
Qualitative Event-based Diagnosis with
Possible Conflicts Applied to Spacecraft

Power Distribution Systems ?

Matthew Daigle ∗ Anibal Bregon ∗∗ Indranil Roychoudhury ∗∗∗

∗ NASA Ames Research Center, Moffett Field, CA, 94035, USA
(e-mail: matthew.j.daigle@nasa.gov).

∗∗ Department of Computer Science, University of Valladolid,
Valladolid, 47011, Spain (e-mail: anibal@infor.uva.es)

∗∗∗ SGT Inc., NASA Ames Research Center, Moffett Field, CA,
94035, USA (e-mail: indranil.roychoudhury@nasa.gov)

Abstract: Model-based diagnosis enables efficient and safe operation of engineered systems.
In this paper, we describe two algorithms based on a qualitative event-based fault isolation
framework augmented with model-based fault identification that are applied to spacecraft power
distribution systems. Although based on a common framework, the fundamental difference
between the two algorithms is that one uses a global model for residual generation, fault isolation,
and fault identification; whereas the other uses a set of minimal submodels computed using
Possible Conflicts. We describe the implementation of the two algorithms and compare their
diagnosis results on a representative spacecraft power distribution system.
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1. INTRODUCTION

Fault diagnosis methodologies are motivated by the need
for increased performance, safety, and reliability of com-
plex engineering systems. This paper presents a model-
based, qualitative, event-based fault diagnosis scheme that
performs the functions of fault detection, isolation, and
identification. The diagnosis scheme has its foundations
in the Transcend diagnosis approach (Mosterman and
Biswas, 1999), but can diagnose abrupt, incipient, and
intermittent single faults. Our diagnosis scheme has two
instantiations, QED (Qualitative Event-based Diagnosis),
and QED-PC (QED with Possible Conflicts).

The general approach extends the Transcend diagnosis
scheme. In this scheme, fault isolation is achieved through
analysis of the transients produced by faults, manifesting
as deviations in observed behavior from predicted nominal
behavior. QED extends Transcend by including relative
measurement orderings, which provide a partial ordering of
measurement deviations for different faults, leading to an
enhanced event-based fault isolation scheme (Daigle et al.,
2009). Further, Transcend deals only with abrupt faults,
so we incorporate methods for incipient faults (Roychoud-
hury, 2009) and intermittent faults (Daigle and Roychoud-
hury, 2010).

QED-PC uses the Possible Conflicts (PCs) diagnosis
approach (Pulido and Alonso-González, 2004) within
the general QED framework. The PCs approach is a
dependency-compilation technique from the DX commu-
nity similar to the derivation of Analytical Redundancy
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Relations from the FDI community. The approach decom-
poses the global system model into minimal submodels
containing sufficient analytical redundancy to generate
fault hypotheses from observed measurement deviations.
With QED-PC, residuals are computed using the PCs
(instead of the global system model) and measurement de-
viations are analyzed following the Transcend ideas as in
QED. For fault identification, the algorithm uses minimal
parameter estimators computed from PCs for each faulty
parameter, as described in (Bregon et al., 2011b).

As a case study, we adopt a subset of the Advanced
Diagnostic and Prognostic Testbed (ADAPT) (Poll et al.,
2007), which is functionally representative of a spacecraft
power distribution system. We apply our diagnosis algo-
rithms to this system, evaluate the results, and compare
and contrast algorithm performance.

The paper is organized as follows. Section 2 overviews the
diagnosis approaches. Section 3 provides the system model.
Sections 4, 5, and 6 describe fault detection, isolation, and
identification, respectively. Section 7 presents the diagnosis
results, and Section 8 concludes the paper.

2. DIAGNOSIS APPROACH

Our diagnosis approach performs the tasks of (i) fault
detection, i.e., determining if a fault is present in the
system, (ii) fault isolation, i.e., determining which fault
has occurred, and (iii) fault identification, i.e., estimating
the parameters that define the fault behavior.

The diagnosis architecture is shown in Fig. 1, and reflects
the implementation of both algorithms. The system re-
ceives inputs u(t) and produces outputs y(t). The system



Fig. 1. Diagnosis architecture.

model, given inputs u(t), computes predicted values ŷ(t).
The fault detection module decides whether a measure-
ment has deviated from its nominal value in a statisti-
cally significant manner, triggering the fault isolation and
identification modules. Measurement deviations, viewed as
events, are abstracted into a symbolic representation using
the symbol generator. The sequence of these symbols,
where a symbol is denoted by σ, is used to isolate faults
F . Fault isolation consists of candidate generation at the
point of fault detection and hypothesis refinement as new
symbols are provided. Each fault f ∈ F is associated with
a component, a fault mode, and a set of fault parameters.
Fault identification computes, for each fault f ∈ F , the
values of the fault parameters.

For both QED and QED-PC, we compute residuals as the
difference between an observation, y(t), and the predicted
nominal behavior of the output, ŷ(t), with the only differ-
ence coming from the way the predicted behavior is com-
puted by each algorithm. For QED, the predicted values
ŷ(t) are computed based on a global model of the system.
For QED-PC, the system model is decomposed, using the
Possible Conflicts approach (Pulido and Alonso-González,
2004), into minimal over-determined subsystems, each
with a single output, that suffice for fault diagnosis. In this
approach, the predicted values ŷ(t) are computed based
on these subsystem models. The submodels are decoupled
from each other by using measured values as inputs to the
submodels.

3. SYSTEM MODELING

Our diagnosis approach is model-based, requiring a model
of both nominal and faulty behavior for use throughout the
diagnosis process. As described in the previous section, the
two algorithms implement the nominal model in a different
way. For QED, the nominal model is a global model of
the system, M, and its inputs are those of the global
system. For QED-PC, the nominal model is composed
of a set of 11 minimal submodels, with each submodel
Mi estimating the value of sensor i using a subset of the
system measurements as input variables. In the following,
we describe the models of nominal and faulty behavior
of the ADAPT system for QED and QED-PC, indicating
their similarities and differences.

3.1 Nominal Model

A schematic of the selected subset of ADAPT is given in
Fig. 2. Sensors prefixed with an “E” are voltage sensors,
those with an “IT” are current sensors, and those with
“ISH” or “ESH” are for sensing the states of circuit
breakers and relays. TE228 is the battery temperature

Fig. 2. ADAPT subset schematic.

sensor, and ST516 is the fan speed sensor. Note that the
inverter (INV2) converts DC power to AC, and E265 and
IT267 provide rms values of the AC waveforms.

Most of the equations of the global model and the cor-
responding PCs are summarized in Table 1. Details may
be found in (Daigle and Roychoudhury, 2010). Here, vB
and iB are the battery voltage and current, v0 is the
voltage across C0, vs is the voltage across Cs, e is the
inverter efficiency, vinv is the inverter voltage on the DC
side, Rinv is the DC resistance of the inverter, Rdc is the
DC load resistance, Jfan is the fan inertia, and Bfan is
a damping parameter. Both QED and QED-PC assume
TE228, ISH236, and ESH244A are constant. The PCs for
E242 and E281 are simply other measured voltages with a
bias term added.

Most of the PCs are derived directly from the global
model, but in some cases, the PCs have to account for
additional dynamics. For example, the fan speed (ω) has
no dynamics during nominal operation because it is always
operated at the same speed. So, QED models the fan speed
as a constant. QED-PC, on the other hand, must model
the dynamics, because some faults independent of the fan
submodel will cause the fan speed to decrease through a
decrease in E265, which is an input to the PC.

A key difference, then, compared to the global model,
is that the behavior of each PC has to be nominal not
only for the nominal situation, but also for those faulty
situations where the fault parameters are independent of
a PC. This decoupling requires a more detailed modeling
of the system for the QED-PC algorithm. This introduced
some modeling difficulties, especially concerning IT240. In
nominal operation, the measured value averages around
16± 2 A. When faults occur, however, the value takes on
a much wider range, and the IT240 PC must accurately
predict values in the entire range due to faults that are
decoupled from the PC. This made the system identifi-
cation task more complex. System identification was also
more complex for QED-PC because sensor biases had to
be considered for the inputs to the PCs.



Table 1. Models for the Case Study.

Global Model (QED) PCs (QED-PC)

v̇0 = 1
C0

(−iB) v̇s = 1
Cs

(iBRs − vs) v̇0 = 1
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(a) Offset. (b) Drift. (c) Intermittent offset.

Fig. 3. Fault profiles.

3.2 Fault Modeling

We consider both parametric faults, defined as unexpected
changes in system parameter values, and discrete faults,
defined as unexpected changes in the operating mode of
a component. Parametric faults include changes in the
AC and DC resistances, Rac and Rdc, and additive terms
to sensor equations. Discrete faults include stuck faults
of the relays and circuit breakers, inverter failure, load
failure, fan overspeed and underspeed faults, and sensor
stuck faults. Note that sensor stuck faults are defined as
y(t) = c, where c is a constant, and sensor noise is absent.

Parametric faults may assume offset, drift, and intermit-
tent offset profiles, as defined in Fig. 3 (tf denotes the
time of fault occurrence). For an offset fault, we identify
the offset ∆p; for a drift fault, we identify the slope m;
and for an intermittent fault, we identify the mean offset
µ∆p, i.e, mean(∆p1,∆p2, . . .), the mean faulty time µf , i.e,
mean(∆tf1,∆tf2, . . .), and the mean time it is nominal µn,
i.e, mean(∆tn1,∆tn2, . . .).

4. FAULT DETECTION

QED and QED-PC use the same approach for fault detec-
tion and symbol generation. Each sensor is assigned a fault
detector. For each sensor output y(t), we define the resid-
ual as r(t) = y(t)− ŷ(t), where ŷ(t) is the model-predicted
output signal. As described in the previous section, for
QED, ŷ(t) is computed using the global model, whereas
for QED-PC, it is computed using the corresponding PC.
Statistically significant nonzero residual signals indicate
faults. Details may be found in (Daigle and Roychoudhury,
2010).

Fault detection works by applying a Z-test to the residual
values. A threshold based on the Z-test is computed, and
to account for modeling error, an additional error term E
is added to the threshold. When the absolute value of the
mean residual value over a small window (e.g., 5 samples)
is over this combined threshold, a fault is detected.

Generally, fault detectors for the global model can be more
sensitive than those for the PCs. This is because with PCs,
noisy sensor values are used as inputs to the submodels,
and this adds additional noise to the predicted values. In
our implementation, this was captured by larger E values
for the fault detectors for QED-PC than the values for
QED.

5. FAULT ISOLATION

We utilize a qualitative diagnosis methodology that iso-
lates faults based on the transients they cause in sys-
tem behavior, manifesting as deviations in residual val-
ues (Mosterman and Biswas, 1999). In both QED and
QED-PC, we define residuals, as described in the previous
section, with respect to a particular sensor.

The transients produced by faults are abstracted using
qualitative + (increase), - (decrease), and 0 (no change)
values and N (zero to nonzero), Z (nonzero to zero), and X
(no discrete change) values to form fault signatures. Fault
signatures represent these measurement deviations from
nominal behavior as the immediate (discontinuous) change
in magnitude, the first nonzero derivative change, and
discrete zero/nonzero value changes in the measurement
from the estimate caused by discrete faults. These symbols
are computed from the residuals using symbol generation,
as described in (Daigle and Roychoudhury, 2010).

In addition to signatures, for QED we also capture the
temporal order of measurement deviations, termed relative
measurement orderings (Daigle et al., 2009). Within the
QED-PC algorithm, since measurement orderings may be
defined only within a given submodel, we cannot define
any orderings between residuals of two different PCs,
because they are decoupled. The predicted fault signatures
and measurement orderings can be computed manually
or automatically from a system model (Mosterman and
Biswas, 1999; Daigle, 2008). The predicted signatures
and orderings are compared with observed signatures and
orderings in order to isolate faults.



Table 2. Selected Fault Signatures for the QED
algorithm for ADAPT

Fault E240 E242 IT281 IT267 ST516

AC483 ∆p > 0 +0X +0X +0X -0X 00X

DC485 ∆p > 0 +0X +0X -0X 00X 00X

E240 ∆p > 0 +0X 00X 00X 00X 00X

E240 m > 0 0+X 00X 00X 00X 00X

E240 µ∆p > 0 +0X 00X 00X 00X 00X

EY244 stuck open +0X -0Z -0Z -0Z 0-X

FAN416 underspeed +0X +0X 00X -0X -0X

Table 3. Selected Fault Signatures for the
QED-PC algorithm for ADAPT

Fault E240 E242 IT281 IT267 ST516

AC483 ∆p > 0 00X 00X 00X -0X 00X

DC485 ∆p > 0 00X 00X -0X 00X 00X

E240 ∆p > 0 +0X -0X 00X 00X 00X

E240 m > 0 0+X 0-X 00X 00X 00X

E240 µ∆p > 0 +0X -*X 00X 00X 00X

EY244 stuck open 00X -0Z 00X 00X 00X

FAN416 underspeed 00X 00X 00X -0X -0X

Selected fault signatures for ADAPT are shown in Table 2
for QED and Table 3 for QED-PC, where the first symbol
is the immediate change in magnitude, the second is the
slope, and the third is the discrete change. For example,
a positive offset in E240 will cause an abrupt increase in
the E240 residual with no change in slope, and no discrete
change behavior (+0X). No other sensors are affected (00X)
by this fault in the QED approach, but for the QED-PC
algorithm, an abrupt decrease in the E242 residual with
no change in slope, and no discrete change behavior (-0X)
is also caused, because sensor E240 is used as input for
the PC that estimates E242. A resistance offset in AC483
causes multiple deviations for QED but only one in IT267
for QED-PC, because the corresponding parameter, Rac,
is present only in the PC for IT267.

The system is not diagnosable based only on signatures
and orderings. First, there are four pairs of faults that
produce exactly the same quantitative behavior on the
given measurements: failures in CB262 and INV2, fail-
ures in EY281 and DC485, failures in EY272 and AC483,
and failures in EY275 and FAN416. Second, offset and
intermittent faults produce the same initial transients,
therefore they can only be distinguished by their quan-
titative effects. The fault identification module can handle
that issue. Third, for QED, a sensor fault affects only
a single residual, so when a sensor fault occurs, we, in
theory, have to wait infinitely long to confirm that no other
residuals deviate. For QED-PC, on the other hand, sensor
faults affect many residuals, but due to the decoupling
introduced by PCs, some nonsensor faults, e.g., a fault in
AC483 (see Table 3), affect only a single measurement,
and we run into the same issue.

To resolve this third issue, we introduce heuristic isolation
rules based on timing information. We expect that resid-
uals, if they will deviate, will do so within a certain time
since fault detection. If not, we assume a 00X signature
for that residual, and this allows us to isolate sensor faults

for QED and nonsensor faults for QED-PC in finite time.
For example, for QED we expect that nonsensor faults will
affect multiple residuals within 60 s of fault detection. Note
that due to these diagnosability properties, in general,
QED will be faster at isolating nonsensor faults and QED-
PC will be faster at isolating sensor faults, because these
classes of faults produce many deviations in residuals,
allowing the faults to be quickly isolated.

We also introduce several other heuristic isolation rules,
mostly based on timing information, in order to improve
fault isolation times and generally enhance diagnosability.
For example, for both QED and QED-PC, fan faults
should affect ST516 within 30 s, and relay/circuit breaker
faults should affect their position sensors within 2 s.

6. FAULT IDENTIFICATION

Fault identification takes the set of faults F produced
by the fault isolation module, and computes the fault
parameters for each fault, producing a new fault set
Fid that includes this information. In some cases, fault
identification may change the fault mode for a fault based
on identification results, so F and Fid do not always
have an exact correspondence. Identification is initiated
immediately after the initial set of fault candidates is
produced after fault detection. An identification routine is
run for each fault candidate, which updates at each time
step. Identification terminates for a given fault candidate
when the fault isolation module determines the candidate
is no longer consistent.

The faults that require identification are faults in the
resistances Rac and Rdc, and sensor faults. In addition,
equivalent resistance values are computed for relays EY272
and EY281. For sensor faults of the stuck profile, the
stuck value is simply computed as the most recent sensor
measurement, and the candidate is eliminated as soon as
two consecutive measurement values are different. Each of
the remaining faults is directly associated in the model
with a parameter change ∆p.

In each case, we have a submodel that computes the
value of ∆p(t) at a given time t based on the sensor
measurements y(t). The resistance value Rdc is computed
using the PC for IT281, solved for Rdc. The resistance
value Rac is given by

Rac(t) =
vac(t)√

iac(t)2 −
(

vac(t)
Zfan

sinφ
)2

− vac(t)
Zfan

cosφ

,

where for vac(t) we use
√

2E265, and for iac(t) we use√
2IT267. Here, φ is the phase offset introduced by the fan

load, and Zfan is its equivalent impedance. The nominal
values of Zfan and φ were calculated by solving the
following expression at steady state using two different
values of Rac and measured values of iac and vac:

|iac| =
∣∣∣∣ vacZfan

(cosφ+ j sinφ) +
vac
Rac

∣∣∣∣ .
This equation is derived from the complex impedance
expressions for the fan and Rac.

For sensor faults, ∆p(t) is computed as the residual y(t)−
ŷ(t) for output y using the predictive model. In the case



of QED, ŷ(t) is computed using the global model, but
for QED-PC, it is computed using only the PC that is
associated with y.

The time profile of the parameter change ∆p over [td, t],
where td is the detection time and t is the current time,
may be an offset, a drift, or an intermittent offset. For the
offset profile, we must identify the magnitude of the offset;
for the drift profile, we must identify the slope; and for the
intermittent profile, we must identify the average time the
parameter value is faulty, the average offset value during
this time period, and the average time the parameter value
is nominal.

The identification procedure keeps the history of both the
predicted nominal values p and the computed faulty values
pf . We compute the fault parameters as follows:

• For offset faults, we compute the offset simply as the
mean of ∆p = pf − p.
• For drift faults, we compute the slope of ∆p as

(∆p(t2) −∆p(t1))/(t2 − t1) over three different time
intervals with [t1, t2] as [td, t], [td, (t + td)/2], and
[(t + td)/2, t] where t is the current time, and take
the median of these values as the slope, as described
in (Daigle and Roychoudhury, 2010). We improve on
the robustness of this computation by computing the
average value over a small window of ∆p(t1) and
∆p(t2).
• For intermittent offset faults, we define a limit l above

which ∆p(t) is considered faulty, and below which is
considered nominal. The limit l is typically chosen
within 1-2% of the nominal value of y(t) or p(t).
We step through the signal ∆p(t) to determine the
average nominal time µn, the average faulty time µf ,
and the average faulty value µ∆p. The full procedure
is described in (Daigle and Roychoudhury, 2010).

Fault identification is also used to improve fault isolation,
either by eliminating candidates whose identification re-
sults are inconsistent with the supposed candidate, e.g., a
stuck fault candidate is not actually stuck, or by changing
the fault mode of the candidate to be consistent with the
identification results, e.g., if an offset fault looks like a drift
fault, then the fault mode of the candidate will be changed
to drift. This type of change is meant to correct errors
in fault isolation caused by incorrect symbol generation.
For example, a 0+ or 0- signature must be generated in
order to hypothesize a drift fault as a candidate, but, for
very small drift faults, the slope may not be able to be
confidently calculated so instead an offset fault is gener-
ated. The identification results are used to correct that
error. Another example is distinguishing between offset
and intermittent faults, because they produce the same
fault signatures at the time of fault occurrence.

To generally account for this type of error, for each fault we
identify the parameters for each possible fault profile, and
define tests that determine which fault profile is valid. For
example, if µn or µf are less than 0.5, we conclude that the
fault is not intermittent. For slowly developing drift faults
on noisy sensors, the computed value of ∆p can fluctuate
above and below the intermittent threshold l, so the fault
may look intermittent. So we select three points, as in the
computation of drift, and check that the relative change
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Fig. 4. Selected measured and predicted values for E242
offset fault with ∆p = −2.0.

between ∆p at these three points is greater than some
threshold (e.g., 15%), and that the absolute differences
get larger over these three points. If so, the fault is indeed
a drift, and not intermittent.

To determine whether a drift fault is in fact a drift, we use
the same test for checking whether an intermittent fault
is actually a drift fault, only with lower thresholds. We
use lower thresholds because if fault isolation provided the
drift fault candidate, then it is because a smooth change
was detected, and a positive result on the slope test has
high confidence. To determine whether an offset fault is in
fact an offset fault, we check that both the intermittent
and drift tests fail.

7. EXPERIMENTAL RESULTS

We validate our diagnosis approach on an experimental
data set from the ADAPT subset. The data set is from the
Second International Diagnostic Competition (DXC’10)
(Poll et al., 2010). We first provide an example to demon-
strate the approach and the differences between the two
algorithms. We then evaluate the algorithms on the com-
plete competition data set.

As an example, we consider an offset fault in E242, with
the offset being −2.0 (see Fig. 4). The fault is injected
at 158 s, and QED detects the decrease in the measured
value almost immediately, at 158.1 s. The candidate set
is reduced to a failure in CB236; a failure in EY244;
and offset, drift, intermittent offset, and stuck faults of
E242. At the next new measured value of E242, the
E242 stuck fault is eliminated. At 158.5 s, the symbol
generation module determines that E242 did not undergo
a zero/nonzero transition, eliminating the failure in CB236
and the failure in EY244. At 168.2 s, the symbol generation
module determines that the slope on E242 is 0, eliminating



Table 4. QED Diagnosis Results

Algorithm Mfd (s) Mfn Mfp Mda Mfi (s) Merr

QED 12.63 0.015 0 0.987 125.996 10

QED-PC 17.53 0.023 0 0.980 129.334 12

the E242 drift fault. At 200.5 s, the intermittent faults are
eliminated since the identified parameters are inconsistent,
leaving only the offset fault in E242. The offset is computed
as −1.998.

QED-PC detects the fault a little later at 158.5 s with devi-
ations in the PCs for E242 (decrease), E281 (increase), and
IT240 (decrease). A deviation is detected in IT240 because
the PC computes its output based on the measured value
of E242, and since the sensor is faulty, the PC predicts
a different value for IT240 than the measured value. The
initial candidate list consists only of drift, offset, and stuck
faults in E242, which is a much smaller candidate set than
that initially generated by QED. At 169.5 s, the symbol
generation module determines that the slopes on E242,
E281, and IT240 are 0, leaving only an offset fault in
E242 as a candidate. At 200.5 s, the offset fault mode is
confirmed with the offset computed to be −1.995.

Table 4 summarizes the performance of QED and QED-
PC on ADAPT. The metrics consist of the mean time
to detect faults Mfd, the mean false negative rate Mfn,
the mean false positive rate Mfp, detection accuracy Mda,
the mean time to isolate faults Mfi, and the number of
classification errors Merr.

Both QED and QED-PC were tuned such that no false
alarms were detected. This, however, did result in some
missed detections. QED missed a small offset fault in
IT281 and a small drift fault in ST516. QED-PC missed
these faults as well, in addition to a small offset fault
in ST516, because its detector for ST516 had to be less
sensitive due to the PC having to model the transients in
fan speed. QED-PC has a larger average detection time
due to the decreased sensitivity as described in Section 4.

Of the experiments, there were 8 expected classification
errors due to faults that could not be distinguished, e.g.,
DC485 failing and its relay failing produce the same
observations. QED had the two missed detections which
resulted in 10 total errors, and QED-PC had the 3 missed
detections in addition to another case where a fault in E265
could not be eliminated from consideration from a fan
fault. This is because the relationship of the fan speed on
inverter voltage was not properly modeled, and therefore
we could not drop E265 in that case. This resulted in 12
total classification errors.

8. CONCLUSIONS

In this work, we presented two algorithms, QED and QED-
PC, which incorporate principles of qualitative event-
based fault diagnosis, and we compared the implementa-
tion and performances of these two algorithms.

We found that with the PC approach, additional modeling
was required and fault detection sensitivity had to be
decreased. Relative measurement orderings cannot be used
with a purely PC-based approach, however the decoupling

introduced by the PCs enhances diagnosability in its own
way. Overall, isolation times were fairly well-matched,
because these were computed based on the time of the
last change to the candidate set, and the final decision
on what the correct fault mode is (e.g., intermittent vs.
drift) was often made very late when a large amount
of data was available to declare the correct fault mode
with high confidence. Generally, QED-PC was faster at
isolating sensor faults, whereas QED was faster at isolating
nonsensor faults, for the reasons explained in Section 5.
Therefore, a new approach that uses residuals from both
the global model and PCs would increase robustness,
improve overall diagnosability, and enable many of the
heuristic fault isolation rules to be eliminated.

In the future, we would like to apply these algorithms
to larger systems, e.g., the complete ADAPT system.
ADAPT is a hybrid system, and can have multiple faults.
Hence, in the future, we will be extending the current ap-
proaches to diagnosis of hybrid systems, and multiple fault
diagnosis, foundations of which have been laid in (Bregon
et al., 2011a) and (Daigle, 2008), respectively.

REFERENCES

Bregon, A., Alonso, C., Biswas, G., Pulido, B., and Moya,
N. (2011). Hybrid systems fault diagnosis with possible
conflicts. In Proc. of the 22nd International Workshop
on Principles of Diagnosis, 36–43.

Bregon, A., Biswas, G., and Pulido, B. (2012). A decom-
position method for nonlinear parameter estimation in
TRANSCEND. IEEE Trans. on Systems, Man, and Cy-
bernetics, Part A. doi:10.1109/TSMCA.2011.2170065.

Daigle, M. (2008). A Qualitative Event-based Approach
to Fault Diagnosis of Hybrid Systems. Ph.D. thesis,
Vanderbilt University.

Daigle, M. and Roychoudhury, I. (2010). Qualitative
event-based diagnosis: Case study on the second interna-
tional diagnostic competition. In Proc. of the 21st Inter-
national Workshop on Principles of Diagnosis, 371–378.

Daigle, M.J., Koutsoukos, X., and Biswas, G. (2009). A
qualitative event-based approach to continuous systems
diagnosis. IEEE Trans. on Control Systems Technology,
17(4), 780–793.

Mosterman, P.J. and Biswas, G. (1999). Diagnosis of con-
tinuous valued systems in transient operating regions.
IEEE Trans. on Systems, Man and Cybernetics, Part
A, 29(6), 554–565.

Poll, S., de Kleer, J., Feldman, A., Garcia, D., Kurtoglu,
T., and Narasimhan, S. (2010). Second international
diagnostics competition – DXC’10. In Proc. of the
21st International Workshop on Principles of Diagnosis,
355–369.

Poll, S. et al. (2007). Evaluation, selection, and application
of model-based diagnosis tools and approaches. In AIAA
Infotech@Aerospace 2007 Conference and Exhibit.

Pulido, B. and Alonso-González, C. (2004). Possible
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