation
behavior in the high pressure compressor (HPC) and fan modules
due to wear. C-MAPSS models a generalized exponential wear
behavior ŵ ¼ AeBðtÞ where A and B tð Þ denote the amplitude and
exponential parameters. The exponential degradation behavior
ignores microlevel degradation characteristics but retains macro-
level degradation characteristics.

A simplified diagram of the aircraft engine is shown in Fig. 3.
The health condition data were collected from the simulations
under six different combinations of altitude, throttle resolver
angle, and Mach number and two failure modes caused by wear.
The dataset consists of 249 training units and 248 test units with
57,522 observations for training and 41,214 observations for
testing.

Table 3 lists more details about the six operational conditions.
Table 4 lists 21 output variables of the C-MAPSS tool. It should
be noted that not all of these variables could be measured in real-
world applications. In the simulations performed by the C-
MAPSS tool, time series of observables change from some unde-
fined initial condition to a failure threshold. The training dataset
includes trajectories that ended at the failure threshold, while the
test dataset includes trajectories that end prior to the failure
threshold. The number of cycles to failure of the training dataset
ranges between 128 and 543 cycles, whereas the RULs of the test
dataset range between 6 and 195 cycles.

4.2 Variable Selection. In the model training stage, not all of
the variables are useful. Taking into account some variables may
even reduce prediction accuracy because these variables may not
be correlated to the degradation behavior of aircraft engines. To
select the most effective variables, RFs were used to measure the

Fig. 2 Generating new training data points from the original training data for training
unit ID-1

Fig. 3 Simplified diagram of the aircraft engine simulated in C-
MAPSS [4]
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importance of measurement variables with respect to their per-
formance on prediction accuracy.

Figure 4 shows the variable importance. Based on this criterion,
the most important variable is bypass ratio (BPR) (The variable
importance is 4.43). The least important variable is P2 (The vari-
able importance is 0.40). In this study, the variables with variable
importance greater than a threshold of 0.95 were selected. As
shown in Fig. 4, the measurement variables, including BPR, Ps30,
T50, NRc, htB, W31 and NRf, were selected for training the pre-
dictive models. The variable importance values of these variables
are 4.43, 3.11, 1.98, 1.86, 1.20, 0.99, and 0.96. This result is par-
tially consistent with that of Ref. [26] where three measurement
variables (T50, htB, and W31) were selected according to the log-
normal distributions of the measurement data. In addition, 11 vari-
ables were selected in Ref. [27] based on a consistent increasing
or decreasing trend is present in the variable measurements. As
shown in Table 5, five common variables are selected in both vari-
able selection methods. Therefore, seven variables selected by
RFs are used to train the predictive models [5,28]. If a smaller

threshold such as 0.9 was selected, more variables will be
selected. However, taking into account more variables in model
training will increase training time. To balance the trade-off
between the number of variables and computational efficiency, a
threshold of 0.95 was used and seven variables were selected for
training the predictive models.

Figure 5 shows the health indices of 249 training aircraft
engines. These health indices were transformed from the original
data using the T-matrix transformation and different number of
variables. In the T-matrix transformation, N0 was set to 90% of N.
As shown in Fig. 5(a), relatively large variations in the health
indices were observed at the beginning of the degradation proc-
esses of the training units when the original 21 variables were
used to compute HI. In addition, sudden decreases in the health
indices were observed at the end of the degradation processes of
the training units. However, the variations in the health indices
should be relatively small because the C-MAPSS tool models a
gradual degradation process due to wear. These observations indi-
cate that some redundant variables might be used for computing

Fig. 4 Variable importance of 21 variables

Table 3 Six operational conditions of the FD004 dataset

Operational Condition Altitude (Kft) Mach Number Throttle resolver angle (deg)

1 42 0.8400 100
2 35 0.8400 100
3 25 0.6200 60
4 20 0.7000 100
5 10 0.2500 100
6 0 0 100

Table 4 Data description [4]

Symbol Description Symbol Description

T2 Total temperature at fan inlet (�R) Ps30 Static pressure at HPC outlet (psia)
T24 Total temperature at LPC outlet (�R) Phi Ratio of fuel flow to Ps30 (pps/psi)
T30 Total temperature at HPC outlet (�R) NRf Corrected fan speed (rpm)
T50 Total temperature at LPT outlet (�R) NRc Corrected core speed (rpm)
P2 Pressure at fan inlet (psia) BPR Bypass ratio
P15 Total pressure in bypass-duct (psia) farB Burner fuel-air ratio
P30 Total pressure at HPC outlet (psia) htBleed Bleed Enthalpy
Nf Physical fan speed (rpm) Nf_dmd Demanded fan speed (rpm)
Nc Physical core speed (rpm) PCNfR_dmd Demanded corrected fan speed (rpm)
EPR Engine pressure ratio (P50/P2) W31 HPT coolant bleed (lbm/s)

W32 LPT coolant bleed (lbm/s)
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the health indices. As shown in Figs. 5(b)–5(d), the health indices
were computed using 11, 7, and 3 variables instead of 21 varia-
bles. When seven variables were used to compute the health indi-
ces, the smallest variations in the health indices were observed.
Therefore, seven variables were selected for computing the health
indices and training predictive models.

4.3 Optimal Weights for Base Learners. The PSO and SQP
methods are used to determine the optimal weights for the base
learners. PSO is a population-based stochastic optimization tech-
nique inspired by the social behavior of bird flocking or fish
schooling [16]. SQP is an iterative method for constrained nonlin-
ear optimization [28]. The objective of the optimization methods
is to minimize three types of errors, including root mean square
error (RMSE), relative error (RE), and S-score (see Eqs. (5)–(7)).

RMSE and RE measure the deviations between the predicted and
actual RULs. An S-score, initially introduced in 2008 PHM Data
Challenge, measures the performance of a model by taking into
account whether the model overestimates and underestimates the
RULs.

RMSE eRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷ � yÞ2�

q
(5)

RE eREi ¼ ŷi � yij j=yi (6)

S� score eCVi ¼
exp �di=13ð Þ; di < 0

exp di=10ð Þ; di � 0
; di ¼ ŷi � yið Þ

�
(7)

where E(�) denotes the expectation operator, yi is the actual RUL
of the ith unit, ŷi is the predicted RUL of the ith unit, ŷ is the

Fig. 5 Health indices associated with 249 training units when using (a) 21 variables, (b) 3 variables [26], (c) 11
variables [27], and (d) 7 variables selected by RFs

Table 6 Parameter settings for the base learners

Base learner Parameter

RFs Number of trees: 500; Stopping threshold: 5
CART Stopping criterion: less than ten observations in the nodes
RNN Number of nodes in the hidden layer: 8; Number of nodes in the output layer: 1
AR AR order: 30
ANFIS Number of rules: 15; Number of memberships: 15
RVM Gaussian kernel width: 0.8; Prior variance r¼ 0.1
EN Shrinkage a ¼ 0.5; Regularization k ¼ 100

Table 5 Variable selection for the base learning algorithms

Number of variables Variables

11 T24, T30, T50, P30, Nf, PHI, NRf, NRc, htB, W31, and W32
7 BPR, Ps30, T50, NRc, htB, W31 and NRf
3 T50, htB and W31

041008-6 / Vol. 141, APRIL 2019 Transactions of the ASME

Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 11/27/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



matrix form of all predicted RULs, and�y is the mean value of the
actual RUL vector y, di ¼ L̂i � LT

i , L̂i and Li
T denote the pre-

dicted and actual RUL of the ith CV-test unit. Tenfold cross-
validation was conducted on 249 CV-test units in the FD004 data-
set. The parameter settings for the based learners are shown in
Table 6.

Table 7 shows the prediction errors associated with seven base
learners. The prediction errors for the CV-test data vary depend-
ing on the base learners. The smallest RE is 0.252, which is
achieved by CART using 21 variables. The average RE when
using seven variables is 2.404, which is comparable to the average
RE (i.e., 2.397) when using 11 variables, and is less than the aver-
age REs (i.e., 2.802 and 2.839) when using 21 and 3 variables.
The smallest S-score is 29.222, which is achieved by RFs using
11 variables. The average S-score when using seven variables is
4.893� 106, which is comparable to the average S-score (i.e.,
2.512� 106) when using three variables, and is less than the aver-
age S-scores (i.e., 9.326� 106 and 4.975� 106) when using 21
and 11 variables. In addition, the CART with seven variables
made significant improvements over the other three variable selec-
tion methods with respect to S-score value. The RMSE results are
provided in Table 8 where the proposed variable selection method
produced the smallest RMSE (20.95) with CART. The average
RMSE over all of the base learners demonstrated better perform-
ance of the proposed selection method than the other three selec-
tion methods.

To improve prediction accuracy, the proposed ensemble learn-
ing method combines the base learners by assigning a weight to
each base learner. The PSO technique was used to determine the
optimum weight vector. To evaluate the performance of PSO, the
SQP method was also used to determine the weight vector. As
shown in Tables 7–9, both PSO- and SQP-based ensemble learn-
ing algorithms outperform the individual base learners signifi-
cantly in terms of S-score, RE, and RMSE when training the
predictive models using 21, 11, 7, and 3 variables. As shown in
Table 9, the predictive models trained by PSO- and SQP-based
ensemble learning algorithms using seven variables achieved the
best performance in terms of in terms of S-score, RE, and RMSE.
For instance, the PSO-based ensemble learning algorithm
achieved an S-score of 5.672 using 21 variables, whereas the
PSO-based ensemble learning algorithm achieved an S-score of
3.400 using 7 variables. Similarly, the SQP-based ensemble learn-
ing algorithm achieved a RE of 0.288 and a RMSE of 15.754
using 21 variables, whereas the SQP-based ensemble learning
algorithm achieved an RE of 0.257 and an RMSE of 14.281 using
seven variables. The reason why training the predictive models
using seven variables achieved the best performance is that the
redundant variables that are not correlated to the degradation
behavior of aircraft engines were not included in the model train-
ing process. In addition, based on the weight vector determined by
both PSO and SQP algorithms, some of the base learners were not
used to train the predictive models. For example, when training

Table 7 S-score and RE of the predictive models trained on different number of variables

Number of variables

21 11 7 3

Base learner S-score RE S-score RE S-score RE S-score RE

RFs 69.411 0.377 29.222 0.508 51.167 0.493 675.30 1.404
CART 3.95� 105 0.252 3.955� 105 0.295 112.677 0.303 1.640� 103 0.444
RNN 3.605� 107 7.294 3.406� 107 7.269 3.388� 107 7.275 1.717� 107 6.987
AR 2.502� 105 5.260 2.502� 105 5.260 2.502� 105 5.260 2.502� 105 5.260
ANFIS 1.668� 103 1.005 2.096� 103 1.055 3.184� 103 1.093 3.833� 104 3.563
RVM 1.533� 103 1.403 1.594� 103 1.380 1.513� 103 1.376 2.640� 103 1.217
El-Net 2.858� 107 4.024 1.166� 105 1.015 1.152� 105 1.025 1.168� 105 1.000
Average 9.326� 106 2.802 4.975� 106 2.397 4.893� 106 2.404 2.512� 106 2.839

Table 8 RMSE of the predictive models trained on different number of variables

RMSE of the base learners

Number of variables RFs CART RNN AR ANFIS RVM El-Net Average RMSE

21 25.578 21.647 139.427 95.030 38.592 36.862 142.817 71.4219
11 22.658 25.943 138.859 95.030 43.203 36.794 76.901 62.7697
7 24.380 20.950 139.230 95.030 43.406 36.574 76.879 62.3499
3 35.269 30.481 133.928 95.030 67.103 42.627 76.897 68.7621

Table 9 Optimal weights for base learners and prediction accuracy

Prediction error

Number of variables Method Weight vector w S-score RE RMSE

21 SQP [0.398, 0.315, 0.077, 0, 0.062, 0, 0.148] 5.669 0.288 15.754
PSO [0.398, 0.316, 0.075, 0, 0.065, 0, 0.146] 5.672 0.281 15.731

11 SQP [0.594, 0.207, 0.005, 0, 0, 0, 0.194] 3.560 0.305 14.733
PSO [0.595, 0.207, 0.004, 0, 0, 0, 0.194] 3.560 0.304 14.733

7 SQP [0.407, 0.408, 0, 0, 0, 0, 0.184] 5.673 0.257 14.281

PSO [0.430, 0.469, 0, 0, 0, 0, 0.100] 3.400 0.284 14.908
3 SQP [0.488, 0.310, 0, 0, 0, 0.078, 0.124] 34.793 0.800 22.050

PSO [0.488, 0.311, 0, 0, 0, 0.077, 0.115] 34.794 0.800 22.063
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the predictive models using seven variables, only RFs, CART,
and El-Net were combined by the PSO- and SQP-based ensemble
learning algorithms because the weights assigned to other base
learners are zero. By determining the optimal weight vector, the
ensemble learning algorithms selected the base learners with the
best performance.

Figure 6 shows the performance of the base learners and ensem-
ble learning algorithms for all of the 249 CV-test units. Figure
6(a) provides the prediction performance of four base learners
(i.e., RFs, CART, ANFIS, and RVM). The prediction results of
the other three algorithms (RNN, AR and El-Net) are not provided
in Fig. 6(a) due to large errors. Figure 6(b) compares the RUL
prediction results of the ensemble learning using SQP and PSO
optimization. The closer the predicted RULs to the actual RUL
curve, the more accurate are the predicted RULs. It can be
observed in Fig. 6(b) that the PSO-based method slightly outper-
formed the SQP-based method because predicted RULs by the
former (circles) were slightly closer to the actual RUL than that of
the latter (crosses). As shown in Figs. 6(a) and 6(b), both PSO-
and SQP-based ensemble learning algorithms outperformed the
base learners.

Figure 7 shows more details on the performance of the predic-
tive model of an individual aircraft engine unit (i.e., unit ID-35)
from the beginning to end of life of the entire lifecycle. The total
number of cycles of unit ID-35 was 221. The predictive model
started to predict RUL after 85 cycles. As shown in Fig. 7(a),
most of the predictions produced by four of the base learners were
late predictions. Late predictions refer to the cases where the pre-
dicted RULs are greater than the actual RULs. Since the objective

of predicting the RUL of aircraft engines is to avoid failures, it is
important to predict failures early as compared to predicting fail-
ure late. As shown in Fig. 7(b), when training the predictive model
using the ensemble learning algorithm, most of the predicted
RULs were early predictions. In addition, by comparing Fig. 7(b)
with Fig. 7(a), the predictive model trained by the ensemble learn-
ing algorithm achieved an S-score of 3.670 and a RMSE of
16.110, whereas the predictive model trained by CART achieved
an S-score of 518.892 and a RMSE of 25.367. In addition, Fig.
7(b) shows that the predictive model trained by the ensemble
learning algorithm achieved very high prediction accuracy when
the engine unit is close to the end of life.

4.4 Model Validation and Performance Comparison. The
test dataset was used to evaluate the performance of the predictive
model trained on the training dataset. Figure 8 shows the predic-
tion results using the base learners and ensemble learning method.
It has been observed that prediction accuracy is very high for
those test units that have longer RULs, whereas prediction accu-
racy is relatively low for those test units that have shorter RULs.
For example, the actual RULs for test units ID-22 and ID-121 are
11 and 41 cycles. The predicted RULs for the test units are 16 and
40, respectively. The predictive model is very accurate for these
test units. However, the actual RULs for test unit ID-246 are 194
cycles, whereas the predicted RUL is 126 cycles. Similarly, the
actual RUL for test unit ID-204 is 151 cycles, whereas the pre-
dicted RUL is 88 cycles. The predictive model is not accurate for
these test units. This is because test unit ID-22 (The number of

Fig. 6 RUL prediction performance on CV-test data with seven variables: (a) base learners and (b) ensemble learning

Fig. 7 RUL predictions for one CV-test unit: (a) base learners and (b) ensemble learning
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cycles that has been observed is 158) and ID-121 (The number of
cycles that has been observed is 194) were operating in the late
stage of the degradation process. However, test units ID-246 (The
number of cycles that has been observed is 29) and ID-204 (The
number of cycles that has been observed is 19) were operating in
the early stage of the degradation process.

Table 10 lists the S-score, RE, and RMSE values of the predic-
tive model for the test dataset. Both PSO- and SQP-based ensemble
learning methods outperform the base learners significantly. For

example, the mean S-score, RE, and RMSE values of PSO- and
SQP-based ensemble learning methods are 28.958, 0.373, 31.622
and 26.382, 0.420, and 29.512, respectively. Moreover, a compara-
tive study between the ensemble learning methods and 16 other
methods was conducted. These methods include multilayer percep-
tron (MLP), SVR, extra-randomized trees, KNN, SVM, least abso-
lute shrinkage and selection operator (LASSO), extremely learning
machine (ELM), hierarchical ELM, relevance vector regression
(RVR), gradient boosting (GB), similarity-based inference (SBI),
discriminating shapelet extraction, deep belief network (DBN),
deep convolutional neural network (CNN), multi-objective deep
belief networks ensemble, and deep CNN without rectified labels.
As shown in Table 11, both PSO- and SQP-based ensemble learn-
ing methods outperform MLP, SVR, extra-randomized trees, KNN,
SVM, LASSO, ELM, hierarchical ELM, RVR, GB, SBI, discrimi-
nating shapelet extraction, DBN, and deep CNN in terms of S-score
and RMSE. In addition, both PSO- and SQP-based ensemble learn-
ing methods are comparable with two deep learning algorithms,
including the multi-objective deep belief networks ensemble and
deep CNN without rectified labels.

5 Conclusions and Future Work

This paper has presented an ensemble learning-based prognos-
tic approach to degradation modeling and RUL prediction of air-
craft engines. A variable selection approach using RFs was used

Table 10 Performance of the predictive models on the test
dataset

Performance metrics

Prognostic approach S-score RE RMSE

RFs 75.266 0.485 105.065
CART 74.115 0.505 101.897
RNN 2.010� 107 4.175 121.579
AR 6.469� 1011 6.997 220.301
ANFIS 3.003� 104 0.732 45.208
RVM 448.695 0.803 44.519
El-Net 1.344� 105 1.012 102.372
SQP-based Ensemble 28.958 0.373 31.622
PSO-based Ensemble 26.382 0.420 29.512

Fig. 8 RUL prediction for 248 test units using (a) base learners and (b) ensemble learning

Table 11 Performance comparisons between the ensemble learning methods and other exist-
ing methods

FD004

Prognostic approach S-score RMSE

MLP [29] 2.266� 104 77.37
SVR [29] 1.496� 103 45.35
ETR [30] 1.395� 103 40.01
KNN [30] 945.147 54.44
SVM [30] 569.041 59.96
LASSO [30] 505.231 40.70
ELM [30] 489.575 38.43
Hierarchical ELM [30] 425.374 37.98
RVR [29] 106.855 34.34
GB [30] 71.847 29.01
SBI [31] 69.2928 NA
Discriminating shapelet extraction [31] 37.7097 NA
DBN [30] 32.0746 29.88
Deep CNN [29] 31.815 29.16
Multi-objective DBNs ensemble [30] 26.442 28.66
Deep CNN without rectified labels [32] NA 29.44
Proposed method with SQP optimization 28.958 31.62

Proposed method with PSO optimization 26.382 29.51
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to determine an optimal set of variables/features. The ensemble
learning algorithm combined RFs, CART, RNN, AR model,
ANFIS, RVM, and EN using the parallel ensemble technique. The
PSO and SQP algorithm were used to optimize the prediction per-
formance by assigning an optimal weight to each base learner.
The predictive model trained by the ensemble learning algorithm
has been demonstrated on the data generated by the C-MAPSS.
The experimental results have shown that the ensemble learning-
based prognostic approach can predict the RUL of the aircraft
engine with very high accuracy. The PSO and SQP optimization
methods selected not only the most accurate base learner (i.e.,
stronger learner) but also several less accurate base learners for
fusion. In the future, we will parallelize the training process of the
ensemble learning-based prognostic approach. In addition, a topic
of particular interest is to explore base learner diversity. As
alluded to above, different base learners were chosen depending
on the number of variables. Variable diversity and base learner
diversity are important aspects that deserve more attention.
Finally, the fusion method itself calls for further investigation. It
should be expected, for example, that a time-dependent fusion
method might perform even better. We will also test and validate
the proposed approach on other C-MAPSS datasets.
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Nomenclature

AR ¼ autoregressive
ANFIS ¼ adaptive network-based fuzzy inference system

BPR ¼ bypass ratio
C-MAPSS ¼ commercial modular aero-propulsion system

simulation
CART ¼ classification and regression tree

CV ¼ cross-validation
EN ¼ elastic net

EPR ¼ engine pressure ratio
HPC ¼ high pressure compressor
HPT ¼ high-pressure turbine

HI ¼ health index
LPC ¼ low pressure compressor
LPT ¼ low pressure turbine
PSO ¼ particle swarm optimization
PPS ¼ pound-mass per second
RFs ¼ random forests

RUL ¼ remaining useful life
RNN ¼ recurrent neural networks
RVM ¼ relevance vector machine
SQP ¼ sequential quadratic optimization
TRA ¼ throttle resolver angle
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