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Abstract

This paper considers the problem of change detection using lo-
cal distributed eigen monitoring algorithms for next generation
of astronomy petascale data pipelines such as the Large Synop-
tic Survey Telescopes (LSST). This telescope will take repeat im-
ages of the night sky every 20 seconds, thereby generating 30ter-
abytes of calibrated imagery every night that will need to beco-
analyzed with other astronomical data stored at different locations
around the world. Change point detection and event classification
in such data sets may provide useful insights to unique astronom-
ical phenomenon displaying astrophysically significant variations:
quasars, supernovae, variable stars, and potentially hazardous aster-
oids. However, performing such data mining tasks is a challenging
problem for such high-throughput distributed data streams. In this
paper we propose a highly scalable and distributed asynchronous
algorithm for monitoring the principal components (PC) of such
dynamic data streams. We demonstrate the algorithm on a large set
of distributed astronomical data to accomplish well-knownastron-
omy tasks such as measuring variations in the fundamental plane of
galaxy parameters. The proposed algorithm is provably correct (i.e.
converges to the correct PCs without centralizing any data)and can
seamlessly handle changes to the data or the network. Real exper-
iments performed on Sloan Digital Sky Survey (SDSS) catalogue
data show the effectiveness of the algorithm.

1 Introduction

Data mining is playing an increasingly important role in as-
tronomy research [18] involving very large sky surveys such
as Sloan Digital Sky Survey SDSS and the 2-Micron All-
Sky Survey 2MASS. These sky-surveys are offering a new
way to study and analyze the behavior of the astronomical
objects. The next generation of sky-surveys are poised to
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take a step further by incorporating sensors that will stream
in large volume of data at a high rate. For example, the Large
Synoptic Survey Telescopes (LSST) will take repeat images
of the night sky every 20 seconds. This will generate 30
terabytes of calibrated imagery every night that will need to
be co-analyzed with other astronomical data stored at differ-
ent locations around the world. Change point detection and
event classification in such data sets may provide useful in-
sights to unique astronomical phenomenon displaying astro-
physically significant variations: quasars, supernovae, vari-
able stars, and potentially hazardous asteroids. Analyzing
such high-throughput data streams would require large dis-
tributed computing environments for offering scalable per-
formance. The knowledge discovery potential of these fu-
ture massive data streams will not be achieved unless novel
data mining and change detection algorithms are developed
to handle decentralized petascale data flows, often from mul-
tiple distributed sensors (data producers) and archives (data
providers). Several distributed computing frameworks are
being developed [12], [16], [17], [13] for such applications.
We need distributed data mining algorithms that can operate
on such distributed computing environments. These algo-
rithms should be highly scalable, be able to provide good
accuracy and should have a low communication overhead.

This paper considers the problem of change detection in
the spectral properties of data streams in a distributed envi-
ronment. It offers an asynchronous, communication-efficient
distributed eigen monitoring (DDM) algorithm for monitor-
ing the principle components (PCs) of dynamic astronomical
data streams. It particularly considers an important problem
in astronomy regarding the variation of fundamental plane
structure of galaxies with respect to spatial galactic density
and demonstrates the power of DDM algorithms using this
example application. This paper presents the algorithm, an-
alytical findings, and results from experiments. Experiments
are performed using currently available astronomy data sets
from virtual observatories. Our distributed algorithm is a
first step in analyzing the astronomy data arriving from such
high throughput data streams of the future. The specific con-
tributions of this paper can be summarized as follows:

• To the best of the authors knowledge this is one of the



first attempts on developing a completely asynchronous
and local algorithm for doing eigen analysis in dis-
tributed data streams

• Based on data sets downloaded from astronomy cata-
logues such as SDSS and 2MASS, we demonstrate how
the galactic fundamental plane structure varies with dif-
ference in galactic density.

Section 2 describes the astronomy problem. Section 3
presents the related work. Section 4 offers the background
material and formulates the data mining problem. Section
5 describes the centralized version of the problem while
Section 6 models the distributed version and explains the
eigenstate monitoring algorithm. Section 7 presents the
experimental results. Finally, Section 8 concludes this paper.

2 The Astronomy Problem

When the LSST astronomy project becomes operational
within the next decade, it will pose enormous petascale data
challenges. This telescope will take repeat images of the
night sky every 20 seconds, throughout every night, for 10
years. Each image will consist of 3 gigapixels, yielding 6 gi-
gabytes of raw imagery every 20 seconds and nearly 30 ter-
abytes of calibrated imagery every night. From this “cosmic
cinematography”, a new vision of the night sky will emerge
– a vision of the temporal domain – a ten-year time series
(movie) of the Universe. Astronomers will monitor these re-
peat images night after night, for 10 years, for everything that
has changed – changes in position and intensity (flux) will be
monitored, detected, measured, and reported. For those tem-
poral variations that are novel, unexpected, previously un-
known, or outside the bounds of our existing classification
schemes, astronomers will want to know (usually within 60
seconds of the image exposure) that such an event (a change
in the night sky) has occurred. This event alert notification
must necessarily include as much information as possible to
help the astronomers around the world to prioritize their re-
sponse to each time-critical event. That information packet
will include a probabilistic classification of the event, with
some measure of the confidence of the classification. What
makes the LSST so incredibly beyond current projects is that
most time-domain sky surveys today detect 5-10 events per
week; LSST will detect 10 to 100 thousand events per night!
Without good classification information in those alert pack-
ets, and hence without some means with which to prioritize
the huge number of events, the astronomy community would
consequently be buried in the data deluge and will miss some
of the greatest astronomical discoveries of the next 20 years
(perhaps even the next ”killer asteroid” heading for Earth –
this time, it won’t be the dinosaurs that will go extinct!).

To solve the astronomers’ massive event classification
problem, a collection of high-throughput change detection
algorithms will be needed. These algorithms will need to

access distributed astronomical databases worldwide to cor-
relate with each of those 100,000 nightly events, in order to
model, classify, and prioritize correctly each event rapidly.
One known category of temporally varying astronomical ob-
ject is a variable star. There are dozens of different well
known classes of variable stars, and there are hundreds (even
thousands) of known examples of these classes. These stars
are not “interesting” in the sense that they should not pro-
duce alerts (change detections), even though they are chang-
ing in brightness from hour to hour, night to night, week
to week – their variability is known, well studied, and well
characterized already. However, if one of these stars’ class
of variability were to change, that would be extremely in-
teresting and be a signal that some very exotic astrophysical
processes are involved. Astronomers will definitely want to
be notified promptly (with an alert) of these types of varia-
tions. Just what is this variation? It is essentially a change in
the Fourier components (eigenvectors) of the temporal flux
curve (which astronomers call ”the light curve”). This prob-
lem has several interesting data challenge characteristics: (1)
the data streaming rate is enormous (6 gigabytes every 20
seconds); (2) there are roughly 100 million astronomical ob-
jects in each of these images, all of which need to monitored
for change (i.e., a new variable object, or a known variable
object with a new class of variability); (3) 10 to 100 thousand
“new” events will be detected each and every night for 10
years; and (4) distributed data collections (accessed through
the Virtual Astronomy Observatory’s worldwide distribution
of databases and data repositories) will need to correlated
and mined in conjunction with each new variable object’s
data from LSST, in order to provide the best classification
models and probabilities, and thus to generate the most in-
formed alert notification messages.

Astronomers cannot wait until the year 2016 (when
LSST begins its sky survey operations) for new algorithms
to begin being researched. Those algorithms (for distributed
mining, change detection, and eigenvector monitoring) will
need to be robust, scalable, and validated already at that
time. So, it is imperative to begin now to research, test, and
validate such data mining paradigms through experiments
that replicate the expected conditions of the LSST sky sur-
vey. Consequently, we have chosen an astronomical research
problem that is both scientifically valid (i.e., a real astronomy
research problem today) and that parallels the eigenvector
monitoring problem that we have described above. We have
chosen to study the principal components of galaxy param-
eters as a function of an independent variable, similar to the
temporal dynamic stream mining described above. In our
current experiments, the independent variable is not the time
dimension, but local galaxy density.

The class of elliptical galaxies has been known for
20 years to show dimension reduction among a subset of
physical attributes, such that the 3-dimensional distribution



of three of those astrophysical parameters reduce to a 2-
dimensional plane. The normal to that plane represents the
principal eigenvector of the distribution, and it is found that
the first two principal components capture significantly more
than 90% of the variance among those 3 parameters.

By analyzing existing large astronomy databases (such
as the Sloan Digital Sky Survey SDSS and the 2-Micron All-
Sky Survey 2MASS), we have generated a very large data set
of galaxies. Each galaxy in this large data set was then as-
signed (labeled with) a new ”local galaxy density” attribute,
calculated through a volumetric Voronoi tessellation of the
total galaxy distribution in space. Then the entire galaxy
data set was horizontally partitioned across several dozen
partitions as a function of our independent variable: the local
galaxy density.

As a result, we have been able to study eigenvector
changes of the fundamental plane of elliptical galaxies as a
function of density. Computing these eigenvectors for a very
large number of galaxies, one density bin at a time, in a dis-
tributed environment, thus mimics the future LSST dynamic
data stream mining change detection (eigenvector change)
challenge problem described earlier. In addition, this galaxy
problem actually has uncovered some new astrophysical re-
sults: we find that the variance captured in the first 2 prin-
cipal components increases systematically from low-density
regions of space to high-density regions of space, and we find
that the direction of the principal eigenvector also driftssys-
tematically in the 3-dimensional parameter space from low-
density regions to the highest-density regions.

3 Related Work

The work related to this area of research can broadly be sub-
divided into data analysis for large scientific data repository
and distributed data mining in a dynamic networks of nodes.
We discuss each of them in the following two sections.

3.1 Analysis of Large Scientific Data CollectionsThe
U.S. National Virtual Observatory (NVO)1 is a large scale
effort to develop an information technology infrastructure
enabling easy and robust access to distributed astronomical
archives. It will provide services for users to search and
gather data across multiple archives and will provide some
basic statistical analysis and visualization functions. The
International Virtual Observatory Alliance (IVOA)2 is the
international steering body that federates the work of about
two dozen national VOs across the world (including the
NVO in the US). The IVOA oversees this large-scale effort to
develop an IT infrastructure enabling easy and robust access
to distributed astronomical archives worldwide.

There are several instances in the astronomy and space

1http://www.us-vo.org/
2http://www.ivoa.net

sciences research communities where data mining is being
applied to large data collections [12][10][2]. Another re-
cent area of research is distributed data mining [20][?] which
deals with the problem of data analysis in environments with
distributed data, computing nodes, and users. Distributed
eigen-analysis and outlier detection algorithms have been
developed for analyzing astronomy data stored at different
locations by Duttaet al.[14]. Karguptaet al. [?] have
developed a technique for performing distributed principal
component analysis by first projecting the local data along
its principal components and then centralizing the projected
data. In both these cases, the data is distributed vertically
(different full attribute columns reside at different sites),
while in this paper, the data is distributed horizontally (differ-
ent data tuple sets reside at different sites). Moreover, none
of the above efforts address the problem of analyzing rapidly
changing astronomy data streams.

3.2 Data Analysis in Large Dynamic NetworksThere
is a significant amount of recent research considering data
analysis in large-scale dynamic networks. Since efficient
data analysis algorithms can often be developed based on
efficient primitives, approaches have been developed for
computing basic operations (e.g.average, sum, max, random
sampling) on large-scale, dynamic networks. Kempeet al.
[21] and Boydet al. [8] developed gossip based randomized
algorithms. These approaches used an epidemic model of
computation. Bawaet al. [4] developed an approach based
on probabilistic counting. In addition, techniques have been
developed for addressing more complex data mining/data
problems over large-scale dynamic networks: association
rule mining [26], facility location [22], outlier detection
[9], decision tree induction [7], ensemble classification [23],
support vector machine-based classification [1], K-means
clustering [11], top-K query processing [3].

A related line of research concerns the monitoring of
various kinds of data models over large numbers of data
streams. Sharfmanet al. [24] develop an algorithm for mon-
itoring arbitrary threshold functions over distributed data
streams. And, most relevant to this paper, Wolffet al. [25]
developed an algorithm for monitoring the L2 norm. We
use this technique to monitor eigen-states of the fundamental
plane concerning elliptical galaxies.

Huanget al. [19] consider the problem of detecting
network-wide volume anomalies via thresholding the length
of a data vector (representing current network volume) pro-
jected onto a subspace closely related to the dominant prin-
cipal component subspace of past network volume data vec-
tors. Unlike us, these authors consider the analysis of a verti-
cally distributed data set. Each network node holds a sliding
window stream of numbers (representing volume through it
with time) and the network-wide volume is represented as
a matrix with each column a node stream. Because of the



difference in data distribution (vertical vs. horizontal), their
approach is not applicable to our problem. We assume that
each node is receiving a stream of tuples and the network-
wide dataset is matrix formed by the union of all nodes’ cur-
rently held tuples (each node holds a collection ofrowsof the
matrix rather than a singlecolumnas considered by Huang).

In the next section we present the notations and problem
definition that will be used throughout the rest of the paper.

4 Background

In order to analyze the data streams from the next genera-
tion of large scale astronomy systems such as the ones con-
structed by the LSST project, we need scalable infrastructure
for computing. It is generally agreed among the astronomy
community that the computing infrastructure will be a grid-
like environment comprised of a collection of desktop com-
pute nodes, high performance machines, and data sources
among others. We need data analysis algorithms that will
be able to work in this distributed heterogeneous computing
environment. This paper offers distributed eigen-analysis al-
gorithms that can handle data from distributed nodes (either
inherently distributed data or artificially distributed inorder
to scale up the performance).

In the remainder of this section we first define the nota-
tions that will be used to discuss our distributed algorithms
and then formally state the problem definition.

4.1 Notations Let V = {P1, . . . , Pn} be a set of nodes
connected to one another via an underlying communication
infrastructure such that the set ofPi’s neighbors,Γi, is
known to Pi. Additionally, at any time,Pi is given a
time-varying data matrixMi where the rows correspond
to the instances and the columns correspond to attributes
or features. Mathematically,Mi = [−→xi,1

−→xi,2 . . . ]
T, where

each−→xi,ℓ = [xi,ℓ1xi,ℓ2 . . . xi,ℓd] ∈ R
d is a row vector. The

covariance matrix of the data at nodePi, denoted byCi, is the
matrix whose(i, j)-th entry corresponds to the covariance
between thei-th and j-th feature (column) ofMi. The
global data set of all the nodes’ data isG =

⋃n

i=1Mi.
It can be shown that if the attributes ofG are mean

shifted, i.e. the mean of each attribute is subtracted from
each value of that attribute, the covariance matrix can be
written asC = GTG (we have ignored the scaling by the
number of points inG). Also under such conditions, it can
be shown thatC =

∑n

i=1 Ci.

4.2 Problem Formulation The identification of certain
correlations among parameters has lead to important discov-
eries in astronomy. For example, the class of elliptical and
spiral galaxies (including dwarfs) have been found to occupy
a two dimensional space inside a 3-D space of observed pa-
rameters, radius, mean surface brightness and velocity dis-
persion. This 2D plane has been referred to as the Funda-

mental Plane [15]. In this paper we first describe a PCA
computation for detecting variation of fundamental plane
with galactic properties such as density and then develop an
asynchronous local distributed algorithm for monitoring the
eigenvectors of the global covariance matrix (C) of the data.
As we discuss in the next section, eigenvectors of the covari-
ance matrix define the fundamental plane of the galaxies.

The problem that we want to solve in this paper can be
stated as follows:

Problem Statement: Given a time-varying data matrixMi

to each node, maintain an up-to-date set of eigenvectors and
eigenvalues of the global covariance matrixC at any time
instance.

Typically, we have the following constraints:

• low communication overhead

• dynamic data and topology

• correct result compared to centralized execution

Given this problem statement, we decompose it into two
parts: (i) first, given an estimate of the eigenvectors and
eigenvalues, we discuss a highly efficient and local algorithm
for checking the ‘fitness’ of the model to the global data, and
(ii) if the data changes to the extent that the current estimates
are outdated, we sample data from the network and rebuild
the model.

In the next section we show how we have collected and
preprocessed the astronomy catalogue data for fundamental
plane computation.

5 Centralized Principal Components Analysis for the
Fundamental Plane Computation

For identifying the variability of fundamental plane on the
basis of galactic densities, we have used the SDSS and
2MASS data sets available individually through the NVO.
Since galactic density is not observed by the NVOs, we have
cross-matched the two data sets and computed the densities
based on other property values. In this section we describe
the data gathering procedure for this approach followed by
the PCA computation.

5.1 Data Preparation We create a large, aggregate
data set by downloading the 2MASS XSC extended
source catalog (http://irsa.ipac.caltech.edu/
applications/Gator/) for the entire sky and cross-
match it against the SDSS catalog using the SDSS
Crossid tool (http://cas.sdss.org/astro/en/
tools/crossid/upload.asp) such that we select all
unique attributes from thePhotoObjAllandSpecObjAllta-
bles as well as thephotozd1attribute from thePhotoz2table
which is an estimated redshift value. We filter the data based



on the SDSS identified type to remove all non-galaxy tuples.
We then filter the data again based on reasonable redshift
(actual or estimated) values (0.003 ≤ z ≤ 0.300).

For creating the new attribute, namely, galactic density,
we transform the attributescx, cy, cz (unit vectors),z, and
photozd1 to 3D Euclidean coordinates using the transforma-
tion

(X, Y, Z) =
(Distance× cx, Distance× cy, Distance× cz)

whereDistance = 2×
[

1− 1√
(1+redshift)

]

. We finally use

these Cartesian coordinates to compute the Delaunay Trian-
gulation3 of each point (galaxy) in 3D space. To remove bias
in the density calculation of the Delaunay cells, we iden-
tify all boundary points and remove them from the compu-
tation. This tessellation procedure is a data transformation
step, which converts the spatial location of a galaxy (within
the 3-D distribution of galaxies) into a single numeric at-
tribute (local galaxy density). This parameter has astrophys-
ical significance, even more than the actual spatial location
information (i.e., galaxy properties are often modified and
governed by the proximity of nearby galaxies, such as in
high-density environments), and so we chose to use this new
attribute — local galaxy density, as estimated through the
tessellation step — because it has strong astrophysical rele-
vance and scientific significance. This is a robust estimator
and is as scientifically meaningful as any other attribute in
the science database used in these experiments. Now using
the output of the Delaunay triangulation the volumes of the
Delaunay cells are computed using the expression

vol(i) = (1/6) ·
∣

∣

∣det(−→ai −
−→
bi ,
−→
bi −−→ci ,

−→ci −
−→
hi)

∣

∣

∣ ,

where−→ai ,
−→
bi ,
−→ci and

−→
hi are the vertices of the tetrahedron

corresponding to thei-th point in 3D Euclidean space. The
volume corresponding to thei-th point is the sum of the
volumes of all tetrahedrons that contain the particular point.
Using the DTFE formulation4, the density of thei-th cell is
then computed as follows:

den(i) = (D + 1)× mi

vol(i)

wheremi = 1, since we have one object (galaxy) per cell
andD = 3 for triangulation in 3D-space .

5.2 Binning and PCA The astronomy question that we
want to address here is whether the fundamental plane
structure of galaxies in low density regions differ from that
of galaxies in high density regions. For this we take the

3http://mathworld.wolfram.com/
DelaunayTriangulation.html

4http://en.wikipedia.org/wiki/Dtfe

above data set containing 155650 tuples and associate with
each tuple, a measure of its local galactic density. Our final
aggregated data set has the following attributes from SDSS:
Petrosian I band angular effective radius (Iaer), redshift
(rs), and velocity dispersion (vd); and has the following
attribute from 2MASS: K band mean surface brightness
(Kmsb). We produce a new attribute, logarithm Petrosian
I band effective radius (log(Ier)), as log(Iaer*rs) and a
new attribute, logarithm velocity dispersion (log(vd)), by
applying the logarithm tovd. We finally append the galactic
density (cellDensity) associated with each of the tuples as
the last attribute of out aggregated data set. We divide the
tuples into 30 bins based on increasing cell density, such that
there are equal number of tuples in each bin. For each bin
we carry out the fundamental plane calculation or principal
component analysis and observe that the percent of variance
captured by the first two PCs is very high. This implies that
the galaxies can be represented by the plane defined by the
first two eigen vectors. It is also observed that this percentage
increases for bins with higher mean galactic density. We
report these results in Section 7.

As discussed earlier, analysis of very large astronomy
catalogs can pose serious scalability issues, especially when
considering streaming data from multiple sources. In the
next section we describe a distributed architecture for ad-
dressing these issues and then show how the centralized
eigen analysis of the covariance matrix can be formulated
as a distributed computation and how it can be solved in a
communication efficient manner.

6 Distributed Principal Component Analysis

When resources become a constraint for doing data min-
ing on massive data sets such as astronomical catalogs, dis-
tributed data mining provides a communication efficient so-
lution. For the problem discussed in the last section, we can
formulate a distributed architecture where after cross match-
ing the data using a centralized cross matching tool, we can
store the meta data information in a central location. Such a
service-oriented architecture would facilitate astronomers to
query multiple databases and do data mining on large data
sets without downloading the data to their local computing
resources. The data set is downloaded in parts at a num-
ber of computing nodes (that are either dedicated comput-
ers connected through communication channels or part of a
large grid) based on the meta data information maintained at
the central server site. In such a computational environment,
distributed data mining algorithms can run in the background
seamlessly for providing fast and efficient solutions to theas-
tronomers by distributing the task among a number of nodes.
Figure 1 represents one such architecture.

Another distributed data mining scenario for large scale
astronomy databases is the one described in Section 2 for the
LSST project where high throughput data streams need to be
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Figure 1: Distributed Data Mining for Astronomy: Architec-
ture

modeled and monitored for changes in an efficient manner.
In the next few sections we describe a distributed formulation
of our centralized eigen analysis and present a eigenstate
monitoring algorithm for this purpose.

6.1 Problem formulation: Distributed Covariance
Computation For the distributed setup, the entire data is not
located at a central location. The data set of nodePi isMi.
Note that,G =

⋃n

i=1Mi. It is true that, if the mean of each
column ofG is subtracted from each value ofG, i.e. G1 is
mean-reducedG, then the covariance matrix ofG i.e. C can
be written asC = 1

#points inGGT
1 G1. Now, in the distributed

setup it is true that:

C =
1

#points inG G
T
1 G1 =

1

#points inG
n

∑

i=1

MT
1iM1i

whereM1i is mean reducedMi. Thus it turns out that if
data is horizontally partitioned amongn nodes and each col-
umn of data is mean shifted using the global mean, the co-
variance matrix is completely decomposable. With this for-
mulation, we now describe certain notations for discussing
our distributed eigen monitoring algorithm.

6.2 Preliminaries The goal of the PC monitoring algo-
rithm is to track changes to the eigenvectors of the global
covariance data matrixC. The crux lies in each node main-
taining a current set of eigenvectors which it believes to be
globally correct. We call it theknowledgeof a node. Also
each node checks if it is inagreementwith all of its immedi-
ate neighbors with respect to the knowledge. It can be shown
that if this is true for all nodes in the network, then the local
eigenvectors of each node is indeed the correct global solu-
tion. Note that from our earlier discussion,GTG = C when
G is mean shifted. In the distributed setup, the mean of the
global data is not known to each node. Therefore we decom-
pose the PC monitoring algorithm in to (1) mean monitor-
ing which maintains the correct mean ofG, and (2) eigen-
vector monitoring ofGTG. Given an eigenvalue or a mean
as a model, each algorithm monitors changes to the corre-

sponding model with respect to the global data using only its
knowledge and agreement. If the data changes such that the
models no longer fit the data, the algorithms raise a flag at
each node. At this point, a sample of the data is centralized,
new models are built and then disseminated to the network.
The monitoring algorithms are then restarted with the new
models and the process continues. Below we formally de-
fine these quantities and describe the algorithms.

6.2.1 Notations and AssumptionsIn this section we
present certain notations necessary for the algorithms.

In the algorithm, each node sends messages to its im-
mediate neighbors to converge to a globally correct solu-
tion. As already discussed, there are three kinds of mes-
sages: (i)monitoringmessages which are used by the algo-
rithm to check if the model is up-to-date, (ii)datamessages
which are used to sample data for rebuilding a model, and
(iii) modelmessages which are used to disseminate the newly
built model in the entire network. In this section we will dis-
cuss messages of the first type only. The other two will be
discussed in the later sections since they are algorithm spe-
cific.

Let the model supplied to each of the monitoring algo-
rithms be denoted byL. For the mean monitoring algorithm,
the model is a mean vector−→µ ; for the eigenvector monitor-
ing, the model is a set of eigenvectors (

−→
V ) and eigenvalues

(Θ). Let Ei(Mi, L) be the error between the modelL and
the data of nodePi. Explicit computation ofEi is problem
specific and hence described in respective algorithm descrip-
tions. The nodes jointly track ifEG =

⋃n

i=1 Ei is less than a
user-defined thresholdǫ.

Any monitoring message sent by nodePi to Pj contains
information thatPi has gathered about the network which
Pj may not know. In our case, the message sent byPi

to Pj consists of a set of vectors or matrix5 Si,j with
each row corresponding to observations and each column
corresponding to features. Note that if each node broadcasts
Si,j = Mi, then each node would obviously be able
to compute the correct result. However this would be
communication intensive. Our next few sets of vectors allow
us to compute the correct result in a more communication
efficient manner.

Knowledge This is all the information thatPi has about the
error:

Ki = Ei ∪
⋃

Pj∈Γi

Sj,i

Agreement This is whatPi andPj have in common:

Ai,j = Si,j ∪ Sj,i

5we use them interchangeably here



Held This is whatPi has not yet communicated toPj

Hi,j = Ki \ Ai,j

These sets of vectors can be arbitrarily large. It can be
shown that if vectors sent byPi to Pj are never sent back to
Pi, we can do the same computations using only the average
vector of these sets and the size of the set. One way of
ensuring this is to assume that communication takes place
over a communication tree – an assumption we make here
(see [25] and [7] for a discussion of how this assumption can
be accommodated or, if desired, removed).

The following are the notations used for the set statistics
— (1) average: Ki,Ai,j ,Hi,j , Si,j , Sj,i, Ei, andEG , and (2)
sizes: |Si,j |, |Sj,i|, |Ki|, |Ai,j |, |Hi,j |, |Ei|, and

∣

∣EG
∣

∣. With
these notations, we can now write

• |Ki| = |Ei|+
∑

Pj∈Γi

|Sj,i|

• |Ai,j | = |Si,j |+ |Sj,i|

• |Hi,j | = |Ki| − |Ai,j |

Similarly for the average of the sets we can write,

• Ki = 1
|Ki|



|Ei| Ei +
∑

Pj∈Γi

|Sj,i| Sj,i





• Ai,j = 1
|Ai,j |

(

|Si,j | Si,j + |Sj,i| Sj,i

)

• Hi,j = 1
|Hi,j |

(

|Ki| Ki − |Ai,j | Ai,j

)

Note that, for any node, these computations are local. For
all the monitoring algorithms we assume that message trans-
mission is reliable and ordered.

SinceEG is a vector inRd, the goal reduces to checking

if
∣

∣

∣

∣

∣

∣EG
∣

∣

∣

∣

∣

∣ < ǫ. However, the quantityEG is not available at

any node. In the next section we state a key result which
allow us to perform the same computation using only local
vectors of a node.

6.2.2 Stopping RuleThe main idea of the stopping rule is
to describe a condition for each nodePi based onKi, Ai,j ,
andHi,j , which guarantee thatEG is greater than or less than
ǫ. In order to apply this theorem, we need to split the entire
domain into non-overlapping convex regions such that the

quantity
∣

∣

∣

∣

∣

∣

−→
EG

∣

∣

∣

∣

∣

∣ < ǫ has the same value inside each of these

convex regions. We denote the set of all such convex regions
by Cω. Geometrically, checking if the L2-norm of a vector

is less thanǫ is equivalent to checking if
∣

∣

∣

∣

∣

∣

−→
EG

∣

∣

∣

∣

∣

∣
lies inside a

circle of radiusǫ. Note that, by construction, the region in
which the output is 0i.e. inside the circle is a convex region.

Let us denote it byRc. The outside of the circle can easily
be divided into convex regions by drawing random tangent
lines to form half-spaces denoted by (Rh1

, Rh2
, ...). The

areas uncovered byCω denote thetie regions.
As stated by the Theorem below, if the following con-

dition holds, the node can stop sending messages and deter-
mine the correct output based solely on its local averages.

THEOREM 6.1. [25] Let P1, . . . , Pn be a set of nodes con-
nected to each other over a spanning treeG (V, E). LetEG ,
Ki, Ai,j , andHi,j be as defined in the previous section. Let
R be any region inCω . If at timet no messages traverse the
network, and for eachPi, Ki ∈ R and for everyPj ∈ Γi,
Ai,j ∈ R and eitherHi,j ∈ R orHi,j = ∅, thenEG ∈ R.

Proof. For proof the readers are referred to [25].

Using this theorem, each node can check if
∥

∥Ki

∥

∥ < ǫ. If
the result holds for every node, then we are guaranteed to
get the correct result. If there is any disagreement, it would
be between any two neighbors. In that case, messages will
be exchanged and they will converge to the same result. In
either case, eventual global correctness is guaranteed.

6.3 Algorithm Both the mean monitoring algorithm and
the eigenvector monitoring rely on the results of Theorem 6.1
to output the correct result. For the eigenvector monitoring,
the model supplied to each node are the eigenvector

−→
V and

eigenvalueΘ. Assuming that the mean of the data is zero,
the goal is to check if:

∥

∥

∥C · −→V −Θ
−→
V

∥

∥

∥ ≤ ǫ

=⇒
∥

∥

∥

∥

1

|G|
[

GTG
]

· −→V −Θ
−→
V

∥

∥

∥

∥

≤ ǫ

=⇒
∥

∥

∥

∥

∥

1
∑

i |Mi|
∑

i

[

MT
i Mi

]

· −→V −Θ
−→
V

∥

∥

∥

∥

∥

≤ ǫ

Thus given
−→
V andΘ, each node can locally compute the vec-

tor
(

[

MT
i Mi

]

· −→V −Θ
−→
V

)

. Let this instance of problem be

denoted byI1. We can write:

• I1.Ei =

(

[MT

i Mi]·
−→
V −Θ

−→
V

)

|Mi|

• I1. |Ei| = |Mi|

Thus for this problem, each node computes the vectorI1.Ei
which is then used as input to the eigenvector monitoring
algorithm.

Similarly for the mean monitoring algorithm, the model
supplied to each node is the mean−→µ ∈ R

d. In this case,
each node subtracts the mean−→µ from its local average input



vectorMi. The goal is to check if:
∥

∥G − −→µ
∥

∥ ≤ ǫ
∥

∥

∥

∥

∥

1
∑

i |Mi|
∑

i

Mi |Mi| − −→µ
∥

∥

∥

∥

∥

≤ ǫ

∥

∥

∥

∥

∥

1
∑

i |Mi|
∑

i

|Mi|
(

Mi −−→µ
)

∥

∥

∥

∥

∥

≤ ǫ

Note that the quantity|Mi|
(

Mi −−→µ
)

can be locally com-
puted by a node. For this problem instance denoted byI2,
the following are the inputs:

• I2.Ei =
(

Mi −−→µ
)

• I2. |Ei| = |Mi|

Algorithm 6.1 presents the pseudo-code of the monitor-
ing algorithm while Alg. 6.2 presents the pseudo-code for
the algorithm which builds the model. The inputs to the
monitoring algorithm areMi, Ei (depending on how it is de-
fined),Γi, ǫ andCω andL. For each problem instanceI1 and
I2, each node initializes its local vectorsKi, Ai,j andHi,j .
Below we describe the monitoring algorithm with respect to
only one instanceI1 (and hence drop the instance indexI1).
The other case is identical. The algorithm is entirely event-
driven. Events can be one of the following: (i) change in
local dataMi, (ii) on receiving a message, and (iii) change
in Γi. In any of these cases, the node checks if the condition
of the theorem holds. Based on the value of its knowledge
Ki, the node selects the active regionRℓ ∈ Cω such that
Ki ∈ Rℓ. If no such region exists,Rℓ = ∅. If R = ∅, then
Ki lies in the tie region and hencePi has to send all its data.
On the other hand, ifRℓ 6= ∅ the node can rely on the result
of Theorem 6.1 to decide whether to send a message. If for
all Pj ∈ Γi, bothAi,j ∈ Rℓ andHi,j ∈ Rℓ, Pi does nothing;
else it needs to setSi,j and|Si,j |. Based on the conditions of
the Theorem, note that these are the only two cases when a
node needs to send a message. Whenever it receives a mes-
sage (S and|S|), it setsSj,i ← S and|Sj,i| ← |S|. This may
trigger another round of communication since itsKi can now
change.

To prevent message explosion, in our event-based sys-
tem we employ a “leaky bucket” mechanism which ensures
that no two messages are sent in a period shorter than a con-
stantL. Note that this mechanism does not enforce synchro-
nization or affect correctness; at most it might delay conver-
gence. This technique has been used elsewhere also [25][6].

ALGORITHM 6.1. Monitoring Models
Input : ǫ, Cω , Ei, Γi andL.
Output : 0 if

∣

∣

∣

∣Ki

∣

∣

∣

∣ < ǫ, 1 otherwise
Initialization : Initialize vectors;
if MessageRecvdFrom

(

Pj ,S, |S|
)

then

Sj,i ← S and|Sj,i| ← |S|
Update vectors

end if
if Mi, Γi orKi changesthen

for all NeighborsPj do
if LastMsgSent > L time units agothen

if Rℓ = ∅ then
SetSi,j ← |Ki|Ki−|Sj,i|Sj,i

|Ki|−|Sj,i|
{/*Tie Region*/}

Set|Si,j | ← |Ki| − |Sj,i|
end if
if Ai,j 6∈ Rℓ orHi,j 6∈ Rℓ then

SetSi,j and|Si,j | such thatAi,j andHi,j ∈ Rℓ

{/*Theorem Condition*/}
end if
MessageSentTo

(

Pj ,Si,j , |Si,j |
)

LastMsgSent← CurrentTime
Update all vectors

else
Wait L time units and then check again

end if
end for

end if

The monitoring algorithm raises a flag whenever either
∥

∥I1.Ki

∥

∥ > ǫ or
∥

∥I2.Ki

∥

∥ > ǫ. Once the flag is set to
1, the nodes engage in a convergecast-broadcast process to
accumulate data up the root of the tree, recompute the model
and disseminate it in the network.

For the mean monitoring algorithm in the convergecast
phase, whenever a flag is raised, each leaf node in the tree
forwards its local mean up the root of the tree. In this
phase, each node maintains a user selected alert mitigation
constant,τ which ensures that an alert is stable for a given
period of timeτ for it to send the data. Experimental results
show that this is crucial in preventing a false alarm from
progressing, thereby saving resources. In order to implement
this, whenever the monitoring algorithm raises a flag, the
node notes the time, and sets a timer toτ time units. Now, if
the timer expires, or a data message is received from one of
its neighbors,Pi first checks if there is an existing alert. If
it has been recordedτ or more time units ago, the node does
one of the following. If it has received messages from all
its neighbors, it recomputes the new mean, sends it to all its
neighbors and restarts its monitoring algorithm with the new
mean. On the other hand, if it has received the mean from all
but one of the neighbors, it combines its data with all of its
neighbors’ data and then sends it to the neighbor from which
it has not received any data. Other than any of these cases, a
node does nothing.

For the eigenvector monitoring, in place of sending a
local mean vector, each node forwards the covariance matrix
Ci. Any intermediate node accumulates the covariance
matrix of its children, adds it local matrix and sends it



to its parent up the tree. The root computes the new
eigenvectors and eigenvalues. The first eigenstate is passed
to the monitoring algorithm.

ALGORITHM 6.2. Building Models
Input : ǫ, Cω ,Mi, Γi, L, τ

Output : (i)
−→
V , Θ such that

∥

∥

∥C · −→V −Θ · −→V
∥

∥

∥ < ǫ, (ii) −→µ
such that

∥

∥G − −→µ
∥

∥ < ǫ
Initialization : Initialize vectors;
MsgType= MessageRecvdFrom(Pj)
if MsgType = Monitoring Msg then

Pass Message to appropriate Monitoring Algorithm
end if
if MsgType = New Model Msg {/*Broadcast*/}
then

Update
−→
V , Θ,−→µ

Forward new model to all neighbors
Datasent=false
Restart Monitoring Algorithm with new models

end if
if MsgType = Dataset Msg {/*Convergecast*/} then

if Received from all but one neighborthen
flag=Output Monitoring Algorithm()
if Datasent = false andflag = 1 then

if DataAlert stable forτ time then
D1=Ci + Recvd covariance
D2=Mi + Recvd mean
Datasent=true;
SendD1,D2 to remaining neighbor

else
DataAlert=CurrentTime

end if
end if

end if
if Received from all neighborsthen

D=Ci + Recvd Dataset
D2=Mi + Recvd mean

(
−→
V , Θ)=EigAnalysis(D)−→µ = mean(D2)

Forward new
−→
V , Θ,−→µ to all neighbors

Datasent=false
Restart Monitoring Algorithm with new models;

end if
end if
if Mi, Γi orKi changesthen

Run Monitoring Algorithm
flag=OutputMonitoring Algorithm()
if flag=1 andPj=IsLeaf()then

Execute the same conditions as
MsgType = Dataset Msg

end if
end if

6.4 Correctness and Complexity AnalysisThe eigen
monitoring algorithm is eventually correct.

THEOREM 6.2. The eigen monitoring algorithm iseventu-
ally correct.

Proof. For the eigen monitoring algorithm, the computation
will continue for each node unless one of the following
happens:

• for every node,Ki = EG

• for everyPi and every neighborPj , Ki, Ai,j ,andHi,j

are in the same convex regionRℓ ∈ Cω.

In the former case, every node obviously computes the
correct output since the knowledge of each node becomes
equal to the global knowledge. In the latter case, Theorem
6.1 dictates thatEG ∈ Rℓ. Note that by construction, the
output of the monitoring function (in this case L2-norm)
is invariant insideRℓ. In other words, the binary function
∥

∥

∥EG
∥

∥

∥ < ǫ and
∥

∥Ki

∥

∥ < ǫ will have the same output inside

Rℓ. Therefore in either of the cases, the eigen monitoring
algorithm is correct.

Determining the communication complexity of local al-
gorithms in dynamic environments is still an open research
issue. Researches have proposed definitions of locality
[6][25]. Note that for an exact algorithm as the eigen moni-
toring algorithm, the worst case communication complexity
is O(sizeofnetwork). This can happen, for example, when
the each node has a vector in a different convex region and
the global average is in another different region. However,as
shown in this paper and also by several authors [25][6] there
are several problem instances for which the resource con-
sumption becomes independent of the size of the network.
Interested readers are referred to [5] for a detailed discus-
sion on communication complexity and locality of such al-
gorithms.

7 Results

In this section we demonstrate the experimental results of
both the centralized fundamental plane analysis and the dis-
tributed eigen monitoring algorithm. The centralized exper-
iments show how the fundamental plane changes with vari-
ations in galactic density, while the distributed experiments
show the performance of the eigen monitoring algorithm for
a streaming scenario of the same experiment. Our goal is
to demonstrate that, using our distributed eigen monitoring
algorithm to compute the principal components and monitor
them in a streaming scenario, we can find very similar re-
sults as were obtained by applying a centralized PCA. Even
though our goal was not to make a new discovery in astron-
omy, the results are astronomically noteworthy. We argue



that our distributed algorithm could have found very sim-
ilar results to the centralized approach at a fraction of the
communication cost. Also, we want to emphasize that this
distributed eigen monitoring algorithm can be applied to a
number of change-detection applications in high-throughput
streaming scenarios (such as the LSST) for important astro-
nomical discoveries of many types. The importance and nov-
elty of this algorithm compared to existing distributed PCA
algorithms is that, this is an exact algorithm that determinis-
tically converges to the correct result.

7.1 Fundamental Plane ResultsAs noted in Section 5.1,
we divide the entire dataset into 30 bins. The bins are
arranged from low to high density. In this section we present
the results of our fundamental plane experiments for only the
elliptical galaxies for 30 bins.

Our first experiment (Figure 2) shows the variance cap-
tured by the first PC (PC1) as the density of the galaxies
increase. Thex-axis shows the mean density of each bin in
log-scale. As seen in the figure, the variance captured by
PC1 increases monotonically with increase in mean galactic
density.
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Figure 2: Variance captured by PC 1 w.r.t. log of mean
density of each bin. Bin 1 has the lowest mean density and
Bin 30 the highest. The variance captured by PC1 increases
monotonically with increasing bin density.
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Figure 3: Variance captured by PCs 1 and 2 w.r.t. log of
mean density of each bin. Bin 1 has the lowest mean density
and Bin 30 the highest.

Figure 3 provides the most significant scientific result. It
demonstrates the dependence of the variance captured by the
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(a) Variation ofθ andφ independently w.r.t. log of bin density
for 30 bins
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(b) Variation ofθ andφ w.r.t. log of bin density for 30 bins

Figure 4: Plot of variation ofθ andφ independently with
bin number. The bins are numbered in increasing order of
density.

first 2 PC’s with respect tolog of bin density. As seen, the
variance increases monotonically from almost 95% to 98%
with increase in galactic bin density. This clearly demon-
strates a new astrophysical effect, beyond that traditionally
reported in the astronomical literature. This results fromthe
application of distributed data mining (DDM) on a signifi-
cantly (by 1000 times) larger set of data. More such remark-
able discoveries can be anticipated when DDM algorithms of
the type reported here are applied to massive scientific (and
non-scientific) data streams of the future.

To analyze more deeply the nature of the variation of
the first two PCs with respect to increasing galactic density,
we plot the direction of the normal to the plane defined
by the first 2 PCsi.e. pc1 and pc2. Since each of these
PC’s are vectors in 3-d, so is the normal to the plane. The
normal vector is represented by its two directional angles:
the spherical polar anglesθ andφ. Figure 4 shows a plot ofθ
andφ for 30 bins. Figure 4(a) shows the variation ofθ andφ
independently withlog of mean galactic density. Figure 4(b)
shows the variation of both withlog of mean density. The
systematic trend in the change of direction of the normal
vector seen in Figure 4(b) is a new astronomy result. This
represents exactly the type of change detection from eigen
monitoring that will need to be applied to massive scientific



data streams, including large astronomy applications (LSST)
and large-scale geo-distributed sensor networks, in order
to facilitate knowledge discovery from these petascale data
collections.
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Figure 5: Quality vs. number of nodes. Quality remains the
same thereby showing good accuracy.

7.2 Results of Distributed PCA Algorithm The dis-
tributed PCA implementation makes use of the Distributed
Data Mining Toolkit (DDMT)6– a distributed data min-
ing development environment from DIADIC research lab at
UMBC. DDMT uses topological information which can be
generate by BRITE7, a universal topology generator from
Boston University. In our simulations we used topologies
generated according to theBarabasi Albert (BA)model. On
top of the network generated by BRITE, we overlayed a
spanning tree. We have experimented with network size
ranging from 50 to 1000 nodes.

We have divided the data of the centralized experiments
into 5 bins (instead of 30) sorted by galactic density. Each
bin represents the data distribution at a certain time in
the streaming scenario and the distribution changes every
200,000 simulation ticks which we call an epoch. This
implies that every 200,000 simulation ticks we supply the
nodes with a new bin of data. We stream the data at a rate of
10% of the bin size for every 10,000 simulation ticks. The
two quantities measured in our experiments are thequality
of the result and thecostof the algorithm.

We have used the following default values for the algo-
rithm: size of leaky bucketL = 500, error thresholdǫ = 1.0,
alert mitigation constantτ = 500. Due to shortage of space
we do not present an exhaustive analysis of the effect of all
these parameters. We plan to report these in an extended
version.

For the eigen monitoring algorithm, quality is the av-
erage L2 norm distance between the principal eigen vector
and the and the computed eigen vector in the distributed sce-
nario over all the bins. Since we compute the principal eigen
vector for each bin separately, we plot the average L2 norm

6http://www.umbc.edu/ddm/wiki/software/DDMT
7http://www.cs.bu.edu/brite/

distance between the centralized and distributed eigen vec-
tors for every experiment. The experiment was repeated for
10 independent trials. Figure 5 shows the scalability results
for the accuracy achieved by our algorithm. As shown in the
figure, the proposed eigen monitoring algorithm produces re-
sults which are quite close to their centralized counterpart.
Moreover, we can also observe that the quality does not de-
grade with increasing network size. Because our algorithm
is provably correct, the number of nodes has no influence on
the quality of the result.
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Figure 6: L2 messages vs. number of nodes. Number of
messages remain constant showing excellent scalability.
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Figure 7: Number of convergecast rounds per epoch vs.
number of nodes. In most cases the convergecast round is
less than 3 per epoch.

Figures 6 and 7 show the number of messages ex-
changed per node when the number of nodes is increased
from 50 to 1000. As shown in Figure 6, the normalized L2
messages per node is approximately 0.3. Normalized mes-
sage per node means the number of messages sent by a node
per unit of leaky bucket. Note that for an algorithm which
uses broadcast as the communication model, its normalized
messages will be 2.0, assuming two neighbors per node on
average. Thus the proposed algorithm is highly efficient with
respect to communication. Also as shown, the L2 messages
remain a constant even if the number of nodes is increased.
This demonstrates the excellent scalability of the algorithm.

Finally, we also plot the number of times data is col-
lected per epoch. In most cases, the number of such con-
vergecast rounds is 3 per epoch. Note that this can be re-



duced further by using a larger alert mitigation constantτ ,
larger error thresholdǫ or larger local data set size.

8 Conclusion

This paper presents a local and completely asynchronous
algorithm for monitoring the eigenstates of distributed and
streaming data. The algorithm is efficient and exact in the
sense that once computation terminates, each node in the
network computes the globally correct model. We have taken
a relatively well understood problem in astronomy — that
of galactic fundamental plane computation and shown how
our distributed algorithm can be used to arrive at the same
results without any data centralization. We argue that this
might become extremely useful when petabyte scale data
repositories such as the LSST project start to generate high
throughput data streams which need to be co-analyzed with
other data repositories located at diverse geographic location.
For such large scale tasks, distributing the data and running
the algorithm on a number of nodes might prove to be cost
effective. Our algorithm is a first step to achieving this goal.
Experiments on current SDSS and 2MASS dataset show
that the proposed algorithm is efficient, accurate, and highly
scalable.
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