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Abstract take a step further by incorporating sensors that will strea

This paper considers the problem of change detection using Il Iarge.volume of data ata highrate. F9re><amp|ey th? Large
cal distributed eigen monitoring algorithms for next getien SYNOPtc Survey Telescopes (LSST) W'"_take_ repeat images
of astronomy petascale data pipelines such as the Largepsyr®f the night sky every 20 seconds. This will generate 30

tic Survey Telescopes (LSST). This telescope will take aepa-  terabytes of calibrlated imagery every night that will nemzq t
ages of the night sky every 20 seconds, thereby generatiner30 P€ Co-analyzed with other astronomical data stored atreliffe

abytes of calibrated imagery every night that will need tocbe €Nt locations around the world. Change point detection and

analyzed with other astronomical data stored at differecations €VenNt classification in such data sets may provide useful in-
around the world. Change point detection and event claadic SIghts to unique astronomical phenomenon displaying-astro
in such data sets may provide useful insights to unique rine physically significant variations: quasars, supernovae; v

ical phenomenon displaying astrophysically significantations: able stars, and potentially hazardous asteroids. Anajyzin
quasars, supernovae, variable stars, and potentiallyd@zaster- SUch high-throughput data streams would require large dis-
oids. However, performing such data mining tasks is a chgife tributed computing environmgnts for offering scalable-per
problem for such high-throughput distributed data streamshis formance. The knowledge discovery potential of these fu-
paper we propose a highly scalable and distributed asynobeo ture massive data streams will not be achieved unless novel

algorithm for monitoring the principal components (PC) atis data mining and Ch.ange detection algorithms are developed
dynamic data streams. We demonstrate the algorithm one ety 0 handle decentralized petascale data flows, often from mul
of distributed astronomical data to accomplish well-knaastron- tiple distributed sensors (data producers) and archivats (d
omy tasks such as measuring variations in the fundamentabmif Providers). Several distributed computing frameworks are
galaxy parameters. The proposed algorithm is provablyecoti.e. P€INg deve_lop_ed [12], [16], _[1_7]' [13] f(_)r such application
converges to the correct PCs without centralizing any datd)can Ve need distributed data mining algorithms that can operate
seamlessly handle changes to the data or the network. Reai-exON Such distributed computing environments. These algo-
iments performed on Sloan Digital Sky Survey (SDSS) Cam,ognthms should be highly scalable, be able to provide good
accuracy and should have a low communication overhead.
This paper considers the problem of change detection in
1 Introduction the spectral properties of data streams in a distributed env

Data minina is blaving an increasinaly important role in ag(_)nment. It offers an asynchronous, communication-efficie

g1s playing . gy imp c%stributed eigen monitoring (DDM) algorithm for monitor-
tronomy research [18] involving very large sky surveys SUEY the principle components (PCs) of dynamic astronomical
as Sloan Digital Sky Survey SDSS and the 2-Micron AllhY P b b y

Sky Survey 2MASS. These sky-surveys are offering a ngva\}ta streams. It part|_cularly con_sm_lers an important nobl
.In_ astronomy regarding the variation of fundamental plane

way to study and analyze the behavior of the astronomig rlucture of galaxies with respect to spatial galactic dgns

objects. The next generation of sky-surveys are pmsedZE)d demonstrates the power of DDM algorithms using this

example application. This paper presents the algorithm, an
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first attempts on developing a completely asynchroncaiscess distributed astronomical databases worldwiderto co
and local algorithm for doing eigen analysis in digelate with each of those 100,000 nightly events, in order to
tributed data streams model, classify, and prioritize correctly each event rapid

One known category of temporally varying astronomical ob-
* Based on data sets downloaded from astronomy ¢3ig is a variable star. There are dozens of different well

logues such as SDSS and 2MASS, we demonstrate Naw, classes of variable stars, and there are hundreds (eve
the galat_:tlc fundgmenta_l plane structure varies with d’tﬁousands) of known examples of these classes. These stars
ference in galactic density. are not “interesting” in the sense that they should not pro-

Section 2 describes the astronomy problem. Sectiofléce alerts (change detections), even though they are chang
presents the related work. Section 4 offers the backgroufd in brightness from hour to hour, night to night, week
material and formulates the data mining problem. Sectihweek — their variability is known, well studied, and well
5 describes the centralized version of the problem whffgaracterized already. However, if one of these starssclas
Section 6 models the distributed version and explains tevariability were to change, that would be extremely in-
eigenstate monitoring algorithm. Section 7 presents figgesting and be a signal that some very exotic astropHysica

be notified promptly (with an alert) of these types of varia-

2 The Astronomy Problem tions. Just what is this variation? It is essentially a ctesing

. . _the Fourier components (eigenvectors) of the temporal flux
When the LSST astronomy project becomes Operatm%?j(ve (which astronomers call "the light curve”). This prob

within the next decade, it will pose enormous petascale dF\ . . L
. ) ) m has several interesting data challenge characterigfiy
challenges. This telescope will take repeat images of ffie

night sky every 20 seconds, throughout every night, for tbe data streaming rate is enormous (6 gigabytes every 20

. : ; L Lo seconds); (2) there are roughly 100 million astronomical ob
years. Each image will consist of 3 gigapixels, yielding 6 gi . . . i
. ects in each of these images, all of which need to monitored

gabytes of raw imagery every 20 seconds and nearly 30 {gr- . : . .
: : ; o )0r change (i.e., a new variable object, or a known variable

abytes of calibrated imagery every night. From this “cosmic . . S
. ., 2 . . object with a new class of variability); (3) 10 to 100 thoudan
cinematography”, a new vision of the night sky will emerge™ " . .
. . : “new” events will be detected each and every night for 10

— a vision of the temporal domain — a ten-year time series, . . .
. . . . ears; and (4) distributed data collections (accessedigjro
(movie) of the Universe. Astronomers will monitor these re;-

peatimages night after night, for 10 years, for everythivag t he Virtual Astronomy Observatory’s worldwide distriboni

has changed — changes in position and intensity (fiux) wil Bfe databases and data repositories) will need to correlated

: and mined in conjunction with each new variable object’s
monitored, detected, measured, and reported. For those tém ; : e

O . ata from LSST, in order to provide the best classification

poral variations that are novel, unexpected, previously un . .

. e .- .models and probabilities, and thus to generate the most in-

known, or outside the bounds of our existing cIaSS|f|cat|§n

schemes, astronomers will want to know (usually within 8rmed alert notification messages.
' y Astronomers cannot wait until the year 2016 (when

seconds of the image exposure) that such an event (a ch 98T begins its sky survey operations) for new algorithms

in the night sky) has occurred. This event alert not|f|cat|(%n begin being researched. Those algorithms (for disteibut
must necessarily include as much information as pos&ble?o . o ) o .
A . mining, change detection, and eigenvector monitoringl) wil
help the astronomers around the world to prioritize their re )

. - . . need to be robust, scalable, and validated already at that
sponse to each time-critical event. That information pacI%e

will include a probabilistic classification of the event,thwi me. So, itis imperative to begin now to research, test, and

some measure of the confidence of the classification. anqggdate such data mining paradigms through experiments

makes the LSST so incredibly beyond current projects is tha"f‘t replicate the expected conditions of the LSS.T sky sur-
. . vey. Consequently, we have chosen an astronomical research
most time-domain sky surveys today detect 5-10 events

ﬁeoblemthat is both scientifically valid (i.e., a real astwm
week; LSST will detect 10 to 100 thousand events per nig i y o ooy

. o o esearch problem today) and that parallels the eigenvector
Without good classification information in those alert pacIE

. . : .. monitoring problem that we have described above. We have
ets, and hence without some means with which to prioritiz o
) chosen to study the principal components of galaxy param-

the huge number of events, the astronomy community wou . ; ; L

C I eters as a function of an independent variable, similareo th

consequently be buried in the data deluge and will miss somé . - ;
. . . emporal dynamic stream mining described above. In our
of the greatest astronomical discoveries of the next 20syear . . X . )
e -~ . current experiments, the independent variable is not the ti
(perhaps even the next "killer asteroid” heading for Earth -

this time, it won't be the dinosaurs that will go extinct!). dimension, butlocal gal_axy den5|t_y.
, . 2. . The class of elliptical galaxies has been known for
To solve the astronomers’ massive event classificati . . .
) . .20 years to show dimension reduction among a subset of
problem, a collection of high-throughput change detectig

algorithms will be needed. These algorithms will need PohySICal attributes, such that the 3-dimensional distidu



of three of those astrophysical parameters reduce to as@ences research communities where data mining is being
dimensional plane. The normal to that plane represents #mpplied to large data collections [12][10][2]. Another re-
principal eigenvector of the distribution, and it is foutndit cent area of research is distributed data mining [AQjfhich
the first two principal components capture significantly emodeals with the problem of data analysis in environments with
than 90% of the variance among those 3 parameters. distributed data, computing nodes, and users. Distributed
By analyzing existing large astronomy databases (sugijen-analysis and outlier detection algorithms have been
as the Sloan Digital Sky Survey SDSS and the 2-Micron Aliteveloped for analyzing astronomy data stored at different
Sky Survey 2MASS), we have generated a very large datalsettions by Duttaet al[14]. Karguptaet al. [?] have
of galaxies. Each galaxy in this large data set was then dsveloped a technique for performing distributed principa
signed (labeled with) a new "local galaxy density” attrisut component analysis by first projecting the local data along
calculated through a volumetric Voronoi tessellation a thts principal components and then centralizing the pregct
total galaxy distribution in space. Then the entire galaxiata. In both these cases, the data is distributed veyticall
data set was horizontally partitioned across several dofdifferent full attribute columns reside at different site
partitions as a function of our independent variable: tleallo while in this paper, the data is distributed horizontallijféat-
galaxy density. ent data tuple sets reside at different sites). Moreovereno
As a result, we have been able to study eigenvectdithe above efforts address the problem of analyzing rgpidl
changes of the fundamental plane of elliptical galaxies asteanging astronomy data streams.
function of density. Computing these eigenvectors for g ver
large number of galaxies, one density bin at a time, in a d&2 Data Analysis in Large Dynamic Networks There
tributed environment, thus mimics the future LSST dynamig a significant amount of recent research considering data
data stream mining change detection (eigenvector changealysis in large-scale dynamic networks. Since efficient
challenge problem described earlier. In addition, thisgal data analysis algorithms can often be developed based on
problem actually has uncovered some new astrophysicalefficient primitives, approaches have been developed for
sults: we find that the variance captured in the first 2 prinbemputing basic operations.f).average, sum, max, random
cipal components increases systematically from low-dgnssampling) on large-scale, dynamic networks. Kerapal.
regions of space to high-density regions of space, and we fjadl] and Boydet al. [8] developed gossip based randomized
that the direction of the principal eigenvector also disfgs- algorithms. These approaches used an epidemic model of
tematically in the 3-dimensional parameter space from loaemputation. Bawat al. [4] developed an approach based

density regions to the highest-density regions. on probabilistic counting. In addition, techniques haverbe
developed for addressing more complex data mining/data
3 Related Work problems over large-scale dynamic networks: association

The work related to this area of research can broadly be s{if¢ mining [26], facility location [22], outlier detecti
divided into data analysis for large scientific data repoyit [9], decision tree induction [7], ensemble classificatia8][
and distributed data mining in a dynamic networks of nod&$PPort vector machine-based classification [1], K-means

We discuss each of them in the following two sections. ~ clustering [11], top-K query processing [3]. o
A related line of research concerns the monitoring of

3.1 Analysis of Large Scientific Data CollectionsThe various kinds of data models over large n.umbers of data
U.S. National Virtual Observatory (NV®)s a large scale Streams. Sharfmaet al. [24] develop an algorithm for mon-
effort to develop an information technology infrastruetudtoring arbitrary threshold functlo_ns over distributedtala
enabling easy and robust access to distributed astronbm$$&ams. And, most relevant to this paper, Welfial. [25]
archives. It will provide services for users to search afi§veloped an algorithm for monitoring the L2 norm. We
gather data across multiple archives and will provide soige this technique to monitor eigen-states of the fundaanent
basic statistical analysis and visualization functionshe TPlane concerning elliptical galaxies. _
International Virtual Observatory Alliance (IVOA)is the Huanget al. [19] consider the problem of detecting
international steering body that federates the work of abd\gtwork-wide volume anomalies via thresholding the length
two dozen national VOs across the world (including tHf @ data vector (representing current network volume) pro-
NVO in the US). The IVOA oversees this large-scale effort @_cted onto a subspace closely related to the dominant prin-
develop an IT infrastructure enabling easy and robust acce®al component subspace of past network volume data vec-
to distributed astronomical archives worldwide. tors. Unlike us, these authors consider the analysis ofta ver
There are several instances in the astronomy and sp%fc‘]é’ distributed data set. Each network node holds a gjidin
window stream of numbers (representing volume through it
with time) and the network-wide volume is represented as

Nt Lp:/ v, us- vo. or g/ a matrix with each column a node stream. Because of the
http://ww. ivoa. net



difference in data distribution (vertical vs. horizontdheir mental Plane [15]. In this paper we first describe a PCA
approach is not applicable to our problem. We assume thaimputation for detecting variation of fundamental plane
each node is receiving a stream of tuples and the netwoskith galactic properties such as density and then develop an
wide dataset is matrix formed by the union of all nodes’ cuasynchronous local distributed algorithm for monitorihg t
rently held tuples (each node holds a collectiorosfsof the eigenvectors of the global covariance mati@y ¢f the data.
matrix rather than a singleolumnas considered by Huang) As we discuss in the next section, eigenvectors of the covari
In the next section we present the notations and problamce matrix define the fundamental plane of the galaxies.
definition that will be used throughout the rest of the paper. The problem that we want to solve in this paper can be
stated as follows:
4 Background

In order to analyze the data streams from the next gendriblem Statement Given a time-varying data matrix1;

tion of large scale astronomy systems such as the ones ¢grach node, maintain an up-to-date set of eigenvectors and

structed by the LSST project, we need scalable infrastract§igenvalues of the global covariance maitbat any time

for computing. It is generally agreed among the astrononfiptance.

community that the computing infrastructure will be a grid- . )

like environment comprised of a collection of desktop confypically, we have the following constraints:

pute nodes, high performance machines, and data sourcgs|ow communication overhead

among others. We need data analysis algorithms that will

be able to work in this distributed heterogeneous computinge dynamic data and topology

environment. This paper offers distributed eigen-analgki

gorithms that can handle data from distributed nodes (eithe

inherently distributed data or artificially distributedander Given this problem statement, we decompose it into two

to scale up the performance). parts: (i) first, given an estimate of the eigenvectors and

In the remainder of this section we first define the notaigenvalues, we discuss a highly efficient and local algorit

tions that will be used to discuss our distributed algorghnfor checking the ‘fitness’ of the model to the global data, and

and then formally state the problem definition. (ii) if the data changes to the extent that the current eséima
are outdated, we sample data from the network and rebuild

4.1 NotationsLetV = {P,...,P,} be a set of nodesthe model.

connected to one another via an underlying communication In the next section we show how we have collected and

infrastructure such that the set éf’'s neighbors,T';, is preprocessed the astronomy catalogue data for fundamental

known to P;. Additionally, at any time,P; is given a plane computation.

time-varying data matrix\M; where the rows correspond

to the instances and the columns correspond to attribusesCentralized Principal Components Analysis for the

or features. Mathematicallyt; = [Z;17;3...] , where Fundamental Plane Computation

eachz;; = [zin@iem ... xi0) € R?is arow vector. The For identifying the variability of fundamental plane on the
covariance matrix of the data at noflg denoted by’;, isthe pasis of galactic densities, we have used the SDSS and
matrix whose(i, j)-th entry corresponds to the covariancMASS data sets available individually through the NVO.
between thei-th and j-th feature (column) ofM;. The Since galactic density is not observed by the NVOs, we have
global data set of all the nodes’ datadis= | J;_, M;. cross-matched the two data sets and computed the densities
It can be shown that if the attributes 6f are mean based on other property values. In this section we describe

shifted, i.e. the mean of each attribute is subtracted frothe data gathering procedure for this approach followed by
each value of that attribute, the covariance matrix can @ PCA computation.

written asC = GTG (we have ignored the scaling by the

number of points irg). Also under such conditions, it cars.1 Data Preparation We create a large, aggregate

be shownthat = """ | C.. data set by downloading the 2MASS XSC extended
source cataloghttp://irsa.ipac.caltech. edu/

4.2 Problem Formulation The identification of certain appl i cati ons/ Gat or/) for the entire sky and cross-

correlations among parameters has lead to important disa@tch it against the SDSS catalog using the SDSS

eries in astronomy. For example, the class of elliptical amilossid tool http://cas. sdss. org/ astro/ en/

spiral galaxies (including dwarfs) have been found to ogcupool s/ cr ossi d/ upl oad. asp) such that we select all

a two dimensional space inside a 3-D space of observed aique attributes from thPhotoObjAlland SpecObjAlita-

rameters, radius, mean surface brightness and velocity @igs as well as thphotozd1attribute from thePhotoz2able

persion. This 2D plane has been referred to as the Fungich is an estimated redshift value. We filter the data based

e correct result compared to centralized execution



on the SDSS identified type to remove all non-galaxy tuplegove data set containing 155650 tuples and associate with
We then filter the data again based on reasonable redskdith tuple, a measure of its local galactic density. Our final
(actual or estimated) values.(03 < z < 0.300). aggregated data set has the following attributes from SDSS:
For creating the new attribute, namely, galactic densiBetrosian | band angular effective radidaef), redshift
we transform the attributese, cy, cz (unit vectors),z, and (rs), and velocity dispersionv(l); and has the following
photozd] to 3D Euclidean coordinates using the transformattribute from 2MASS: K band mean surface brightness
tion (Kmsh. We produce a new attribute, logarithm Petrosian
I band effective radiusldg(ler)), as log(laer*rs) and a
new attribute, logarithm velocity dispersiotog(vd)), by
applying the logarithm ted. We finally append the galactic
density €ellDensity associated with each of the tuples as

whereDistance = 2x |1 — m . We finally use the last attribute of out aggregated data set. We divide the

these Cartesian coordinates to compute the Delaunay Trixles into 30 bins based on increasing cell density, suat th
gulatior? of each point (galaxy) in 3D space. To remove bidgere are equal number of tuples in each bin. For each bin
in the density calculation of the Delaunay cells, we ideM€ carry out the fqndamental plane calculation or prlnc_|pal
tify all boundary points and remove them from the comp§@mponent analygs and obse_rve that Fhe percent of. variance
tation. This tessellation procedure is a data transfoonatfaptured by the first two PCs is very high. This implies that
step, which converts the spatial location of a galaxy (with{h€ galaxies can be represented by the plane defined by the
the 3-D distribution of galaxies) into a single numeric aflrSttwo eigenvectors. Itis also observed that this peagt
tribute (local galaxy density). This parameter has astyeph!NCréases for bins vy|th h|gher mean galactic density. We
ical significance, even more than the actual spatial lonatik$POrt these results in Section 7.
information {.e., galaxy properties are often modified and AS discussed earlier, analysis of very large astronomy
governed by the proximity of nearby galaxies, such as 8t@l0gs can pose serious scalability issues, especibtnw
high-density environments), and so we chose to use this rE&ipSidering streaming data from multiple sources. In the
attribute — local galaxy density, as estimated through tA&Xt Section We.descrlbe a distributed architecture for f_;ld-
tessellation step — because it has strong astrophysieal ré[€Ssing these issues and then show how the centralized
vance and scientific significance. This is a robust estimafdgen analysis of the covariance matrix can be formulated
and is as scientifically meaningful as any other attribute & & distributed computation and how it can be solved in a
the science database used in these experiments. Now uSffgmunication efficient manner.
the output of the Delaunay triangulation the volumes of the o )
Delaunay cells are computed using the expression 6 Distributed Principal Component Analysis

When resources become a constraint for doing data min-
, ing on massive data sets such as astronomical catalogs, dis-

tributed data mining provides a communication efficient so-
wherea;, b_;, ro andE-> are the vertices of the tetrahedrohution. For the problem discussed in the last section, we can
corresponding to théth point in 3D Euclidean space. Thdormulate a distributed architecture where after crossat
volume corresponding to theth point is the sum of the ing the data using a centralized cross matching tool, we can
volumes of all tetrahedrons that contain the particulanpoistore the meta data information in a central location. Such a
Using the DTFE formulatioh the density of the-th cell is service-oriented architecture would facilitate astroecsrto

(X,Y,2) =

(Distance x cx, Distance X cy, Distance X ¢z)

—

vol(i) = (1/6) - |det(@l — by, by — &, e — hy)

then computed as follows: query multiple databases and do data mining on large data
sets without downloading the data to their local computing
den(i) = (D +1) x vol(3) resources. The data set is downloaded in parts at a num-

er of computing nodes (that are either dedicated comput-
rs connected through communication channels or part of a
large grid) based on the meta data information maintained at

o . the central server site. In such a computational environmen
\?v'jn i ?;nrgggrzgs Eeié -irshivszgse?omg ?Srfjg?nne;rt]:lt V\:zjri]setributed data mining algorithms can run in the backgtbun
L : . . b Seamlessly for providing fast and efficient solutions togke
structure of galaxies in low density regions differ fromuh%ronomers by distributing the task among a number of nodes
of galaxies in high density regions. For this we take tq—fi\gure 1 represents one such architecture '

—.— Another distributed data mining scenario for large scale
el ztu;Zy/T/r rz;g‘s‘lo;'t ?O:O'hi :ﬁam com astronomy databases is the one described in Section 2 for the
http://en. wi ki pedia. org/wiki/Dtfe LSST project where high throughput data streams need to be

wherem; = 1, since we have one object (galaxy) per ce@
andD = 3 for triangulation in 3D-space .



sponding model with respect to the global data using only its

knowledge and agreement. If the data changes such that the
models no longer fit the data, the algorithms raise a flag at
| each node. At this point, a sample of the data is centralized,
- QuERY veER META DATA WITH . | new models are built and then disseminated to the network.
o WTERFACE ||| GROSS MATCHED INFORMATION | The monitoring algorithms are then restarted with the new
models and the process continues. Below we formally de-
fine these quantities and describe the algorithms.

6.2.1 Notations and Assumptionsin this section we
Figure 1: Distributed Data Mining for Astronomy: ArchitecPrésent certain notations necessary for the algorithms.
ture In the algorithm, each node sends messages to its im-
mediate neighbors to converge to a globally correct solu-
) _ o tion. As already discussed, there are three kinds of mes-
modeled and monitored for changes in an efficient mann&ges: (imonitoringmessages which are used by the algo-
Inthe next few sections we describe a distributed formaifatisiinm to check if the model is up-to-date, (@ptamessages
of our centralized eigen analysis and present a eigensigifich are used to sample data for rebuilding a model, and
monitoring algorithm for this purpose. (i) modelmessages which are used to disseminate the newly
_ o ) built model in the entire network. In this section we will dis
6.1 Problem formulation: Distributed Covariance c,ss messages of the first type only. The other two will be
Computation For the distributed setup, the entire data is ngfscussed in the later sections since they are algorithm spe
located at a central location. The data set of nBges M;. jfic.
Note thatg = (J;_, M;. Itis true that, if the mean of each | ¢t the model supplied to each of the monitoring algo-
column ofg is subtracted from each value 6f i.e. G1 is ithms be denoted by. For the mean monitoring algorithm,
mean-reduced, then the covariance matrix gfi.e. C can the model is a mean vectgr; for the eigenvector monitor-

i - __1 gT i istri . . . .
be written asC = Zpoints NG G1 G- Now, in the distributed ing, the model is a set of agenvecto@X and eigenvalues

setup itis true that: (©). Let&;(M,, L) be the error between the modeland
1 1 zn: the data of node”;. Explicit computation of; is problem
C=——GlG=—— MEMy; specific and hence described in respective algorithm gescri
7points ing #points ing i=1 tions. The nodes jointly track 9 = (J;-_, & is less than a

where M ; is mean reducedt;. Thus it turns out that if USer-defined threshold .
data is horizontally partitioned amomgnodes and each col-. ANy monitoring message sent by nafigto F; contains
umn of data is mean shifted using the global mean, the gyormation thatr; has gathered about the network which
variance matrix is completely decomposable. With this fofs May not know. In our case, the message sentby

mulation, we now describe certain notations for discussify £ CONSists of a set of vectors or mafris; ; with
our distributed eigen monitoring algorithm. each row corresponding to observations and each column

corresponding to features. Note that if each node broasicast

6.2 Preliminaries The goal of the PC monitoring algo-Si = ‘i then each node would obviously be able

rithm is to track changes to the eigenvectors of the gloﬁgl compute the correct result. However this would be

covariance data matrig. The crux lies in each node main_commumcatlon intensive. Our next few sets of vectors allow

taining a current set of eigenvectors which it believes to B8 10 compute the correct result in a more communication
globally correct. We call it thémowledgeof a node. Also Efficient manner.

each n_ode chec_ks if it is iagreemenwith all of its immedi- Knowledge This is all the information thaP; has about the
ate neighbors with respect to the knowledge. It can be shown

error:
that if this is true for all nodes in the network, then the loca
eigenvectors of each node is indeed the correct global solu- K=& U U S
tion. Note that from our earlier discussiai’ G = C when Per, v

G is mean shifted. In the distributed setup, the mean of the

global data is not known to each node. Therefore we decafgreement This is whatP; and P; have in common:
pose the PC monitoring algorithm in to (1) mean monitor-

ing which maintains the correct mean @f and (2) eigen- Aij=8i;US;;

vector monitoring ofiG”'G. Given an eigenvalue or a mean

as a model, each algorithm monitors changes to the corre®we use them interchangeably here



Held This is whatP; has not yet communicated 18

Hi,j = ICi \ Ai,j

Let us denote it byR.. The outside of the circle can easily
be divided into convex regions by drawing random tangent
lines to form half-spaces denoted b&,(, R}, ...). The
areas uncovered k¥, denote theie regions.

These sets of vectors can be arbitrarily large. It can be As stated by the Theorem below, if the following con-
shown that if vectors sent b; to P; are never sent back todition holds, the node can stop sending messages and deter-
P;, we can do the same computations using only the averagiee the correct output based solely on its local averages.
vector of these sets and the size of the set. One way of
ensuring this is to assume that communication takes pldceeOREM6.1. [25] Let P,..., P, be a set of nodes con-
over a communication tree — an assumption we make heegted to each other over a spanning t@@¢V, F). Let&9,

(see [25] and [7] for a discussion of how this assumption c&i, A; ;, and’H; ; be as defined in the previous section. Let

be accommodated or, if desired, removed).

R be any region irC,,. If at timet no messages traverse the

The following are the notations used for the set statistiostwork, and for eact?’;, K; € R and for everyP; € T,

— (D average K, A; j, Hi ;, Si j, Sj.i, &, andéY, and (2) A;; € Rand either(; ; € Ror H, ; = (), then€9 € R.

sizes |S; ;1. |S;ils 1Kl 1Al [Hi sl 1€l and|89|. With

these notations, we can now write

o [Kil =&+ D 1Sl

P;el’;
o |A; | =|Si |+ 1S5l
o [H; | = IKil —|Ai,l

Similarly for the average of the sets we can write,

818+ D 18518

P;el;

Proof. For proof the readers are referred to [25] ]

Using this theorem, each node can checkf;|| < e. If

the result holds for every node, then we are guaranteed to
get the correct result. If there is any disagreement, it @oul
be between any two neighbors. In that case, messages will
be exchanged and they will converge to the same result. In
either case, eventual global correctness is guaranteed.

6.3 Algorithm Both the mean monitoring algorithm and
the eigenvector monitoring rely on the results of Theoren 6.
to output the correct result. For the eigenvector monitprin

the model supplied to each node are the eigenvd?temd
eigenvalued. Assuming that the mean of the data is zero,
the goal is to check if:

o Aij= a7 (Sis1Sis +185.:1Sja)

o Hij= |H1i,j\ (I i — | Ai 5] Ai )

) HC ‘—/) - @‘—/> < €
Note that, for any node, these computations are local. For
o . _ 1
aII_th_e mpnlto_rlng algorithms we assume that message trans — = [ng} V_ov < e
mission is reliable and ordered. 4

Since&Y is a vector inR<, the goal reduces to checking - -
if ‘E_QH < . However, the quantitg is not available at = Hﬁ SMIMIM]-V -0V < e

any node. In the next section we state a key result which
allow us to perform the same computation using only lo

. —
vectors of a node. C'ﬂ]us givenV and©, each node can locally compute the vec-

tor ([M?MZ] V- @7) Let this instance of problem be
6.2.2 Stopping Rule The main idea of the stopping rule iglenoted by, . We can write:

to describe a condition for each noéebased oriC;, A; ;,

andH; ;, which guarantee th& is greater than orlessthan o 1, 5 =

e. In order to apply this theorem, we need to split the entire
domain into non-overlapping convex regions such that thes 7, & = |M;]

quantity‘ ‘69‘ < € has the same value inside each of these ) _
Thus for this problem, each node computes the vebtdi;

convex regions. We denote the set of all such convex regions  is then used as input to the eigenvector monitoring

by C,,. Geometrically, checking if the L2-norm of a vector .
— algorithm.
is less tharx is equivalent to checking i Eg‘ lies inside a

([MIMm]-V-6V)
|Mi]

Similarly for the mean monitoring algorithm, the model
circle of radiuse. Note that, by construction, the region irsupplied to each node is the meah € R?. In this case,
which the output is Q.e. inside the circle is a convex regioneach node subtracts the meanfrom its local average input



vectorM;. The goal is to check if: Sji — Sand|S; ;| — |S|
Update vectors

G- < e end if
1 L _ if M;, T"; or K; changeshen
Hm ZMi IMi| = || < e for all NeighborsP; do
¢ i if LastM sgSent > L time units agahen
1 . if R, = () then
S M| XZ: Ml (M =) < e SetS; j — % {/*Tie Region*/}
Set|Sz 7| — [Kil = IS Jsi il
Note that the quantityM; | (M; — 7') can be locally com- _enﬂ -
puted by a node. For this problem instance denotedyby ifA;i; & Reor'H; ; ¢ Reythen
the following are the inputs: Sets; ; and|S; ;| such that4; ; and™; ; € R,
o {/*Theorem Condition*}
o L& =(M;—H) end if
MessageSentTd;, S; ;. |Si,;
o L. |&i] = Ml LastMsgSenJCtrreét'l’img)
Algorithm 6.1 presents the pseudo-code of the monitor- Update all vectors
ing algorithm while Alg. 6.2 presents the pseudo-code for ~ €IS _ .
the algorithm which builds the model. The inputs to the Wait L, time units and then check again
monitoring algorithm are\;, &; (depending on how it is de- end if
fined),T';, e andC,, andL. For each problem instande and iln? for
endi

I, each node initializes its local vectd@, A; ; andH, ;.
Below we describe the monitoring algorithm with respect to
only one instancé, (and hence drop the instance indgx. The monitoring algorithm raises a flag whenever either
The other case is identical. The algorithm is entirely evenjt/1.Ki|| > ¢ or ||[I2.Ki|| > €. Once the flag is set to
driven. Events can be one of the following: (i) change i the nodes engage in a convergecast-broadcast process to
local dataM;, (i) on receiving a message, and (iii) chang@ccumulate data up the root of the tree, recompute the model
in T;. In any of these cases, the node checks if the condit@hd disseminate it in the network.
of the theorem holds. Based on the value of its knowledge For the mean monitoring algorithm in the convergecast
K, the node selects the active regi® € C.,, such that phase, whenever a flag is raised, each leaf node in the tree
K; € Ry. If no such region existsR, = 0. If R = (), then forwards its local mean up the root of the tree. In this
K lies in the tie region and hend@ has to send all its data.phase, each node maintains a user selected alert mitigation
On the other hand, iR, # () the node can rely on the resuleonstant which ensures that an alert is stable for a given
of Theorem 6.1 to decide whether to send a message. Ifpgfiod of timer for it to send the data. Experimental results
all P; € T;, bothA; ; € R, andH, ; € Ry, P; does nothing; show that this is crucial in preventing a false alarm from
else it needs to s&f; ; and|S; ;|. Based on the conditions ofProgressing, thereby saving resources. In order to impieme
the Theorem, note that these are the only two cases whdhig, whenever the monitoring algorithm raises a flag, the
node needs to send a message. Whenever it receives a fieg@e notes the time, and sets a timer tame units. Now, if
sage § and|S)), it setsS;; «— Sand|S; ;| — |5| Thismay the timer expires, or a data message is received from one of
trigger another round of communication sincekitscan now its neighbors P; first checks if there is an existing alert. If
change. it has been recordedor more time units ago, the node does
To prevent message explosion, in our event-based 9?@8 of the foIIowing. If it has received messages from all
tem we employ a “leaky bucket” mechanism which ensurés neighbors, it recomputes the new mean, sends it to all its
that no two messages are sent in a period shorter than a éighbors and restarts its monitoring algorithm with the/ne
stantL. Note that this mechanism does not enforce synchfgean. On the other hand, if it has received the mean from all
nization or affect correctness; at most it might delay convéut one of the neighbors, it combines its data with all of its
gence. This technique has been used elsewhere also [25]f6]ghbors’ data and then sends it to the neighbor from which
it has not received any data. Other than any of these cases, a

ALGORITHM 6.1. Monitoring Models node does nothing.

Input: e, Cy, &, T'; andLL. For the eigenvector monitoring, in place of sending a
Output: O if HEH < ¢, 1 otherwise local mean vector, each node forwards the covariance matrix
Initialization : Initialize vectors; C;. Any intermediate node accumulates the covariance

if MessageRecvdFroP;, S, |S|) then matrix of its children, adds it local matrix and sends it



to its parent up the tree.

The root computes the n&w Correctness and Complexity AnalysisThe eigen

eigenvectors and eigenvalues. The first eigenstate isghasaenitoring algorithm is eventually correct.

to the monitoring algorithm.

ALGORITHM 6.2. Building Models
Input: e, Cp, My, T, L, T
output: (i) V,© such thatHC V-0 T/’H <e (i) 7

such thaf|G — 77| < e
Initialization : Initialize vectors;
MsgType= MessageRecvdFromry)
if MsgType = Monitoring-M sg then
Pass Message to appropriate Monitoring Algorithm
end if
if MsgType = New_Model_M sg {/*Broadcast*}
then -
UpdateV', 0, i@
Forward new model to all neighbors
Datasent=false
Restart Monitoring Algorithm with new models
end if
if MsgType = Dataset_M sg {/*Convergecast¥ then
if Received from all but one neighbitren
flag=Output Monitoring Algorithm()
if Datasent = false and flag = 1 then
if DataAlert stable forr timethen
D1=C; + Recvd_covariance
Dy=M; + Recvd_mean
Datasent=true;
SendD1, D, to remaining neighbor
else
DataAlert=CurrentTime
end if
end if
end if
if Received from all neighbothen
D=C; + Recvd_Dataset
l)ﬁ):M + Recvd_mean
(V,0)=EigAnalysisD)
7 = mean(D>)
Forward neWX_/, O, 77 to all neighbors
Datasentfalse
Restart Monitoring Algorithm with new models;
end if
end if
if M;, T'; or C; changesghen
Run Monitoring Algorithm
flag=OutputMonitoring_Algorithm()
if flag=1 andP;=IsLeaf()then
Execute the same conditions as
MsgType = Dataset_M sg
end if
end if

THEOREM6.2. The eigen monitoring algorithm isventu-
ally correct.

Proof. For the eigen monitoring algorithm, the computation
will continue for each node unless one of the following
happens:

o for every nodek; = £9

o for every P; and every neighboP;, K;, A; j,and™; ;
are in the same convex regiéty € C.,,.

In the former case, every node obviously computes the
correct output since the knowledge of each node becomes
equal to the global knowledge. In the latter case, Theorem
6.1 dictates that9 € R,. Note that by construction, the
output of the monitoring function (in this case L2-norm)
is invariant insideR,. In other words, the binary function

’5_9H < eand||C;|| < e will have the same output inside

Ry. Therefore in either of the cases, the eigen monitoring
algorithm is correct.  JJ

Determining the communication complexity of local al-
gorithms in dynamic environments is still an open research
issue. Researches have proposed definitions of locality
[6][25]. Note that for an exact algorithm as the eigen moni-
toring algorithm, the worst case communication complexity
is O(sizeofnetwork). This can happen, for example, when
the each node has a vector in a different convex region and
the global average is in another different region. Howea®r,
shown in this paper and also by several authors [25][6] there
are several problem instances for which the resource con-
sumption becomes independent of the size of the network.
Interested readers are referred to [5] for a detailed discus
sion on communication complexity and locality of such al-
gorithms.

7 Results

In this section we demonstrate the experimental results of
both the centralized fundamental plane analysis and the dis
tributed eigen monitoring algorithm. The centralized expe
iments show how the fundamental plane changes with vari-
ations in galactic density, while the distributed experitse
show the performance of the eigen monitoring algorithm for
a streaming scenario of the same experiment. Our goal is
to demonstrate that, using our distributed eigen monigprin
algorithm to compute the principal components and monitor
them in a streaming scenario, we can find very similar re-
sults as were obtained by applying a centralized PCA. Even
though our goal was not to make a new discovery in astron-
omy, the results are astronomically noteworthy. We argue



that our distributed algorithm could have found very sim-
ilar results to the centralized approach at a fraction of the
communication cost. Also, we want to emphasize that this
distributed eigen monitoring algorithm can be applied to a
number of change-detection applications in high-throughp
streaming scenarios (such as the LSST) for important astro-
nomical discoveries of many types. The importance and nov-
elty of this algorithm compared to existing distributed PCA
algorithms is that, this is an exact algorithm that detersain
tically converges to the correct result.

7.1 Fundamental Plane ResultsAs noted in Section 5.1,
we divide the entire dataset into 30 bins. The bins are
arranged from low to high density. In this section we present
the results of our fundamental plane experiments for ordy th
elliptical galaxies for 30 bins.

Ouir first experiment (Figure 2) shows the variance cap-
tured by the first PC (PC1) as the density of the galaxies
increase. The-axis shows the mean density of each bin in
log-scale. As seen in the figure, the variance captured by
PC1 increases monotonically with increase in mean galactic
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Figure 4: Plot of variation off and ¢ independently with
bin number. The bins are numbered in increasing order of
density.

first 2 PC’s with respect téog of bin density. As seen, the
variance increases monotonically from almost 95% to 98%
with increase in galactic bin density. This clearly demon-

Figure 2: Variance captured by PC 1 w.r.t. log of mediirates a new astrophysical effect, beyond that tradiliypna
density of each bin. Bin 1 has the lowest mean density digported in the astronomical literature. This results ftbm
Bin 30 the highest. The variance captured by PC1 incread@glication of distributed data mining (DDM) on a signifi-

monotonically with increasing bin density.
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cantly (by 1000 times) larger set of data. More such remark-
able discoveries can be anticipated when DDM algorithms of
the type reported here are applied to massive scientific (and
non-scientific) data streams of the future.

To analyze more deeply the nature of the variation of
the first two PCs with respect to increasing galactic density
we plot the direction of the normal to the plane defined
by the first 2 PCs.e. pcl and pc2. Since each of these
PC'’s are vectors in 3-d, so is the normal to the plane. The
normal vector is represented by its two directional angles:
the spherical polar anglé@sand¢. Figure 4 shows a plot ¢f
and¢ for 30 bins. Figure 4(a) shows the variationdodind ¢

Figure 3: Variance captured by PCs 1 and 2 w.r.t. log pfdependently withog of mean galactic density. Figure 4(b)
mean density of each bin. Bin 1 has the lowest mean densityws the variation of both witlog of mean density. The

and Bin 30 the highest.

systematic trend in the change of direction of the normal

vector seen in Figure 4(b) is a new astronomy result. This

Figure 3 provides the most significant scientific result. iépresents exactly the type of change detection from eigen
demonstrates the dependence of the variance captured byrtbritoring that will need to be applied to massive scientific



data streams, including large astronomy applications {)SSlistance between the centralized and distributed eigen vec
and large-scale geo-distributed sensor networks, in orttas for every experiment. The experiment was repeated for
to facilitate knowledge discovery from these petascala d40 independent trials. Figure 5 shows the scalability tssul
collections. for the accuracy achieved by our algorithm. As shown in the
figure, the proposed eigen monitoring algorithm produces re
sults which are quite close to their centralized countérpar

20.034 Moreover, we can also observe that the quality does not de-
> . . . . .
§o032 grade with increasing network size. Because our algorithm
3 003 {} {> is provably correct, the number of nodes has no influence on
Soom | {} % the quality of the result.
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Figure 5: Quality vs. number of nodes. Quality remains the
same thereby showing good accuracy.
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7.2 Results of Distributed PCA Algorithm The dis- TRy o~
tributed PCA implementation makes use of the Distributed Number of peers
Data Mining Toolkit (DDMTY- a distributed data min-

ing development environment from DIADIC research lab &igure 6: L2 messages vs. number of nodes. Number of
UMBC. DDMT uses topological information which can bénessages remain constant showing excellent scalability.
generate by BRITE a universal topology generator from
Boston University. In our simulations we used topologies
generated according to tiBarabasi Albert (BAmodel. On

top of the network generated by BRITE, we overlayed a
spanning tree. We have experimented with network size
ranging from 50 to 1000 nodes.

We have divided the data of the centralized experiments
into 5 bins (instead of 30) sorted by galactic density. Each
bin represents the data distribution at a certain time in
the streaming scenario and the distribution changes every =5 100 200 50
200,000 simulation ticks which we call an epoch. This Number of peers

implies that every 200,000 simulation ticks we supply the

nodes with a new bin of data. We stream the data at a rat& (€ 7- Number of convergecast rounds per epoch VS
10% of the bin size for every 10,000 simulation ticks. T umber of nodes. In most cases the convergecast round is

two quantities measured in our experiments arecihality ess than 3 per epoch.
of the result and theostof the algorithm. )

We have used the following default values for the algo- F9ures 6 and 7 show the number of messages ex-
rithm: size of leaky bucket = 500, error threshold = 1.0, changed per node when thg nqmber of nodes is |.ncreased
alert mitigation constant — 500. Due to shortage of spacd"©™ 50 t0 1000. As shown in Figure 6, the normalized L2
we do not present an exhaustive analysis of the effect of BfSS2ges per node is approximately 0.3. Normalized mes-

these parameters. We plan to report these in an extent@de Per node means the number of messages _sent bygnode
version. per unit of leaky bucket. Note that for an algorithm which

For the eigen monitoring algorithm, quality is the aMses broadcast as the communication model, its normalized

erage L2 norm distance between the principal eigen vecidFssages will be 2.0, assuming two neighbors per node on
and the and the computed eigen vector in the distributed se6E29€- Thus the proposed algorithmis highly efficiertt wit
nario over all the bins. Since we compute the principal eigEfPPECt to communication. Also as shown, the L2 messages

vector for each bin separately, we plot the average L2 nolfﬁ'fnam a constant even if the number Of nodes is mcrgased.
This demonstrates the excellent scalability of the algarit

Finally, we also plot the number of times data is col-
~ Shitp://www.umbc.edu/ddm/wiki/software/DDMT lected per epoch. _ In most cases, the number _of such con-
"http://www.cs.bu.edu/brite/ vergecast rounds is 3 per epoch. Note that this can be re-
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duced further by using a larger alert mitigation constgnt [9] J. Branch, B. Szymanski, C. Giannella, R. Wolff, and HrKa
larger error threshold or larger local data set size.

8 Conclusion

This

paper presents a local and completely asynchron

algorithm for monitoring the eigenstates of distributed an
streaming data. The algorithm is efficient and exact in the

sense that once computation terminates, each node in[tl®¢ Digital Dig - Data Mining in Astronomy.

?iﬁ S. Datta, C. Giannella, and H. Kargupta.

gupta. In-Network Outlier Detection in Wireless Sensor-Net
works. InProceedings of ICDCS’Qéage 51, 2006.

[10] The ClassX Project: Classifying the High-Energy Umgse

http:// heasarc. gsfc. nasa. gov/ cl assx/ .
Approximate
Distributed K-Means Clustering over a Peer-to-Peer Nédtwor
IEEE TKDE in press, 2008.

ht t p:

network computes the globally correct model. We have taken //ww. astrosoci ety. or g/ pubs/ ezi ne/
a relatively well understood problem in astronomy — that

of galactic fundamental plane computation and shown hdil
our distributed algorithm can be used to arrive at the same

resu

Its without any data centralization. We argue that tihig]

might become extremely useful when petabyte scale data

repositories such as the LSST project start to generate
throughput data streams which need to be co-analyzed

g

other data repositories located at diverse geographititoca [16]
For such large scale tasks, distributing the data and rgnnin
the algorithm on a number of nodes might prove to be cgsy]
effective. Our algorithm is a first step to achieving thislgoa
Experiments on current SDSS and 2MASS dataset shig]
that the proposed algorithm is efficient, accurate, andlhigh

scalable.
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