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I. Introduction

In order to improve the current high level of safety in air carrier operations, there is increasing emphasis
on developing proactive safety management systems to identify and mitigate risk areas before they manifest
in aircraft accidents or incidents. One way to conduct proactive safety management for airline operations
is to utilize the operational data archived in modern Flight Data Recorders (FDRs) equipped on aircraft.
Recently, efforts have been made to develop algorithms to detect anomalies in sensor data from a complex
engineered system in a dynamic operating environment.2,5, 1 These algorithms take a data-driven approach
to build a model for detecting anomalies directly from data collected during system operation, rather than
building it based on domain knowledge, standard operating procedure or human expertise. The knowledge
discovery processes, in general, face the challenge of validating new discoveries from real-world data as in
many cases there exists no “ground truth” that can confirm the presence of these anomalies.

In this study, we compared two data-driven anomaly detection algorithms and contrasted the two data-
driven methods with the traditional flight data analysis method - Exceedance Detection. The two data-
driven anomaly detection algorithms are Cluster-based Anomaly Detection (ClusterAD)5 and Multiple Ker-
nel Anomaly Detection (MKAD).2 Both algorithms were developed to detect anomalous flights in recorded
flight data.

The Exceedance Detection method is a Flight Operational Quality Assurance (FOQA) analysis tool
widely used in the airline industry. It detects exceedance events when certain flight parameters exceed
pre-specified thresholds. Only known safety concerns are examined by this method.

All three methods were independently tested on the same set of flight data from an airline’s normal
operations. The entire dataset contains recorded flight data of a narrow-body aircraft. The data are from
short to medium range flights of a commercial passenger jet airline. The comparison results of the three
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methods is an empirical evaluation of ClusterAD and MKAD. In addition, the detected flights were organized
and referred to domain experts in order to check the operational significance.

II. Background

This study focuses on two recently developed algorithms for anomaly detection in flight data. Both
algorithms detect anomalous flights based on a model built from the flight data, rather than domain knowl-
edge, standard operating procedure (SOP), or other prior knowledge. The traditional method, Exceedance
Detection, by contrast, is based on flight manuals, SOPs, and other domain knowledge. Thus, it is used as a
baseline to contrast the two data-driven anomaly detection algorithms. A description of the flight data and
introductions of the three methods are given in the following paragraphs.

A. Flight Data

Flight data refer to the digital flight data recordings generated during aircraft operations. Various flight
parameters (on average more than 300 flight parameters) are measured by sensors in an airplane and recorded
on-board by the Digital Flight Data Recorder (DFDR) or Quick Access Recorder (QAR) during every
commercial airline flight. Airlines collect the data on a regular basis and conduct analysis to evaluate daily
operations and identify risks.

The data recorded on DFDRs or QARs include multiple flight parameters sampled at different rates. The
specification of the parameters are to be recorded and the sampling rates vary by the type of recorder and
the configuration requirements of the airline. The typical flight parameters include altitude, airspeed, thrust,
accelerations, etc. The number of flight parameters can go up to 2000 depending on recording capabilities
of modern airplanes. The size and complexity of the flight data create challenges in the data analysis.

B. Data-Driven Anomaly Detection Methods

The two algorithms studied in this paper are recently developed data-driven methods for anomaly detection
in flight data. They are Cluster-based Anomaly Detection (ClusterAD)5 and Multiple Kernel Anomaly
Detection (MKAD).2 Both algorithms build a model to characterize normal operations based on recorded
flight data, and then detect anomalous flights based on the model, rather than domain knowledge, SOPs, or
other prior knowledge.

1. ClusterAD

The Cluster-based Anomaly Detection (ClusterAD) algorithm is developed to group nominal flights by clus-
ters and to detect anomalous flights that do not belong to any cluster.5 As flight operations are highly
standardized, most flights share similar patterns in the flight data and only a few of them have data patterns
different from the majority. This method considers the recordings of multiple flight parameters simultane-
ously to look for patterns in the data.

ClusterAD performs well with flight phases that have standard procedures and clear time anchors, such
as take-off and final approach. In this method, the time series of flight parameters are anchored by a specific
time (e.g. the application of power during take-off or the touchdown in final approach). Then the time series
are transformed to a vector in a high-dimensional space. Since the vector captures the information of all
available flight parameters during the phase of flight, vectors representing similar flights are “close” to each
other in the high-dimensional space. Then, cluster analysis based on DBSCAN3 is performed to identify
the clusters of proximate vectors, which are the nominal flights, and to detect outliers far away from any
cluster, which are considered the anomalous flights. Both standard operations and anomalous operations can
be identified in this cluster analysis. In addition, ClusterAD can handle situations when multiple standard
operations exist in the data and the number of standard operations is unknown.

ClusterAD tends to work well with continuous flight parameters. However, it is not sensitive to the se-
quence of the discrete parameters (e.g. sequences of switches), as the discrete flight parameters are processed
in the same way as the continuous ones but only state differences are observable in the algorithm.
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2. MKAD

Multiple Kernel Anomaly Detection (MKAD) is a unique software system that can process and combine
information from vast resources in varieties of semantic structures (e.g. discrete, continuous, text, and
network data) simultaneously to identify aviation safety anomalies.2 In aviation data heterogeneity may
result from the presence of multiple attributes, where the attributes do not belong to the same data type.
For example the attributes can be either continuous or discrete, or a mixture of both, or in sequential
form. Since standard operating procedures exist for flying aircraft, the sequence of the discrete pilot inputs
along with the measured quantities or parameters are extremely meaningful. Both deviations in values of
continuous parameters and abnormalities in sequence of discrete parameters are considered in the MKAD
algorithm.

MKAD is essentially a one-class Support Vector Machines (SVMs) based anomaly detection algorithm.
MKAD can integrate knowledge from various heterogeneous data sources by virtue of the “multiple kernel”
approach where new kernels can be derived from existing separate kernels built on different data types and
thus incorporating the combined knowledge in the learning process. However each kernel has to be continu-
ous, symmetric, and positive definite. For example, the resultant kernel K can be a convex combination of
all kernels computed over multiple features i.e. K(~xi, ~xj) =

∑n

p=1 ηiK̂p(~xi, ~xj), with ηi ≥ 0 and
∑n

i=1 ηi = 1.

Here K̂p(~xi, ~xj) represents the pth kernel computed over either discrete or continuous parts of data points
xi and xj , and ηi is to weight individual kernels. Once the kernel is formed, MKAD solves the optimization
problem to construct an optimal hyperplane6 in high dimensional feature space to separate the abnormal
patterns from the normal ones. Once the optimization is solved, the model can be used to compute a decision
function f(~z) = sign(

∑
i αi

∑
p ηpK̂p(~z, ~xi)− ρ) to predict positive or negative labels for a given test vector

~z. Examples with negative labels are classified as outliers whereas examples with positive labels are classified
as normal. The absolute value of f(~z) gives an indication of how normal/abnormal the data point is, and
can be used to rank the data points.

C. Traditional Anomaly Detection Method: Exceedance Detection

Exceedance detection is the traditional flight data analysis method widely used in the airline industry. It
consists of checking whether particular flight parameters exceed predefined limits under certain conditions.
The list of flight parameters to watch and the limits of those parameters are specified by safety specialists in
advance. The watch list is always chosen to coincide with the airline’s standard operating procedures, such
as the pitch at takeoff, the speed at takeoff climb, the time of flap retraction, etc.4 Therefore, this approach
requires a pre-defined watch list of key parameters under certain operational conditions and, in addition,
precisely defined thresholds of the key parameters. Known safety issues can be accurately examined by
Exceedance Detection; however, the unknown emerging risks remain latent.

In this paper, we leveraged the results from a standard Exceedance Detection currently used by an
airline. The standard Exceedance Detection detects three levels of exceedance events. Level 1 indicates
minor deviations from the performance target, Level 2 indicates moderate deviations, while Level 3 indicates
the severest deviation from the target value.

III. Approach and Experiment Setup

A. Experiment Design

The objective of this study is to compare two data-driven anomaly detection algorithms, ClusterAD and
MKAD, and to evaluate both algorithms with a baseline method, Exceedance Detection. The three anomaly
detection methods were applied on the same set of flight data. Each method detected a list of anomalous
flights in the dataset.

The anomalous flights detected by different algorithms were compared to assess the commonalities and
differences (1) between MKAD and ClusterAD and (2) between the data-driven methods and the Exceedance
Detection method. The comparison between ClusterAD and MKAD in this study was focused on evaluating
the flights commonly detected by both methods and the flights only detected by one of the methods, as shown
in Table 1. In addition, the detected flights of interest were discussed with domain experts to understand
the operational characteristics and implications.
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Table 1. Comparison Between ClusterAD and MKAD

MKAD - Anomalous MKAD - Normal

ClusterAD - Anomalous Common Detection Unique ClusterAD Detection

ClusterAD - Normal Unique MKAD Detection Common Rejection

B. Algorithm Settings

Algorithms can be set at different sensitivity levels. ClusterAD and MKAD use the “detection threshold”
setting to determine how many flights will be identified as anomalous. For example, by specifying a detection
threshold (x%), ClusterAD and MKAD detect the top x% anomalous flights from a set of flights. We com-
pared ClusterAD and MKAD using a series of detection thresholds (detection threshold = 1%, 3%, 5%, 10%)
to test algorithm performance on different conditions. In addition, the inter-comparison between ClusterAD
and MKAD was always made on the same detection threshold to produce comparable results .

Exceedance Detection detects “exceedance events” when aircraft performance fails to meet target value
ranges during specific maneuvers. Normally, airlines use three levels to detect the “exceedances”. Level 1
indicates minor variation from the performance target, while Level 3 indicate the severest deviation from
the target value. Because Level 3 events are the issues and problems that are of greatest concern to airlines,
the comparisons with Exceedance Detection were focused on Level 3 in this study.

The overall design of the experiment and the algorithm settings are shown in Figure 1. Each of the
boxes is an experiment scenario we have tested with the corrosponding algorithm settings.

Figure 1. Experiment Design and Algorithm Settings

C. Data Pre-Processing and Parameter Selection

The flight data used in this study to compare all three methods are from a commercial passenger jet airline.
All aircraft analyzed are of the same fleet and type. Each flight consists of 367 discrete and continuous
parameters sampled at 1 Hz with the average flight length between 2 and 3 hours. However, we used a
subset of the flight parameters (see Table 2) based on domain expert’s feedback in order to focus on detecting
operational problems. Using information from the domain expert in conjunction with the statistics from the
data, the flap parameter, which is categorical in nature, was decomposed into 4 binary state variables. The
mapping of the original flap parameter to the binary state variables is shown below (Table 3).

As a pre-processing step, we filtered the flight data by destination and phase of flight, in order to obtain
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Table 2. List of Discrete and Continuous Parameters Used in This Study (please update)

Attribute Type Variable Names

Discrete Autopilot and all Autopilot related modes, Auto-throttle, Flight Director,

Glide Slope, Stall Indicator, Flap Positions (derived parameter),

Ground Proximity Warning System, Altitude Mode, Flare Mode,

Flight Path Angle Mode etc.

Continuous Altitude, Target Air Speed, Computed Air Speed,

Engine-related Measures, Pitch Angle, Roll Angle, Rudder Position,

Angle of Attack, Aileron Position, Stabilizer Position, Aircraft Gross Weight,

Latitude, Longitude and Normal Accelerations,

Derived parameters like Above Stall Speed, Vertical Speed etc.

Table 3. Relation of Derived Flap Parameters with Flap Positions.

Flap0 Flap1 Flap2 FullFlaps

Flap Positions (in degree) 10 15 20 40

segments with comparable characteristics. The data used in this study are 25519 flights landing at a standard
European airport. Only the part from 6 nmi before touchdown to touchdown of each flight was used for the
analysis.

IV. Comparison Results

A. Overview

The number of flights detected by each method is summarized in Table 4 and Table 5. Since the number of
anomalous flights detected in the data-driven methods, ClusterAD and MKAD, is controlled by the detection
threshold, more flights are considered anomalous when a higher detection threshold is used, as shown in Table
4. While in the Exceedance Detection method, the severity level is the main factor impacting the number
of flights being detected with exceedance events. As shown in Table 5, almost all flights are found to have
at least one Level 1 exceedance event, while only less than 3% flights have at least one Level 3 exceedance
event.

Table 4. Number of Flights Detected by Data-Driven Methods

Detection Threshold

1% 3% 5% 10%

ClusterAD 277 753 1271 2539

MKAD 203 704 1206 2483

Table 5. Number of Flights Detected by Exceedance Detection

Level 3 Level 2 Level 1

Exceedance Detection 729 3581 18888
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B. Comparison between ClusterAD and MKAD

Because ClusterAD tends to work well with continuous flight parameters, while MKAD is better to incor-
porate the sequence of discrete flight parameters in anomaly detection, we expected the results of the two
algorithms would be different. This is confirmed by the results. Comparing the flights detected by Clus-
terAD and the ones detected by MKAD, the number of common flights which are detected by both MKAD
and ClusterAD vary from 33 (Detection Threshold = 1%), 147 (Detection Threshold = 3%), 355 (Detection
Threshold = 5%), to 955 (Detection Threshold = 10%). The agreement between the two methods increases
as the detection criteria become more relaxed, as shown in Fig. 2

The difference between the types of flights detected by ClusterAD and the ones detected by MKAD
also confirms that ClusterAD is more influenced by deviations in continuous parameters, while MKAD is
impacted by sequences anomalies in discrete parameters. Flights with corrupted data, especially corrupted
data in continuous parameters, are expected to be picked out by ClusterAD. Some flights with corrupted
data have parameters with a constant offset or with missing values. They were in the dataset because they
cannot be filtered out in advance without a pre-defined normal range of every flight parameter. As shown in
Fig. 3, ClusterAD detects more flights with corrupted data than MKAD, as ClusterAD is more influenced
by the deviations in continuous parameters. Meanwhile, Table 6 shows that MKAD detects more auto-
landing flights because this approach features more activity in discrete flight parameters than other types of
approach.

Figure 2. Comparison between ClusterAD Detection and MKAD Detection
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Figure 3. Percentage of Corrupted Data Detected by ClusterAD and MKAD

C. Comparison between Exceedance Detection and Data-Driven Methods

Among different levels of exceedance, Level 3 exceedances are the severest and raise the most concerns for
airlines. Thus, Exceedance Detection at Level 3 was used as the baseline to compare the performance of
ClusterAD and MKAD. Table 7 shows the number of common flights detected by Exceedance Level 3 and
ClusterAD and the number of common flights detected by Exceedance Level 3 and MKAD. It is noted that
ClusterAD has detected more common flights than MKAD for all of the tested detection thresholds.

This result is expected since ClusterAD can be considered as a variation of Exceedance Detection. Clus-
terAD looks for deviations between anomalous values and nominal values. When most operations are fol-
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Table 6. Automation Summary of all Landing Flights and top 10% Anomalous Flights Detected by Data-Driven
Methods

Automation type

ILS Approach Autolanding Non-precision Landing Visual Landing Others

All Flights 21960 568 2 2987 2

ClusterAD 1141 20 2 1160 0

MKAD 961 103 2 1416 1

lowing the standards, the nominal values are close to the target values used in Exceedance Detection. A
significant deviation from the nominal value detected in ClusterAD should also be detected in Exceedance
Detection. The difference between ClusterAD and Exceedance detection is that ClusterAD considers all the
available flight parameters simultaneously and does not need a pre-specified list of queries.

Table 7. Compare Exceedance Detection with ClusterAD and MKAD

Number of flights detected by both
Exceedance Detection (Level 3) and

ClusterAD MKAD

Detection threshold

1% 39 12

3% 93 31

5% 143 53

10% 220 86

V. Operational Characteristics of Flights Detected by Data-Driven Methods

In order to further understand the strength and the limitations of ClusterAD and MKAD, we reviewed
the detected flights with domain experts in detail and cross-checked with the Exceedance detection results,
to look for operational significance. We selected three groups from all the flights detected by any method:

• Group (1) - Common flights always detected by both ClusterAD and MKAD on all detection thresholds

• Group (2) - Unique flights always detected by ClusterAD on all detection thresholds, but not detected
by MKAD on any detection threshold

• Group (3) - Unique flights always detected by MKAD on all detection thresholds, but not detected by
ClusterAD on any detection threshold

In this section, we present several representative examples in each group. Three types of graphs are used
to show the information of a flight: (1) Speed and flap setting during final approach; (2) Autopilot mode
transitions during final approach; (3) Time-series plots of most distinctive flight parameters. Regarding
to the third type, the same format is used to show the most distinctive flight parameters. The detected
flight is shown by red lines. The patterns of most flights are depicted by blue bands. The dark blue bands
indicate the 25th to the 75th percentile of all flights data; the light blue bands encompass the 5th to the 95th
percentile. The dark blue region contains 50% of the data, while the light blue region covers 90%. The wind
plots and latitude & longitude plots in the Type 3 graph do not have blue bands because those parameters
(wind, latitude, longitude) were not included in the parameter list for data-driven anomaly detection.

A. Common Flights Detected by Both ClusterAD and MKAD

Common flights detected by both ClusterAD and MKAD are the ones that have significantly different
data patterns from other flights. A number of flight parameters of these flights are distinctively different
compared to the nominal values of most flights. Some of the common flights indicate interesting operational
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implications, while some of them are benign as they are abnormal due to the low occurrence of the operation.
Four examples of the common flights are presented in detail: High-Energy Approach, High-Airspeed with
Low-Power Approach, Recycling Flight Director, and Influence of Wind.

1. High Energy Approach

The high-energy approach is a flight that is detected by both ClusterAD and MKAD on all detection
thresholds. There are three basic conditions that may lead to a high-energy approach: the aircraft may be
too high, too fast, or both. This flight has been categorized as a high energy approach with unusually high
air speed when compared to a set of reference flights landing at that airport.

The flight review with domain expert suggested that this flight might indicate an energy state awareness
problem. The speed profile and power profile of this flight could be precursors to runway excursion for shorter
runways. The high speed was not due to the wind. Ideally, in these cases it should be a go around. The
landing operation was performed in a cloudy weather condition with average visibility of 8.2 miles and with
almost no wind. “Flap 0”, “Flap 1” and “Flap 2” (see Table 3) along with the landing gear were deployed
before 1800 ft (or 6 nmi from touch down). During this part of the flight, a gradual turn was initiated to
align with the runway in preparation for landing. This flight intercepted the glide slope (see altitude plot
in Fig. 4) from below and was slower than most other flights at the beginning of their approach. During
this period the pitch was high. Immediately after this, the pilot spooled up the engines for some time to
increase the speed. This was followed by lowering the pitch, which further accelerated the aircraft. Although
the target airspeed (140 kts) was higher than most others (126-130 kts), the high power used until 3 nmi
before touchdown resulted in a high and unstable airspeed and a significant decrease in N1 for the rest of
the approach. In addition, the pitch angle profile and altitude profile showed signs of unstable approach. At
500 ft the pilot pulled the nose up slightly early to ensure rapid deceleration. The effect of that maneuver
can be clearly seen in the normal acceleration and vertical speed profiles.

The anomaly detection algorithms found this flight atypical due to the combined effect of the deviations
of several continuous parameters. This is an interesting example of what can be detected by data-driven
methods, but may be overlooked by the Exceedance Detection method. The exceedance based approach
reported Level 1 exceedances, namely “Speed High in Approach (at 50ft)”, “Pitch High at Touchdown”,
“Path Low in Approach (at 1200ft)”, “Long Flare Time”, and “APPROACH FAST 500 RAD”. The findings
of the anomaly detection methods provide a clear picture on the unusual energy management scenario,
however the Exceedance Detection method categorized it as a normal flight.

2. High-Airspeed with Low-Power Approach

One type of anomalous approaches that can be detected by both ClusterAD and MKAD is the high-airspeed
and low-power approaches. Figure 5 is an example of this style of approach. It was a visual landing. The
airspeed was always high and the engine was set to idle until 1 nmi before touchdown. Procedure calls for
the engines to be spooled up for the entire final approach so that instantaneous power adjustments can be
made. Other flight parameters also show abnormal patterns compared to the patterns in the majority of
flights. For example, the altitude profile was above the normal altitude profile from 5 nmi to 1 nmi before
touchdown, the pitch was relatively low until 2 nmi before touchdown, the roll angle had a significant amount
of activity at the beginning of the final approach, etc.

Although this flight landed safely, this type of approach is not recommended. The test on this dataset
shows that both ClusterAD and MKAD can catch this type of anomaly. Moreover, Exceedance detection
confirms that this type of anomaly is operationally significant. The exceedance detection identifies four Level
3 events, one Level 2 event, and four Level 1 events in the approach part for this flight. The Level 3 events
are “Speed High in Approach (at 1000ft)”, “Speed High in Approach (at 500ft)”, “ Low Power on Approach”
and “APPROACH FAST 500 RAD”. The Level 2 exceedance is “Pitch High at Touchdown”.

3. Recycling Flight Director

For this particular flight, the main contribution toward the anomaly score came from an atypical event in
discrete parameters as a result of a change of runway as well as another error of commission. The first event
is related to automation disconnection. This flight was completely hand flown and was initially configured
for the right runway. The latitude-longitude profile (Fig.8) and the presence of the Autopilot modes (G/S
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and LOC) in Fig.6 confirm this fact. Once the new runway was assigned and the required maneuvering was
initiated to align with the left runway, the crew had to recycle the flight directors in order to get to the
default modes of Heading and Vertical Speed. The second event was related to mode switching and we are
unable to reach any hypothesis as to why the pilot would take such an action. The transition from “vertical
speed mode” to “open climb mode” around 1500 ft was an inappropriate move by the pilot as the missed
approach altitude has already been set and the “open climb mode” would spool up the engines to climb to
that altitude right away. However it is clear from Fig. 6 that the pilot immediately corrected this mistake
and continued to hand fly the aircraft appropriately. A level 2 exceedance in “Speed High in Approach (at
1000ft)” was reported, but may have been unrelated to all the forgoing actions.

4. Influence of Wind

Both ClusterAD and MKAD found this flight (Fig. 10) as anomalous for several reasons. Deviations
of multiple continuous parameters combined with various mode transitions contributed to the atypicality.
Some of these deviations are not immediately obvious when examining individual parameter plots; however
together they can combine to create an atypical flight. The discrete parameter plot (Fig. 9), shows that one
autopilot (AP 1) was used and later the pilot had disconnected the autopilots and proceed manually with
the rest of the approach and landing. Moreover, both the flight directors were recycled immediately after
that. The first hypothesis is that there have been a change in parallel runway, and the pilot has to disconnect
the automation while aligning the aircraft to the new runway assigned to him. But the latitude-longitude
plot confirms that there was no “runway change”. The second and more likely hypothesis, is that the
switching of the autopilot and flight directors could have been part of an auto approach process. The pilot
first disconnected the autopilots once the necessary visibility of the runway was achieved, then recycled the
flight directors to engage the default modes and later decided to hand fly the aircraft. Another interesting
observation is the missing autoflight lateral mode. Further investigations revealed that the “NAV” mode
was active throughout the earlier part of the flight and was deactivated right before the final approach. This
would not happen and is probably an artifact of the recording process. Any time either an autopilot or a
flight director is engaged both a lateral mode and a vertical mode must be in use.

The entire operation was performed in an extremely windy condition. Though wind was not part of the
analysis but the wind plots in Fig. 10 help explain atypical fluctuations in some of the parameters like target
airspeed, rudder and lateral/normal acceleration. Exceedance based model didn’t detect any event for this
flight.

B. Unique Flights Detected by ClusterAD Only

The Cluster-based Anomaly Detection (ClusterAD) algorithm groups nominal flights by clusters, to detect
anomalous flights based on the sample-by-sample difference of each flight parameter. It requires the part
of the data being analyzed to have specific time anchors to make the comparison. The time series of flight
parameters are anchored by a specific time (e.g. the application of takeoff power during take-off, or the
touchdown in final approach). Detailed description of the method can be found in one of our earlier paper.5

ClusterAD tends to perform well with continuous flight parameters and is influenced by the magnitude of
deviations. In this section, we present two examples of flights detected by ClusterAD, yet not by MKAD. Both
flights had significant deviations in continuous flight parameters. Therefore, ClusterAD can be considered as
a variation of Exceedance Detection, as it works in a similar way when considering flight parameter deviations;
however, ClusterAD automatically inspects all available flight parameters and make the comparisons based
on nominal values summarized from the data itself, rather than pre-specified parameters. In addition,
ClusterAD can handle situations when multiple standard operations exist in the data as well as when the
number of standard operations is unknown.

1. Very High Airspeed

This flight type was detected by CLusterAD at all detection thresholds, yet not detected by MKAD on
any detection threshold. It was a very high airspeed ILS approach (see Fig. 11 and Fig. 12). The airspeed
profile was always much higher than the normal airspeed and also than the target airspeed until less than
2 nmi before touchdown. Because the airspeed was too high, the engine was set to idle until 3 nmi before
touchdown. Moreover, many flight parameters, e.g. the pitch, the target airspeed, the stabilizer position,
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the vertical speed, etc. had an abrupt change around 3.5 nmi before touchdown. It is not clear what caused
this change and why there was a significant drop in pitch even though the airspeed was too high.

This flight was also detected in Exceedance Detection. The detected events are “Speed High in Approach
(at 1000ft)” (Level 3), “Speed High in Approach (at 500ft)” (Level 3), “Flaps Late Setting at Landing”
(Level 2), and “Deviation below Glideslope (1000ft - 300ft)” (Level 2). In addition, five Level 1 events are
also found in this flight.

This example shows that ClusterAD can detect approaches with excessive airspeed, which is one type
of rushed and unstabilized approach. The rushed and unstabilized approaches are one of the contributory
factors in Controlled Flight Into Terrain and other approach-and-landing accidents, because they can result
in insufficient time for the flight crew to correctly plan, prepare, and execute a safe approach.

2. Landing Runway Change

Another type of flight detected by ClusterAD but not by MKAD is the flight with landing runway changes
during final approach. The flight shown in Fig. 13 is a representative example of this type. The flight
was originally lined up for the right runway. Then, it turned and landed on the left runway. Although
the ground reference position information (e.g. latitude and longitude) was not included in the anomaly
detection analysis by ClusterAD and MKAD, ClusterAD was able to capture the abnormal behaviors in
other flight parameters caused by the change of runway turn and identified the flight as abnormal on all
detection thresholds.

None of these abnormal behaviors is severe by the standard of Exceedance Detection. No Level 3 or Level
2 events are detected in the flight for this flight phase. Only four Level 1 events are detected. This type of
anomalous flight could be operationally benign, because the change of landing runway happens due to many
reasons (e.g. ATC assignment to accommodate traffic flows, ILS instrument limitations, etc). However, to
identify this type of abnormal operations and then to track the trend can help to understand the operations
better, such as whether it happens at a particular airport, during a specific time of the day, or under certain
weather conditions. Moreover, further analysis may bring insights on whether there is a correlation between
the approaches with runway change and the unstable approaches.

C. Flights by MKAD

In the Multiple Kernel Anomaly Detection (MKAD) algorithm, we model discrete (switching) sequences and
continuous sequences for a given process using a normalized Longest Common Subsequence (nLCS) based
kernel. Further details on the preprocessing steps of discrete and continuous parameters can be found in
the following paper.2 For FOQA data type analysis, sequential features in many cases provide valuable
information since the order of the switching may provide justifications on performing pilot’s activities to
achieve an objective. It is important to note that like ClusterAD, MKAD identifies anomalies at the fleet
level, meaning individual flights were labeled anomalous by the algorithm using the combined information
of discrete and continuous parameters.

1. Unusual Autolanding Configuration

In this section we will describe two flights identified by MKAD mostly due to some atypical patterns in the
switching sequences generated from the discrete parameters. In both cases the flights used autoland systems
which have been designed to control the aircraft automatically during approach and landing. In this data
set we have a small fraction (around 2% of the 25,519 flights) of autolanding examples, and the deviations
from normal switching behaviors for autolanding make them statistically significant compared to the rest of
the flights. Autolanding is mostly used in poor visibility conditions and/or bad weather where the crew can
only see the runway lights just few seconds before landing. In many instances with poor visibility conditions,
visual landing may not be possible or may be considered unsafe, and therefore autolanding is preferred. The
presence of automatic guidance systems with human in-the-loop makes the autoland an extremely accurate
and safe maneuver. However there are strict requirements which are imposed by the authorities on airborne
elements and ground environment, as well as special crew qualification for autolanding.

The first flight (Fig.14), reported by MKAD, engaged autolanding without the full flap setting. Under
normal circumstances the autoland is executed with both autopilots engaged and with flaps configured as
full. The use here of the flap setting prior to full introduced some differences from the usual autoland
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patterns. Out of all autolanding examples, more than 90% of flights performed this operation with full flap
settings. While legal from an operational standpoint this was still reported by the algorithm due to some
statistically significant activities (or signatures) in parameters like autopilot and autopilot modes and flight
directors. The Exceedance-based method indicated “Pitch High at Touchdown”, “Short Flare Time” and
“Short Flare Distance”with considerable severities (Level 2-s & 3-s).

In the second example (Fig. 15) we demonstrate another atypical autoland configuration. In this flight
the flaps were configured full. The weather was reported as foggy with 0.1 mi visibility. It is common to
use only one autopilot for an approach that does not require an autoland. The autopilot is then disengaged
when the runway is in sight or at least by the minimum charted descent altitude. Procedures specify that an
approach which requires an autoland, however, must be started with two autopilots. If one autopilot then
fails, a “fail-operational state” exists and the automatic landing can be completed. This flight departed from
normal operational requirements by utilizing only one autopilot for the entire approach and autoland. This
scenario could be of interest because under bad weather conditions (like extremely low visibility conditions)
with further degradation of the system the autolanding capability may be lost at an extremely inopportune
time. The algorithm was able to find it due to the uncharacteristic settings of autopilots for landing aircraft.
For example, out of all autolanding examples, only 2 flights with different tail numbers performed this kind
of operation. The exceedance based method indicated “Speed Low at Touch down”and “Flaps Questionable
Setting at Landing”with considerable severities (Level 2-s & 3-s).

D. Unique Flights Detected by Exceedance Detection

In Exceedance-based detection severity Level 2 and 3 are of concern to airlines. To make a fair comparison,
in this section we present a couple of flights that have been detected by Exceedance Detection but not
by any of the data-driven methods described above. For this study we chose the top two flights with the
maximum number of Level 3 exceedances for the phase of the flight described above. Table 8 shows the type
of exceedances identified by the Exceedance Detection method for all three severities.

Both ClusterAd and MKAD are multivariate methods, which identify anomalous flights by considering
all available flight parameters. The abnormality level of a flight is the combined effect of how abnormal a
flight parameter is at an instance, how long the abnormality lasts for a flight parameter, and how many
flight parameters are abnormal. The flight parameter plots of Flight 1 and Flight 2 show that most of the
parameters are within the blue bands for most of the approach. The events detected by Exceedance detection
for Flight 1 and Flight 2 are specific deviations at a particular time, such as landing, touchdown, 1000 ft,
500 ft, etc. A short time deviation of a few flight parameters may not be able to bring the flight to top of
the abnormal list generated in ClusterAD and MKAD. Therefore, neither ClusterAD or MKAD could detect
those flights.

FOQA programs are typically designed to search for foreseeable problems. These data-driven algorithms
on the other hand, were created to search for atypicalities which were unforeseen. For example, in the case
of Flight 1 (Fig. 16), a finely tuned FOQA tool picked out the high pitch rate, but that is because it was
specifically looking for this problem. Pitch rate was not part of the data driven analysis and so Flight 1
was not picked up by any of the data driven methods. Though the overall profile of computed airspeed
looks normal from the Fig. 17, there are two small deviations in computed airspeed. The difference between
computed airspeed and target airspeed around those deviations resulted in the speed-related exceedances.
Data driven techniques are not sensitive to such small deviations and thus didn’t identify Flight 2 as anomaly.
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Table 8. Top 2 Unique Flights reported by Exceedance Detection

Level 3 Level 2 Level 1

Pitch Rate High at Landing, Pitch High at Touchdown Height High at Threshold,

Flight 1 Short Flare Time, Short Flare Distance

Tail Strike Risk at Landing

Speed High in Approach Deviation above Glideslope, Pitch High at Touchdown,

Flight 2 (at 1000ft), (1000ft - 300ft),

Speed High in Approach Go Around Rate Of Descent High

(at 500ft), in Approach (2000ft - 1000ft),

Low Power on Approach Approach Fast 500 RAD

VI. Conclusions

In this paper, we have compared results from two data driven algorithms with results from traditional
exceedance based methods on a common aviation data set. The overall results indicate that ClusterAD tends
to work well with continuous flight parameters while MKAD is more sensitive to the sequence of the discrete
parameters. Exceedance Detection can be very efficient in detecting foreseen anomalies using continuous and
discrete data. Each method overlaps the others to some extent, but there remain unique strengths which
set them apart as well. The aim is not to continue to find known anomalies but to combine strengths from
different methods into a robust approach enable detection of unknown operationally significant anomalies in
aviation data sets.

From this study, two generalizations come to mind. First, there will always be a range of appropriate and
acceptable operating conditions. The fact that a flight is operating near the limit of this range may make
it atypical but does not make it operationally incorrect. An example would be a maximum gross weight
landing, with higher target and computed airspeeds. Data driven algorithms do find atypicalities based on
baseline statistics, but Exceedance Detection systems may evaluate these situations more appropriately since
they can take into account some of the applicable physical laws.

Secondly, if enough pilots make the same mistake it will no longer be atypical. One example of this might
be extended time in the flare after main gear touchdown. This runs the risk of hard nosewheel touchdown
which is not an acceptable practice, but is nonetheless fairly common. Data driven algorithms might have
difficulty finding this phenomenon.

Additionally, FOQA programs generally examine data in temporal slices, finding exceedences which might
be very temporary and which must be analyzed to determine their relevance. On the contrary a data-driven
algorithm provides some perspective, comparing the flight to a baseline comprised of many other flights.
Domain analysis is still required, but from a different point of view.
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Figure 4. Parameter anomalies discovered by both Data-Driven Method (ClusterAD/MKAD): High energy approach - Continuous Parameters.
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Figure 5. Parameter anomalies discovered by both Data-Driven Method (ClusterAD/MKAD): High-Airspeed with Low-Power Approach - Continuous
Parameters.
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Figure 6. Flight detected by both Data-Driven Method (ClusterAD/MKAD): Recycling Flight Director - Discrete parameters
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Figure 7. Parameter anomalies discovered by both Data-Driven Method (ClusterAD/MKAD): Recycling Flight
Director - Continuous Parameters.
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Figure 8. Change in Runway for the Recycling Flight Director Example.
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Figure 9. Flight detected by both Data-Driven Method (ClusterAD/MKAD): Wind Effect: Discrete Parameters showing Mode Transitions.
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Figure 10. Parameter anomalies discovered by both Data-Driven Method (ClusterAD/MKAD):Wind effect - Continuous Parameters.
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Figure 11. Flight detected by ClusterAD: Very High Airspeed - Discrete Parameters
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Figure 12. Parameter anomalies discovered by ClusterAD: Very High Airspeed - Continuous Parameters.
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Figure 13. Parameter anomalies discovered by ClusterAD: Change in runway - Continuous Parameters.
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Figure 14. Summary of flight detected by MKAD: Unusual Auto Landing Configuration (Without Full Flaps) - Discrete Parameters
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Figure 15. Summary of flight detected by MKAD: Unusual Auto Landing Configuration (Without both Autopilots Engaged) - Discrete Parameters
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Figure 16. Anomalous Flight reported by Exceedance Detection : Flight 1 - Continuous Parameters
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Figure 17. Anomalous Flight reported by Exceedance Detection : Flight 2 - Continuous Parameters
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