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ABSTRACTDe�ning outliers by their distan
e to neighboring examplesis a popular approa
h to �nding unusual examples in a dataset. Re
ently, mu
h work has been 
ondu
ted with the goalof �nding fast algorithms for this task. We show that a sim-ple nested loop algorithm that in the worst 
ase is quadrati

an give near linear time performan
e when the data is inrandom order and a simple pruning rule is used. We testour algorithm on real high-dimensional data sets with mil-lions of examples and show that the near linear s
aling holdsover several orders of magnitude. Our average 
ase analy-sis suggests that mu
h of the eÆ
ien
y is be
ause the timeto pro
ess non-outliers, whi
h are the majority of examples,does not depend on the size of the data set.
Categories and Subject DescriptorsH.2.8 [Database Management℄: Database Appli
ations|data mining
KeywordsOutliers, distan
e-based operations, anomaly dete
tion, disk-based algorithms
1. INTRODUCTIONDete
ting outliers, examples in a database with unusualproperties, is an important data mining task. Re
ently re-sear
hers have begun fo
using on this problem and have at-tempted to apply algorithms for �nding outliers to taskssu
h as fraud dete
tion [7℄, identifying 
omputer network in-trusions [10, 18℄, data 
leaning [21℄, and dete
ting employerswith poor injury histories[17℄.Outlier dete
tion has a long history in statisti
s [3, 13℄, buthas largely fo
ussed on data that is univariate, and datawith a known (or parametri
) distribution. These two lim-itations have restri
ted the ability to apply these types ofmethods to large real-world databases whi
h typi
ally have
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many di�erent �elds and have no easy way of 
hara
ter-izing the multivariate distribution of examples. Other re-sear
hers, beginning with the work by Knorr and Ng [16℄,have taken a non-parametri
 approa
h and proposed usingan example's distan
e to its nearest neighbors as a measureof unusualness [2, 10, 17, 19℄.Although distan
e is an e�e
tive non-parametri
 approa
hto dete
ting outliers, the drawba
k is the amount of 
om-putation time required. Straightforward algorithms, su
h asthose based on nested loops, typi
ally require O(N2) dis-tan
e 
omputations. This quadrati
 s
aling means that itwill be very diÆ
ult to mine outliers as we ta
kle in
reas-ingly larger data sets. This is a major problem for manyreal databases where there are often millions of re
ords.Re
ently, resear
hers have presented many di�erent algo-rithms for eÆ
iently �nding distan
e-based outliers. Theseapproa
hes vary from spatial indexing trees to partitioningof the feature spa
e with 
lustering algorithms [19℄. The
ommon goal is developing algorithms that s
ale to largereal data sets.In this paper, we show that one 
an modify a simple al-gorithm based on nested loops, whi
h would normally havequadrati
 s
aling behavior, to yield near linear time miningon real, large, and high-dimensional data sets. Spe
i�
ally,our 
ontributions are:� We show that an algorithm based on nested loops in
onjun
tion with randomization and a simple pruningrule has near linear time performan
e on many largereal data sets. Previous work reported quadrati
 per-forman
e for algorithms based on nested loops [16, 17,19℄.� We demonstrate that our algorithm s
ales to real datasets with millions of examples and many features, both
ontinuous and dis
rete. To our knowledge we haverun our algorithm on the largest reported data setsto date and obtained among the best s
aling resultsfor distan
e-based outliers on real data sets. Otherwork has reported algorithms with linear time miningof distan
e-based outliers but only for low-dimensionalproblems (less than 5) [16, 17℄ or have only tested thes
aling properties on simple syntheti
 domains.� We analyze why our algorithm performs so well. The



result of an average 
ase analysis suggests that under
ertain 
onditions, the time to pro
ess non-outliers,whi
h are the large majority of points, does not dependon the size of the data set.The remainder of this paper is organized as follows. In thenext se
tion, we review the notion of distan
e-based outliersand present a simple nested loop algorithm that will be thefo
us of this paper. In Se
tion 3, we show that althoughour simple algorithm has poor worst 
ase s
aling properties,for many large, high-dimensional, real data sets the a
tualperforman
e is extremely good and is 
lose to linear. InSe
tion 4, we analyze our algorithm and attempt to explainthe performan
e with an average 
ase analysis. In Se
tion 5,we present examples of dis
overed outliers to give the readersa qualitative feel for how the algorithm works on real data.Finally, we 
on
lude this paper by dis
ussing limitations anddire
tions for future work.
2. DISTANCE-BASED OUTLIERSA popular method of identifying outliers is by examining thedistan
e to an example's nearest neighbors [2, 16, 17, 19℄. Inthis approa
h, one looks at the lo
al neighborhood of pointsfor an example typi
ally de�ned by the k nearest examples(also known as neighbors). If the neighboring points are rel-atively 
lose, then the example is 
onsidered normal; if theneighboring points are far away, then the example is 
onsid-ered unusual. The advantages of distan
e-based outliers arethat no expli
it distribution needs to be de�ned to deter-mine unusualness, and that it 
an be applied to any featurespa
e for whi
h we 
an de�ne a distan
e measure.Given a distan
e measure on a feature spa
e, there are manydi�erent de�nitions of distan
e-based outliers. Three popu-lar de�nitions are1. Outliers are the examples for whi
h there are fewerthan p other examples within distan
e d [16, 17℄.2. Outliers are the top n examples whose distan
e to thekth nearest neighbor is greatest [19℄.3. Outliers are the top n examples whose average distan
eto the k nearest neighbors is greatest [2, 10℄.There are several minor di�eren
es between these de�ni-tions. The �rst de�nition does not provide a ranking andrequires spe
ifying a distan
e parameter d. Ramaswamy etal. [19℄ argue that this parameter 
ould be diÆ
ult to deter-mine and may involve trial and error to guess an appropri-ate value. The se
ond de�nition only 
onsiders the distan
eto the kth neighbor and ignores information about 
loserpoints. Finally, the last de�nition a

ounts for the distan
eto ea
h neighbor but is slower to 
al
ulate than de�nition 1or 2. However, all of these de�nitions are based on a near-est neighbor density estimate [11℄ to determine the pointsin low probability regions whi
h are 
onsidered outliers.Resear
hers have tried a variety of approa
hes to �nd theseoutliers eÆ
iently. The simplest are those using nested loops[16, 17, 19℄. In the basi
 version one 
ompares ea
h example

with every other example to determine its k nearest neigh-bors. Given the neighbors for ea
h example in the data set,simply sele
t the top n 
andidates a

ording to the outlierde�nition. This approa
h has quadrati
 
omplexity as wemust make all pairwise distan
e 
omputations between ex-amples.Another method for �nding outliers is to use a spatial in-dexing stru
ture su
h as a KD-tree [4℄, R-tree [12℄, or X-tree[5℄ to �nd the nearest neighbors of ea
h 
andidate point [16,17, 19℄. One queries the index stru
ture for the 
losest kpoints to ea
h example, and as before one simply sele
tsthe top 
andidates a

ording to the outlier de�nition. Forlow-dimensional data sets this approa
h 
an work extremelywell and potentially s
ales as N logN if the index tree 
an�nd an example's nearest neighbors in logN time. How-ever, index stru
tures break down as the dimensionality in-
reases. For example, Breunig et al. [8℄ used a variant ofthe X-tree to do nearest neighbor sear
h and found that theindex only worked well for low dimensions, less than 5, andperforman
e dramati
ally worsened for just 10 or 20 dimen-sions. In fa
t, for high-dimensional data they re
ommendedsequential s
anning over the index tree.A few resear
hers have proposed partitioning the spa
e intoregions and thus allowing faster determination of the near-est neighbors. For ea
h region, one stores summary statisti
ssu
h as the minimum bounding re
tangle. During nearestneighbor sear
h, one 
ompares the example to the boundingre
tangle to determine if it is possible for a nearest neighborto 
ome from that region. If it is not possible, all pointsin the region are eliminated as possible neighbors. Knorrand Ng [16℄ partition the spa
e into 
ells that are hyper-re
tangles. This yields a 
omplexity linear in N but expo-nential in the number of dimensions. They found that this
ell based approa
h outperformed a nested loop algorithm,whi
h is quadrati
 in N , only for four or fewer dimensions.Others use a linear time 
lustering algorithm to partitionthe data set [19, 10℄. With this approa
h, Ramaswamy et al.demonstrated mu
h better performan
e 
ompared with thenested loop and indexing approa
hes on a low-dimensionalsyntheti
 data set. However, their experiments did not testhow it would s
ale on larger and higher-dimensional data.Finally, a few resear
hers have advo
ated proje
tions to �ndoutliers. Aggrawal and Yu [1℄ suggest that be
ause of the
urse of dimensionality one should fo
us on �nding out-liers in low-dimensional proje
tions. Angiulli and Pizzuti[2℄ proje
t the data in the full feature spa
e multiple timesonto the interval [0,1℄ with Hilbert spa
e �lling 
urves. Ea
hsu

essive proje
tion improves the estimate of an example'soutlier s
ore in the full-dimensional spa
e. Their initial s
al-ing results are promising, and appear to be 
lose to linear,however they have reported results on only two syntheti
domains.In this paper, we show that the simplest type of algorithmbased on nested loops in 
onjun
tion with randomizationand a pruning rule gives state-of-the-art performan
e. Ta-ble 1 shows our variation of the nested loop algorithm inmore detail. The fun
tion distan
e 
omputes the distan
ebetween any two examples using, for example, Eu
lideandistan
e for 
ontinuous features and Hamming distan
e for



Table 1: A simple algorithm for �nding distan
e-based outliers. Lower
ase variables represent s
alar valuesand upper
ase variables represents sets.Pro
edure: Find OutliersInput: k, the number of nearest neighbors; n, the number of outliers to return; D, a set of examples inrandom order.Output: O, a set of outliers.Let maxdist(x, Y ) return the maximum distan
e between x and an example in Y .Let Closest(x, Y , k) return the k 
losest examples in Y to x.begin1. 
  0 // set the 
uto� for pruning to 02. O  ; // initialize to the empty set3. while B  get-next-blo
k(D) f // load a blo
k of examples from D4. Neighbors(b)  ; for all b in B5. for ea
h d in D f6. for ea
h b in B, b 6= d f7. if jNeighbors(b)j < k or distan
e(b,d) < maxdist(b,Neighbors(b)) f8. Neighbors(b)  Closest(b,Neighbors(b) [ d, k)9. if s
ore(Neighbors(b),b) < 
 f10. remove b from B11. g g g g12. O  Top(B [ O,n) // keep only the top n outliers13. 
  min(s
ore(o)) for all o in O // the 
uto� is the s
ore of the weakest outlier14. g15. return Oenddis
rete features. The s
ore fun
tion 
an be any monoton-i
ally de
reasing fun
tion of the nearest neighbor distan
essu
h as the distan
e to the kth nearest neighbor, or the av-erage distan
e to the k neighbors.The main idea in our nested loop algorithm is that for ea
hexample in D we keep tra
k of the 
losest neighbors foundso far. When an example's 
losest neighbors a
hieve a s
orelower than the 
uto� we remove the example be
ause it 
anno longer be an outlier. As we pro
ess more examples, the al-gorithm �nds more extreme outliers and the 
uto� in
reasesalong with pruning eÆ
ien
y.Note that we assume that the examples in the data set are inrandom order. The examples 
an be put into random orderin linear time and 
onstant main memory with a disk-basedalgorithm. One repeatedly shu�es the data set into randompiles and then 
on
atenates them in random order.In the worst 
ase, the performan
e of the algorithm is verypoor. Be
ause of the nested loops, it 
ould require O(N2)distan
e 
omputations and O(N=blo
ksize � N) data a
-
esses.
3. EXPERIMENTS ON SCALING PERFOR-

MANCEIn this se
tion, we examine the empiri
al performan
e ofthe simple algorithm on several large real data sets. Theprimary question we are interested in answering is \Howdoes the running time s
ale with the number of data pointsfor large data sets?" In addition, we are also interestedin understanding how the running time s
ales with k, thenumber of nearest neighbors.

To test our algorithm we sele
ted the �ve real and one syn-theti
 data sets summarized in Table 2. These data setsspan a range of problems and have very di�erent types offeatures. We des
ribe ea
h in more detail.� Corel Histogram. Ea
h example in this data set en-
odes the 
olor histogram of an image in a 
olle
tion ofphotographs. The histogram has 32 bins 
orrespond-ing to eight levels of hue and four levels of saturation.� Covertype. This data set represents the type of forest
overings for 30 � 30 meter 
ells in the Ro
ky Moun-tain region. For ea
h 
ell, the data 
ontains the 
overtype, whi
h is the dominant tree spe
ies, and addi-tional attributes su
h as elevation, slope, and soil type.� KDDCUP 1999. The KDDCUP data 
ontains a set ofre
ords that represent 
onne
tions to a military 
om-puter network where there have been multiple intru-sions by unauthorized users. The raw binary TCP datafrom the network has been pro
essed into features su
has the 
onne
tion duration, proto
ol type, number offailed logins, and so forth.� Census. This data set 
ontains the responses fromthe 1990 de
ennial Census in the United States. Thedata has information on both households and individ-uals. We divided the responses into two tables, onethat stores household re
ords and another that storesperson re
ords, and treated ea
h table as its own dataset. Both the Household and Person data sets havea variety of geographi
, e
onomi
, and demographi
variables. Our data 
omes from the 5% State publi
use mi
rodata samples and we used the short variable



list [20℄. In total, the 5% State sample 
ontains about5.5 million household and 12.5 million person re
ords.For our experiments we used a maximum of 5 millionre
ords for ea
h data set.� Normal 30D. This is a syntheti
 data set generatedfrom a 30-dimensional normal distribution 
entered onthe origin with a 
ovarian
e matrix equal to the iden-tity matrix.We obtained the data sets Corel Histogram, Covertype, andKDDCup 1999 from the UCI KDD Ar
hive [14℄ and the
ensus data from the IPUMS repository [20℄.Table 2: Des
ription of Data SetsData Set Features Continuous ExamplesCorel Histogram 32 32 68,040Covertype 55 10 581,012KDDCup 1999 42 34 4,898,430Household 1990 23 9 5,000,000Person 1990 55 20 5,000,000Normal 30D 30 30 1,000,000We pro
essed the data by normalizing all 
ontinuous vari-ables to the range [0,1℄ and 
onverting all 
ategori
al vari-ables to an integer representation. We then randomized theorder of examples in the data sets. Randomizing a �le 
anbe done in O(N) time and 
onstant main memory with adisk-based shu�ing algorithm as follows: Sequentially pro-
ess ea
h example in the data set by randomly pla
ing itinto one of n di�erent piles. Re
ombine the piles in randomorder and repeat this pro
ess a �xed number of times.We ran our experiments on a lightly loaded Pentium 4 
om-puter with a 1.5 GHz pro
essor and 1GB RAM runningLinux. We report the wall 
lo
k time, the time a user wouldhave to wait for the output, in order to measure both CPUand I/O time. The reported times do not in
lude the timeneeded for the initial randomization of the data set and rep-resent one trial. Preliminary experiments indi
ated that al-ternate randomizations did not have a major e�e
t on therunning time. To measure s
aling, we generated smallerdata sets by taking the �rst n samples of the randomizedset. Unless otherwise noted, we ran experiments to returnthe top 30 anomalies with k = 5, a blo
k size (jBj) of 1000examples, and we used the average distan
e to the nearestk neighbors as the s
ore fun
tion.Our implementation of the algorithm was written in C++and 
ompiled with g

 version 2.96 with the -O3 optimiza-tion 
ag. We a

essed examples in the data set sequentiallyusing standard iostream fun
tions and we did not writeany spe
ial routines to perform 
a
hing. The total memoryfootprint of the exe
uting program was typi
ally less than 3MB.Figure 1 shows the total time taken to mine outliers on thesix data sets as the number of examples varied. Note thatboth the x and y axes are in a logarithmi
 s
ale. Ea
h graphshows three lines. The bottom line represents the theoreti-
al time ne
essary to mine the data set given a linear algo-rithm based on the running time for N = 1000. The middle

line shows the a
tual running times of our system. Finally,the top line shows the theoreti
al time needed assuming aquadrati
 algorithm based on s
aling the running time forN = 1000.These results show that our simple algorithm gives extremelygood s
aling performan
e that is near linear time. The s
al-ing properties hold for data sets with both 
ontinuous anddis
rete features and the properties hold over several or-ders of magnitude of in
reasing data set size. The plot-ted points follow nearly straight lines on the log-log graphswhi
h means that the relationship between the y and x axisvariables is of the form y = axb or log y = log a + b log x,where a and b are 
onstants. Thus, the algorithm s
aleswith a polynomial 
omplexity with an exponent equal tothe slope of the line. Table 3 presents for ea
h data set theslope of a regression line �t to the points in Figure 1. Thealgorithm obtained a polynomial s
aling 
omplexity withexponent varying from 1.13 to 1.32.Table 3: Slope b of the regression �t relating log t =log a + b logN (or t = aNb) where t is the total time(CPU + I/O), N is the number of data points, anda is a 
onstant fa
tor.Data Set slopeCorel Histogram 1.13Covertype 1.25KDDCup 1999 1.13Household 1990 1.32Person 1990 1.16Normal 30D 1.15We also examined how the total running time s
ales withk, the number of neighbors and the results for Normal 30Dand Person (with N = 1; 000; 000) are shown in Figure 2. Inthese graphs, both the x and y axes are in a linear s
ale andthe measured times fall approximately on a straight line.This suggests that the running time s
ales linearly with k.
4. ANALYSIS OF SCALING TIMEIn this se
tion, we explain with an average 
ase analysiswhy randomization in 
onjun
tion with pruning performswell, espe
ially when mu
h of the past literature reportedthat nested loop designs were extremely slow be
ause of theO(N2) distan
e 
omputations. In parti
ular, both Knorrand Ng [16℄ and Ramaswamy et al. [19℄ implemented ver-sions of the nested loop algorithm and reported quadrati
performan
e. However, Knorr and Ng did not use pruningor randomization in their algorithm, and Ramaswamy et al.only in
orporated pruning.Consider the number of distan
e 
omputations needed topro
ess an example x. For now we assume that we are usingoutlier de�nition 2, rather than de�nition 3 whi
h we usedin our experiments, for ease of analysis. With this de�nitionan outlier is determined by the distan
e to its kth nearestneighbor. In order to pro
ess x we 
ompare it with examplesin the data set until we have either (1) found k neighborswithin the 
uto� distan
e d, in whi
h 
ase we eliminate it asit 
annot be an outlier, or (2) we have 
ompared it with allN examples in the data set and failed to �nd k neighborswithin distan
e d, in whi
h 
ase it is 
lassi�ed as an outlier.
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Figure 1: Total time (CPU and I/O) taken to mine outliers as N , the number of points, in
reases. The topand bottom lines represent the theoreti
al time taken by a quadrati
 and linear algorithm based on s
alingthe observed time at N = 1000.
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Figure 2: Total time (CPU and I/O) taken to mine outliers as k in
reases for the data sets Normal 30D andPerson (with N = 1; 000; 000).We 
an think of this problem as a set of independent Bernoullitrials where we keep drawing instan
es until we have foundk su

esses (k examples within distan
e d) or we have ex-hausted the data set. Let �(x) be the probability that arandomly drawn example lies within distan
e d of point x,let Y be a random variable representing the number of trialsuntil we have k su

esses, and let P (Y = y) be the probabil-ity of obtaining the kth su

ess on trial y. The probabilityP (Y = y) follows a negative binomial distribution:P (Y = y) =  y � 1k � 1!�(x)k(1� �(x))y�k (1)The number of expe
ted samples we need to draw to pro
essone example x is:E[Y ℄ = NXy=kP (Y = y) y +0�1� NXy=kP (Y = y)1AN (2)The �rst term is the expe
tation of 
on
luding a negativebinomial series within N trials. That is, as we are pro
ess-ing an example, we keep drawing more examples until wehave seen k that are within distan
e d, at whi
h point weeliminate it be
ause it 
annot be an outlier. The se
ondterm is the expe
ted 
ost of failing to 
on
lude the negativebinomial series within N trials, in whi
h 
ase we have ex-amined all N data points be
ause the example is an outlier(less than k su

esses in N trials).The expe
tation of a negative binomial series with an in�nitenumber of trials is,1Xy=k y � 1k � 1!�(x)k(1� �(x))y�k y = k�(x) (3)This is greater than the �rst term in Equation 2. CombiningEquations 2 and 3 yields,E[Y ℄ � k�(x) +0�1� NXy=kP (Y = y)1AN (4)

Surprisingly, the �rst term whi
h represents the number ofdistan
e 
omputations to eliminate non-outliers does not de-pend on N . The se
ond term, whi
h represents the expe
ted
ost of outliers (i.e, we must 
ompare with everything in thedatabase and then 
on
lude that nothing is 
lose) does de-pend on N, yielding an overall quadrati
 dependen
y to pro-
ess N examples in total. However, note that we typi
allyset the program parameters to return a small and possibly�xed number of outliers. Thus the �rst term dominates andwe obtain near linear performan
e.One assumption of this analysis is that the 
uto� distan
e is�xed. In pra
ti
e, the 
uto� distan
e varies during programexe
ution, and the �nal 
uto� required to return the top noutliers 
hanges with N . However, the relationship between
uto� value and per
entage of the data set pro
essed oftenstays the same for di�erent values of N . For example, Fig-ure 3 shows the plot of 
uto� value against the per
entageof the data set pro
essed for di�erent values of N .In general, we expe
t that if the �nal 
uto� distan
e in-
reases with larger N , then s
aling will be better as �(x) islarger and any randomly sele
ted example is more likely tobe a su

ess (neighbor). Conversely, if the 
uto� distan
ede
reases, the s
aling will be worse. In Figure 4 we plottedthe relationship between b, the empiri
al s
aling fa
tor, and
50K=
5K , the ratio of the �nal 
uto�s for N = 50000 andN = 5000 for the six data sets used in the previous se
-tion. We also plotted results for two additional data sets,Uniform 3D and Mixed 3D, whi
h we believed would berespe
tively extremely diÆ
ult and easy. Uniform 3D is athree-dimensional data set generated from a uniform distri-bution between [-0.5,0.5℄ on ea
h dimension. Mixed 3D isa mixture of the uniform data set (99%) 
ombined with aGaussian (1%) 
entered on the origin with 
ovarian
e matrixequal to the identity matrix.The results indi
ate that for many data sets the 
uto� ra-tio is near or greater than 1. The only data set with anextremely low 
uto� ratio was Uniform3D. The graph also
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al s
aling fa
tor b versus 
50K=
5K ,the ratio of 
uto� s
ores for N = 50; 000 and N =5; 000.Figure 5 shows the running time plot for Uniform 3D andMixed 3D. We expe
ted Uniform 3D to have extremely bads
aling performan
e be
ause it has no true outliers as theprobability density is 
onstant a
ross the entire spa
e. In-
reasing N simply in
reases the density of points and dropsthe 
uto� s
ore but does not reveal rare outliers. In 
ontrast,the results for Mixed3D were extremely good (b = 1:11). Inthis data set, as we in
rease N we �nd more extreme outliersfrom the Gaussian distribution and the 
uto� distan
e in-
reases, thus improving pruning eÆ
ien
y. Finally, we note

that data sets with a true uniform distribution are probablyrare in real domains.
5. OUTLIERS IN CENSUS DATAAlthough the use of distan
e-based outliers is well estab-lished, in this se
tion, we show results from the 
ensus datato give the readers a qualitative idea of the types of outliersfound when large data sets are mined. We also 
omparethe dis
overed outliers with examples 
agged as unusual byGritBot, a 
ommer
ial program from RuleQuest Resear
hthat was designed to �nd anomalies in data [21℄.As we have limited spa
e in this paper, we present onlysele
ted results. The full list of outliers on the Householdand Person data sets for both our algorithm and GritBotare available online1 and we en
ourage the readers to viewthis list dire
tly.We emphasize that we are not 
laiming that one set of resultsis better than another, but rather we feel these results showthat distan
e-based outlier dete
tion �nds unusual examplesof a qualitatively di�erent nature than GritBot.
5.1 Distance-Based OutliersWe report sele
ted results from running our outlier dete
tionalgorithm on the full set of 5 million examples to return thetop 30 outliers with k = 5.The top outlier in the household database is a single fam-ily living in San Diego with 5 married 
ouples, 5 mothers,and 6 fathers. In the 
ensus data, a family is de�ned as agroup of persons related by blood, adoption, or marriage.To be 
onsidered a mother or father, the person's 
hild or
hildren must be present in the household. The house hada reported value of $85K and was mortgaged. The total re-ported in
ome of the household was approximately $86K forthe previous year.Another outlier is a single-family rural farm household inFloren
e, South Carolina. The house is owned free and 
learby a married 
ouple with no 
hildren. This example is un-usual be
ause the value of the house is greater than $400K(not in
luding the land), and they reported a household in-
ome of over $550K.In the person data set one of the most extreme outliers wasa 90+ year old Bla
k Male with Italian an
estry who doesnot speak English, was enrolled in s
hool2, has a Do
toratedegree, is employed as a baker, reported $110K in
ome ofwhi
h $40K was from wages, $20K from business, $10K fromfarming, $15K from welfare, and $20K from investments, hasa disability whi
h limits but does not prevent work, was aveteran of the U.S. armed for
es, takes publi
 transporta-tion (ferry boat) to work, and immigrated to the U.S. 11-15years ago but moved into his 
urrent dwelling 21-30 yearsago. Clearly, there are in
onsisten
ies in this re
ord and webelieve that this re
ord represents an improperly 
ompletedform.1http://www.isle.org/�sbay/papers/kdd03/2Taking a 
ourse that a high s
hool or 
ollege would a

eptfor 
redit would 
ount under Census de�nitions.
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Figure 5: Total time (CPU and I/O) taken to mine outliers on the data sets Uniform 3D (b = 1:76) and Mixed3D (b = 1:11).A se
ond outlier was a 46 year old, White, widowed femaleliving with 9 family members, two of whi
h are her own 
hil-dren. She has a disability that limits but does not preventher work as a bookkeeper or a

ounting 
lerk in the theaterand motion pi
ture industry. She takes publi
 transporta-tion to work (bus or trolley) and it takes her longer than 99minutes to go from home to work.A third outlier was a 19 year old, White, female with Asianan
estry and Mexi
an Hispani
 origin with a disability thatlimits but does not prevent work. She earned $123K inbusiness in
ome, and $38K in retirement in
ome (whi
h mayin
lude payments for disabilities), and is also enrolled ins
hool.
5.2 GritBotGritBot �nds re
ords that have a surprising value on oneattribute given the values of other attributes. For example,an outlier GritBot found on the Person data set was
ase 481942:ra
ed = White (31831 
ases, 98.94% `Bla
k')an
est1d = Afri
an Ameri
anlanguagd = EnglishThis means that 98.94% of people who have Afri
an Amer-i
an an
estry and who speak English, listed their ra
e asBla
k. Case 481942 is unusual be
ause the ra
e listed wasWhite.We were not able to run GritBot on the household and per-son data sets with �ve million examples be
ause of memorylimitations. GritBot's requirements ex
eeded the availablemain memory as it loaded the entire data set and then allo-
ated additional memory during program exe
ution. How-ever, we were able to run GritBot on smaller data sets, andspe
i�
ally, we ran GritBot using the default settings onapproximately one million household re
ords and one half

million person re
ords.Sin
e GritBot and our algorithm 
ompute two di�erent setsof outliers, pre
ise 
omparisons of their running times arenot very meaningful. However, to give the reader a roughidea of their performan
e, GritBot took approximately 70minutes to pro
ess one million household re
ords and 170minutes to pro
ess one half million person re
ords on a 600MHz MIPS R14000 with 4 GB of memory. In 
omparison,our algorithm took 87 and 18 minutes respe
tively to pro
esssimilar amounts of data on a 1.5 GHz Pentium 4 with 1 GBof memory.3In 
ontrast to the results from distan
e-based outliers, Grit-Bot found qualitatively di�erent outliers. For example, onthe household data GritBot found a total of 266 anomalies.These anomalies 
ould be divided into roughly three groups:� 228 re
ords for whi
h the household was listed as \Ru-ral" although another �eld indi
ated that the house-hold was urban (e.g., metro = In metro area { Central
ity or 
itypop > 100000)� 28 re
ords for whi
h the household was listed as \Ur-ban" although another �eld indi
ated that the house-hold was rural.� 10 re
ords with a total family in
ome (ftotin
) greaterthan the household in
ome (hhin
ome). By de�nitionthe household in
ome should be greater than or equalto the family in
ome.On the person data set, GritBot found a total of 1407 anoma-lies. Unlike the household data, we 
ould not pla
e the ex-amples into neat 
ategories, but as before GritBot foundre
ords with unusual 
ombinations of attributes whi
h in-
luded3The data sets were not exa
tly identi
al as they 
ontaineddi�erent samples of Census re
ords.



� people with unusual 
ombinations of an
estry, His-pani
 origin, and ra
e. For example, GritBot foundre
ords for people who are White and Afri
an-Ameri
an,Bla
k and Italian, Bla
k and Swedish, Bla
k and Ger-man, Bla
k and Polish, Hispani
 and S
ot
h-Irish.� people who live in the same house where they lived 5years ago, but also 
laimed to live in a di�erent 
ountry�ve years ago.� people who don't work, but have a pla
e of work.� a person whose an
estry is Mexi
an, but the languagespoken at home is Chinese.� a 16 year old person who last worked more than 10years ago.� a 75 year old female veteran.In general, GritBot tended to �nd examples in whi
h a smallnumber of attributes made the example unusual. This is notsurprising as by default GritBot is set to examine four orless 
onditions. However, GritBot often did not use all four
onditions and many outliers had only one or two terms.
6. LIMITATIONS AND FUTURE WORKThe main goal of our experimental study was to show thatour algorithm 
ould s
ale to very large data sets. We showedthat on large, real, high-dimensional data sets the algorithmhad near linear s
aling performan
e. However, the algorithmdepends on a number of assumptions, violations of whi
h 
anlead to poor performan
e.First, our algorithm assumes that the data is in randomorder. If the data is not in random order and is sorted thenthe performan
e 
an be poor. For example, the Census dataas retrieved from the IPUMS repository [20℄ 
ame with theexamples sorted by state. This 
an 
ause problems whenour algorithm 
onsiders a person from Wyoming. It will tryto eliminate it by �nding the k nearest neighbors who arealso likely to be fromWyoming. To �nd these neighbors, thealgorithm will �rst s
an all examples from states Alabama toWis
onsin given the sequential manner in whi
h it a

essesthe data.Se
ond, our algorithm depends on the independen
e of ex-amples. If examples are dependent in su
h a way that theyhave similar values (and will likely be in the set of k near-est neighbors) this 
an 
ause performan
e to be poor as thealgorithm may have to s
an the entire data set to �nd thedependent examples.An extreme version of this problem 
an o

ur when the dataset originates from a 
attened relational database For exam-ple, if there are two tables X and Y , with ea
h example inX pointing to several di�erent obje
ts in Y , our 
atteneddatabase will have examples with form (X1; Y1), (X1; Y2),(X1; Y3), (X2; Y4), : : : and so forth. As it is likely that the
losest neighbors of (X1; Y1) will be the examples (X1; Y2)and (X1; Y3) our algorithm may have to s
an the entire dataset until it �nds them to obtain a low s
ore.

However, our algorithm may still perform a

eptably ondata sets with less severe violations. For example, the exam-ples in the Person data set are not 
ompletely independentas they are tied together by a 
ommon household.4 How-ever, the performan
e on this data set (b = 1:16) was stillvery good.The third situation when our algorithm 
an perform poorlyo

urs when the data does not 
ontain outliers. For exam-ple, our experiment with the examples drawn from a uniformdistribution had very poor s
aling. However, we believe datasets of this type are likely to be rare as most physi
al quan-tities one 
an measure have distributions with tails.We are interested in extending our work in this paper inseveral ways. First, we are interested in speeding up thealgorithm even further. In Se
tion 4 we showed that thes
aling performan
e depended on how the 
uto� 
hangesas we pro
ess in
reasingly larger data sets. The algorithmstarts with a 
uto� threshold of zero whi
h in
reases as bet-ter outliers are found. One modi�
ation is to start the al-gorithm with a pre-de�ned 
uto� threshold below whi
h wewould 
onsider any example to be uninteresting. In prelim-inary experiments, a good initial guess 
ould 
ut time toa third. There may also be automati
 ways to get a good
uto� early. For example, we 
ould �rst pro
ess the exam-ples with a small data set to get an idea of the examplesthat are most unusual. We then pla
e these examples at thebeginning of the data �le.Another pressing limitation is that our work has only ad-dressed �nding outliers in the data sets that 
an be repre-sented with a ve
tor spa
e or equivalently a single table in adatabase. Many real data sour
es will be in the form of re-lational databases with multiple tables that relate di�erenttypes of information to ea
h other.To address relational data, the simplest solution is to 
at-ten the database with join operators to form a single table.While this is a 
onvenient solution it loses mu
h of the infor-mation available. For instan
e, a 
attened database 
annoteasily represent households that have a variable number ofindividuals. We also found that 
attening a database 
ould
reate dependen
ies between examples and, as we explainedabove, this 
an redu
e the e�e
tiveness of randomizationand pruning.We are 
urrently investigating how we 
an extend our al-gorithm to handle relational data natively. There are tworesear
h questions that arise. First, how does one de�ne adistan
e metri
 to 
ompare obje
ts whi
h may have a vari-able number of linked obje
ts? There has been some workon de�ning metri
s for relational data [6, 9, 15℄. The 
entralidea is to apply a re
ursive distan
e measure. That is, to
ompare two obje
ts one starts by 
omparing their featuresdire
tly, and then moves on to 
ompare linked obje
ts andso on. Se
ond, how does one eÆ
iently retrieve an obje
tand its related obje
ts to 
ompare them in the 
ontext ofsear
hing for outliers? Retrieving related obje
ts may in-4The Census mi
rodata is based on 
luster samples, i.e., thesamples are made of households or dwellings from whi
hthere may be multiple individuals. Individuals from thesame household are not independent.



volve extra
ting re
ords in a non-sequential order and this
an greatly slow database a

ess.Finally, there are many pra
ti
al issues with algorithms formining distan
e-based outliers that we did not investigatesu
h as determining how to set algorithm parameters su
has k, the blo
k size, the distan
e measure, and the s
orefun
tion. Ea
h of these parameters 
an have a large e�e
t onthe dis
overed outliers (or running time for the blo
k size).In supervised 
lassi�
ation tasks one 
an set these param-eters to maximize predi
tive performan
e by using a holdout set or 
ross-validation to estimate out of sample perfor-man
e. However, outlier dete
tion is unsupervised and nosu
h training signal exists.
7. CONCLUSIONSIn our work applying outlier dete
tion algorithms to large,real databases a major limitation has been s
aling the al-gorithms to handle the volume of data. In this paper, weaddressed the s
aling problem with an algorithm based onrandomization and pruning whi
h �nds outliers on manyreal data sets in near linear time. This eÆ
ient s
aling al-lowed us to mine data sets with millions of examples andmany features.
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