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Foreward 
 
The NASA Conference on Intelligent Data Understanding is applications-oriented, with a focus on Earth 

Sciences, Space Sciences, and Aerospace and Engineering Systems Applications.  The conference 

originated nearly five years ago as a small workshop in Cleveland Ohio with about 25 participants.  Since 

then, it has grown into an important venue for the dissemination of algorithms, data, and results in a 

cross-disciplinary setting.    

 

One of the key issues that CIDU focuses on is the interdisciplinary nature of data mining and machine 

learning and the ubiquitous need for understanding the data that are generated by the myriad of sensors, 

models, and simulations at society’s disposal.  While the design and implementation of learning and 

analytical algorithms is crucial for data summarization, the future of the field lies in the ability to extract 

useful and actionable understandings from these massive data sets.  As such, the conference focuses on 

scalability, understanding, modeling and analysis of data, visualization, and novel algorithms appropriate 

for large heterogeneous data sets. 

 

CIDU 2010 brings together top researchers and practitioners in the field of data mining focusing on 

research and development activities in the Earth Sciences, Space Sciences, and Aerospace and 

Engineering Systems. The conference features invited speakers, poster sessions, oral paper presentations, 

and networking opportunities for interested researchers and students 

 

The proceedings of CIDU 2010 are by NASA and archived in the NASA Center for Aerospace 

Information and will be indexed by DBLP. Selected papers will be published in the journal Statistical 

Analysis and Data Mining.  CIDU 2010 is sponsored by the NASA Aviation Safety Program and the 

NASA Applied Information Systems Program. 

 

        Ashok N. Srivastava, NASA Ames Research Center 

        Nitesh Chawla, University of Notre Dame 

        Philip S. Yu, University of Illinois at Chicago 
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CIDU 2010 Core Topics 
 

Earth Science Applications 

 Climate data sciences 

 GIS 

 Geospatial intelligence 

 Spatio-temporal data mining 

 Visual analytics for earth science data 

 High performance computing applications 

 Evaluation/validation techniques 

 Data mining success stories 

Space Science Applications 

 On-board and real-time machine learning 

 Decision making under uncertainty 

 Constraint-driven data mining and machine learning 

 Event mining and robotic telescopes 

 Unsupervised and supervised learning in astrophysics 

 Highly scalable algorithms 

 Risk management in space missions 

 Classification in large sky surveys 

 Data mining success stories 

Aerospace and Engineering Systems 

 Related government engineering applications (DOE, DOD, others) 

 Systems health applications 

 Anomaly detection, diagnostics, and prognostics from large data sets 

 Text mining in aerospace information systems 

 Data driven reliability modeling 

 Adaptive system monitoring 

 System model identification Large data set challenges 

 Exploratory mining of aerospace data 

 Privacy and security issues in aerospace data 

 Statistical process control using very large datasets 

 Data mining success stories 

Data Mining Methodologies for Earth Sciences, Space Sciences and Aerospace Applications 

 Clustering 

 Classification 

 Regression 

 Anomaly detection 

 Time series analysis 

 Semi-supervised learning 

 Mining imbalanced data 

 Cost-sensitive classification 

 Mining non-stationary distributions 

 Ensemble methods 

 High performance, parallel and distributed data mining 

 Text mining 
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TRACKING CLIMATE MODELS

CLAIRE MONTELEONI*, GAVIN SCHMIDT**, AND SHAILESH SAROHA***

Abstract. Climate models are complex mathematical models designed by meteorologists, geo-
physicists, and climate scientists to simulate and predict climate. Given temperature predictions
from the top 20 climate models worldwide, and over 100 years of historical temperature data, we
track the changing sequence of which model currently predicts best. We use an algorithm due to
Monteleoni and Jaakkola that models the sequence of observations using a hierarchical learner,
based on a set of generalized Hidden Markov Models (HMM), where the identity of the current
best climate model is the hidden variable. The transition probabilities between climate models
are learned online, simultaneous to tracking the temperature predictions. On historical data, our
online learning algorithm’s average prediction loss nearly matches that of the best performing
climate model in hindsight. Moreover its performance surpasses that of the average model predic-
tion, which was the current state-of-the-art in climate science, the median prediction, and least
squares linear regression. We also experimented on climate model predictions through the year
2098. Simulating labels with the predictions of any one climate model, we found significantly im-
proved performance using our online learning algorithm with respect to the other climate models,
and techniques.

1. Introduction

The threat of climate change is one of the greatest challenges currently facing society. With
the increased threats of global warming, and the increasing severity of storms and natural disasters,
improving our understanding of the climate system has become an international priority. This system
is characterized by complex and structured phenomena that are imperfectly observed and even more
imperfectly simulated. A fundamental tool used in understanding and predicting climate is the use of
climate models, large-scale mathematical models run as computer simulations. Geophysical experts,
including climate scientists and meteorologists, encode their knowledge of a myriad of processes into
highly complex mathematical models. One climate model will include the modeling of such processes
as sea-ice melting, cloud formation as a function of increased pollution in the atmosphere, and the
creation, depletion and transport of many atmospheric gases. These are just a few of the processes
modeled in one model; each climate model is a highly complex system.

In recent years, the magnitude of data and climate model output is beginning to dwarf the rela-
tively simplistic tools and ideas that have been developed to analyze them. In this work, we demon-
strate the advantage of a machine learning approach, over the state-of-the-art in climate science, for
combining the predictions of multiple climate models. In addition to our specific contributions, we
encourage the broader study of climate informatics, collaborations between climate scientists and
machine learning researchers in order to bridge this gap between data and understanding.

The global effort on climate modeling started in the 1970s, and the models have evolved over
time, becoming extremely complex. There are currently about 20 laboratories across the world
whose climate models inform the Intergovernmental Panel on Climate Change (IPCC), a panel
established by the United Nations in 1988, that was recognized for its work on climate change with
the 2007 Nobel Peace Prize (shared with former US Vice President Al Gore). Work done to improve
the utilization of global climate model predictions would be very significant to the next IPCC report.

*Center for Computational Learning Systems, Columbia University, cmontel@ccls.columbia.edu.
**Center for Climate Systems Research, Columbia University, and NASA Goddard Institute for Space Studies,
gschmidt@giss.nasa.gov.
***Department of Computer Science, Columbia University, shaileshsaroha@gmail.com.
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Currently there is very high variance among the predictions of these 20 models. This may stem
from a variety of reasons. Each was designed from first principles by a different team of scientists,
and thus the models differ in many discretization assumptions, as well as in some of the science
informing each process modeled. It was observed however, that while the variance is high, the
average prediction over all the models is a more consistent predictor (over multiple quantities, such
as global mean temperature, performance metrics, and time periods), than any one model [32, 33].

Our contribution is an application of a machine learning algorithm that produces predictions that
match or surpass that of the best model for the entire sequence. We use online learning algorithms
with the eventual goal of making both real-time and future predictions. Moreover, our experimental
evaluations reveal that, given the non-stationary nature of the observations, and the relatively short
history of model prediction data, a batch approach has performance disadvantages. Our algorithm
achieves lower mean prediction loss than that of several other methods, including prediction with
the average over model predictions. This is an impactful result because to date, the average of all
models’ predictions was believed to be the best single predictor of the whole sequence [32, 33].

Related work in Machine Learning and Data Mining. There are a few other applications
of machine learning and data mining to climate science. Data mining has been applied to such
problems as mining atmospheric aerosol data sets [31, 30], analyzing the impacts of climate change
[20], and calibrating a climate model [6]. Clustering techniques have been developed to model
climate data [38]. Machine learning has been applied to predicting the El Niño climate pattern [21],
and modeling climate data [39]. In another work, machine learning and data mining researchers
proposed the use of data-driven climate models [23]. There has also been work on integrating neural
networks into global climate models [19, 18].

We are not aware of applications, beyond our own, of machine learning to the problem of tracking
global climate models. Our work builds on our preliminary results which have been workshopped
with colleagues in both machine learning and climate science [26, 27, 28]. We apply the Learn-α
algorithm of Monteleoni and Jaakkola [25] to track a shifting sequence of temperature values with
respect to the predictions of “experts,” which we instantiate in this case with climate models. That
work extends the literature on algorithms to track a sequence of observations with respect to the
predictions of a set of experts, due to Herbster and Warmuth [15], and others.

2. The problem of tracking climate models

2.1. Climate models. A fundamental tool used in predicting climate is the use of large-scale
physics-based models of the global atmosphere/ocean/cryosphere system. As illustrated in Figure 1,
these General Circulation Models (GCMs) simulate the basic processes seen in observations, such
as cloud formation, rainfall, wind, ocean currents, radiative transfer through the atmosphere etc.,
and have emergent properties, such as the sensitivity of climate to increasing greenhouse gases, that
are important to making any climate forecasts [36]. It is important to note that unlike the use of
the term model in machine learning, here we denote systems of mathematical models, that are not
data-driven. These complex systems are composed of individual mathematical models of each of
the processes mentioned, among others. The models are based on scientific first principles from the
fields of Meteorology, Oceanography, and Geophysics, among others.

There are a number of challenges in using these models. First, the simulated climate in each
model has biases when compared to real world observations. Second, the internal variability seen in
these models (more colloquially, the “weather”) is not synchronized to the weather in the real world
(these models are quite different from the models used for numerical weather prediction on multi-day
time scales), and indeed can be shown to have a sensitive dependence to initial conditions (i.e. it is
chaotic). Third, each of the models has a different sensitivity to external drivers of climate (such
as human-caused increases in greenhouse gases and aerosols, large volcanic eruptions, solar activity
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Figure 1. Global climate model (schematic due to [1]).

etc.), which is wide enough to significantly affect future projections.1 Fourth, while robust responses
of the modeled climate can be derived from imposing these external drivers of climate, knowledge
of those drivers in the past can be uncertain. Thus evaluating the quality of multi-decadal climate
projections is fraught with uncertainty.

Any simulation of these models is made up of two elements, the externally forced “climate” signal
and the stochastic “internal climate variability.” The former can be estimated quite effectively by
generating multiple simulations from one individual model, where each simulation has an indepen-
dent and uncorrelated realization of the internal variability. The real world can be considered as
a single realization of its internal variability along with an (uncertain) signal caused by external
climate drivers mentioned above. Thus, detection of a climate change and its attribution to any
particular cause needs to incorporate the uncertainties in both the expected signal and the internal
variability [35].

For projections of future climate, there are three separate components to the uncertainty [14].
First is the scenario uncertainty: the fact that we do not have future knowledge of technological,
sociological or economic trends that will control greenhouse gas and other emissions in the future.
Given the inertia of the economic system, this uncertainty is small for the next couple of decades,
but grows larger through time. The second component of the uncertainty is associated with internal
variations of the climate system that are not related to any direct impact of greenhouse gases etc.
Such variability is difficult to coordinate between the models and the real world, and the degree to
which it is predictable is as yet unclear. This component is large for short time periods but becomes
less important as the externally driven signal increases.

1In climate science terminology, a climate model projection denotes a simulation for the future given a particular
scenario for how the external drivers of climate will behave. It differs from a prediction in that a) the scenario might
not be realized, and b) only the component of the climate that is caused by these external drivers can be predicted
while the internal variability cannot be. Thus projections are not statements about what will happen, but about what
might happen. However we will also use the term prediction interchangeably.
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The third component, and the one that this paper focuses on, is the uncertainty associated with
the models themselves. The relative importance of this is at its maximum between roughly 20 and
50 years into the future (long enough ahead so that the expected signal is stronger than the internal
variability, but before the uncertainty in the scenarios becomes dominant). The source of model
uncertainties might be incorrect or incomplete physics in the models, or systematic issues that arise
in the discretization of the model grids.

There are currently around 20 groups around the world that develop such models and which
contribute to the standardized archives that have been developed and made available to outside
researchers. The Coupled Model Intercomparison Project version 3 (CMIP3) archive was initially
developed to support the IPCC 4th Assessment Report (published in 2007) [37], but has subsequently
been used in over 500 publications and continues to be a rich source of climate simulation output.

2.2. Related work in Climate Science. The model projections for many aspects of climate
change are robust for some quantities (regional temperature trends for instance), but vary signifi-
cantly across different models for other equally important metrics (such as regional precipitation).
Given those uncertainties, climate researchers have looked for simple ways to judge model skill so
that projections can be restricted (or weighted towards) models with more skill [16, 17, 35]. Any
attempt at model ranking or weighting must include justification that the choices are meaningful for
the specific context. One approach is to make a “perfect model” assumption (i.e. that one model is
the “truth”) and then track whether a methodology trained on the “true” model over a calibration
interval can continue to skillfully track that simulation in the forecast period. Work on this prob-
lem and related discussions was recently the subject of an IPCC Expert Meeting on Assessing and
Combining Multi-Model Climate Projections, where we presented our preliminary results [27].

A number of studies have looked at how the multi-model ensemble can be used to enhance
information over and above the information available from just one model. For instance, the simple
average of the models’ output gives a better estimate of the real world than any single model [32, 33].
This is surprising because the models are not a random selection from a space of all possible climate
models, but rather an interdependent ensemble. Indeed, the reduction in root mean square errors
plateaus after about 10 models are included in the average and does not follow the 1/

√
n path one

would expect for truly random errors. This behaviour can be expected if the individual models are
statistically indistinguishable from the “truth,” rather than an independent estimate of the truth
plus some error [4]. Finally, more sophisticated ensemble methods are being explored, for instance
in the case of regional climate models (see e.g. [34] and references therein).

2.3. Tracking climate models. Given the current assumption that the multi-model mean is the
best estimate of climatology, it has often been implicitly assumed that the multi-model ensemble
mean is also the best projection for the future. However, while this has not been demonstrated
in either practice or theory, it has nonetheless become the default strategy adopted by IPCC and
other authors. Other approaches have been tried (using skill measures to create weights among
the models, creating emulators from the model output that map observables to projections), but
rigorous support for these approaches, or even a demonstration that they make much difference, has
so far been patchy.

In this work, we use machine learning on hindcasts from the CMIP3 archive and over 100 years of
observed global mean temperature anomalies, to demonstrate an algorithm that tracks the changing
sequence of which model currently predicts best. A hindcast is a model simulation of a past period
for which we have a good idea how the external drivers changed; it is not a replication of the
specific weather that occurred. Our algorithm attains lower mean prediction loss than predicting
with the average over model predictions. This is an impactful result because to date, the average of
all models’ predictions was believed to be the best single predictor of the whole sequence [32, 33].
We also demonstrate the utility of the algorithm when trained on future climate model projections,
using any one model’s predictions to simulate the observations.
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Figure 2. Top figure: a. The Learn-α algorithm of [25]. The α-experts are Fixed-
Share(α) algorithms from [15]. Bottom figure: b. The generalized Hidden Markov
Model corresponding to the algorithms of [15].

3. Algorithms

We apply the Learn-α algorithm of Monteleoni and Jaakkola [25] to track a shifting sequence of
temperature values with respect to the predictions of “experts,” instantiated as climate models. This
is an online learning algorithm, which is useful in this setting because the eventual goal is to make
both real-time and future predictions. A large class of online learning algorithms have been designed
for the framework in which no statistical assumptions are made about the sequence of observations,
and algorithms are evaluated based on regret: relative prediction loss with respect to the hindsight-
optimal algorithm in a comparator class (e.g. [22, 15]; there is a large literature, see [8] for a thorough
treatment). Many such algorithms, designed for predicting in non-stationary environments, descend
from variants of an algorithm due to Herbster and Warmuth [15], which is a form of multiplicative
update algorithm. Their Fixed-Share algorithm tracks a sequence of observations with respect to a
set of n experts’ predictions, by updating a probability distribution pt(i) over experts, i, based on
their current performance, and making predictions as a function of the experts’ predictions, subject
to this distribution. The authors proved performance guarantees for this algorithm with respect to
the best k-segmentation of a finite sequence of observations into k variable-length segments, and
assignment of the best expert per segment.

As illustrated in [25], this class of algorithms can be derived as Bayesian updates of an appropri-
ately defined Hidden Markov Model (HMM), where the current best expert is the hidden variable.
(Despite the Bayesian re-derivation, the regret analyses require no assumptions on the observations.)
As shown in Figure 2b, equating the prediction loss function (for the given problem) to the negative
log-likelihood of the observation given the expert, yields a (generalized) HMM, for which Bayesian
updates correspond to the weight updates in the Fixed-Share algorithm, when the transition matrix

5
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Algorithm Learn-α for Tracking Climate Models
Input:

Set of climate models, Mi, i ∈ {1, · · · , n} that output predictions Mi(t) at each time t.
Set of αj ∈ [0, 1], j ∈ {1, · · · , m}: discretization of α parameter.

Initialization:
∀j, p1(j)← 1

m∀i, j, p1,j(i)← 1
n

Upon tth data observation, yt:
For each i ∈ {1 . . . n}:

Loss[i] ← (yt −Mi(t))2

For each j ∈ {1 . . . m}:
LossPerAlpha[j] ← − log

∑n
i=1 pt,j(i) e−Loss[i]

pt+1(j)← pt(j)e−LossPerAlpha[j]

For each i ∈ {1 . . . n}:
pt+1,j(i)←

∑n
k=1 pt,j(k) e−Loss[k] P (i|k;αj)

Normalize Pt+1,j

PredictionPerAlpha[j] ←∑n
i=1 pt+1,j(i) Mi(t + 1)

Normalize Pt+1

Prediction ←∑m
j=1 pt+1(j) PredictionPerAlpha[j]

Figure 3. Algorithm Learn-α, due to [25], applied to tracking climate models.

is simply (1−α) for self-transitions, and α/(n−1) for transitions to any of the other (n−1) experts.
The parameter α ∈ [0, 1] models how likely switches are to occur between best experts.

In [25, 29] it was shown theoretically and empirically that the wrong setting of α for the sequence
in question can lead to poor performance. The authors derived upper and lower regret bounds (with
respect to Fixed-Share using the hindsight-optimal α) for this class of online learning algorithms.
They provided an algorithm, Learn-α, that learns this parameter online, simultaneous to performing
the original learning task, and showed that it avoids the lower bound and yields better performance
guarantees: regret is logarithmic, as opposed to linear, in the number of predictions. Learn-α uses a
hierarchical model shown in Figure 2a, with a set of meta-experts: sub-algorithms that are instances
of Fixed-Share. Each sub-algorithm of Learn-α runs Fixed-Share(αj), where αj , j ∈ {1, · · · , m},
forms a discretization of the α parameter. At the top of the hierarchy, the algorithm learns the
parameter α, by tracking the meta-experts. In order to learn the best fixed value of α, a similar
model is used, with self-transition probabilities of 1.

Figure 3 shows our application of the algorithm Learn-α to the problem of tracking climate
models. The experts are instantiated as the climate models; each model produces one prediction per
unit of time, and we denote the true observation at time t, by yt. The algorithm is modular with
respect to loss function; we chose squared loss since it is a simple loss, useful in regression problems.

Regret-optimal parameter discretization. We use a discretization procedure for the pareme-
ter α given in [25] which optimizes the regret bound. The input to the procedure is T , the desired
number of iterations of online learning. Since the regret-optimal discretization is a function of T ,
we use a different set of α values for past data than for model prediction data that starts in the
past and continues into the future. Recent work has further studied the issues of discretizing an
analogous parameter for similar algorithms [13].

4. Data and Experiments

4.1. Data. We ran experiments with our application of the Learn-α algorithm on historical temper-
ature data from 1900 through 2008 as well as the corresponding predictions of 20 different climate
models, per year. It is important to emphasize that climate models are not data-driven models

6

2010 Conference on Intelligent Data Understanding



�� �� �� �� �� �� 	� 
� �� ���
��

��



��
�

��
�

��
�

�

�
�

�
�

�
�

�



�

�����������������������
�

�
��
��

���
��

��
��
�
��

��
��
��
��
��

�
��
��
�

� �!"�����#��$����%�&
� �!"���&#��'%���(�����&�!������%��������&���

�� �� �� �� ��� ��� ��� ��� ���
��

�

�

�

	

�




��
����������������������

�
��
��
��


��
��
��


��
��
��
��
��
��


��
��
��
��
��


��
��


��
��
��
��
��
��
��
��
�

Figure 4. Top figure: a. Observations and model predictions through 2008. Bot-
tom figure: b. Model predictions through 2098. The black vertical line separates
past from future.

but rather complex mathematical models based on geophysical and meteorological principles. In
particular they are not “trained” on data as is done with machine learning models. Therefore it is
valid to run them predictively on past data.

Both the climate model predictions, and the true observations, are in the form of global mean
temperature anomalies. (The model predictions are from the CMIP3 archive [2], and the temperature
anomalies are available from NASA [3].) A temperature anomaly is defined as the difference between
the observed temperature and the temperature at the same location at a fixed, benchmark time.
Anomalies are therefore measurements of change in temperature. When studying global mean
temperature, it is useful to use anomalies, because, while temperatures vary widely over geographical
location, temperature anomalies typically vary less. For example, at a particular time it might be
80◦F in New York, and 70◦F in San Diego, but the anomaly from the benchmark time might be 1◦F
in both places. Thus there is lower variance when temperatures anomalies are averaged over many
geographic locations, than when using temperatures. The data we use has been averaged over many
geographical locations, and many times in a year, yielding one value for global mean temperature
anomaly per year. (In this case the benchmark is averaged over 1951-80; one can convert between
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benchmark eras by subtracting a constant.) Figure 4 shows the model predictions, where the thick
red line is the mean prediction over all models, in both plots. The thick blue line indicates the true
observations.

We also ran experiments using climate model projections into the 21st century, as we had model
predictions through 2098. In this case, we used any one model’s predictions as the quantity to
learn, based only on the predictions of the remaining 19 models. The motivation for the future
simulation experiments are as follows. Future climates are of interest, yet there is no observation
data in the future, with which to evaluate machine learning algorithms. Furthermore, given the
significant fan-out that occurs among model predictions starting after 2009 and increasing into the
future (see Figure 4b), it may no longer make sense to predict with the mean prediction; that is, the
average prediction diverges over time from most individual model predictions. However, we do want
to be able to harness the predictions of the climate models in forming our future predictions. Given
these reasons, and the climate science community’s interest in the “perfect model” assumption, we
evaluated algorithms on predicting the labels generated by one climate model, using the remaining
models as input.

Further data details. While some models produced predictions slightly earlier than 1900, this
was not the case with all models. The earliest year at which we had predictions from all 20 models
was 1900. Some climate models have only one simulation run available in the data, while others have
up to 7. We obtained similar results to those we report below by training on the average over runs
of each model, however climate scientists do not view that scenario as an actual simulation. Thus
we arbitrarily picked one run per model, for each of the 20 models, as input to all the algorithms.

The climate models contributing to the CMIP3 archive include those from the following labo-
ratories: Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth Scientific
and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics Laboratory (Prince-
ton University), Goddard Institute for Spaces Studies (NASA), Hadley Centre for Climate Change
(United Kingdom Meteorology Office), Institute of Atmospheric Physics (Chinese Academy of Sci-
ences), Istituto Nazionale di Geofisica e Vulcanologia (Italy), Institute of Numerical Mathematics
Climate Model (Russian Academy of Sciences), Model for Interdisciplinary Research on Climate
(Japan), Meteorological Institute at the University of Bonn (Germany), Max Planck Institute (Ger-
many), Meteorological Research Institute (Japan), National Center for Atmospheric Research (Col-
orado), among others.

4.2. Experiments and results. In addition to Learn-α, we also experimented with the following
algorithms: simply predicting with the mean prediction over the experts, doing so with the median
prediction, and performing batch linear regression (least squares) on all the data seen so far. The
regression problem is framed by considering the vector of expert predictions at a given year as the
example, and the true observation for that year as the label. Batch linear regression has access to
the entire past history of examples and labels.

The four future simulations reported use labels from 1) giss model e r run4, 2) mri cgcm2 3
2a run5, 3) ncar ccsm3 0 run9, 4) cnrm cm3 run1. The labeling runs for the future simulations
were chosen (over all runs of all models) to represent the range in past performance with respect to
average prediction loss. 1) is the best performing model, 4) is the worst, 3) attains the median, and
2) performs between 1) and 3), at the median of that range. For each simulation, the remaining 19
climate models’ predictions are used as input.

In Table 1, we compare mean loss on real-time predictions, i.e. predictions per year, of the
algorithms. This is a standard evaluation technique for online learning algorithms. Several of the
algorithms are online, including Learn-α and the techniques of simply forming predictions as either
the mean or the median of the climate models’ predictions. (For the future simulations, the annual
mean and median predictions are computed over the 19 climate models used as input.) Least
squares linear regression operates in a batch setting, and cannot even compute a prediction unless
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Algorithm: Historical Future Sim. 1 Future Sim. 2 Future Sim. 3 Future Sim. 4
Learn-α Algorithm 0.0119 0.0085 0.0125 0.0252 0.0401

σ = 0.0002 σ = 0.0001 σ = 0.0004 σ = 0.0010 σ = 0.0024

Linear Regression* 0.0158 0.0051 0.0144 0.0264 0.0498
σ = 0.0005 σ = 0.0001 σ = 0.0004 σ = 0.0125 σ = 0.0054

Best Expert 0.0112 0.0115 0.0286 0.0301 0.0559
σ = 0.0002 σ = 0.0002 σ = 0.0014 σ = 0.0018 σ = 0.0053

Average Prediction 0.0132 0.0700 0.0306 0.0623 0.0497
σ = 0.0003 σ = 0.0110 σ = 0.0016 σ = 0.0055 σ = 0.0036

Median Prediction 0.0136 0.0689 0.0308 0.0677 0.0527
σ = 0.0003 σ = 0.0111 σ = 0.0017 σ = 0.0070 σ = 0.0038

Worst Expert 0.0726 1.0153 0.8109 0.3958 0.5004
σ = 0.0068 σ = 2.3587 σ = 1.4109 σ = 0.5612 σ = 0.5988

Table 1. Mean and variance of annual losses. The best score per experiment is
highlighted. *Linear Regression cannot form predictions for the first 20 years (19
in the future simulations), so its mean is over fewer years than all the other algo-
rithms.

the number of examples it trains on is at least the dimensionality, which in this case is the number
of experts. We also compare to the loss of the best and worst expert. Computing the identity of
“best” and “worst,” with respect to their prediction losses on the sequence, can only be done in
hindsight, and thus also requires batch access to the data. (For the future simulations, the identity
of the best and worst at predicting the labels generated by one climate model is determined from the
remaining 19 climate models). We test batch linear regression using this method as well, computing
its error in predicting just the current example, based on all past data. Note that although all
examples are used for training, they also contribute to error, before the label is viewed, so this
online learning evaluation measure is comparable (but not identical) to a form of test error (in the
batch setting). In particular, this “progressive validation” error was analyzed in [5], which provided
formal bounds relating it, as well as k-fold cross-validation error, to standard batch holdout error,
in certain settings.

Learn-α’s peformance, with respect to the average over all model predictions, is a break-through;
as that was the current state-of-the-art. As shown in Table 1, in every experiment, Learn-α suffers
lower mean annual loss than predicting using the average over all model predictions. Furthermore,
Learn-α surpasses the performance of the best expert in all but one experiment (Historical), in which
its performance nearly matches it. Similarly, Learn-α surpasses the performance of least squares
linear regression in all but one experiment (Future Simulation 1), in which its performance is still
close. Learn-α’s outperformance of batch linear regression on almost all experiments suggests that
weighting all historical data equally (as does linear regression) produces worse predictions of the
present observation, than using a weighting that focuses more on the recent past (as Learn-α does
implicitly). This helps lend validity to the use of online learning algorithms in the climate change
prediction domain.

Remark. An interesting result is that on historical data, the best climate model outperforms
the average prediction over climate models. This appears to contradict the related work in climate
science [32, 33]. Reichler and Kim [32] were concerned with performance dominance across multiple
metrics, as opposed to just prediction loss on global mean temperature anomalies, and thus there is
no contradiction. Reifen and Toumi [33] consider model prediction runs from the same archive as
we do, however their experimental set-up differs. Predictions from 17 models are evaluated through
1999, with respect to a different set of observation data. Regardless of the finding that in our setting
there is a model that performs better than the average, the “best” expert cannot be used as a
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Figure 5. Batch evaluations. Plot of mean test error on the remaining points,
when only the first T are used for training. Right plot zooms in on T ≥ 40 (x-axis).

prediction technique in practice, since knowledge of which model performs best requires observation
of the entire data set, a scenario that is impossible in a future prediction problem.

4.3. Batch comparison of the learning algorithms. Since least squares linear regression is a
batch algorithm, here we provide a batch-like comparison of the two machine learning algorithms.
Because this data is measured over time, there is importance in its ordering, and thus it is not
appropriate to use standard cross-validation with multiple folds. Instead we use the first part of the
data as the training data, and the remaining data for testing, for various values of the split location,
from 20 to 100. We chose this range for the possible splits because least squares linear regression
needs at least the number of training points as the dimensionality (20 in this case, the number of
climate models), in order to compute a classifier, and there are only 109 years of historical data.

Figure 5 shows that for most values of the split between training data and test data, Learn-α
suffers lower mean test error. The one split on which this does not hold (100), contains only 9 points
in the test set, so both measurements have high variance; indeed the difference in mean test error
at T = 100 is less than one standard deviation of Learn-α’s test error (σ = 0.0185). These results
suggest that the non-stationary nature of the data, coupled with the limited amount of historical
data, poses challenges to a näıve batch algorithm. Just as the results in Table 1 suggest that
weighting all historical data equally produces worse predictions of the present observation than a
weighting that focuses more on the recent past, in this batch-like evaluation setting, Figure 5 reveals
that a similar conclusion also holds for predictions into the future. That is, as far as annual global
mean temperature anomalies are concerned, the present (or recent past) appears to be a better
predictor of the future than the past.

4.4. Learning curves. Here we provide learning curves for Learn-α, plotted against the best and
worst experts in hindsight, and the average over expert predictions, which was the previous bench-
mark. These experiments generated the statistics summarized in Table 1. Figure 6 plots the squared
error between predicted and observed annual mean temperature, by year from 1900 to 2008. Learn-α
suffers less loss than the mean over model predictions on over 75% of the years (82/109).

The learning curves from the future simulation experiments, Figures 7-8, demonstrate that Learn-
α is very successful at predicting one model’s predictions for future predictions up to the year 2098.
This is notable, as the future projections vary widely among the climate models. In each of the
four future simulations, the (blue) curve indicating the worst model (with respect to predicting the
model in question) varies increasingly into the future, whereas our algorithm (black) tracks, and in
fact surpasses, the performance of the best model (green). Including these simulations, in 10 future
simulations that we ran, each with a different climate model providing the labels, Learn-α suffers
less loss than the mean over the remaining model predictions on, 75%-90% of the years.
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Figure 6. Squared loss between predicted and observed global mean temperature
anomalies. The bottom plot zooms in on the y-axis.

4.5. Weight evolution. We also provide plots of the evolution of the weights on climate models,
and internal sub-algorithms, as they were learned by Learn-α in the historical data experiment.

Figure 9a illustrates how the Learn-α algorithm updates weights over the sub-algorithms, in-
stances of the Fixed-Share(α) algorithm running with different values of α. The Learn-α algorithm
tracks the best fixed value of the α parameter, so as the plot shows, one alpha consistently receives
an increasing fraction of the weight. The α value that received the highest weight at the end was
the smallest, which was 0.0046 for the historical data experiments.

Figure 9b illustrates how a Fixed-Share sub-algorithm (in this case α = 0.0046) updates weights
over the climate models. The algorithm predicts with a linear combination of the climate model
predictions. As opposed to tracking the best fixed climate model, or linear combination, the linear
combination of climate models changes dynamically based on the currently observed performance of
the different climate models. The climate model which received the highest weight at the end was
giss model e r run4, which is also the best performing expert on the historical data set.

5. Discussion and Future Work

The exciting challenge begged by our encouraging results, is how to track climate models when
predicting future climates. The current state-of-the-art tracking methods still rely on receiving true
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Figure 7. Future Simulation 1: Tracking the predictions of one model using the
predictions of the remaining 19 as input, with no true temperature observations.
Black vertical line separates past from future. Bottom plot zooms in on y-axis.

observations, with which to evaluate the models’ predictions. Our goal is to design algorithms
that can track models in unsupervised, or semi-supervised settings. The analysis poses challenges
however; providing (standard) regret bounds for the fully unsupervised setting is likely impossible,
and we are not aware of any related work. We can also consider a semi-supervised learning setting
[10]. There is some literature on regret analyses of semi-supervised online learning; [9, 7] consider the
special case of active learning. Another related setting is that of imperfect monitoring, in which the
learner has access to partial feedback, but not the true observations, e.g. [24]. One approach that
we have shown to be feasible in practice (see Figures 7-8), is to view expert predictions themselves
as partial feedback, in order to design semi-supervised algorithms. We can also turn to the batch
setting, when one-time predictions are needed, given past data. However our preliminary experiments
with batch linear regression do not surpass the performance of our online technique. Noting that
predictions are sometimes only requested for certain benchmark years, (e.g. 2020, 2050, 2100), it
may be worth considering a transductive model, and experimenting with methods for transductive
regression [11, 12].
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Figure 8. Top: Future Sim 2, Middle: Future Sim. 3, Bottom: Future Sim. 4.
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Figure 9. Weight evolution. Top figure: a. Algorithm’s weights on α-experts.
Bottom figure: b. Best α-expert’s weights on experts (climate models).

In summary, our results advance the state-of-the-art in the climate science community, with re-
spect to combining climate model predictions. Our methods are applicable to any quantity predicted
by a set of climate models, and we plan to use them for predicting at smaller regional scales, and
shorter times scales, as well as predicting other important climate benchmarks, such as carbon diox-
ide. In addition to our specific contributions, we hope to inspire future applications of machine
learning to improve climate predictions and to help answer pressing questions in climate science.
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COMPLEX NETWORKS IN CLIMATE SCIENCE:
PROGRESS, OPPORTUNITIES AND CHALLENGES

KARSTEN STEINHAEUSER1,2, NITESH V. CHAWLA1, AND AUROOP R. GANGULY2

Abstract. Networks have been used to describe and model a wide range of complex systems,
both natural as well as man-made. One particularly interesting application in the earth sciences
is the use of complex networks to represent and study the global climate system. In this paper,
we motivate this general approach, explain the basic methodology, report on the state of the art
(including our contributions), and outline open questions and opportunities for future research.

1. Introduction

Datasets and systems that can be represented as interaction networks (or graphs), broadly defined
as any collection of interrelated objects or entities, have received considerable attention both from a
theoretical viewpoint [1, 2, 6, 8, 13, 31] as well as various application domains; examples include the
analysis of social networks [30], chemical interactions between proteins [26], the behavior of financial
markets [12], and many others. Recently, the study of complex networks – that is, networks which
exhibit non-trivial topological properties – has permeated numerous fields and disciplines spanning
the physical, social, and computational sciences. So why do networks enjoy such broad appeal?
Briefly, it is their ability to serve at once as a data representation, as an analysis framework, and
as a visualization tool. The analytic capabilities in particular are quite powerful, as networks can
uncover structure and patterns at multiple scales, ranging from local properties to global phenomena,
and thus help better understand the characteristics of complex systems.

We focus on one particular application of networks in the earth sciences, namely, the construction
and analysis of climate networks [25]. Identifying and analyzing patterns in global climate is an
important task of growing scientific, social, and political interest, with the goal of deepening our
understanding of the complex processes underlying observed phenomena. To this end, we make the
case that complex networks offer a compelling perspective for capturing the dynamics of the climate
system. Moreover, the computational sciences – specifically data mining and machine learning – are
able to contribute a valuable set of methods and tools ranging from pattern recognition to predictive
models. Thus, in this paper we expand upon the general approach to climate networks (e.g., see [21])
and motivate a promising area of interdisciplinary research. Indeed, we believe that this marriage
of analytic methods, computational tools and domain science has the long-term potential for a
transformative impact on our understanding of the earth’s climate system.

The remainder of the paper is organized as follows: Section 2 describes the data and basic
methodology for constructing climate networks; Section 3 briefly discusses related work involving
other uses of complex networks in climate; Section 4 presents an overview of the types of structural
analysis performed on climate networks, including important observations; Section 5 motivates the
use of clustering on climate networks; Section 6 discusses extensions to multivariate relationships and
incorporating temporal dynamics; Section 7 examines information content and predictive modeling
in the context of climate networks; Section 8 addresses computational issues; finally, Section 9
outlines some of the major challenges and opportunities to advance the state of the art.

1 Department of Computer Science & Engineering, Interdisciplinary Center for Network Science & Applications,
University of Notre Dame, Notre Dame, IN 46556; ksteinha@nd.edu, nchawla@nd.edu.
2 Geographic Information Science & Technology Group, Computational Sciences & Engineering Division, Oak Ridge
National Laboratory, Oak Ridge, TN 37831; gangulyar@ornl.gov.
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Figure 1. Schematic depiction of gridded climate data for multiple variables at a
single timestep ti in the rectangular plane.

2. Background and Basic Methodology

A network is any set of entities (nodes) with connections (edges) between them. The nodes
can represent physical objects, locations, or even abstract concepts. Similarly, the edges can have
many interpretations ranging from physical contact to mathematical relationships and conceptual
affiliations. Thus, networks may take many different forms, shapes and sizes.

The concept of climate networks was first proposed by Tsonis and Roebber [21] and placed into
the broader context of complex network literature in [25]. The intuition behind this methodology
is that the global climate system can be represented by a set of oscillators (climate variability at
different locations around the globe) interacting in some complex way. More precisely, the oscillators
correspond to anomaly time series of gridded climate data (see Section 2.1) and the interactions are
measured as the pairwise correlations between them [21, 25]. In the following sections, we describe
the characteristics of the data and the network construction process in more detail.

2.1. Gridded Climate Data. The most commonly used data in climate network studies to date [3,
4, 18, 19, 20, 21, 23, 24, 25, 32, 33] stems from the NCEP/NCAR Reanalysis Project [9] (available for
download at [27]). This dataset is created by assimilating remote and in-situ sensor measurements
covering the entire globe and is widely recognized as one of the best surrogates for global observations
as it is obviously impossible to obtain exact measurements. The data includes a wide range of surface
and atmospheric variables, although prior lines of work have focused primarily on temperature [3,
24, 32] and pressure-related indicators [21, 25].

We did not want to constrain ourselves by an arbitrary a priori selection of variables, so in our
recent work [18] we compare a wider range of climate descriptors. Specifically, we include these
seven variables (abbreviation, brief definition in parentheses): sea surface temperature (SST, water
temperature at the surface), sea level pressure (SLP, air pressure at sea level), geopotential height

(Z, elevation of the 500mbar pressure level above the surface), precipitable water (PW, vertically
integrated water content over the entire atmospheric column), relative humidity (RH, saturation of
humidity above the surface), horizontal wind speed (WSPD, measured in the plane near the surface),
and vertical wind speed (ω, measured in the atmospheric column). This is the first time such an
extensive list of variables was used in a climate networks study.

These variables are available at daily intervals or as monthly averages over a period spanning
more than sixty years (1948-present). However, in networks studies the goal is to capture the
long-term climate variability, and therefore monthly averages are generally preferred. The data is
arranged as points (grid cells) on a 2.5◦ × 2.5◦ latitude-longitude spherical grid. In order to reduce
the computational requirements (details in Section 2.3), the data may be sub-sampled to a coarser
resolution (e.g., 5◦ × 5◦ as in [19, 21]). A schematic diagram of the data for multiple variables at a
single timestep ti is depicted Fig. 1.
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(a) Raw Data (b) De-Seasonalized Data

Figure 2. The de-seasonlized data (right) exhibits significantly lower autocorrela-
tion due to seasonality than the raw data (left).

2.2. Seasonality and Autocorrelation. The spatio-temporal nature of climate data poses a num-
ber of unique challenges. For instance, the data may be noisy and contain recurrence patterns of
varying phase and regularity. Seasonality in particular tends to dominate the climate signal espe-
cially in mid-latitude regions, resulting in strong temporal autocorrelation (Fig. 2(a)). This can be
problematic for identifying meaningful relationships between different locations, and indeed climate
indices [28] are generally defined by the anomaly series, that is, departure from the “usual” behavior
rather than the actual values.

Therefore, we follow precedent of related work [16, 21, 32] and remove the seasonal component
from the data, specifically by monthly z-score transformation and de-trending [16]. At each grid
point, we calculate for each month m = {1, ..., 12} (i.e., separately for all Januaries, Februaries, etc.)
the mean

(1) μm =
1
Y

2010∑
y=1948

am,y

and standard deviation

(2) σm =

√√√√ 1
Y − 1

2010∑
y=1948

(am,y − μm)2

where y is the year, Y the total number of years in the dataset, and am,y the value of series A at
month = m, year = y. Each data point is then transformed (a∗) by subtracting the mean and
dividing by the standard deviation of the corresponding month,

(3) a∗

m,y =
am,y − μm

σm

The result of this process is illustrated in Fig. 2(b), which shows that de-seasonalized values have
significantly lower autocorrelation than the raw data. In addition, we de-trend the data by fitting a
linear regression model and retaining only the residuals. All data discussed or used in the examples
and case studies hereafter have been de-seasonalized and de-trended using the procedure described
above.
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2.3. Network Construction. In this section we describe the basic network construction process,
which is shared by all lines of research on climate networks [3, 18, 21, 25, 32], with minor variations.
Vertices of the network represent the spatial grid points of the underlying climate dataset, and
weighted edges are created based on the statistical relationship between the corresponding pairs of
(anomaly) time series [21]. It is important to note that the physical locality of grid points is not

considered during network construction. Thus, any emerging cohesive patterns are the result of
climatic similarity rather than spatial proximity.

2.3.1. Estimating Link Strength. Quantifying the relationship between a pair of vertices is critical
to the network approach. Given that the data is normalized as described in Eqs. 1-3 we need not
consider the mean behavior, only deviations from it. Therefore, the Pearson correlation coefficient is
a logical choice as a measure of link strength [21]. For two series A and B of length t the correlation
r is computed as

(4) r(A, B) =

t∑
i=1

(ai − ā)(bi − b̄)√√√√ t∑
i=1

(ai − ā)2
t∑

i=1

(bi − b̄)2

where ai is the ith value in A and ā is the mean of all values in the series. Note that the correlation
coefficient has a range of (−1, 1), where 1 denotes perfect agreement and -1 perfect disagreement,
with values near 0 indicating no correlation. Since an inverse relationship is equally relevant in the
present application we set the edge weight to |r|, the absolute value of the correlation coefficient.

We should note here that nonlinear relationships are known to exist within climate, which might
suggest the use of a nonlinear correlation measure. Donges et al. [3] examined precisely this question
in the context of network construction for climate and concluded that, “the observed similarity of
Pearson correlation and mutual information networks can be considered statistically significant.”
Therefore, it seems sensible to use the simplest possible correlation measure, namely the (linear)
Pearson coefficient. However, future work should further investigate this question, including a more
comprehensive evaluation of different (nonlinear) correlation measures [11].

2.3.2. Threshold Selection and Pruning. Computing the correlation for all possible pairs of vertices
results in a fully connected network but many (in fact most) edges have a very low weight, so that
network pruning is desirable. And since it is impossible to determine an optimal threshold [15], we
must rely on some other selection criterion. For example, Tsonis and Roebber [21] opt for a threshold
of r ≥ 0.5 while Donges et al. [3] use a fixed edge density ρ to compare different networks, noting
that “the problem of selecting the exactly right threshold is not as severe as might be thought.”

We would argue that a statistically principled approach is most appropriate here. Specifically,
we propose using the p-values of the correlation coefficient to determine statistical significance [18].
Two vertices are considered connected only if the p-value of the corresponding correlation r is less
than some (strict) threshold τ , imposing a very high level of confidence in that particular interaction.
This may seem like a stringent requirement but in practice quite a large number of edges satisfy this
criterion and are retained in the network.

3. Related Work

Before delving deeper into the various types of analysis performed on and corresponding insights
gained from climate networks, we briefly point out two other interesting lines of research in climate
science that also employ complex networks, albeit in a very different context. Both studies are
fundamentally different from those discussed here in that the networks are constructed from very
different types of data and designed to answer very specific questions.
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The first of these involves the construction of networks from several major global climate in-
dices, i.e., the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO), the El
Niño Southern Oscillation (ENSO), and the North Pacific Oscillation (NPO) [22, 29]. Thus, the
network consists of only four nodes (without any precise spatial locality) and six edges connecting
them. The authors found that there are complex interactions between these indicators resulting in
synchronization of the oscillations, but as the coupling strength increases the synchronous state is
destroyed. This causes a major shift in global climate, and the NAO was identified as the primary
participant in disturbing this process (both in observations and climate simulations).

The second study centers around hurricanes in the contintental United States [5, 7]. Specifically,
networks are constructed from historical records of hurricanes that have affected multiple coastal
regions. The authors find that the degree distribution is indicative of anomalous hurricane activity,
and relating these anomalies to other climate events reveals strong links to sunspot activity and
several of the major climate indicators. Moreover, based on these conclusions the authors discuss
the potential effects of climate change on hurricane activity. The details of how the networks are
constructed from observed data distinguish this as a particularly creative application of complex
networks in climate science.

4. Topology and Structure at Multiple Scales

In this section, we describe several types of structural analysis for climate networks. Some are
taken directly from complex networks literature, others are adapted or entirely novel to accomodate
the unique properties of these spatio-temporal networks.

4.1. Global Network Properties. First, one can examine the topological properties of the net-
work at a global scale and interpret them in the context of climate [3, 18, 21, 25]. Standard measures
from network analysis literature include:

• Number of nodes
• Number (or density) of edges
• Clustering coefficient (C) – indicative of the “cliquishness” of the network, this measure is

computed for node i as

(5) Ci =
|ejk|

ki(ki − 1)
where ejk is the set of all edges between first neighbors of i and ki the degree of i, averaged
over all nodes in the network.

• Characteristic path length (L) – expected distance between two randomly selected nodes in
the network, computed by taking the mean over the all-pairs shortest paths.

Table 1 summarizes these for networks constructed from a wide range of climate variables. Also
listed are the expected clustering coefficient and characteristic path length of a random graph with
the same number of nodes and edges, estimated as

(6) Crand ≈ 〈k〉/N

and

(7) Lrand ≈ ln(N)/ln(〈k〉)

respectively, where 〈k〉 is the average degree and N the number of nodes in the network.
Due to the fixed data grid the number of nodes remains (nearly) constant, but the number of

edges varies by as much as an order of magnitude. Nonetheless, all of the networks exhibit a high
degree of clustering and short path lengths, and several researchers [3, 18, 21] have noted that
climate networks of various types exhibit small-world properties [31]. Comparing the clustering
coefficients and characteristic path lengths to those expected for random graphs, we find that in all
cases C � Crand and L ≥ Lrand, satisfying the properties of small-world networks [31].
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Variable Nodes Edges C L Crand Lrand

SST 1,701 132,469 0.541 2.437 0.092 1.474
SLP 1,701 175,786 0.629 2.547 0.122 1.395
Z 1,701 249,322 0.673 2.436 0.172 1.310

PW 1,701 50,835 0.582 4.281 0.035 1.819
RH 1,700 25,375 0.559 4.063 0.018 2.190

WSPD 1,699 31,615 0.554 4.826 0.022 2.056
ω 1,701 71,458 0.342 2.306 0.049 1.679

Table 1. Summary of network properties: number of nodes/edges, average clus-
tering coefficient (C), characteristic path length (L); expected values of C and L for
random networks with the same number of nodes and edges.

While the aforementioned measures are commonly used to characterize many different kinds
of networks, a quantity called area weighted connectivity was proposed specifically for networks
constructed from data on a sphere [24]. If a node i is connected to N other nodes at λN latitudes,
then its connectivity C̃i is computed as

(8) C̃i =
N∑

j=1

cosλjΔA/
∑

over all λ and ϕ

cosλΔA

where ΔA is the grid area and ϕ is the longitude [24]. We performed this calculation on the full
network for each variable as well as for separate networks constructed from points only in the
Northern (30◦N-90◦N), Tropical (30◦S-30◦N), and Southern (90◦S-30S◦) regions. This quantity can
be plotted on a log-log plot, similar to a degree distribution; representative examples for three
different variables are shown in Figure 3. Note the significant differences in distributions, which
indicate that sea surface temperature and geopotential height are much more strongly connected
overall than is vertical wind speed.

(a) Sea Surface Temp. (b) Geopotential Height (c) Vertical Wind Speed

Figure 3. Area weighted connectivity is an alternative network property for spatial data.

4.2. Regional Network Properties. The topological analysis can also lead to insights at the
regional scale, that is, specific to certain parts of the network. For instance, the area weighted
connectivity can also be plotted spatially on a map [24], as shown in Figure 4. Regions of high
intensity are connected to a large fraction of the globe, and hence can be interpreted as having a
significant role in the global climate system. The equatorial region spanning the Pacific Ocean, for
example, is associated with the El Niño Southern Oscillation (ENSO) index [28] and therefore is
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Figure 4. Area weighted connectivity for surface air temperature. The color scale
indicates the fraction of the globe to which a point is connected via the network.

known to be one of the major global climate indicators. In fact, Tsonis and Swanson [24] have noted
that the connectivity of the temperature network varies with the major El Niño and La Niña events.

Similarly, Donges et al. [3] plot other metrics such as the clustering coefficient as well as the
betweenness and closeness centrality measures on a map to gain additional insights regarding the
function and relative importance of different regions with respect to the global climate system.

Another way that regional properties have been studied is by constructing separate networks for
specific regions [32]. However, this approach is distinct from the general use of climate networks
described here as the structure does not merely emerge from the properties of the network. Instead,
some a priori knowledge is required to divide the globe (network) into meaningful partitions, usually
guided by some a specific research question or hypothesis.

5. Clustering the Global Climate System

In contrast to the arbitrary partitioning of the network mentioned in Section 4.2, one may indeed
be interested in clustering the climate data into regions defined by similarity in climatic variability.
To this end, we have applied a community detection algorithm to climate networks [18, 19] (the
term community detection refers to a broad class of algorithms also known as graph paratitioning,
see [8, 17] for a more general description). Examples of the resulting clusters are shown in Figure 5.

The cluster structure provides rich information about the overall composition of the network and
identifies closely related regions. For example, cluster 5 of sea surface temperature (Figure 5(a))
covers large portions of the Pacific and Indian Oceans, suggesting the presence of a teleconnection

(long-range spatial dependency). In addition, comparing clusters of different variables helps in
interpreting their role and relative importance in the global climate system.

In related work, Steinbach et al. [16] employed a shared nearest neighbor (SNN) algorithm to
cluster climate data and demonstrated that some of the resulting clusters are significantly correlated
with known climate indices while others may represent novel indicators. Although this approach
does not involve climate networks in the strict sense, the SNN algorithm uses a network-like data
representation. Moreover, this work was among the first to apply data mining concepts to address
problems motivated by climate science.
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(a) Sea Surface Temp. (b) Geopotential Height (c) Vertical Wind Speed

Figure 5. Clusters obtained by applying community detection on climate net-
works. The colors and numbers indicate unique clusters (arbitrary assignment).

6. Extending Climate Networks: Multivariate Relations and Network Dynamics

The methods discussed thus far have enabled compelling analyes and led to novel insights for the
climate domain. However, they are limited in their representation of the complex relationships that
are known to exist in the global climate system. We have identified two natural extensions to the
general networks approch: First, the construction process should explicitly consider the possibility of
multivariate relationships in climate networks. Second, climate dynamics should be incorporated by
identifying, tracking, and interpreting changes in the network topology and/or cluster structure over
time. In the following, we will briefly discuss each of these added dimensions, which we demonstrated
in a recent case study [19] as a proof of concept.

6.1. Multivariate Relationships in Climate. The presence of relationships between different
variables in the climate system is self-evident. In some cases, these interactions are grounded in
physics and can be described by a set of equations; in other cases, the relationship may be ob-
servable but its exact nature remains unknown. Regardless, in order to create a more realistic
representation of the climate system, the network model should incorporate the notion of multi-
variate relationsips [10]. In other words, we must replace the Pearson coefficient with an analogous
measure for multivariate dependence. While conceptually intuitive, there is no obvious definition
suitable in this context, and to our knowledge there are no straightfoward solutions to this problem
in networks literature.

In [19], we present one (admittedly näıve) approach: we define a new feature space consisting of
the pairwise correlations between a set of variables, and the network is weighted by the distance in
this space. Formally, given a set of N variables one can compute

(
N
2

)
= d pairwise correlations that

define a corresponding feature space in R
d. Edge weights are then calcuated as the distance (e.g.,

Euclidean) in this higher-dimensional space. When several variables behave similarly this distance
will be small, so that a lower weight now indicates a stronger relationship.

Our experimental results demonstrate some success in the use of this definition of multivariate
networks [19]. However, this distance measure is difficult to interpret and lacks the flexibility nec-
essary for a general framework. Thus, univariate networks will continue to play an important role,
but additional work is required in developing complementary multivariate approaches.

6.2. Dynamics in Climate Networks. Climate variability includes signals at annual and in-
terannual scales, varying in both space and time, so that relationships in the climate system are
constantly changing. However, the basic network model is unable to account for – much less detect
– such changes in behavior.

A logical first step in addressing this issue is to construct multiple networks over time, as we have
done in [19]. By dividing the data into windows and constructing a separate network at each step,
we are able to measure the correspondence between consecutive windows and identify significant
changes in structure. However, this case study represents a relatively simplistic approach focusing
only on one particular aspect of the network structure.
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7. Predictive Modeling in Climate Networks

This section highlights some of our most recent work and most important contributions in this
area, which also serve as an example of advances enabled by an interdisciplinary research effort. Our
motivations here were two-fold: first, a focus on the regional properties as defined by the cluster
structure in climate networks (Section 5); second, a move beyond descriptive analysis and toward
the development of predictive models for climate.

Our methodology rests on the observation that climate variability at different locations is intri-
cately related, but the exact nature of these relationships is not well understood. More specifically,
several major ocean climate indices are known to be strongly related with land climate [28]. These in-
dicators are usually developed based on some observed phenomenon that is measured and quantified
a posteriori, but what if we could extract this predictive information content from data?

In [16], the authors demonstrate that ocean clusters obtained using a traditional algorithm are
correlated with known indices as well as land climate. However, climate networks enable us to
answer this question more comprehensively using the same framework for descriptive analysis and
predictive modeling. To this end, we construct networks consisting only of ocean regions and identify
clusters using community detection. We then treat the cluster averages as potential climate indices
by using them as inputs into a predictive model for land climate. Our preliminary results suggest
that the ocean climate clusters contain significant information content, and that these models are
better predictors of land climate than simple autoregressive methods. Thus, through the use of
computational tools data mining is able to leverage the extensive corpus of observed climate data
and confirm existing or even discover previously unknown relationships in the global climate system.

8. Computational Issues

There are numerous computational challenges that arise at various stages of the network con-
struction and analysis process. First and foremost, calculating the pair-wise correlations between all
grid points is a non-trivial task. In our experiments we used a coarse grid containing only O(103)
nodes, resulting in O(106) pairs, and constructing the networks with simple Pearson correlation took
several thousand CPU-hours. We used the statistical software package R1 for our implementation
and distributed the workload across 200 nodes of a dedicated high-performance computing cluster
to make these operations computationally tractable.

However, multiple factors could (adversely) affect the computational demands of network con-
struction. Using a higher-resolution spatial grid, for example, increases the number of nodes: the
NCEP/NCAR Reanalysis data is available on a 2.5◦ × 2.5◦ grid consisting of O(104) nodes, thus
resulting in O(108) pairs. This would grow the problem size by two orders of magnitude, and even
higher resolution datasets are available from other sources including those output by computational
climate models. Whether such a network would yield any additional information is an open re-
search question, but the sheer magnitude of the data makes this a challenging problem. In addition,
substituting a different correlation measure could further drive up the computational requirements.
For instance, one might want to estimate the mutual information between each pair to capture the
nonlinear relationships in the time series. The exact computational demands would depend on the
method used, but it would most certainly exceed those of the simple Pearson correlation.

Moreover, the generation of predictive models from the data poses additional challenges. Our
work has focused mostly on linear regression models, computed first for only 10 regions but more
recently at several hundred individual locations representing all land grid points around the globe.
Still, even with several dozen input variables such models are easily built on a desktop computer. But
lately we have been experimenting with more complex models such as support vector regression and
neural networks, and learning these – especially in a large feature space – can become prohibitive.
Thus, in addition to challenging mining and analysis tasks, there are more fundamental computer
science problems regarding computing infrastructure and efficient implementation to be solved.

1http://www.r-project.org/
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9. Future Work: Opportunities and Challenges

As outlined in this paper, the use of complex networks in climate is motivated by an acute
need to fill gaps in understanding of the physical processes underlying the global climate system.
Unlike traditional analysis methods, climate networks are capable of capturing complex relationships,
discovering spatial structure and incorporating predictive modeling into a single framework. This
network approach has already led to novel insights, and we believe it holds even greater potential.
Lying at the intersection of multiple scientific disciplines, this emerging area of research is capable
of bringing together experts from diverse backgrounds: climate scientists can contribute a wealth of
data, domain expertise and exciting research questions; these, in turn, will motivate data miners to
develop novel methods and algorithms to address the unique challenges arising from climate data.

In particular, we see three primary areas where future research has the potential for immediate
and significant contributions:

(1) Nonlinear relationships are known to exist within climate data, but their relevance in the
context of network construction have not been fully explored. As alluded to in Section 2.3,
an extensive study comparing different correlation measures and their effect on network
structure is needed in this regard.

(2) Multivariate relationships as described in Section 6.1 must be quantitatively captured and
integrated with the networks to achieve a more realistic representation of the climate system.
Advances in statistical and/or computational methods (e.g., see [10, 14]) may be necessary
to devise a meaningful, interpretable measure of multivariate dependence.

(3) Spatio-Temporal relationships and network dynamics are arguably the area in most need
of an interdisciplinary research effort. Changes in network structure over time should be
automatically detected and, where possible, related to external events for validation or
interpretation.

Advancing towards these goals will necessitate the development of novel algorithms and efficient
implementations thereof. Datasets continue to increase in size, and expanding the scope of analysis
to include more variables or allow for the presence of additional spatial and/or temporal lags further
compounds the complexity of the problem. Therefore, it is imperative that data miners work in
close collaboration with climate scientists to ensure that their solutions adequately and completely
address relevant questions in the domain.
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SPATIALLY ADAPTIVE SEMI-SUPERVISED LEARNING WITH GAUSSIAN
PROCESSES FOR HYPERSPECTRAL DATA ANALYSIS

GOO JUN * AND JOYDEEP GHOSH*

Abstract. A semi-supervised learning algorithm for the classification of hyperspectral data,
Gaussian process expectation maximization (GP-EM), is proposed. Model parameters for each
land cover class is first estimated by a supervised algorithm using Gaussian process regressions
to find spatially adaptive parameters, and the estimated parameters are then used to initialize a
spatially adaptive mixture-of-Gaussians model. The mixture model is updated by expectation-
maximization iterations using the unlabeled data, and the spatially adaptive parameters for un-
labeled instances are obtained by Gaussian process regressions with soft assignments. Two sets
of hyperspectral data taken from the Botswana area by the NASA EO-1 satellite are used for ex-
periments. Empirical evaluations show that the proposed framework performs significantly better
than baseline algorithms that do not use spatial information, and the results are also better than
any previously reported results by other algorithms on the same data.

1. Introduction

Remotely sensed images provide valuable information for observing large geographical areas in a
cost-effective way. Hyperspectral imagery is one of the most useful and most popular remote sensing
techniques for land use and land cover (LULC) classification [20]. Each pixel in a hyperspectral image
consists of hundreds of spectral bands, and each land cover type is identified by its unique spectral
signature. For example, spectral responses of wetland classes are different from the responses of
upland classes, and land covers with different vegetation also have spectral signatures different from
one another. However, similar land cover classes such as various types of corn fields generally show
similar spectral signatures, and identifying one type from the other becomes a more challenging task
since spectral signatures of a land cover type often vary considerably over time and space.

Conventional classification algorithms assume a globally constant model that applies to the entire
image. Though this assumption may hold for small spatial footprints, it is generally not true for large
geographical areas. The spectral signature of the same land cover can substantially vary across space
due to varying soil type, terrain and climatic conditions. Figure 1 shows how spectral signatures of
a single land cover class change over space. Figure 1(a) shows three different locations of water in
different colors, and Figure 1(b) shows the average spectral response of each location plotted with the
same color. In the presence of spatial variations, the performance of a classifier with a global model
degrades. Another challenge in hyperspectral data classification is the cost of collecting the ground
truth. Class labels are expensive to obtain for remotely sensed areas, and the task often requires
human experts, costly surveys, and/or actual physical trip to the site [27]. Since we cannot have
ground truth for all possible locations of interest, one is forced to train a model using training data
collected from certain geographic areas, and generalize the model for classification of land covers at
other locations [21].

In spatial statistics, spatially varying quantities are often modeled by a random process indexed
by spatial coordinates. Kriging is a technique that finds the optimal linear predictor for spatial
random processes [5], and in the machine learning literature the same technique is referred to as
the Gaussian process model [23]. In [17], a supervised learning algorithm called Gaussian process
maximum likelihood (GP-ML) was developed for the classification of hyperspectral data, where the
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Figure 1. Illustration of varying spectral signatures of a single class at different locations.

spatial variation of each spectral band is modeled by a Gaussian random process indexed by spatial
coordinates. In a typical Gaussian process model, the predictive distribution of an out-of-sample
instance is affected more by nearby points than by faraway points. Consequently, the uncertainty
of the predictive distribution increases as the distance from the training instances increases. The
Gaussian process model is generally regarded as a good tool for interpolation, but not for extrap-
olation. The GP-ML algorithm has the same limitation, and good classification results are not
guaranteed when the algorithm is used to classify land cover classes located far from the training
data.

We propose a spatially adaptive semi-supervised learning algorithm for the classification of hy-
perspectral data to overcome the problems of the GP-ML framework, and name it the Gaussian
process expectation-maximization (GP-EM) algorithm. GP-EM is a semi-supervised version of the
GP-ML classification framework, where the test data is modeled by a spatially adaptive mixture-of-
Gaussians model. GP-ML is used to find the initial estimates of the mixture components, and the
mixture model is updated by EM iterations with the unlabeled test instances. By utilizing the test
data in a transductive setting for the Gaussian process regression, the proposed framework suffers
less from the extrapolation problem.

2. Related Work

Generative models of hyperspectral data often assume a multi-variate Gaussian distribution for
each class, and both the maximum-likelihood classification and the expectation-maximization algo-
rithm have been widely used in hyperspectral data analyses [8]. In real applications, it is often the
case that the classifier is trained at one location and applied to other locations; however not many
studies have addressed this issue so far. Rajan et al [21] proposed a knowledge transfer framework for
classification of spatially and temporally separated hyperspectral data. There have also been studies
on the active learning of hyperspectral data to minimize the required number of labeled instances
to achieve the same or better classification accuracies [22][16], and these active learning algorithms
have also been tested on spatially and temporally separated datasets. Active learning utilizes the
abundance of unlabeled data, but it is different from semi-supervised learning since active learning
algorithms need an oracle that can provide ground truth for selected instances.

There have been a number of studies that utilize spatial information for hyperspectral data
analyses. A geostatistical analysis of hyperspectral data has been studied by Griffith [11], but no
classification method was provided. One way to incorporate spatial information into a classifier is
stacking feature vectors from neighboring pixels [12]. A vector stacking approach for the classification
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of hyperspectral data has been proposed Chen el al [2], where features from the homogeneous
neighborhood is stacked using a max-cut algorithm. Another way to incorporate spatial information
is using image segmentation algorithms [15] [25]. The results from these approaches largely depend on
the initial segmentation results. Some algorithms exploits spatial distributions of land cover classes
directly. The simplest direct method is majority filtering [6], where the classified map is smoothed
by 2-dimensional low-pass filters. A popular method that incorporates spatial dependencies into the
probabilistic model is the Markov random field model [14][28]. The closest approach to this paper is
by Goovaerts [10], where the existence of each land cover class is modeled by indicator kriging to be
combined with the spectral classification results, but the spatial information was not used to model
variations of spectral features.

The proposed GP-EM framework is related to the Gaussian process maximum likelihood (GP-
ML) classification model by Jun and Ghosh [17]. A detailed description of the GP-ML model
follows in the background section. GP-ML models the class-conditional probabilistic distribution of
each band as a Gaussian random process that is indexed by spatial coordinates. This approach is
related to a geostatistical technique called kriging [5]. Kriging finds the optimal linear predictor for
geospatially varying quantities, and the approach has been recently adopted by machine learning
researchers [23]. Recently, a technique called geographically weighted regression (GWR) [9] has been
studied for regression problems where relationships between independent and dependent variables
vary over space. GWR is different from kriging in a sense that its objective is finding spatially
varying regression coefficients, while in kriging the objective is finding spatial variation of variables.
GWR and kriging both can be used for similar tasks, and a recent comparative study has shown
that kriging is more suitable for prediction of spatially varying quantities, but a hybrid approach
may be beneficial for description of complex spatially varying relationships[13].

In the GP-EM algorithm we use the mixture of Gaussian processes model by Tresp [26] to calculate
Gaussian process regressions with softly assigned instances. We also employ the best-bases feature
extraction algorithm to reduce the dimensionality of hyperspectral data [19].

3. Background

3.1. Maximum likelihood classification. Maximum likelihood (ML) classifier is a popular tech-
nique for classification of hyperspectral data. Let y ∈ {1, ..., c} be the class label and x ∈ Rd is the
spectral feature vector. The posterior probability distribution follows the Bayes rule:

(1) p(y = i|x,Θ) =
p(y = i|Θ)p(x|y = i,Θ)∑c
i=1 p(y = i|Θ)p(x|y = i,Θ)

,

where Θ is the set of model parameters. The class-conditional distribution of hyperspectral data is
typically modeled by a multi-variate Gaussian distribution:

(2) p(x|y = i,Θ) ∼ N (μi, Σi) =
1

(2π)n/2|Σi|1/2
e−

1
2 (x−μi)

T Σ−1
i (x−μi) .

Θ = {(μi,Σi)|i = 1, ..., c}, where μi and Σi are the mean vector and the covariance matrix of the
i-th class. The ML classifier estimates these parameters by maximum likelihood estimators using
training data with known class labels, and then predicts class labels of test instances that have the
maximum posterior probabilities according to (1) and (2).

As mentioned earlier, spectral characteristics of hyperspectral data change over space due to var-
ious reasons. A single land cover class often shows different spectral responses at different locations.
It is too simplistic, therefore, to assume non-varying stationary probabilistic distributions without
adjustments for spatially varying spectral signatures. With incorporation of the spatial coordinate
s, the posterior distribution in (1) becomes:

(3) p(y = i|x, s,Θ) =
p(y = i|s,Θ)p(x|y = i, s,Θ)∑c
i=1 p(x|y = i, s,Θ)p(y = i|s,Θ)

.
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By employing a Gaussian process regression model, we can write the class-conditional distribution
in (2) using spatially varying parameters:

(4) p(x|y = i, s,Θ) ∼ N (μi(s), Σi) .

The spectral covariance matrix Σi is kept constant for each class to avoid an explosion of parame-
ters, i.e., a stationary covariance function is employed for the Gaussian process model. The resulting
Gaussian process maximum-likelihood (GP-ML) model provides a framework to estimate the spa-
tially varying μi(s) for ML classifiers [17].

3.2. GP-ML framework. The GP-ML algorithm models the mean of each spectral band of a given
class as an independent Gaussian random process indexed by spatial coordinates. It is generally not
true that spectral features in hyperspectral data are independent given the class, but we employed
the näıve Bayes assumption to make the model computationally tractable. In this paper, we use the
GP-ML algorithm that is slightly modified from [17]. For simple notation, let us focus on a single
class and omit i for now. We model x(s) ∈ Rd as a random process indexed by a spatial coordinate
s ∈ R2 with a mean function μ(s) and a spatial covariance function k(s1, s2) according to the GP
model.

For a given class, let X = {x1,x2, ...xn} be the set of n training instances of the class at corre-
sponding locations S = {s1, s2, ...sn}. First, we estimate the constant (global) mean μc and then
subtract it from each instance to make the data zero-mean:

x̂k = xk − μc , where μc =
1
n

n∑
k=1

xk .

For a given location s, we want to get a spatially adjusted mean vector μ(s) of the residue, so
that the overall class mean is the sum of the constant mean and the spatially varying component,
μc + μ(s). Assuming a zero-mean Gaussian process prior for each band, μj(s), the predictive mean
of the j-th band of μ(s), is easily derived from the conditional distribution of Gaussian random
vectors:

(5) μj(s) = σ2
fj

k(s, S)[σ2
fj

KSS + σ2
εj

I]−1x̂j .

x̂j is a column vector with the collection of j-th bands, and the k-th element of xj is the j-th band
of x̂k. σ2

fj
and σ2

εj
are hyperparameters for signal and noise powers of the j-th band. k(s, S) is a

row vector such that the k-th element in the vector corresponds to spatial covariance between s and
sk. Similarly, KSS is a spatial covariance matrix such that (i, j)-th element of KSS corresponds to
k(si, sj). We use the popular isometric squared exponential covariance function:

k(s1, s2) = exp
(
−||s1 − s2||2

2L2

)
,

where L is the length parameter that is identical over all classes and bands. L is selected by
cross-validations, and the signal power σ2

f and the noise power σ2
ε are directly measured from the

training data. We use (5) to get the spatially detrended training data x̄ = x − μ(s), and then x̄
is modeled by a stationary multi-variate Gaussian distribution. Rather than estimating parameters
of high-dimensional Gaussian distributions, we use Fisher’s multi-class linear discriminant analysis
(LDA) to reduce the dimensionality of data, because it provides the optimal linear projection for
the separation of Gaussian distributed data [7].

Returning to the multi-class setup, assume that the steps above are repeated for all classes to
yield μi(s)’s and estimated constant parameters (μr

ci
,Σr

i )’s for all i = 1, ..., c, where the superscript
r denotes the reduced dimensionality. Then the classification of an out-of-sample test instance x∗

at location s∗ is performed by estimating the mean of spatially varying component μi(s∗) for each
class by (5). The spatially adaptive class-conditional distribution at location s∗ is modeled as:

(6) p(x∗|y = i, s∗,Θ) ∼ N (x∗r;μr
i (s

∗) + μr
ci

, Σr
i ) .
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4. Proposed Method

4.1. GP-EM framework. The ML classifier estimates parameters of class-conditional Gaussian
distributions using labeled training data, and it assumes that the test data has the same class-
conditional distributions. This assumption generally does not hold when we have test data from
spatially distant regions. When the discrepancy between the training and the test data is small,
a semi-supervised expectation maximization (EM) algorithm can be used to modify the obtained
distributions. In GP-EM, the unlabeled test data is modeled by a spatially adaptive mixture-of-
Gaussians model, where it is assumed that each component represents a single land cover class.
Each component of the mixture model is initially seeded by the parameters of the class-conditional
Gaussian distributions obtained by GP-ML, and then only the test data is used in unsupervised
fashion for the following EM iterations.

A mixture-of-Gaussians model is defined as:

p(x|Θ) =
c∑

i=1

αiN (μi,Σi) ,
c∑

i=1

αi = 1 ,

where αi is the mixing propotion associated with each Gaussian component and c is the number of
components, i.e. the number of land cover classes. Instead of assuming constant (global) parameters,
we propose a spatially adaptive mixture-of-Gaussians model:

p(x|s,Θ) =
c∑

i=1

αi(s)N (μi(s),Σi) ,
c∑

i=1

αi(s) = 1 .

We still assume that the spectral covariance Σi is independent of the spatial location s, but we model
both the mixing proportion αi(s) and the spectral mean μi(s) as spatially varaying parameters.

4.2. E-Step. Let zt
i,k ∈ [0, 1] be an indicator variable that represents the probability of the k-th

instance belonging to the i-th component. The superscript t denotes the t-th interation of the EM
process. The E-step updates zt

i,k as:

zt
i,k =

zt
i,k p(xk;μt

i,k,Σt
i)∑c

l=1 zt
l,k p(xk;μt

l,k,Σt
l)

,

where p(xk;μt
i,k,Σt

i) ∼ N (xk;μt
i,k,Σt

i). Note that we use μt
i,k to denote μt

i(sk), for simplicity and
consistency with other notations in the EM process. The difference from conventional EM is that
now μt

k,i is not a constant across all k’s, and can have different values for instances at different
locations.

4.3. M-Step. First we subtract the constant mean μc
i from x as in GP-ML, but now the mean is

calculated with soft assignments:

x̂k = xk − μc
i , where μc

i =

∑n
k=1 zt

i,kxk∑n
k=1 zt

i,k

.

To perform a Gaussian process regression with soft assignments, we employ the mixture of Gaussian
processes approach [26]. Let μj

i,· be a column vector with the collection of the j-th elements of μj
i,k,

then its regressive value with soft membership is calculated as:

(7) μj
i,· = σ2

fj
KSS [σ2

fj
KSS + diag(σ2

εj
/zt

i,k)]−1x̂j ,

where diag(σ2
εj

/zt
i,k) is a n×n diagonal matrix that its k-th diagonal element is σ2

εj
/zt

i,k. Small value
of zt

i,k means that the probability of k-th sample belonging to the i-th class is low, and it results in
implying a high noise power to the k-th point, making the predicted value less affected by the k-th
instance. If zt

i,k = 1 for all k’s, then (7) becomes the standard Gaussian process regression model.
The M-step for the mean parameter is:

μt+1
i,k = μi,k + μc

i ,
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where the j-th element of μi,k is the k-th element of μj
i,· from (7). There is an additional adjust-

ment step in [26] to prevent domination of a Gaussian process component with the largest length
parameter, but we do not need such an adjustment here because we assume length parameters are
the same across all components in our model. The M-step for the spectral covariance parameter is
straightforward:

Σt+1
i =

∑n
k=1 zt

i,k(x̂k − μt+1
i,k )(x̂k − μt+1

i,k )T∑n
k=1 zt

i,k

.

GP-EM also uses Fisher’s multi-class LDA for dimensionality reduction. The Fisher’s projection is
re-calculated at every M-step with soft assignments to find the optimal linear subspace with updated
parameters.

The M-step for the indicator variable is done by fitting a separate Gaussian process for zt
i,k, which

is similar to the indicator kriging approach [10]:

zt+1
i,k = σ2

fz
kz(sk, S)[σ2

fz
KzSS + σεz

I]−1(zt
i,k −

1
2
) +

1
2

,

where kz(s1, s2) is a covariance function for the indicator variable, as described in the following
section. We subtract 1

2 because z ∈ [0, 1], and add it back after the GP regression. Hyperparameters
σ2

fz
and σεz are measured from the distribution of zt

i,k.

4.4. Covariance function for the indicator variable. In (5) and (7), we used the squared expo-
nential covariance function to model spatial variation of the spectral bands. The extreme smoothness
of the squared exponential covariance function might be suitable for modeling of smoothly varying
quantities such as spectral signatures of hyperspectral data, but such smoothness is not suitable for
many other physical processes such as geospatial existence of certain materials [24]. It is commonly
recommended to use covariance functions from the Matérn class for such processes. We used the
Matérn covariance function with ν = 3/2:

kz(s1, s2) =

(
1 +
√

3||s1 − s2||
Lz

)
exp

(
−
√

3||s1 − s2||
Lz

)
.

The length parameter Lz is set to be in the same order of magnitude as the spatial resolution of the
image, since we do not want to impose unnecessarily smooth filtering effects to the classified results.
The difference between the squared exponential function and the Matérn function is illustrated in
Figure 2 using the 9-class Botswana data. The blue lines represent initial values of zt

i,k for i = 7 and
t = 1, and the green lines represent zt+1

i,k after the M-step. Note that the points are sorted according
to the index k for illustration, but they are from spatially disjoint two-dimensional chunks as shown
in Figure 3; hence there are several discontinuities in the plot. Figure 2(a) shows the result using
the Matérn covariance function, and Figure 2(b) shows the result using the squared exponential
function. Both covariance functions used the same length parameter. It is clear from the figure that
the squared exponential function is too smooth to model abruptly changing quantities.

4.5. Fast computation of GP. At each M-step of the GP-EM algorithm, we need to calculate
(d+1) Gaussian processes for d-dimensional data, and this is more problematic than in the GP-ML
case since we use all unlabeled instances for every GP regression. In the supervised learning case,
we fit a separate GP for each class using only samples from the class; and the number of instances
belonging to one class of the training data class is usually much smaller than the number of all
unlabeled instances. The most time-consuming step of the GP-EM algorithm is the inversion of
the spatial covariance matrix in (7): σ2

fKSS [σ2
fKSS + diag(σ2

ε /zt
i,k)]−1. When we have n instances,

KSS is an n× n matrix, and inverting the matrix requires O(n3) computations. By using an eigen-
decomposition of the covariance matrix we can get the result in O(n2) time instead of O(n3). Since
KSS is a positive semi-definite matrix, we can diagonalize the matrix:

K−1
SS = V Λ−1 V T = V diag(λ−1

k ) V T ,
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Figure 2. Effects of different covariance functions with the same length parameter.

where V is the matrix of eigenvectors and λk is the k-th eigenvalue of KSS . The matrix computation
in (7) is hence simplified as:

σ2
fKSS [σ2

fKSS + diag(σ2
ε /zt

i,k)]−1 = σ2
fV diag(λk)���V T V (σ2

fdiag(λk) + diag(σ2
ε /zt

i,k))−1 V T

= V diag

(
σ2

f

σ2
fλk + σ2

ε /zt
i,k

)
V T .

It is important to note that the remaining matrix multiplications should be calculated from right to
left, because it will always leave a column vector in the right end of the equation and we do not need
to multiply two n×n matrices. This method has the time complexity of O(n2) instead of O(n3) for
the entire calculation once we have the eigen-decomposition beforehand. Because KSS is common
across all dimensions, we need only two eigen-decompositions for the entire GP-EM iterations: KSS

and KzSS .

5. Experiments

5.1. Dataset. The Botswana dataset was obtained from the Okavango Delta by the NASA EO-1
satellite with the Hyperion sensor on May 31, 2001. The acquired data originally consisted of 242
bands, but only 145 bands are used after removing noisy and water absorption bands. The area used
for experiments has 1476×256 pixels with 30m spatial resolution. We used two different sets of data
with different list of classes from the same geographical region. The first dataset has 9 land cover
classes, and the second one has 14 classes. Each dataset has spatially disjoint training and test data.
The ground truth is collected using a combination of vegetation surveys, aerial photography, and a
high resolution IKONOS multispectral imagery. Table 1 shows the list of classes in the data with the
number of training and test instances in each class. The 14-class data has similar land cover types
in different classes; hence the classification task is more challenging than the 9-class data. Figure 3
shows the Botswana image with class maps for training and test data for both datasets. Different
land cover classes are shown in different colors in the class map. The training and test data are used
as provided to compare the results to previously reported results on the same data.

5.2. Experimental setup. The proposed GP-EM algorithm was evaluated and compared to three
other classification algorithms: conventional ML, EM, and the GP-ML algorithm. The semi-
supervised learning was performed in a transductive manner by using the test data as unlabeled
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Class no. Class name # Training # Test
1 Water 158 139
2 Primary Floodplain 228 209
3 Riparian 237 211
4 Firescar 178 176
5 Island interior 183 154
6 Woodlands 199 158
7 Savanna 162 168
8 Short mopane 124 115
9 Exposed soil 111 104

(a) 9-class data

Class no. Class name # Training # Test
1 Water 270 126
2 Hippo grass 101 162
3 Floodplain grasses 1 251 158
4 Floodplain grasses 2 215 165
5 Reeds 269 168
6 Riparian 269 211
7 Firescar 259 176
8 Island interior 203 154
9 Acacia woodlands 314 151
10 Acacia shrublands 248 190
11 Acacia grasslands 305 358
12 Short mopane 181 153
13 Mixed mopane 268 133
14 Exposed soils 95 89

(b) 14-class data

Table 1. Class names and number of data points for Botswana data.

data. The EM process was initialized by learning a supervised classification model using the train-
ing data, and then the unlabeled test data is used for the following EM iterations for both EM and
GP-EM experiments. The EM classifier was initiated with parameters estimated by the ML classi-
fier, and the GP-EM classifier was initiated with parameters estimated by the GP-ML classifier. To
find best length parameters for GP-ML and GP-EM classifiers, we divided the training data into
two spatially disjoint sets and performed two-fold spatial cross-validation on them. The same L was
used for both GP-ML and GP-EM results. The length parameter for the indicator variable, Lz, was
also searched in the same manner, but it made little differences in the same order of magnitudes.
We also used the best-bases dimensionality reduction algorithm [19] to pre-process the data to save
computational time. The best-bases algorithm combines highly correlated neighboring bands; hence
the dimensionality reduced features are less correlated with each other, which makes the näıve Bayes
assumption of GP-ML/EM more plausible. It was also shown that ML and EM algorithms also ben-
efit from the best-bases algorithm [19]. For ML and EM experiments, Fisher’s multi-class LDA was
also used for further dimensionality reduction in a pre-processing manner.

5.3. Results. Table 2 shows the overall classification accuracies for both datasets. EM and GP-EM
processes are repeated for 30 iterations. The GP-EM results are 98.81 % for the 9-class data, and
95.87 % for the 14-class data. The proposed GP-EM algorithm shows significantly better results than
all other methods evaluated. In fact this result is better than any other results reported so far on

34

2010 Conference on Intelligent Data Understanding



1. Water

2. Primary Floodplain

3. Riparian

4. Firescar

5. Island Interior

6. Woodlands

 7. Savanna

8. Short Mopane

9. Exposed Soil

(a) 9-class data

1. Water

2. Hippo Grass

3. Floodplain Grass 1

4. Floodplain Grass 2

5. Reeds

6. Riparian

7. Firescar

8. Island Interior

9. Acacia Woodlands

10. Acacia Shrublands

11. Acacia Grasslands

12. Short Mopane

13. Mixed Mopane

14. Exposed Soils

(b) 14-class data

Figure 3. Images of the Botswana data. From left to right, reconstructed RGB
image, class map of training data, and class map of test data.

the same data as shown in Table 3: the multi-resolution manifold algorithm (MR-Manifold) [18], the
knowledge transfer framework with class hierarchies (KT-BHC) [21], the nonlinear dimensionality
reduction by Isomap with support vector machine classifier (Iso-SVM)[4], the k-nearest neighbor
on the manifold approach (SkNN) [1], and the hierarchical support vector machine algorithm (BH-
SVM) [3]. It is also noteworthy that comparable results can be observed after acquiring substantial
amount of class labels from the unlabeled data by active learning algorithms in [16] and [22], but
we do not use any labels from the test data in this paper. Figure 4 shows error rates for individual
classes. Even though GP-ML shows better overall accrucies than ML, it is observable that GP-ML
performs poorly for some classes. This usually happens when test data is located too far from
training data; hence the GP regression makes inaccurate predictions. The EM algorithm effectively
reduces error rates from the initial ML results for almost all classes; however it is also noticeable
that the EM results show similar distributions with the ML results by making more errors for classes
that ML made more errors. On the contrary, the proposed GP-EM algoithm effectively overcomes
shortcomings of the initial estimates provided by the GP-ML classifier. Figure 5 shows how errors
and log-likelihoods progress for two EM based algorithms. GP-EM shows consistently lower error
rates than EM as well as better log-likelihoods.

ML EM GP-ML GP-EM
9-class 87.24 % 93.72 % 90.03 % 98.81 %
14-class 74.30 % 85.36 % 82.76 % 95.87 %

Table 2. Overall classification accuracies for different algorithms. EM and GP-EM
results are shown with 30 iterations.
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9-class results 14-class results
Iso-SVM [4] MR-Manifold [18] SkNN [1] KT-BHC [21] BH-SVM [3]

Overall accuracy 80.7 % 86.9 % 87.5% 84.42 % 72.1 %
Table 3. Classification accuracies with spatially disjoint Botswana data from pre-
vious studies.
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Figure 4. Classification error for each class after 30 iterations.

6. Conclusion

We have proposed a novel semi-supervised learning algorithm for the classification of hyperspectral
data with spatially adaptive model parameters. The proposed algorithm models the test data by
a spatially adaptive mixture-of-Gaussians model, where the spatially varying parameters of each
component are obtained by Gaussian process regressions with soft memberships using the mixture-of-
Gaussian-processes model. Experiments on the spatially separated test data show that the proposed
framework performs significantly better than the baseline algorithms, and the result is better than
any previously reported results on the same datasets.

References

[1] Y. Chen, M. Crawford, and J. Ghosh. Applying nonlinear manifold learning to hyperspectral data for
land cover classification. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS
05), 2005.

[2] Y. Chen, M. Crawford, and J. Ghosh. Knowledge based stacking of hyperspectral data for land cover
classification. In IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2007), 2007.

[3] Y. Chen, M. M. Crawford, and J. Ghosh. Integrating support vector machines in a hierarchical output
space decomposition framework. In IEEE International Geoscience and Remote Sensing Symposium
(IGARSS 04), 2004.

[4] Y. Chen, M. M. Crawford, and J. Ghosh. Improved nonlinear manifold learning for land cover clas-
sification via intelligent landmark selection. In IEEE International Geoscience and Remote Sensing
Symposium (IGARSS 06), 2006.

[5] N. Cressie. Statistics for Spatial Data. Wiley, New York, 1993.
[6] W. Davis and F. Peet. A method of smoothing digital thematic maps. Remote Sensing of Environment,

6(1):45–49, 1977.
[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley-Interscience, 2000.

36

2010 Conference on Intelligent Data Understanding



0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Overall Error

Iterations

Er
ro

r

EM
GP−EM

(a) Overall error, 9 classes

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80
Negative Log−Likelihood

Iterations

 −
 lo

g 
L

EM
GP−EM

(b) Negative log-likelihood, 9 classes

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Overall Error

Iterations

Er
ro

r

EM
GP−EM

(c) Overall error, 14 classes

0 5 10 15 20 25 30
0

50

100

150

200

250

300
Negative Log−likelihood

Iterations

−l
og

 L

EM
GP−EM

(d) Negative log-likelihood, 14 classes

Figure 5. Overall error and negative log-likelihoods of EM-based algorithms.

[8] M. Dundar and D. Landgrebe. A Model-Based Mixture-Supervised Classification Approach in Hyper-
spectral Data Analysis. IEEE Transactions on Geoscience and Remote Sensing, 40(12):2692–2699, 2002.

[9] A. Fotheringham, C. Brunsdon, and M. Charlton. Geographically weighted regression: the analysis of
spatially varying relationships. John Wiley & Sons Inc, 2002.

[10] P. Goovaerts. Geostatistical incorporation of spatial coordinates into supervised classification of hyper-
spectral data. Journal of Geographical Systems, 4(1):99–111, 2002.

[11] D. A. Griffith. Modeling spatial dependence in high spatial resolution hyperspectral data sets. Journal
of Geographical Systems, 4(1):43–51, 2002.

[12] R. Haralick and K. Shanmugam. Combined spectral and spatial processing of ERTS imagery data.
Remote Sensing of Environment, 3(1):3–13, 1974.

[13] P. Harris, A. Fotheringham, R. Crespo, and M. Charlton. The use of geographically weighted regression
for spatial prediction: An evaluation of models using simulated data sets. Mathematical Geosciences,
2010.

[14] Q. Jackson and D. Landgrebe. Adaptive Bayesian contextual classification based on Markov random
fields. IEEE Transactions on Geoscience and Remote Sensing, 40(11):2454–2463, 2002.
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IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING

ISAAC PERSING AND VINCENT NG

Abstract. Active learning has been successfully applied to many natural language processing

tasks for obtaining annotated data in a cost-effective manner. We propose several extensions to an

active learner that adopts the margin-based uncertainty sampling framework. Experimental results

on a cause detection problem involving the classification of aviation safety reports demonstrate

the effectiveness of our extensions.

1. Introduction

Automatic text classification is one of the most important applications in natural language pro-
cessing (NLP). Supervised text classification systems, however, can be prohibitively expensive to
train because a human annotator may have to read a large amount of text in order to label each
training instance. In a typical system, a random sampling of documents is chosen for human an-
notation, but in many cases it is possible to reduce the training set annotation cost with active
learning. In active learning, the learner is allowed to choose the instances to be labeled by a human
annotator, potentially creating for itself an equally informative training set consisting of a smaller
number of labeled instances.

In this paper, we study the application of active learning to cause detection using a new dataset
involving the Aviation Safety Reporting System (ASRS), which collects voluntarily submitted reports
about aviation safety incidents written by flight crews, attendants, controllers, and other related
parties. Cause detection, or the determination of why an incident happened, is one of the central
tasks in the automatic analysis of these reports. Aviation safety experts at NASA have identified 14
causes (also known as shaping factors, or simply shapers) that may contribute to an aviation safety
incident. Hence, cause detection can be recast as a text classification task: given an incident report,
determine which of a set of 14 shapers contributed to the incident described in the report.

It is worth mentioning that the accurate acquisition of a classifier for this cause detection task is
complicated by several factors. First, the class distributions are skewed, with some shapers signifi-
cantly outnumbering the others. Second, the task involves multi-label categorization: a report can
be labeled with more than one category, as several shapers can contribute to the occurrence of an
incident. Finally, the documents belong to the same domain. As a result, they tend to be more
similar to each other with respect to word usage than topic-based text classification tasks, making
the classes less easily separable.

The three properties mentioned above can pose significant challenges to cause detection, especially
in an active learning setting, where classifiers are typically trained on only a small amount of
labeled data.Unfortunately, these challenges remain relatively under-studied in existing work on
active learning. For instance, though tackled extensively by using instance sampling and re-weighting
methods to reduce class skewness, minority class prediction has primarily been studied in a passive
learning setting (e.g., Morik et al. [11], Chawla et al. [4] Arbani et al. [1]). Relatively little work has
attempted to address class skewness in the context of active learning (e.g., Ertekin et al. [6], Zhu
& Hovy [20]). Similarly for multi-label categorization, which can complicate the learning process
even when labeled data is abundant, let alone in an active learning setting. However, with a few
exceptions (e.g., Brinker [2], Yang et al. [18]), the vast majority of existing work on active learning
assumes that each instance can have a single label. Finally, virtually all active learning approaches
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to text classification have been evaluated on the topic-based text classification task, which is easier
than cause detection, as discussed above.

We seek to improve an active learner for cause detection that adopts the margin-based uncertainty
sampling framework. To address class imbalance and multi-label categorization, we not only inves-
tigate existing techniques, but also techniques that have not previously been applied in an active
learning setting. In particular, while previous margin-based active learning methods characterize
the informativeness of an unlabeled instance using only its distance from the separating hyperplane,
we also take into account the information provided by a novel distance metric. In addition, though
most previous work on active learning for text categorization is evaluated by plotting a learning
curve against the number of labeled documents, works such as Haertel et al. [8] have pointed out
that the performance of an active learning system can be highly dependant on the way annotation
cost is measured. For that reason we additionally plot a curve against the number of words in the
selected documents. This allows us to model the fact that longer documents take more effort to label
than their short counterparts. Evaluation on 1,333 manually labeled incident reports demonstrate
the effectiveness of our proposed extensions.

In the rest of the paper, we first present the 14 shapers, then explain how we preprocess and
annotate the reports. After that, we review the standard margin-based active learning framework,
and discuss baselines and our extensions to this framework. Finally, we present evaluation results,
discuss related work, and conclude.

2. Shaping Factors

As mentioned in the introduction, the task of cause identification involves labeling an incident
report with all the shaping factors that contributed to the occurrence of the incident. Table 1 lists
the 14 shaping factors, as well as a description of each shaper taken verbatim from Posse et al.
[12]. As we can see from Table 1, the descriptions of the shapers are not mutually exclusive. For
instance, a lack of Familiarity (4) with equipment often implies a deficit in Proficiency (10) in
its use, so the two shapers frequently co-occur. Similarly, tiredness, which is explicitely listed as
one of the impairments covered under Physical Factors (7), often results from an extended Duty

Cycle (3), and hence those two shapers frequently co-occur. These relationships are illustrated in
Table 2, which shows the mutual dependence of each pair of shapers as measured by their mutual
information in bits × 104. In addition, while some classes cover a specific and well-defined set of
issues (e.g., Illusion), some encompass a relatively large range of situations. For instance, Resource

Deficiency can include problems with equipment, charts, or even aviation personnel.

3. Dataset

We downloaded our corpus from the ASRS website1. The corpus consists of 140,599 incident
reports collected during the period from January 1988 to December 2007. Each report is a free
text narrative that describes not only why an incident happened, but also what happened, where it
happened, how the reporter felt about the incident, the reporter’s opinions of other people involved
in the incident, and any other comments the reporter cared to include. In other words, a lot of
information in the report is irrelevant to (and thus complicates) the task of cause identification.

3.1. Preprocessing. Unlike newswire articles, at which many topic-based text classification tasks
are targeted, the ASRS reports are informally written using various domain-specific abbreviations
and acronyms, tend to contain poor grammar, and have capitalization information removed, as
illustrated in the following sentence taken from one of the reports.

HAD BEEN CLRED FOR APCH BY ZOA AND HAD BEEN HANDED OFF TO
SANTA ROSA TWR.

1http://asrs.arc.nasa.gov/
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Id Shaping Factor Description %

1 Attitude Any indication of unprofessional or antagonistic attitude by
a controller or flight crew member, e.g., complacency or get-
homeitis (in a hurry to get home).

2.4

2 Communication
Environment

Interferences with communications in the cockpit such as noise,
auditory interference, radio frequency congestion, or language
barrier.

5.5

3 Duty Cycle A strong indication of an unusual working period, e.g., a long
day, flying very late at night, exceeding duty time regulations,
having short and inadequate rest periods.

1.8

4 Familiarity A lack of factual knowledge, such as new to or unfamiliar with
company, airport, or aircraft.

3.2

5 Illusion Bright lights that cause something to blend in, black hole, white
out, sloping terrain, etc.

0.1

6 Physical
Environment

Unusual physical conditions that could impair flying or make
things difficult.

16.0

7 Physical
Factors

Pilot ailment that could impair flying or make things more diffi-
cult, such as being tired, drugged, incapacitated, suffering from
vertigo, illness, dizziness, hypoxia, nausea, loss of sight or hear-
ing.

2.2

8 Preoccupation A preoccupation, distraction, or division of attention that cre-
ates a deficit in performance, such as being preoccupied, busy
(doing something else), or distracted.

6.7

9 Pressure Psychological pressure, such as feeling intimidated, pressured,
or being low on fuel.

1.8

10 Proficiency A general deficit in capabilities, such as inexperience, lack of
training, not qualified, or not current.

14.4

11 Resource
Deficiency

Absence, insufficient number, or poor quality of a resource, such
as overworked or unavailable controller, insufficient or out-of-
date chart, malfunctioning or inoperative or missing equipment.

30.0

12 Taskload Indicators of a heavy workload or many tasks at once, such as
short-handed crew.

1.9

13 Unexpected Something sudden and surprising that is not expected. 0.6

14 Other Anything else that could be a shaper, such as shift change, pas-
senger discomfort, or disorientation.

13.3

Table 1. Descriptions of shaping factor classes. The “%” column shows the percent

of labels the shapers account for.

Id 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3622 3 13 12 2 22 6 12 9 0 44 2 5 2

2 3 5220 3 1 4 13 6 15 4 5 81 40 0 2

3 13 3 2008 3 1 8 389 5 13 3 30 1 8 6

4 12 1 3 3085 4 8 0 1 18 118 56 19 2 63

5 2 4 1 4 221 0 1 1 2 2 0 2 1 9

6 22 13 8 8 0 8035 10 1 0 37 35 0 5 48

7 6 6 389 0 1 10 2610 6 0 3 91 1 3 2

8 12 15 5 1 1 1 6 5524 1 24 239 177 2 33

9 9 4 13 18 2 0 0 1 2888 4 3 18 4 16

10 0 5 3 118 2 37 3 24 4 8131 264 0 5 160

11 44 81 30 56 0 35 91 239 3 264 9964 82 13 498

12 2 40 1 19 2 0 1 177 18 0 82 3067 1 4

13 5 0 8 2 1 5 3 2 4 5 13 1 2704 0

14 2 2 6 63 9 48 2 33 16 160 498 4 0 8015

Table 2. Mutual information in bits between shapers × 104.

This sentence is grammatically incorrect (due to the lack of a subject), and contains abbreviations
such as CLRED, APCH, and TWR. This makes it difficult for a non-aviation expert to under-
stand. To improve readability (and hence facilitate the annotation process), we preprocess each
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report as follows. First, we expand the abbreviations/acronyms with the help of an official list of
acronyms/abbreviations and their expanded forms2. Second, though not as crucial as the first step,
we heuristically restore the case of the words by relying on an English lexicon: if a word appears in
the lexicon, we assume that it is not a proper name, and therefore convert it into lowercase. After
preprocessing, the example sentence appears as

had been cleared for approach by ZOA and had been handed off to santa rosa tower.

Finally, to facilitate automatic analysis, we stem each word appearing in the reports.

1 P N 2 P N 3 P N
P 6.4 2.3 P 10.0 2.8 P 1.6 1.0
N 2.3 89.1 N 2.8 84.5 N 1.0 96.5

4 P N 5 P N 6 P N
P 4.2 0.9 P 0.2 0.0 P 15.4 3.5
N 0.9 94.1 N 0.0 99.8 N 3.5 77.6

7 P N 8 P N 9 P N
P 4.1 0.7 P 7.4 4.0 P 6.4 0.8
N 0.7 94.5 N 4.0 84.6 N 0.8 92.0

10 P N 11 P N 12 P N
P 13.9 6.7 P 23.1 10.1 P 5.7 1.5
N 6.7 72.7 N 10.1 56.8 N 1.5 91.4

13 P N 14 P N
P 4.4 2.5 P 14.8 6.6
N 2.5 90.6 N 6.6 72.0

S 1 2 3 4 5 6 7
F 74.0 78.4 62.7 83.2 100.0 81.5 85.4

S 8 9 10 11 12 13 14
F 64.9 88.9 67.5 69.7 79.7 63.8 69.2
Table 3. Annotator Agreement Per Class.

3.2. Human Annotation. Next, we randomly picked 1,333 preprocessed reports and had two
graduate students not affiliated with this research annotate them with shaping factors. After a
training session in which we explained to the annotators the definitions of the 14 shapers shown in
Table 1, we had each annotator independently label a subset of the reports with shaping factors. To
measure inter-annotator agreement, we compute Cohen’s Kappa [3] from the two sets of annotations,
obtaining a Kappa value of 0.72, which indicates fair agreement. This not only suggests the difficulty
of the cause detection task, but also reveals the vagueness inherent in the definition of the 14 shapers.

2See http://akama.arc.nasa.gov/ASRSDBOnline/pdf/ASRS_Decode.pdf. In the very infrequently-occurring case

where the same abbreviation or acronym may have more than expansion, we arbitrarily chose one of the possibilities.
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Id 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Total 52 119 38 70 3 289 348 48 145 38 313 652 42 14

% 3.9 8.9 2.9 5.3 0.2 21.7 26.1 3.6 10.9 2.9 23.5 48.9 3.2 1.1

Table 4. Number of occurrences of each shaping factor in the dataset. The “Total”
row shows the number of narratives labeled with each shaper and the “%” row shows the
percentage of narratives tagged with each shaper in the 1,333 labeled narrative set.

x (# Shapers) 1 2 3 4 5 6

Percentage 53.6 33.2 10.3 2.7 0.2 0.1

Table 5. Percentage of documents with x labels.

Additional statistics on the annotated dataset can be found in Tables 3, 4, and 5. In Table 3, we
further analyze annotator agreement on reports having two annotators. For each doubly-annotated
report, we first assume its true labels are those applied by annotator 2 and score annotator 1’s
labels accordingly. We then assume annotator 1’s labels are the true labels and score annotator 2’s
labels. So for example, the top left subtable means that for shaping factor 1 (Attitude), the two
annotators agreed that 6.4% of the narratives were positive instances of Attitude, 89.1% of them
were negative instances of Attitude, and disagreed on the remaining narratives. In the two long
subtables at the bottom, we more directly compare the ease of identifying each of the 14 shapers by
showing the F-measures corresponding to the above confusion matrices. So, for example, shaper 5
(Illusion) appears to be easy to identify, because the annotators agreed with respect to Illusion on all
doubly-annotated narratives. As mentioned before, this high agreement rate may be attributed to
the fact that Illusion covers a specific and well-defined set of issues. Shaper 11 (Resource Deficiency),
however, appears harder for annotators agree on, possibly because of the broad range of unrelated
situations it covers.

In Table 4, we show how frequently each shaping factor occurs in our 1,333 narrative dataset.
This is expressed as both an absolute number of reports in the set having each shaper label, and
as a percent of narratives in the set having each shaper as one of its labels. Notice that since some
incidents are caused by several shaping factors, the percentages sum to more than 100%.

To get a better idea of how many reports have multiple labels, we categorize the reports according
to the number of labels they contain in Table 5. As we can see, nearly half of the reports contain
multiple labels.

4. Overview of Margin-Based Active Learning

The idea behind active learning is that a learner can reduce the annotation cost if it is allowed
to choose which examples from an unlabeled pool to have manually annotated. The question that
naturally follows is: how should an active learner select which examples should be labeled?

Although there are several popular frameworks for selecting active learning examples such as
query-by-committee [15] or estimated error reduction [13], we will focus on margin-based uncertainty
sampling. We chose uncertainty sampling [10] because it is commonly used. Throughout this
paper we use support vector machine (SVM) classifiers due to their robust performance on many
classification tasks, and it therefore makes sense to use margin-based uncertainty sampling rather
than, for example, using entropy as the uncertainty measure. With margin based sampling, we can
directly make use of our classifier’s uncertainty about an unlabeled example when deciding which
examples to request labels for. Following Schohn & Cohn [14] and Tong & Koller [17], we consider
those examples falling closest to an SVM’s decision boundary the most uncertain.
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5. Baseline Approaches

In this section, we describe two baseline approaches to cause detection with active learning. Both
baselines recast cause detection as a set of 14 binary classification problems, one for predicting each
shaper. In the binary classification problem for predicting shaper si, we create one training instance
from each document in the training set, labeling the instance as positive if the document has si as
one of its labels, and negative otherwise. In essence, we are adopting a one-versus-all scheme for
creating training instances.

We use the SVM learning algorithm as implemented in the SVMlight software package [9] for
classifier training. To train and test the SVM classifiers, all words occurring in at least ten narratives
in the ASRS dataset are employed as binary-valued features that indicate the presence or absence
of a unigram. It is worth mentioning that our primary motivation for recasting the task as a set of
binary classification problems is that this approach allows us to perform multi-label categorization
in a simple and natural manner. The reason is that a document will receive si as its label as long
as it is labeled as positive by ci.

In our experiments, we conduct 5-fold cross validation. Specifically, for each experiment, we
divide the 1,333 annotated reports into a test set of about 267 labeled reports and a pool of about
1066 potential active learning reports (henceforth the unlabeled set) from which all future active
learning reports are drawn. As Algorithm 1 shows, an active learner begins with a training set T

of 14 randomly selected documents from the unlabeled pool U . It iteratively requests a labeling of
14 documents from the unlabeled set, then removes the documents from the unlabeled set and adds
them to the training set. The difference between systems lies in how reports are selected (line 4).

Algorithm 1: Active Learning Algorithm.

Input: U : A large pool of unlabeled reports.
1. T ← 14 randomly selected reports from U ;
2. Apply manually assigned labels to reports in T ;
3. U ← U − T ;
while U �= ∅ do

4. H ← Select(T,U);
5. Apply manually assigned labels to reports in H;
6. T ← T ∪H;
7. U ← U −H;

end

Random is commonly-used baseline in active learning experiments that selects documents from
U to add to the training set randomly. The underlying learner is passive, as it is not permitted any
choice in the documents that are annotated for training.

Before discussing our other baseline, recall that when it is applied to a test report an SVMlight

classifier outputs a real number. If this number is greater than 0, the report should be labeled
positive. Otherwise, it should be labeled negative. The absolute value of this number can be
interpreted as the classifier’s confidence about the report’s predicted label. So for example, while
a report which obtains a value of −0.01 and a report which obtains −3.00 should both be labeled
negative, the classifier is much more confident about the label of the latter document than the former
document.

Keeping this in mind, our Margin baseline selects reports to label in line 4 of Figure 1 in the
following way. Using the labeled reports in T , it trains 14 binary SVM classifiers ci, one for each
shaper si. It then applies the classifiers to the reports in the unlabeled set, for each shaper si,
choosing the report for which ci returned the lowest score (in absolute value). Each time a report
is selected for one shaper, we remove it from consideration when choosing reports for the remaining
classes. In this way, we avoid the problem of possibly choosing fewer than 14 reports in cases where
one report obtains the lowest score for multiple classifiers.
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6. Active Learning Extensions

In this section, we describe four extensions to the active learning algorithm and a method with
which they can be combined to form a better active learner.
Extension 1: Oversampling with BootOS

The problem of minority class prediction occurs frequently in natural language processing tasks.
One of the aspects of this cause detection problem that makes it difficult its class skewness, with
a few classes such as Resource Deficiency occurring very frequently and many minority classes
occurring very infrequently. As shown in Table 4, 9 of the 14 shaping factors occur in fewer than
10% of the reports in the 1,333 document set. Undersampling and oversampling methods have been
been successfully applied in supervised learning settings [7] [19] [4] to address the class imbalance
problem. When applying active learning to word sense disambiguation, which also often suffers
from class imbalance, Zhu & Hovy [20] showed that undersampling caused too many useful majority
class examples to be removed in highly-skewed data, but oversampling using their BootOS method
worked well. With the goal of understanding whether oversampling usingBootOS can also work well
for other tasks, we employ it as our first extension to the margin-based active learning framework
for cause detection. More specifically, for active learners using the BootOS extension, we apply
BootOS within the Select function to oversample the minority (usually positive) class for each of
the 14 shapers in the training set T .

To do this, for each shaper we first identify the set X of minority (probably positive) class examples
and the difference N in the sizes (in document count) between the positive and negative classes for
this shaper in the current training set. We then iteratively cycle through each minority example x
in X, using x to create an additional minority class example to add to the training set. We do this
by combining each x with its one nearest neighbor until we have added 0.8 × N examples. To do
this, we represent each example as a vector of its word features (where 1.0 indicates the presence of
a word and 0.0 represents its absence). With this vector representation, we can find an example’s
nearest neighbor using the city block distance between the two vectors. We combine x with its
nearest neighbor by taking the average of the two vectors. It should be noted that our decisions
to combine each x with only its 1 nearest neighbor and to expand the minority class by 0.8 × N
examples were based on the parameters used by Zhu & Hovy [20]. By training classifiers with these
oversampled training sets, we hope that the margin-based uncertainty sampling extensions will select
better active learning reports.
Extension 2: Overall Most Confident

Largely due to the imbalance between classes and the fact that some shapers cover a larger set of
different situations than others, given any training set, it is likely that a classifier we can train for
one shaper will be much better than a classifier we can train for another. Because we have access
to all the information about documents in the unlabeled set except for their labels, one way we can
compare two classifiers is by looking at how well they separate the reports in the unlabeled set. We
hypothesize that a good SVM classifier’s hyperplane would not pass through high density regions,
whereas a poorer classifier’s hyperplane would be more likely to pass through these regions. A poor
classifier whose hyperplane passes through multiple high density regions therefore may have more
unlabeled points which it cannot confidently classify than a good classifier not passing through many
high density regions. This is the motivation behind our Overall Most Confident (OMC) extension.
Like Margin, it trains 14 classifiers ci, one for each shaper si. Unlike Margin, however, it assigns
each document in the unlabeled set the smallest (absolute) value returned by any of the classifiers.
It then selects the 14 reports that have been assigned the lowest confidence values. This allows the
active learner to focus on improving the poorer classifiers.

It has been pointed out that the multi-label nature of some text classification tasks has implica-
tions for how active learning can be used [18]. Keeping this idea in mind, we can generalize the OMC
extension to exploit the fact that some potential active learning reports may be useful for more than
one of the binary shaper classification problems. By default, OMC assigns each unlabeled report the
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lowest confidence value any of the 14 classifiers gives it. So if, the default version of OMC assigns
a report a value of x, that means that at least one of the binary classifiers assigned the report a
certainty value of x or lower. What if, instead of assigning a report the lowest certainty value given
it by any classifier, OMC instead assigned it the n-th lowest value? The interpretation of this value
x would be that at least n of the binary classifiers assigned the report a certainty value of x or lower.
Increasing n allows OMC to prefer reports that might be useful for a larger number of classifiers,
but at the same time reduces the chance that a chosen point will be especially useful for any of them
individually.
Extension 3: Explore All Words

One desirable property of a training set is that it should contain instances of all relevant features
for the task being learned. Our Explore All Words (EAW) extension to active learning prefers to
request labelings for reports containing many unseen words, since some of these words may be useful
for cause detection. This idea is similar to those described by Druck et al. [5] and Sindhwani et
al. [16] in that we are determining which features make a potential active learning document most
desirable to label.

More generally, EAW can be said to prefer the documents that are least similar to those contained
in the current training set. As each of our extensions to active learning (except for BootOS) needs
to assign values to each report in the unlabeled set in order to determine which reports will be the
most valuable for active learning, it would be useful to formalize EAW by creating a distance metric
measuring the distance between a set of reports (the training set) and a report from the unlabeled set.
To calculate this distance, we first represent each report as a vector of its unigram features, where
Ri[j] = 1 only if report i contains feature j. We then represent the set of training reports RT with
another vector, where RT [j] = maxt∈T Rt[j]. Finally, we measure the distance between an unlabeled
report vector Ri and a training set vector RT as Dist(RT , Ri) =

∑
j:Ri[j]>RT [j](Ri[j]−RT [j]). This

distance formula returns higher values when the unlabeled document Ri contains features not seen
in the training set, allowing the EAW extension to prefer reports containing new features.

This extension has a number of obvious shortcomings. Among them is that our document repre-
sentations do not account for the importance of each word in a document. To address this problem
the tf-idf version of this extension represents each report with a tf-idf vector rather than a presence
or absence vector as before. Hence, in the Dist formula above, Ri[j] is defined as the tf-idf value of
term j in document i.

Another shortcoming is that it does not account for the importance of each word to the dataset.
The document frequency df version of EAW additionally weights each term in the distance formula
by its frequency in the original unlabeled set. Hence, the new distance formula is: Dist(RT , Ri) =∑

j:Ri[j]>RT [j] df(j) ∗ (Ri[j] − RT [j]) Because we have defined two possible definitions of Ri[j] and

two possible distance functions using Ri[j], this extension has four versions.
Extension 4: Document length

It may be possible to exploit our knowledge of the length of unlabeled reports to reduce annotation
costs. Because reports associated with multiple shapers are on average slightly longer, the Long
version of this method will assign each report its length in words and prefer larger values. If we
are interested in reducing annotation cost as measured by length of annotated reports, however, the
Short version of this method should be chosen. It also assigns reports their length in words, though
it prefers the lower values.

Finally, note that these extensions do not have to be used in isolation. In order to combine the
values each extension assigns to unlabeled reports, we have to perform three steps. First, we scale
the values assigned by each system to the range of 0 to 1. Next, because OMC and Short prefer
low values and EAW prefers high values, we transform the values assigned by OMC and Short by
subtracting them from 1. Hence if the original OMC or Short value was near 0, the new value will be
near 1. Finally, we assign each unlabeled report the sum of the values it was given by the different
extensions. The multiple extension version of active learning selects the 14 reports for which this
value is highest.
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7. Evaluation

As is standard with active learning experiments, we report results in the form of learning curves.
Each curve is plotted by computing the micro-averaged F-measure for different amounts of labeled
data. This approach to reporting results is preferable to methods such as selecting one F-score and
reporting the cost needed to obtain it, or selecting one cost and reporting the F-score obtained with
this much annotation because any of these selections we made would be arbitrary, and different
choices of annotation cost or F-score could potentially cause us to derive different conclusions. The
micro-averaged F-measures we report are computed by aggregating over the 14 shapers as follows.
Using the set of about 267 held out test reports, let tpi be the number of test reports correctly
labeled as positive by ci; pi be the total number of test reports labeled as positive by ci; and ni be
the total number of test reports that belong to si according to the gold standard. Then,

P =

∑
i tpi∑
i pi

,R =

∑
i tpi∑
i ni

, and F =
2PR

P +R
.

Since there is randomness involved in the selection of the first 14 documents, all results are
averaged over three runs of 5-fold cross validation on the 1,333 annotated reports.

To evaluate our extensions to active learning, we begin by evaluating a full-fledged system that
makes use of some version of all four extensions described in the previous section. In particular,
we employ a full-fledged active learner that uses the Margin baseline along with BootOS, OMC-1,
EAW-tfidf-df, and Short. To measure the contribution of each of these extensions to performance,
we remove the extensions one-at-a-time in reverse order in which they were introduced in the last
section and observe the effects.

Specifically, six of the eight figures below (1, 2, 5, 6, 7 and 8) correspond to (1) the two baselines,
(2) several versions of the extension being examined, and (3) the system that remains after the
extension’s removal. To exemplify, Figure 1 shows results of the first experiment, in which Extension
4 is “examined”. Hence, the figure contains (1) the two baselines, (2) the two versions of Extension
4 (i.e., Short and Long), and (3) EAW-tfidf-df, which is the system that remains after the removal
of Extension 4.

Figure 1. Length: F-measure against # of documents
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Figure 2. Length: F-measure against word count

Let us begin by examining Extension 4 (Document length). Figures 1 and 2 show results for the
entire combined system using the two variations of the Length extension. That is, the Short and
Long curves in these figures represent systems that make use of all three other extensions. As we
can see, whether we measure annotation cost based on number of reports annotated (Figure 1) or
number of words in annotated documents (Figure 2), the combined system using the Short version of
this extension does not perform noticeably better than the EAW-tfidf-df system on which it is built.
The fact that they perform comparably using both measurements and that the improvements over
Random look much larger when measuring cost by word count suggest that EAW-tfidf-df has an
inbuilt preference for short documents. This is understandable since it is easier for a word in a short
document to have a high tf-idf value, and hence novel words in short documents contribute more
in these versions’ distance measures than novel words in long documents. Measuring annotation
cost by word count, Figure 2 shows that with or without Short, the combined system can achieve
results competitive with Random with less than half the annotation cost. Our speculation that
Long might work well because of the correlation between document length and number of shapers is
shown to be false in both graphs. The Long version hurts the performance of the underlying EAW-
tfidf-df system. One possible explanation for this counter-intuitive result is that there are multiple
reasons why a narrative might be long. While longer documents are on average associated with more
shaping factors than short documents, some documents are long only because they contain excessive
information irrelevant to cause detection, thereby making classifiers trained on them less effective.

Because the combined system using the short extension is the best performer overall, we would
like to examine what it does in more detail. Figures 3 and 4 show the individual performances
for each shaper classifier as measured by document count and word count for the combined system
with the short extension. The first thing we notice when examining these graphs is the generally
downward curve of the line for shaper 11 (Resource Deficiency). That the F-measure obtained by
one classifier decreases as more training data is acquired seems at first counterintuitive. However,
when we recall that SVMlight constructs a separating hyperplane that minimizes classification error
rather than maximizing f-measure, it is not surprising that it would prefer a hyperplane resulting in
high recall but low precision for the most frequent shaper when its potential accuracy is hampered
by a small training set.
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Figure 3. F-measure against # of documents per shaper for Short extension

Figure 4. F-measure against word count per shaper for Short extension

This does not, however, mean that an error-minimizing SVM algorithm is an inappropriate choice
for our sysems’ component shaper classifiers. To avoid giving undue weight to the minority classes,
the results we report for all of our systems are expressed in terms of micro f-measure. The micro-
averaged f-measure formula shown at the beginning of the Evaluation section shows that it is possible
for a system’s performance to improve even when the performance of one of its component shaper
classifiers drops. That is, the micro-averaged f-measure of a system is not merely the average of the
f-measures of its component classifiers.
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In general, however, these graphs show the unsurprising trend that the classifiers for the most
frequent classes tend to do best, improving with increased training data, while minority classes
improve very little. This suggests that unsupervised learning approaches or heuristic rule-based
techniques might be most useful for minority shaper detection.

Figure 5. EAW: F-measure against # of documents

Figure 6. EAW: F-measure against word count

Next, we examine Extension 3 (EAW), which prefers reports containing words not yet seen in
the training set. Figure 5 shows EAW and EAW-df, the versions which represent reports as binary
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presence or absence vectors, perform almost as poorly as the Margin baseline.This finding may be
related to our discovery that active learners selecting long documents do more poorly than ones
selecting short documents. Examining the two distance formulas used for this extension, we see that
both make it possible for longer documents to obtain higher distance scores if binary presence or
absense representations for the Ri[j] and RT [j] terms are used. Using tf-idf values for these terms,
however, can have the effect of scaling the document representations so that short documents are
competitive with long documents.

EAW-tfidf and EAW-tfidf-df by contrast perform quite well. The fact that the tf-idf document
representation is required to produce good results justifies our speculation in the previous section
that it is not only important to label reports containing words that have not been seen before—it is
also important that the new words appear frequently in the selected documents. Similarly, the fact
that EAW-tfidf-df outperforms EAW-tfidf tells us that it is important to prefer reports containing
words that figure prominently in the dataset over ones containing rarer words.

All these observations are mirrored in the results shown in Figure 6, where we show the same
systems, but with annotation cost measured in word count. The fact that the differences we ob-
served are more pronounced when cost is measured by word count is yet more evidence that actual
annotation costs can be reduced using our best methods.

Figure 7. OMC & BootOS: F-measure against # of docs

The next extension we examine is Extension 2 (OMC), which prefers reports that are informative
for weaker classifiers. In figures 7 and 8, we see that OMC-1 performs much better than BootOS,
the system upon which it is built, and performs comparably to Random. This suggests that limiting
ourselves to selecting one informative example for each class on each iteration gives our system
a huge handicap. OMC-1 obtained a large improvement over BootOS alone by simply preferring
reports that we expect to be informative for weaker classifiers rather than strictly limiting the
system to one report per classifier per iteration. This intuitively makes sense because some of the
binary classification tasks that make up the cause determination problem are much easier to build
reasonable classifiers for by virtue of either dealing with more specific, well-defined sets of issues, or
by simply being larger classes.

Despite also being permitted to select more examples for weaker classifiers, systems OMC-2, OMC-
3, and OMC-4, which are also built on top of BootOS, perform poorly compared to the Random
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Figure 8. OMC & BootOS: F-measure against word count

baseline, and only the first two of the three compare favorably to even the Margin baseline. Recall
that OMC-2, OMC-3, and OMC-4 prefer reports that lie close to 2, 3, or 4 hyperplanes respectively,
and therefore should be informative for multiple classifiers. One factor we believe contributes to
these systems’ poor performance, which was described in the previous section, is that when we
look for reports that are close to n hyperplanes, the reports we find tend to be less close to any
individual hyperplane than are the reports we find when we search for examples that are close to
n− 1 hyperplanes.

Finally, we examine BootOS, which is built directly atop the Margin baseline. Though the BootOS
extension performs worse than the Random baseline, Figure 8 shows that this is mostly due to trying
to choose one informative report for each classifier on each iteration. This also accounts for Margin’s
poor performance compared to Random. BootOS at least performs better than Margin, which is
expected given previous research on BootOS (see Zhu & Hovy [20]).

8. Conclusions

We explored existing and new extensions to an active learner adopting the margin-based uncer-
tainty sampling framework and evaluated them on cause determination. We discovered that, though
its multi-label nature and data imbalance complicate active learning, by combining the existing and
new extensions, we can build an active learning system that performs better than a random baseline.
In particular, measuring annotation cost by training set word count, we showed that our system can
reduce annotation cost for achieving reasonable f-scores by over 50%.
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Classification of Mars Terrain Using Multiple Data Sources 

Alan Kraut1, David Wettergreen1 
 
 

ABSTRACT. Images of Mars are being collected faster than they can be analyzed by planetary  
scientists. Automatic analysis of images would enable more rapid and more consistent image  
interpretation and could draft geologic maps where none yet exist. In this work we develop a  
method for incorporating images from multiple instruments to classify Martian terrain into  

multiple types. Each image is segmented into contiguous groups of similar pixels, called  
superpixels, with an associated vector of discriminative features. We have developed and  
tested several classification algorithms to associate a best class to each superpixel. These  

classifiers are trained using three different manual classifications with between 2 and 6 classes.  
Automatic classification accuracies of 50 to 80% are achieved in leave-one-out cross-validation  

across 20 scenes using a multi-class boosting classifier. 
 
 

1. INTRODUCTION 
The creation of geologic maps is critically important for planetary science. Geologic maps 
identify spatial trends that indicate formative processes. They can represent mineralogical 
properties, history of the area, structure of the terrain, or many other things [1]. These 
maps are a way of distilling information about an area of terrain to be easily referenced.  
Planetary scientists painstakingly infer separate units of surface material from all available 
information—which may include orbital images, soil samples, and elevation maps—to 
create them. We have created a tool for using orbital images of Mars to automatically 
create first-pass approximations of geologic maps. 
 
1.1. Motivation. Over the past decade huge amounts of data have been collected about 
Mars in the form of orbital images. In some areas, these images have been analyzed by 
planetary scientists to create geologic maps, but the sheer amount of data means that 
most of Mars remains unmapped, and much of the data is nearly untouched.  
 
The United States Geological Survey (USGS) is currently the primary organization creating 
geologic maps of Mars. They have released maps of fewer than 30 regions of Mars [2]. 
While some of these are quite extensive, they leave most of the surface of Mars unmapped. 
 
Because there is so much data available about Mars, a system that could draw attention to 
specific regions of potential interest would be extremely valuable. We believe the best way 
to accomplish this is to create automatic geologic classifications based on training 
examples. This is, given a set of training scenes classified in any way, we will classify a new 
scene using the same set of classes. Thus a scientist could find areas of Mars with a high 
density of a desired terrain type by hand classifying some training examples, training the 
system on those examples, and letting it classify the rest of the surface of Mars. Areas that 
have a high density of that terrain type could then be further examined by the scientist. 
 

                                                   
1 Robotics Institute, Carnegie Mellon, 5000 Forbes, Pittsburgh, PA 15213. ajkraut@cmu.edu, dsw@ri.cmu.edu 
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1.2. Prior work. Stepinski has done work in automated recognition of Mars landforms 
based on elevation data [3]. The work was quite successful in determining the kind of land 
formation, such as craters and ridges. However, because it only uses elevation data it 
would be insufficient for creating geologic maps. Geologic maps can be based on the 
physical structure of the terrain, but can also be based on factors such as mineral content, 
and how the soil was deposited. A classifier that uses only elevation data would be 
incapable of examining features such as absorption spectra, which are a key indicator of 
mineral content. 
 
Wagstaff performed analysis on multi-wavelength observations of Mars for the discovery 
of types. K-means clustering was used to fit the data into a specific number of classes [4]. 
This work differs from ours mainly in that it uses unsupervised learning. We use 
supervised learning so that specific geologist-defined classes are associated with the 
instrument images. 
 
1.3. Problem and approach. Our goal is to automate the process of creating a geologic map 
of the surface of Mars. This should use an arbitrary number of orbital images of the same 
area to create an automatic classification. This is not expected to be as accurate as a hand 
classification, but it should provide a useful idea of the character of different areas. 
 
We pose the task of map making as finding a solution to the segmentation problem of 
dividing the scene into a large number of areas, and the classification problem of assigning 
a class to each of these segments. The structure of our method is shown in Figure 1. A 
variety of source images are registered by hand, and combined into a representation of the 
scene. This is then used to make a superpixel segmentation, and a feature vector is 
generated for each superpixel. The feature vectors are then split into a training set and a 
testing set. The training set is used along with the manual classification for those 
segments to train a classifier, which then creates the automatic classification for the test 
set of feature vectors. 
 

 
Figure 1: Flow chart showing structure of classification method. 
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To accomplish the segmentation task we use a superpixel segmentation. A superpixel 
segmentation has high recall, so that nearly all actual edges between map units are 
represented, but can have low precision, meaning that having edges in the segmentation 
that are not actually edges between map units is okay. Our method for creating these 
segmentations is discussed in Section 2. 
 
We then perform the classification task assuming that each superpixel will be composed 
of a single class. The automatic classification is performed on a feature vector for each 
superpixel. This consists of statistics about the image information within the superpixel, 
and is detailed in Section 3. We examine Bayesian and boosting classifiers for performing 
this step. Additionally, belief propagation is examined as a way to use the spatial relations 
between superpixels. The classification algorithms are discussed in Section 5.  
 

2. SUPERPIXEL SEGMENTATION 
Fundamentally each pixel in the test image needs to be assigned a class. However, trying 
to classify a single pixel is often infeasible [5]. We first over-segment the image into 
chunks that were each assumed to be of one uniform class, called superpixels. This has 
been shown to be useful in allowing higher level reasoning in classification. For example, 
Greg Mori showed the ability of superpixel segmentations to assist in matching sections of 
images to models, by examining many possible combinations of superpixels [6]. 
 
2.1. Initial segmentation. Our code is based on a two-step segmentation algorithm 
developed by Mori. In this algorithm a random sampling of pixels in the image is taken, 
and a graph is created with each of those pixels as a node. The edge weight between two 
pixels is set to be the negative exponential of the maximum boundary probability ( ) 
between them in the image. The  is calculated as a sum of exponentials of the local 
intensity and texture gradient of the image. This graph is made sparse by removing edges 
with a weight below a certain threshold. A standard normalized cut (n-cut) algorithm is 
then performed on this graph [7]. The results are interpolated to the remaining pixels. 
 
2.2. Recursive segmentation. Because of the computational complexity of n-cutting, it is 
frequently impractical to create the desired number of superpixels using a single pass. To 
overcome this limitation, a small number of superpixels are created using the method 
described above, and subsequently divided into smaller superpixels. The algorithm is 
called recursively on each superpixel created at a single step, with a desired total number 
of superpixels based on the area of the current region. This is done until enough 
superpixels have been created. The results of this algorithm are shown in Figure 2. 
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Figure 2: Examples of segmentation algorithm on three scenes. 

 
 

3. FEATURE GENERATION 
In order to classify an image, we first create a vector of numbers to describe the section to 
be classified. This is a feature vector. We create a feature vector for each superpixel. One 
possible feature vector would simply be a vector of the pixel values from all channels in 
the superpixel. However, in order to create an effective classifier, it is necessary to create 
individual features that are correlated with the class of the superpixel.   
 
 In this section we will describe how we take a multi-channel image and create a feature 
vector for a single superpixel. Each of these feature extractors can be applied to an 
arbitrary channel (or sometimes multiple channels). When applied to different channels 
they represent different sorts of information about the terrain. Table 1 summarizes the 
features we developed, and they are described in greater detail below. 

 
Feature Number of channels used Number of elements 
Mean 1 1 
Standard Deviation 1 1 
Mean of Ratios 2 1 
Laplacian 1 1 per scale 
Laplacian of Ratios 2 1 per scale 
Texton Histogram 1 16 
MR8 Filter Bank 1 8 

Table 1: Feature extractors developed. 

3.1. Mean and standard deviation. The simplest features we use in our feature vector are 
the robust mean and standard deviation of a given channel across the super pixel. The 
robust mean is calculated by removing the highest and lowest 10% of the data, and finding 
the mean on the remaining data.  
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3.2. Ratio of channels. Another feature used is the ratio of two channels. Specifically, the 
log of the ratio of two channels is taken pixel by pixel across the image. A logarithm is 
used so that the scale of features in areas where the numerator image is more intense than 
the denominator image will be the same as the scale in areas where the reverse is true. 
This allows us calculate one ratio feature per pair of channels, instead of two. After these 
values are computed across the image, the mean is taken over the superpixel.  
 
This feature captures information about the relation between two channels, and is 
expected to be most relevant when calculated using a pair of channels of two different 
wavelengths. In order to capture geologic information it is important to consider the 
relation between different wavelengths. Geologists use absorption spectra and emission 
spectra to identify different compounds. Unfortunately we do not have enough data to 
actually calculate spectra, but by calculating the ratio of responses at different 
wavelengths, we expect to capture information relevant to color and mineral composition. 
In the event that particular known minerals are being looked for, features could be 
developed that correlate with how well the ratios of two or more wavelengths match a 
specific emission spectrum. 
 
3.3. Laplacian at multiple scales. The Laplacian is a filter which measures the difference of 
one area of an image from the surrounding area.  We use a difference of Gaussians 
approximation of the Laplacian filter [8], with a square filter with 2σ elements on either 
side of the center. For example, Table 2 shows the filter used for σ = 0.5. 
 

0.4038  0.8021 0.4038 
0.8021 -4.8233 0.8021 
0.4038  0.8021 0.4038 

Table 2: 3x3 Laplacian filter approximation 

This filter only captures variations of a particular scale. Specifically, any given filter will 
have a strong response for features with a radius of about σ. In order to capture variations 
in the image at a variety of scales, we use , with n between 2 and 8. Examples 
of an image with the Laplacian filter run on it at various scales are shown in Figure 3. 
 

 
(a)                                (b)                               (c)                             (d) 

Figure 3: Elevation map (a), and Laplacians computed with n=1 (b), n=3 (c), and n=4 (d). 
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Once the response of the Laplacian filter is computed, its mean is taken over the 
superpixel to reduce it to a single-value descriptor. This is done once at each scale 
specified, so that each scale has a single feature in the feature vector. It is additionally run 
on the image created by taking the log ratio of channels, as described in Section 3.3. 
 
This feature captures variation in the image. This is useful because it makes it robust to 
lighting changes, gross changes in elevation between different sections of Mars, etc. For 
luminosity channels this will represent the apparent lightness or darkness as compared to 
the surrounding terrain, and for the elevation channel it will capture local depressions or 
elevations in the terrain.  
 
3.4. Texture features. One thing that is useful when classifying images is a representation 
of the texture content of an image. Texture is a perceptually complex feature, and is 
usually represented in image analysis by textons, which are archetypal responses to a set 
of filters. Textons, particularly histograms of texton frequencies, have been shown to be 
effective at discerning between different textures [9]. This is especially true when the 
textons are generated from examples of textures to be classified. 
 
3.4.1. Filter bank.  We use the MR8 filter bank [9] (Figure 4) for the creation of textons.  
The MR8 filter bank consists of bar filters at six different orientations and three scales, 
with both edge and symmetric filters, as well as a Gaussian and a Laplacian filter.  

 
Figure 4: MR8 filter bank. Feature vector is maximum response to each row of 
6 filters, plus the response to each of the bottom two filters. 

 
 
We use the MR8 filter bank for two reasons. First, taking the maximum response across 
orientations allows it to be rotation invariant. This is desirable because terrain type should 
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not depend on its orientation. Second, it captures different scales of texture. We would 
like our filters to be able to differentiate between different scales because two geologically 
distinct regions may have similar textures, but at different scales. 
 
3.4.2. Texton generation. Textons are weighted sums of the filters in the filter bank, and 
represent archetypes of local image response. They are calculated by using k-means 
clustering on the 8-dimensional points generated by taking the MR8 response centered at 
a given point in an image. Filter responses are taken across a large set of images, and the k 
cluster centers of response vectors from all the images are used as the textons. We used 
approximately 500 HRSC images of Mars in the visible and near IR wavelengths as the set 
of images from which to compute textons.  
 
3.4.3. Texture feature generation. Two types of texture features are generated for each 
superpixel. First, the average MR8 filter response across the superpixel is used for 8 
features. Second, a histogram of texton frequencies across the superpixel creates another 
feature for each texton being used. 
 
In order to create the texton frequency histogram, each pixel in the image is first assigned 
a texton. This is done by calculating the filter response at that pixel, and assigning the 
texton with the nearest filter response by the L2 distance. Once each pixel has an assigned 
texton, a histogram is created by counting the number of pixels associated with each 
texton inside the superpixel. This histogram is normalized to make it invariant to 
superpixel size, and each bin is used as a feature for the superpixel.  
 
This set of features represents how often different textons appear in the superpixel. This 
can help distinguish between different types of terrain, such as steep cliffs, sand dunes, 
and cracked land. 
 
3.4. Features used. Table 3 summarizes the elements of our final feature vector. Most 
channels are cropped and registered images taken from Mars orbital assets. The exception 
to this is “MOLA Slope”, which is the magnitude of the gradient of the MOLA height map. 

 
Feature Channels and Parameters # elements 
Mean HRSC IR, Red, Green, Blue, and ND, 

MOLA Slope 
6 

Standard Deviation HRSC ND, MOLA Slope 2 
Mean of Ratios All pairs of narrow-band HRSC channels 6 
Laplacian MOLA Elevation, n=[2,4,5,6,7] 5 
Laplacian HRSC ND, n=[2,4,6,7,8] 5 
Laplacian of Ratios HRSC Blue, HRSC IR, n=[2,4,5,6,7] 5 
Texton Histogram HRSC ND 16 
MR8 Filter Bank HRSC ND 8 

Table 3: Elements of feature vector. 
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This is the feature vector used for all classification methods we examined. We include all 
the features we believe to be salient, but attempt to exclude redundant features. The 
desire to exclude redundant features comes from concerns about runtime and overfitting.  
Especially in training a boosting classifier (see Section 5), adding more features increases 
the run time significantly. Also, our set of training images was not as large as would be 
desirable, so adding spurious features would create a risk of overfitting. The more 
uninformative features are added, the more likely it becomes that a correlation will be 
observed in the training sample that is not representative of the overall population. Large 
training sets help mitigate this problem by increasing how representative the training 
sample is of the population. If the method is being used in such a way that it is trained 
once and then used to classify a large number of images, it would likely be desirable to 
include a larger set of features, because the cost is not as great. 
 

4. Manually Labeled Data 
Automatic classification methods rely on training data. While there are geologic maps of 
various regions of Mars, they do not cover all the regions we were testing. In order to 
create training data, we hand-labeled our sample scenes in a variety of ways. We created 
one hand classification based on coarse terrain features, one based on regions exhibiting 
Aeolian deflation, and one based on coarse classes distilled from existing USGS maps. 
 
4.1. Terrain features. One hand classification we 
created has four classes, corresponding roughly 
with lowlands (such as crater basins, and valley 
floors), slopes (such as the edges of craters and 
valleys, and steep ridges), plains/plateaus, and 
volcanoes (large, smooth mountains). We expect 
that these classifications would be strongly 
correlated with features derived from elevation 
maps. Examples of this hand classification can be 
seen in Figure 6. 
 

 
Figure 5: Terrain legend

 
Figure 6: Two sample images with terrain feature classifications. 
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4.2. Aeolian deflation. The removal of very fine dust 
and sand by wind processes is known as Aeolian 
deflation. On Mars these regions can be seen as 
areas with a distinct deep purple color. Areas of 
Aeolian deflation were fairly sparse. This  
classification is expected to utilize features such as 
ratios of wavelengths that are correlated with color. 
It is also a test for the case of an uncommon class.  

 

Figure 7: Aeolian legend

 
Figure 8: Two sample images with Aeolian deflation classifications. 

 

4.3. Geologic classification. The last hand classification 
we created is based on the broad categories we saw 
repeatedly in USGS maps of Mars. Where possible this 
classification was taken directly from those maps, but 
we extrapolated to the best of our ability for other 
regions. This classification consists of six classes, 
corresponding to vallis materials, crater materials, 
other steep slopes (corresponding with class HNw on 
USGS Mars geologic maps), crater fill, plains, and 
mountainous materials. This is expected to be the 
manual classification that is closest to the expected 
use case of this method. It is a complex classification 
in that no single kind of feature is likely to be able to 
do a good job distinguishing between all five classes. 
Some examples of this classification can be seen in 
Figure 10. Figure 9: Geologic legend 
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Figure 10: Two sample images with USGS-based classifications. The image on 
the left (Gusev Crater) has an existing USGS map. 

 
5. Classification 

We classify the data using a naïve Bayes classifier and a boosting classifier, and use the 
results from both classifiers to inform a belief propagation network. Each classifier must 
operate for an arbitrary number of classes to be useable in our framework. 
 
5.1. Naïve Bayes classifier. A naïve Bayes classifier operates by calculating the probability of 
an example being of a given class using Bayes’ Rule, and selecting the class with the 
highest probability. Specifically, we want to compute  , where C is the segment’s 
class, and F is its feature vector. For a single class   and feature  we can write this as 
 

. 

 
When there are many of these features, we compute the probability of the joint as the 
product of the probabilities, i.e. 
 

 

 
Once the probability of each class has been computed, the class with the highest 
probability can be selected.  Because all the  will be the same for each class, this can 
be written as 
 

 

 
Where  is the assigned class.  is calculated from the training data as the fraction of 
the examples that are of class .  is calculated by adaptively assigning a set of 
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ranges to each feature, and then finding the fraction of examples of class  that has the 
feature in each range. 
 
5.2. Boosting classifier. Boosting is a method for creating a single classifier by combining 
many weak classifiers—classifiers which are more accurate than chance, but would not be 
good enough for the desired application by themselves. One very common boosting 
algorithm is AdaBoost. AdaBoost was developed by Freund and Schapire [10], and has 
since become a well studied algorithm which is commonly used. It trains many simple 
classifiers (called base classifiers), assigns them weights based on their accuracy in 
classifying the training set, and uses a weighted majority vote. This method has proven 
highly successful in a wide variety of domains when a binary decision needs to be made. 
 
However, AdaBoost is specific to a binary classification task. We would like to be able to 
classify our data into an arbitrary number of classes. That is, there should be no hard 
upper limit on the number of classes present in a hand segmentation used to train the 
classification method. Because of this, we use an extension of AdaBoost. We modeled this 
extension off the GrPloss algorithm [11]. 
 
The GrPloss algorithm creates an n-class classifier for data, given labeled training data. It 
provides an initial weight vector to the training examples. At each iteration it trains a base 
classifier. This classifier takes a feature vector, and returns an n-element vector of class 
probabilities. The classifier is then assigned a weight based on its weighted error (the 
classification error on the training set using the current weight vector), and examples 
which were misclassified have their weight increased. 
 
To classify a new example, a weighted average of the class probabilities from each of the 
base classifiers is taken, and the maximum probability class is chosen. 
 
We use a base classifier known as a decision tree. A decision tree makes a series of up to N 
binary decisions, resulting in 2N possible outcomes, where N is the depth of the tree. We 
use trees of depth 2. Deeper trees would result in a more discriminating base classifier, at 
the cost of exponentially higher training time, and a greater risk of overfitting. 
 
Each node of the decision tree divides the data it receives into two categories based on a 
threshold on a single feature. If that feature is above the threshold, it is sent along one 
branch of the tree to the next node, and if the feature is below the threshold, it is sent 
along the other branch. Once a leaf is reached the decision tree returns a pre-set 
probability vector for that leaf. The probability vector is set based on the training 
examples which reach that leaf. 
 
5.3. Belief propagation. In order to incorporate spatial information we use a loopy belief 
propagation framework. Belief propagation (BP) is an algorithm that finds a solution for 
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the most likely class of each node in a directed graphical network [12]. It is often used to 
find boundaries and smooth results when a good initial guess for node classification can 
be given. For BP, each node has an associated vector of label evidence, , the 
probability of node i being of class , and each edge has a compatibility matrix,  

, the probability of node j being of class , given that node i is of class . 
 
At each time step a message is sent on each edge leading away from a node based on all 
messages leading to that node from any other direction. Specifically, the message from 
node i to node j, , is given by: 
 
  . 
 
Once these messages converge, the belief at each node is calculated as 
 
   
 
and the class with the largest value at node i is selected. 
 
When being applied to results from the Bayesian classifier, the  matrix is calculated 
using the edge probability ( ) already calculated in determining the superpixels, 
normalized to be in the range [0,1].  It is given by 
 

   

 
where  is the probability of  and  bordering each other, and  is calculated as the 

average of  across all pixels on the border between superpixels i and j. 
 
When applied to the results from the boosting classifier, the compatibility matrix is 
formed such that the initial classification boundaries would not change. Specifically, it is 
given by 
  

 

 
where  is 1 if the two superpixels are the classified differently in the initial 
classification, and 0 if they are the same. This is done because the boosting classifier tends 
to create boundaries between classes in close to the right place, but sometimes sets the 
entire region as the wrong class. 
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6. Results 
We tested the classification method using leave-one-out cross validation on scenes. Our 
evaluation metric was percent of pixels accurately classified, so a direct comparison of 
accuracy between different manual classifications is not meaningful, but different 
classifiers can be compared. We used 20 scenes, each divided into roughly 300 superpixels, 
so each trial trained on approximately 5700 superpixels, and classified approximately 300 
superpixels. The results are summarized in Table 4. 
 
 Bayes Classifier Boosting Classifier 

Without BP With BP Without BP With BP 
Terrain (4-class) 54% 60% 66% 64% 
Aeolian (2-class) 88% 90% 88% 87% 
Geologic (6-class) 47% 51% 49% 49% 

Table 4: Average classification accuracies over all test images 

Overall the boosting classifier performed slightly better than the Bayes classifier. The 
naïve Bayes classifier was marginally improved by the inclusion of belief propagation, 
while the boosting classifier was not improved by belief propagation. We believe this to be 
because turning the output of the naïve Bayes classifier into a probability vector for use in 
belief propagation is straightforward and principled, due to the probabilistic nature of 
Bayes classifiers. On the other hand, the boosting classifier returns scores, not 
probabilities, and it is not clear how these should be translated to the evidence vector. 
 
Some typical results from the boosting classifier are shown below. Figure 11 shows a scene 
using the terrain feature classification. This shows that some of our features successfully 
incorporate spatial information. Specifically, the strip of correctly classified lowlands 
around the edge of Gusev crater is roughly the width of the largest Laplacian of elevation 
used in the classification. This indicates that the classifier could be improved by the 
inclusion of features that use data from a larger spatial expanse of the image. 
 

 
Figure 11: The terrain features hand classification (center) and automatic 
classification (right) for the Gusev Crater scene. 
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Figure 12 shows a typical result from the geologic classification. This demonstrates 
substantial confusion between the crater material and slopes classes. Currently it is likely 
that the examples for the valley slopes and crater material classes form overlapping balls 
in the 52-dimensional space of the feature vector. It is possible that there is another 
feature that could be computed in which these balls have a large separation compared to 
their width. If such a feature exists, adding it would make the classes much more 
distinguishable. It is also possible that these two classes should be divided differently in 
the hand classification, such that each new class is more internally consistent, and has less 
overlap with the others. For example, creating a subclass of crater material for ejecta 
blankets could improve the classification accuracy. 
 

  
Figure 12: The classification based on USGS maps for the Nili Fossae region. 
Shows HRSC image (left), hand classification (center), and automatic 
classification (right). 

 
7. Conclusion 

Our method of automatic terrain image segmentation and classification effectively 
combines different types of information and generalizes to different kinds of classification. 
We believe it is useful for first-order geologic mapping. There are two key areas for future 
work.  The first area is to better incorporate information about spatial arrangement of 
parts of the scene. We expect results will improve by representing and learning 
information such as which classes are likely to be near each other and under what 
circumstances. Second, the method should be able to use more data sources, especially 
when only partial information is available from a data source. That is, in order for a data 
source to be used for any superpixel, it needs to have valid information for all superpixels. 
 Few areas of Mars currently have complete coverage so in the near-term solving this 
problem would allow much more (partial) data to be used in making classification 
decisions. 
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SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS
MONITORING USING GAUSSIAN PROCESS

VARUN CHANDOLA* AND RANGA RAJU VATSAVAI*

Abstract. Biomass monitoring, specifically, detecting changes in the biomass or vegetation of
a geographical region, is vital for studying the carbon cycle of the system and has significant
implications in the context of understanding climate change and its impacts. Recently, several time
series change detection methods have been proposed to identify land cover changes in temporal
profiles (time series) of vegetation collected using remote sensing instruments. In this paper, we
adapt Gaussian process regression to detect changes in such time series in an online fashion. While
Gaussian process (GP) has been widely used as a kernel based learning method for regression and
classification, their applicability to massive spatio-temporal data sets, such as remote sensing data,
has been limited owing to the high computational costs involved. In our previous work we proposed
an efficient Toeplitz matrix based solution for scalable GP parameter estimation. In this paper we
apply these solutions to a GP based change detection algorithm. The proposed change detection
algorithm requires a memory footprint which is linear in the length of the input time series and
runs in time which is quadratic to the length of the input time series. Experimental results show
that both serial and parallel implementations of our proposed method achieve significant speedups
over the serial implementation. Finally, we demonstrate the effectiveness of the proposed change
detection method in identifying changes in Normalized Difference Vegetation Index (NDVI) data.

1. Introduction

Increasing availability of high resolution remote sensing data has encouraged researchers to extract
knowledge from these massive spatio-temporal data sets in order to solve different problems pertain-
ing to our ecosystem. Land use land cover (LULC) monitoring, specifically identifying changes in
land cover, is one such problem that has significant applications in detecting deforestation, crop ro-
tation, urbanization, forest fires, and other such phenomenon. The knowledge about the land cover
changes can then be used by policy makers to take important decisions regarding urban planning,
natural resource management, water source management, etc.

In this paper we focus on the problem of identifying changes in the biomass or vegetation in a
geographical region. Biomass is defined as the mass of living biological organisms in a unit area.
In the context of this study, we restrict our monitoring to plant (specifically crop) biomass over
large geographic regions. In recent years biomass monitoring is increasingly becoming important,
as biomass is a great source of renewable energy. Moreover, biomass monitoring is also important
from the changing climate perspective, as changes in climate are reflected in the change in biomass,
and vice versa. The knowledge about biomass changes over time across a geographical region can
be used estimate quantitative biophysical parameters which can be incorporated into global climate
models.

The launch of NASA’s Terra satellite in December of 1999, with the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) instrument aboard, introduced a new opportunity for terrestrial
remote sensing. MODIS data sets represent a new and improved capability for terrestrial satel-
lite remote sensing aimed at meeting the needs of global change research. With thirty-six spectral
bands, seven designed for use in terrestrial application, MODIS provides daily coverage, of moderate
spatial resolution, of most areas on the earth. Land cover products are available in 250m, 500m,
or 1000m resolutions [17]. MODIS land products are generally available within weeks or even days

*Oak Ridge National Laboratory, chandolav@ornl.gov, vatsavairr@ornl.gov.
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of acquisition and distributed through the EROS Data Center1 and are currently available free of
charge. MODIS land products allow users to identify vegetation changes over time across a region
and estimate quantitative biophysical parameters which can be incorporated into global climate
models. A NDVI temporal profile is a graphical plot of sequential NDVI observations against time.
These profiles quantify the remotely sensed vegetation’s seasonality and dynamics. These profiles
can be described with simple parameters, like the amplitude, mean, and standard deviation. We can
understand the onset and peak of greenness and the length of growing season from analyzing these
profiles. By monitoring NDVI profiles as time series, we can understand the changes in the biomass
in a continuous manner. MODIS data has been extensively used to study vegetation and crop phe-
nological characteristics [19, 33], and monitoring [39]. However, online monitoring of biomass over
large geographic regions is relatively unexplored area.

There is an imminent need for algorithms that can be applied to the problem of identifying
land cover change in spatio-temporal data sets in an online fashion. Some of the challenges faced
by the researchers in this domain include adapting to online setting, accounting for missing data
and outliers, handling non-linear dependencies, seasonality and non-stationarity in the time series,
incorporating spatial dependencies, and scaling to the massive data sizes. Recently, land cover change
detection techniques have been proposed that identify changes in normalized difference vegetation
index (NDVI) time series data collected by applying time series change detection techniques [3, 10,
25, 21], but do not address most of the challenges associated with the land cover change detection
problem.

1.1. Gaussian Process Based Time Series Analysis. While change detection for time series
data has been a widely researched topic in statistics and signal processing community, algorithms
that can detect changes in periodic time series data are limited [14, 3], and even these techniques
are not well-suited for online change detection. We propose a non-parametric statistical algorithm
that can detect changes in noisy time series data in an online fashion. We use Gaussian Process
[28, 31] as the basis for a Bayesian non-parametric predictive model for time series data and use the
difference between the predicted and observed values to monitor change in a continuous manner,
meaning that change detection map is continuously revised as soon as new data collected by the
remote sensing satellites is available.

Gaussian process (GP) [28, 31] 2 based approaches are increasingly being used as a kernel machine
learning tool for non-parametric regression and classification. If the time indices are used as the
inputs, one can use a GP as a forecasting or prediction model for time series data [4, 12, 5]. Besides
prediction, GP based models can also be used for other time series analysis tasks such as change
detection, anomaly detection, missing data imputation, noise removal, etc. In this paper we use the
predictive capabilities of GP for online change detection in time series data.

While GP has emerged as a popular kernel machine learning tool, its application to large scale
data sets has been limited owing to the inherent O(t3) computational complexity as well as O(t2)
memory storage requirements, where t is the input data size. The key bottleneck is the handling of
a large t× t covariance matrix and solving a large system of equations. The standard approach [31]
is to use Cholesky decomposition of the covariance matrix. When dealing with time series, t is the
length of the time series, which can be large (and growing) for applications such as remote sensing,
astronomy, electro-cardiograph (ECG) analysis, etc. For example, MODIS collects data for entire
globe daily and hence the length of the NDVI time series is continuous growing.

The computational bottleneck for GP based analysis is further compounded by the fact that often
one needs to simultaneously handle multiple time series. For NDVI time series, for example, multiple
time series from a spatial region need to be analyzed simultaneously. As the spatial resolution of
the remote sensing instruments grows, the number of time series to be simultaneously analyzed will
grow accordingly. The standard GP analysis methods have a O(pt3) computational complexity and

1http://eros.usgs.gov/
2Henceforth, referred to as GP.

70

2010 Conference on Intelligent Data Understanding



a O(t2 + p) memory footprint for handling p time series simultaneously. While multi-threaded or
parallel programming can alleviate the issue of handling p time series simultaneously, the quadratic
memory requirements are a significant bottleneck, especially in emerging heterogeneous computing
architectures, hybrid of multi-core and Graphical Processing Units (GPUs), in which movement of
data is expected to be the biggest computational bottleneck.

In our previous work [6], we proposed a hyper-parameter estimation algorithm for GP that exploits
the special structure of the covariance matrix associated with the GP analysis to make the algorithm
scale to massive data sizes. In this paper, we apply the fast algorithm for change detection using GP.
The computational complexity of the GP based change detection is O(t2) and requires O(t) memory.
We also present a parallel version of the algorithm to simultaneously process multiple time series.
We present results on artificial data to demonstrate the speedups achieved the proposed algorithm
running in serial as well as in parallel (multi-threaded) mode on a multi-core system.

For biomass monitoring, we demonstrate the effectiveness of the proposed method in identifying
changes in NDVI time series collected for the Iowa region. We also demonstrate the scalability of
the proposed methods in handling six years of NDVI data for the Iowa region.

1.2. Related Work.

1.2.1. Time Series Change Detection. Change detection for time series data is a widely researched
are in different research communities such as statistics [16], signal processing [2], and process control
[22]. Most of the existing change techniques can be grouped into three categories, viz., parameter
change based techniques [29, 16], segmentation based techniques [15, 27, 34] and forecasting based tech-
niques [10, 23]. Parameter change based techniques assume that the time series follows a parametric
distribution and focus on identifying when the parameters change using a hypothesis test procedure.
For periodic time series, a parametric assumption is typically unrealistic, unless the seasonality
from the time series is removed, which can result in loss of useful information. Segmentation based
techniques are non-parametric but are usually not suitable for online setting. Forecasting based
techniques [10, 23] use a forecasting model to predict at a given time instance and the combine the
predicted and observed values to identify changes. Existing forecasting based techniques have been
applied to time series.

Change detection has been applied to remote sensing data to identify events such as land use
change, forest fires, and natural disasters. While some of these techniques directly handle the
satellite images [26, 36, 30, 32], recently, several techniques have been proposed that identify changes
in NDVI time series data by applying time series change detection techniques [3, 25, 10, 21].

GP have not been explicitly used for change detection in time series though similar online Bayesian
algorithm has been proposed by Adams and Mackay [1] for time series data. Several papers have
used GP for time series modeling and prediction [4, 5, 12].

1.2.2. Addressing Computational Complexity of Gaussian Process Analysis. As noted earlier, GP
based methods typically scale as O(t3) with the size of the input data with a memory requirement
of O(t2). This makes them impractical in domains that encounter massive data sizes such as remote
sensing, ECG analysis, etc. Several approximation based methods have been proposed in the liter-
ature [40, 8, 11] to scale GP to such large datasets (See [31, Chapter 8] for a detailed overview).
These methods fall under the general purview of sparse and approximate kernel methods. All of
these methods use matrix approximation techniques to efficiently manipulate the covariance matrix
(inverse computation, Cholesky factorization, solving system of equations). Several papers [40, 8]
approximate the covariance matrix using lower rank approximation techniques, such as the Nyström
approximation, for faster but approximate results. Several papers have used a “subset of regressors”
approach [35, 11] that uses only m out of t regressors and hence entail O(m2t) complexity. In this
paper we focus on scaling the GP analysis such that we obtain the exact solution and hence we do
not compare our approach to the existing approximate methods.

71

2010 Conference on Intelligent Data Understanding



While scalability has been a key issue for data mining applications, only a few existing techniques
make use of the available concurrency from high performance computing hardware and software to
address this issue in the context of GP analysis. Keane et al [20] proposed a data parallel approach
for likelihood estimation in GP regression, but their method estimate the log likelihood locally, and
hence the final outcome is not guaranteed to be the same as a sequential algorithm.

In this paper we make use of the fact that the covariance matrix encountered with GP for
time series is a symmetric Toeplitz matrix and hence several solutions that have been proposed in
literature [13, 18] can be utilized to make the hyper-parameter estimation algorithm computationally
as well as memory efficient. Specifically, there have been many O(t2) algorithms developed to invert
a Toeplitz matrix as well as solve a Toeplitz system of equations [37, 24, 9]. In our earlier work [6],
we presented the adaptations of the algorithms by Trench [37, 41, 42] for the problem of scalable
hyper-parameter estimation for GP.

2. Gaussian Process

A GP is a generalization of a Gaussian distribution and is defined as a collection of random
variables, any finite number of which have a joint Gaussian distribution [31, Chapter 2]. A GP
describes a distribution over a (potentially infinite) set of functions and is completely specified by
its mean function m(x) and covariance function k(x,x′)3:

m(x) = E[f(x)](1a)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))](1b)

where x is an input or index belonging to an input or index set X . Typically the mean function is
taken to be zero and the GP is written as:

(2) f(x) ∼ GP(0, k(x,x′))

Thus the above GP is a collection of random variables, where each random variable is the value of
function f(x) at location x. When dealing with time series, the index set X is the set of time indices
{1, 2, . . . , T}, though a GP can be defined for more general forms of inputs such as �D. For this
paper, since we are dealing with time series, we will replace x with t to denote time. The covariance
function k defines the covariance between the function values at two different time points:

(3) cov(f(t1), f(t2)) = k(tt, t2)

Typically, a covariance function is specified using a set of parameters Θ, these are considered as
the hyper-parameters for the GP. For example, a widely used covariance function, called squared
exponential (se), can be written as:

(4) k(t1, t2) = σ2
fexp(−Δt2

2l2
) where Δt = t1 − t2

If the time series is periodic, such as the NDVI temporal profiles, an alternate covariance function,
known as Exponential Periodic (ep), can be used:

(5) k(t1, t2) = σ2
fexp(− Δt2

2l2ω2
)exp(− (1− cos 2πΔt

ω )
a

)

where ω is the length of a single cycle of the periodic time series.

3In this paper we will denote matrices with capital letters (K), vectors with small bold letters (x, si), and scalars
with small letters (t,xi).
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2.1. Time Series Prediction Using GP. For GP based regression, it is assumed that the actual
observations yt are noisy versions of the function values f(t) and the two quantities are related as:

(6) yt = f(t) + εt

where εt is a noise term that accounts for the noisy component of the observations. Traditionally,
εt is assumed to be a Gaussian noise term ∼ N (0, σ2

n),∀t.
Given a noisy set of observations yt−1, the GP prior on {f(1), f(2), . . . , f(t)} (see (2)) and the

relationship between yt and f(t) (see (6)), can be used to make a prediction at time t. The advantage
of GP is that the prediction is not a value but a normal distribution ∼ N (ŷt, v̂t), where the predictive
mean ŷt and predictive variance v̂t are given by:

ŷt = KT
tt−1(K(t−1)(t−1) + σ2

nI)−1yt−1(7)

v̂t = k(t, t)−KT
tt−1(K(t−1)(t−1) + σ2

nI)−1Ktt−1(8)

where K(t−1)(t−1) is a |t− 1| × |t− 1| kernel matrix such that K(t−1)(t−1)[i][j] = k(i, j). Similarly,
Ktt−1 is a (t− 1) length vector such that Ktt−1[i] = k(t, j).

Equations (7) and (8) allow one to use GP for time series prediction as well as other analysis tasks
such as outlier/anomaly detection, noise removal, and change detection. But as can be observed
in (7) and (8) handling the large covariance matrix, (K(t−1)(t−1) + σ2

nI) is the key bottleneck for
computing as well as memory resources.

For notational simplicity, we will drop the suffix t when referring to different quantities, wherever
not necessary, and refer to the covariance matrix (K(t−1)(t−1) + σ2

nI) as K and the observational
time series as y.

2.2. Hyper-parameter Estimation Using Gradient Descent. The hyper-parameters Θ asso-
ciated with the covariance function can be calculated by minimizing the marginal log likelihood (l)
for a training time series, which can be calculated as:

l = log p(y|Θ) = −1
2
yTK−1y(9)

−1
2

log |K|

−n

2
log 2π

The optimal hyper-parameters for the covariance function can be estimated by minimizing the
function in (9) using a gradient based optimizing algorithm. The derivative of lt with respect to a
given hyper-parameter θ ∈ Θ can be computed as ([31, Chapter 5]):

(10)
∂l

∂θ
= −1

2
yTK−1 ∂K

∂θ
K−1y − 1

2
tr(K−1 ∂K

∂θ
)

The computational complexity of the gradient based hyper-parameter estimation algorithm, re-
ferred to as GPLearn, requires computation of log-likelihood as well as the derivative of log-likelihood,
which is O(t3), where t is the length of the time series y, if standard inversion or Cholesky decom-
position based methods are used. Moreover, the calculations require keeping the O(t2) matrix in
the memory.

3. Gaussian Process Based Change Detection

We adapt the predictive capability of GP for time series to identify changes in an online fashion.
The steps of the GPChange algorithm are shown in Algorithm 1.

The GPChange algorithm monitors the input time series from (n + 1)th observation onwards.
It uses GP to estimate the predictive distribution at time t, using observations available till time
(t−1) and then computes the p-value of for the actual observation yt under the reference distribution,
N (ŷt, σ̂

2
t ). A threshold α ∈ (0, 1) is used to determine when the actual observation does not follow the

predictive distribution, which is indicative of potential change. A running counter, a, is maintained
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Input: yT, n, α, M, Θ
a = 0
foreach t = n + 1 to T do

Compute ŷt and σ̂2
t (See (7) and (8))

pt ← p-value for yt under N (ŷt, σ̂
2
t )

if pt > α then
a← a + 1 (Potential Alarm)

else
a← 0 (Reset)

end
if a ≥M then

Raise Alarm
end

end
Algorithm 1: Algorithm GPChange

to count the number of successive potential changes. An alarm for change is raised if the counter
exceeds a threshold M .

The algorithm GPChange requires estimation of ŷt and σ̂2
t using (7) and (8). At time t, each of

these steps are O(t3), since they involve solving two linear systems of equations. The calculations
require keeping a t2 sized covariance matrix in the memory at time t.

4. Efficient GP Analysis Using Toeplitz Matrices

In this section we present scalable methods for the algorithms GPLearn and GPChange. These
methods were originally presented in our previous work [6], and are presented here for the sake of
completeness. We assume that the covariance function used in the GP is stationary and only depends
on the absolute difference between the inputs, i.e, k(t1, t2) = k(|Δt|). Many widely used covariance
functions, such as the squared exponential function in (4) and the exponetial periodic function in (5)
as well as the general Matern class of functions [31, Chapter 4] fall under this category of covariance
functions.

4.1. Characteristics of Covariance Matrix. We first note that the covariance function which
only depends on |Δt| will result in a symmetric Toeplitz matrix, K, as shown below:

(11) K =

⎛
⎜⎜⎜⎜⎜⎜⎝

k0 k1 k2 . . . kt−1

k1 k0 k1 . . . kt−2

k2 k1 k0 . . .
...

...
...

...
. . .

...
kt−1 kt−2 . . . . . . k0

⎞
⎟⎟⎟⎟⎟⎟⎠

Moreover it can be shown that such functions result in a positive semi-definite covariance matrix
while adding a σ2

n noise to the diagonal results in a positive definite covariance matrix. One can
straightaway note that K in (11) can be represented using just the first row (or column) of K,
henceforth denoted as κ. This characteristic straightaway provides a way to reduce the memory
requirements of the algorithms involving K.

4.2. Using Toeplitz Matrix Operations. Several O(t2) algorithms have been proposed for Toeplitz
matrix inversion which make use of the special matrix structure to compute the inverse [37, 24, 9].
But one can observe that a direct inversion of the covariance matrix K is not required to calculate
the predictive distribution as well as the log-likelihood and its derivatives in (7)–(10). Instead, one
only needs to calculate the following quantities:

(1) kTK−1y (for (7))
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Input: (κ,y)
Output: zt

if k1 != 1 then
k← k/k1, y← y/k1

end
z1 ← y1, g1 ← −k2, λ1 ← 1− k2

2

foreach i = 1 to t− 2 do
θi ← yi+1 − zi

Tk̂2:i+1

γi ← −ki+2 − gi
Tk̂2:i+1

zi+1 →
[

zi + θi

λi
ĝi

θi

λi

]

gi+1 →
[

gi + γi

λi
ĝi

γi

λi

]
λi+1 → λi − γ2

i

λi

end
θt−1 → yt − zT

t−1k̂2:t

zt →
[

zt−1 + θt−1
λt−1

ĝt−1
θt−1
λt−1

]
return zt

Algorithm 2: ToeplitzInverseSolve

(2) kTK−1k (for (8))
(3) yTK−1y (for (9))
(4) log |K| (for (10))
(5) yTK−1 ∂K

∂θ K−1y (for (10))
(6) tr(K−1 ∂K

∂θ ) (for (10))
One can use Cholesky decomposition and solve a system of equations using the Cholesky decom-
position to compute each of these quantities but that will have O(t3) complexity to compute the
decomposition and O(t2) memory requirement for the covariance matrix K.

We will show that each of these four quantities can be computed in a computational as well as
memory efficient manner:

4.2.1. Computing yTK−1y, kTK−1y, kTK−1k. Algorithm 2 shows how one can compute K−1y
(or K−1y), i.e., solving a Toeplitz system of equations. This algorithm was originally proposed by
Trench [38, 42] for Toeplitz matrices and we simplify it for the symmetric case. This algorithm takes
the first row of the covariance matrix,κ = {k1, k2, . . . , kt}, as input and returns the solution vector.
In the algorithm x̂ denotes a vector obtained by reversing the vector x. A portion of a vector is
denoted as xi:j .

Note that this algorithm is O(t2) and has O(t) memory requirement.

4.2.2. Computing log |K|. It has been shown that the determinant of the matrix K can be computed
as a by-product of the Algorithm 2 by simply taking the product of λis [41], i.e.,

(12) log |K| = t log k1

t−1∑
i=1

log λi

Thus log |K| can be computed in linear time without requiring any additional memory.

4.2.3. Computing yTK−1 ∂K
∂θ K−1y. Algorithm 2 computes K−1y. The vector K−1y can be multi-

plied with ∂K
∂θ in O(n2) time and the resulting vector can be multiplied with yT in linear time. Note

75

2010 Conference on Intelligent Data Understanding



Input: κ
Output: s
alpha← ToeplitzInverseSolve(k1:t−1,k2:t)
γ ← 1

k1+k2:tα

nu← [γα̂γ]T

foreach k = 0 to t− 1 do
sk ← 1

γ

∑t−k
j=1(2i + k − n + 1)νiνi+k

sk is the sum of the kth diagonal starting from main diagonal (k = 0).
end
return s

Algorithm 3: ToeplitzDiagonalSums

that since ∂K
∂θ is Toeplitz, it can be multiplied using only one representative row of the matrix, i.e.,

with O(n) space requirements.

4.2.4. Computing tr(K−1 ∂K
∂θ ). Let L = K−1 and P = ∂K

∂θ . We are interested in computing tr(LP ) =
tr(PL) where P is a symmetric Toeplitz matrix and L is the inverse of a symmetric Toeplitz matrix.
We can write:

tr(PL) =
t∑

i=1

t∑
j=1

pij lij

=
t∑

i=1

t∑
j=1

p|i−j(=k)|lij

=
t=1∑

k=−t+1

p|k|
t∑

j=k+1

lj−k,j

= p0

t∑
j=1

ljj + 2
t−1∑
k=1

pk

t∑
j=k+1

lj−k,j

Note that each summation
∑t

j=k+1 lj−k,j ,∀k = 0 . . . t−1 is nothing but the sum of the kth diagonal
of L. Given the diagonal sums for L(= K−1) we can compute tr(K−1 ∂K

∂θ ) in linear time. An
O(n2) algorithm for the computation of the diagonal sums is shown in Algorithm 3. The proof of
correctness of the algorithm was given by Dias and Leitao [7].

The computational complexity involved with computing tr(K−1 ∂K
∂θ ) using Algorithm 3 is O(n2)

with O(n) memory required.

5. Efficient Change Detection and Hyper-parameter Estimation

In Section 4 we have provided fast and memory efficient methods to compute various quanti-
ties required for the GP based change detection and hyper-parameter estimation. These methods
can be used instead of traditional matrix operations, we refer to the change detection and hyper-
parameter estimation methods which use these Toeplitz matrix based methods, as GPChangeFast
and GPLearnFast, respectively.

5.1. Handling Multiple Time Series for Prediction and Hyper-parameter Estimation.
In many scenarios one needs to estimate the GP hyper-parameters with respect to multiple time
series. Let Y = [y1y2 . . .yp] be a set of input time series. The total marginal log likelihood for all
time series will be equal to the sum of marginal log likelihoods for individual time series using (9),
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i.e.,

(13) log p(Y|Θ) =
p∑

i=1

log p(yi|Θ)

Same holds for the computation of the derivative of the total marginal log likelihood with respect
to a hyper-parameter. One can compute these two quantities in a loop using the results in Section
4 resulting in a O(pt2) complexity.

Similarly, often one needs to run the GPChange algorithm on multiple time series using the same
set of hyper-parameters. Instead of repeatedly invoking GPChange for each time series in Y, one
can modify Algorithm 1 such that ŷt is computed for each of the time series in Y, while σ̂2

t is only
required to be computed once.

5.2. Parallel Version of GPChangeFast and GPLearnFast. For the parallel version, we assign
the task of handling each time series y ∈ Y to a different processing unit. We refer to the parallel
versions of the change detection and hyper-parameter estimation algorithms as GPChangeFastP and
GPLearnFastP, respectively.

For our experiments, we used a POSIX thread based implementation and an MPI based parallel
implementation. The same algorithm can be implemented using Map-Reduce for cloud based com-
puting architectures or for GPU based architectures using CUDA. The linear data size required by
each child node is especially attractive for the latter, where the amount of data transferred between
nodes can be a significant bottleneck.

6. Experimental Results

In this section we present results from two sets of experiments. First set of experiments show
how well the proposed Toeplitz matrix based methods scale in comparison to the traditional meth-
ods. The second set of experiments demonstrate the effectiveness of the GPChange algorithm in
identifying changes in six year NDVI time series data.

6.1. Performance Results. In this section we compare the computational performance of the
proposed algorithm GPLearnFast against the standard algorithm (GPLearnSlow) for computing
log-likelihoods and derivatives. We also investigate the performance of the multi-threaded and
MPI based versions of GPLearnFast, referred to as GPLearnFastThread and GPLearnFastMPI. All
experiments are done on time series with varying lengths. All algorithms were implemented in C
using low level CBLAS routines4. The GPLearnLow algorithm used cholesky decomposition from
the LAPACK library5 to solve the system of equations and compute the inverse, etc.

All experiments were run on an SGI Altix ICE 8200 cluster called Frost6. Frost is currently
configured with 128 compute nodes each having 16 virtual cores (2048 way concurrency) and 24GB
of memory, infiniband interconnects, and a gigabit ethernet network. Each node is capable of
supporting 16 threads.

6.1.1. Performance of GPLearnFast vs. GPLearnSlow. We first compare the performance of the
computational and memory efficient GPLearnFast algorithm against the standard GPLearnSlow
algorithm. Figure 1 shows the performance of the two algorithms on single time series with varying
lengths of the time series. Note that the GPLearnSlow algorithm requires a O(n2) space in the
memory and hence could not run for time series more than 100000 length, while the GPLearnFast
algorithm has no memory related issue in dealing with time series as long as 1000000. Figure 1
shows that GPLearnFast is significantly faster than GPLearnSlow, with a maximum speedup of 137
achieved for time series of length 100000.

4http://www.netlib.org/blas/index.html
5http://www.netlib.org/lapack/
6http://www.nccs.gov/computing-resources/frost/
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Figure 1. Performance Comparison of GPLearnFast and GPLearnSlow. Both axes
are in logscale.

6.1.2. Performance of Parallel Version. To study the performance of the thread based and MPI
based parallel versions, we used the NDVI data collected from the MODIS instrument. Global
MODIS data is organized into non-overlapping tiles, where each image or tile is roughly 4800 rows
× 4800 columns at 250 meters pixel resolution. We collected MODIS imagery from 2001 to 2006
for Iowa region, preprocessed and generated 16 day NDVI images (23 composite images per year).
Final preprocessed Iowa image size contains 4,276,383 locations, where each location is a time series
of length 138.

The speedup results (over the serial GPChangeFast) for the multi-threaded implementation,
GPLearnFastThread, are shown in Figure 2a, and speedup results for MPI implementation, GPLearn-
FastMPI, are shown in Figure 2b. Speedup results in Figure 2 demonstrate that the GP based

(a) Threads (b) MPI

Figure 2. Speedups for GPLearnFastThread and GPLearnFastMPI over serial
GPLearnFast. Both axes for right figure are in logscale.

learning algorithm can be parallelized to achieve significant speedups. For the muli-threaded version
(Figure 2a), the speedup is close to linear with the number of threads, but for the MPI based version
(Figure 2b), the speedup is sub-linear, for 1024 nodes, the speedup achieved is 70. One reason for
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this is the high communication cost entailed in sending the time series data from the master to the
slave nodes, which results in high overhead costs, thereby offsetting the parallelization speedups.
In future, we will develop methods that can further minimize the communication overheads, and
achieve better speedups.

6.2. Detecting Changes in NDVI Data. In this section we show the effectiveness of the proposed
GPChange algorithm in identifying changes in the NDVI data for Iowa state. The task is to use the
first 5 years of data for training and identifying changes in the final year.
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(b) No Change

Figure 3. Results of GPChange on two NDVI time series.

(a) Change

Time (t) P-value (pt) Possible? Alarm?

116 0.00

117 0.30
√

118 0.13
√

119 0.05

120 0.23
√

121 0.42
√

122 0.39
√

123 0.32
√

124 0.35
√ √

125 0.01

126 0.00
127 0.17

√
128 0.00

129 0.00
130 0.00
131 0.30

√
132 0.00
133 0.00

134 0.00
135 0.00

136 0.00

137 0.00
138 0.01

(b) No Change

Time (t) P-value (pt) Possible? Alarm?

116 0.00

117 0.00
118 0.09
119 0.09

120 0.36
√

121 0.15
√

122 0.29
√

123 0.00
124 0.09
125 0.02

126 0.00
127 0.00

128 0.00

129 0.06
130 0.07
131 0.01
132 0.00
133 0.28

√
134 0.24

√
135 0.00

136 0.00

137 0.00
138 0.00

Table 1. Labels assigned by GPChange to testing portion of two NDVI time series.
Thresholds α = 0.1 and M = 5.

Figure 3a shows results on a NDVI time series containing a permanent change in the sixth year,
possibly a damaged crop. The same plot also shows the GP based prediction (ŷt) as dashed green
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line as well as the bounds specified by the predictive variance (σ̂2
t ) as grayed region. The locations

where the p-value exceeds the threshold α (i.e. potential changes) are specified in Table 1(a). For
these experiments we chose α threshold to be 0.1 and M threshold to be 5. Figure 3a and Table
1(a) show that GPChange is able to identify the true change after identifying 5 consecutive possible
change points. For comparison, Figure 3b shows another NDVI time series which does not contain
a change in the sixth year. The plots indicate that the GP based prediction follows the observed
data well, and even though it identifies isolated possible changes (Table 1(b)), due to the presence
of inherent noise in the data, the number of consecutive possible change points are not sufficient to
raise an alarm for actual change.

7. Conclusions

GP based methods typically scale as O(t3) with the size of the input data with a memory re-
quirement of O(t2). This makes them impractical in domains that encounter massive time series
data sizes such as remote sensing, ECG analysis, etc. In this paper we have shown how Gaussian
process analysis can be scaled to handle massive time series data sets. We have proposed an online
change detection algorithm that has been shown to effectively identify changes in NDVI time series,
making highly suitable for biomass monitoring at regional as well as global scale.

The parallelization demonstrated using the thread based and MPI implementations, indicate that
GP analysis is naturally suited for parallelization and hence can be further scaled by utilizing the
available as well as emerging computing architectures such as heterogeneous processing units and
cloud computing.

While the proposed algorithms utilize the special structure of the underlying covariance matrix
to produce an exact solution, in future this algorithm can be combined with the existing work in
the area of approximate GP methods to achieve further speedups while staying close to the exact
solution.
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ANALYZING AVIATION SAFETY REPORTS: FROM TOPIC MODELING TO
SCALABLE MULTI-LABEL CLASSIFICATION

AMRUDIN AGOVIC*, HANHUAI SHAN*, AND ARINDAM BANERJEE*

Abstract. The Aviation Safety Reporting System (ASRS) is used to collect voluntarily submit-
ted aviation safety reports from pilots, controllers and others. As such it is particularly useful
in researching aviation safety deficiencies. In this paper we address two challenges related to the
analysis of ASRS data: (1) the unsupervised extraction of meaningful and interpretable topics
from ASRS reports and (2) multi-label classification of ASRS data based on a set of predefined
categories. For topic modeling we investigate the practical usefulness of Latent Dirichlet Alloca-
tion (LDA) when it comes to modeling ASRS reports in terms of interpretable topics. We also
utilize LDA to generate a more compact representation of ASRS reports to be used in multi-label
classification. For multi-label classification we propose a novel and highly scalable multi-label clas-
sification algorithm based on multi-variate regression. Empirical results indicate that our approach
is superior to several baseline and state-of-the-art approaches.

1. Introduction

The Aviation Safety Reporting System (ASRS) [1] is used to collect voluntarily submitted avia-
tion safety reports from pilots, controllers and others. The ASRS database is rich and constantly
increasing in size. An ASRS report corresponding to a flight includes certain categorical values along
with a text description. Each report is manually categorized and may belong to several categories
simultaneously such as “maintenance problems” or “weather problems.” The analysis of the data
within the ASRS database plays an important role in furthering aviation safety, as it can be used
to identify deficiencies and research human performance errors among other things.

In this paper we address two important hurdles one faces when analyzing the ASRS data. The first
hurdle is to infer the key problems that are being discussed across different reports. When researching
a specific kind of problem, one might be interested in knowing whether there are other reports dealing
with a similar issue. Unfortunately manually defined categories alone might not be sufficient for this
purpose. Such categories may be too high-level or coarse-grained, e.g., ”maintenance problem”
may refer to several rather different problems. Further, reports might discuss problems shared
across multiple different pre-defined categories. Similarly there may be several subgroups of issues
within a given category. In some cases, the manual categorization of reports may even be incorrect.
Being able to analyze the data in terms of the underlying topics is therefore crucial. The second
hurdle concerns automatically labeling the reports according to the pre-defined categories based
on its topics of discussion. The key challenge stems from the fact that the problem is not one of
standard classification since a report can have multiple labels simultaneously. Further, there may be
correlations among the pre-defined categories which need to be taken into account while generating
a multi-label prediction. Finally, the methods should be highly scalable in order to efficiently learn
and male predictions on tens- or hundreds of thousands of reports and hundreds of classes.

We propose to use latent Dirichlet allocation (LDA), an existing state-of-the-art topic modeling
approach, to automatically extract topics which are being discussed across ASRS reports. LDA is
a hierarchical mixture model where each document is represented as a mixture of topics, and each
topic is modeled as a distribution over words. We wish to investigate to what extent this model

*Department of Computer Science and Engineering, University of Minnesota, Twin Cities, aagovic@cs.umn.edu,
shan@cs.umn.edu, banerjee@cs.umn.edu.
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could be used on the ASRS data to extract meaningful and interpretable topics. In addition to
analyzing underlying topics we utilize LDA to generate a lower-dimensional feature representation
which we subsequently use in our classification task.

To address the problem of multi-label classification we propose Bayesian Multivariate Regression
(BMR), a novel and highly scalable algorithm for multi-label classification. Our approach was
designed to handle several challenges within the ASRS data. Each document in ASRS database is
usually assigned to multiple categories, since there might be multiple problems occurring within the
same flight. The categories (problems) are usually correlated. For instance, the “weather problem”
tends to be correlated with the “landing problem”, since bad weather increases the difficulty of
landing. The conventional strategy of decomposing the multi-label prediction problem to multiple
independent binary classification problems does not work well in this setting. Another challenge
with the ASRS data is its sheer size. A multi-label classification algorithm in this setting needs to
be both effective and highly scalable. Unlike most existing methods, BMR is capable of capturing
correlations among classes, while being readily scalable to very large datasets. These are desirable
properties which are useful beyond the domain of aviation safety. We compare our approach to
two state-of-the-art methods and two one-versus-rest approaches. Our experimental results indicate
superior performance across all used evaluation measures.

Overall the main focus of this work is the analysis of the ASRS data. Our contribution consists of
two parts. The first part is applied in the sense that we investigate the usability of an existing topic
model in the context of ASRS. The second part, the development of a multi-label classification, is
an entirely novel contribution.

The rest of the paper is organized as follows: In Section 2, we give a brief overview on related
work, including the topic modeling algorithms and multi-label classification algorithms. In Section 3,
we propose our Bayesian Multivariate Regression approach and a variational inference algorithm to
learn the model. We present the experimental results on ASRS dataset in Section 4, and conclude
in Section 5.

2. Related Work

In this section we give a brief overview of existing topic modeling algorithms such as Latent
Dirichlet Allocation [6] as well as several multi-label classification algorithms.

2.1. Topic models. Latent Dirichlet allocation (LDA) [6] is one of the most widely used topic
modeling algorithms. It is capable of extracting topics from documents in an unsupervised fashion.
In LDA, each document is assumed to be a mixture of topics, whereby a topic is defined to be a
distribution over words. LDA assumes that each word in a document is drawn from a topic z, which
in turn is generated from a discrete distribution Discrete(π) over topics. Each document is assumed
to have its own distribution Discrete(π), whereby all documents share a common Dirichlet prior α.
The graphical model of LDA is in Figure 1, and the generative process for each document w is as
follows:

(1) Draw π ∼ Dirichlet(α).
(2) For each of m words (wj , [j]m1 ) in w:

(a) Draw a topic zj ∼ Discrete(π).
(b) Draw wj from p(wj |β, zj).

where β = {βi, [i]k1} is a collection of parameters for k topic distributions over totally V words in the
dictionary. The generative process chooses βi corresponding to zj . The chosen topic distribution βi is
subsequently used to generate the word wj . The most likely words in βi are used as a representation
for topic i.

Other than LDA, recent years have seen a large amount of work on topic modeling. Some examples
include correlated topic models [3], dynamic topic models [4], and supervised topic models [5].
Correlated topic models capture the correlation among topics, while dynamic topic models capture
the evolution of topics over time. Supervised topic models incorporate an additional response variable
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Figure 1. Graphical model for Latent Dirichlet Allocation.

into the topic model. For our purposes we chose to use LDA, because it is the least complex, and it
is known to work well. Also note, as the size of the data set increases, the effect of assumed priors
is minimized. In our case, the ASRS dataset is rather large.

2.2. Multi-label classification algorithms. Conventionally, multi-label classification problems
were solved by decomposing them into multiple independent binary classification problems, while
ignoring relationships between labels. In recent years, several approaches have been proposed which
attempt to utilize the correlation structure among labels.

Kernel methods for multi-label classification tend to be extensions of the maximum margin idea.
In [9], a maximum margin approach is proposed which minimizes the ranking loss. In [16], a method
is proposed to learn a kernel which is shared across labels, to be subsequently used in individual
label classifiers. While the ability to handle kernels is important in several domains, most existing
approaches do not have a natural way of dealing with missing labels and are not probabilistic, i.e.,
no direct uncertainty quantification.

A number of probabilistic models have also been proposed for multi-label classification. In [12], a
mixture model is proposed for text classification. More recently, in [13], a fully Bayesian model was
proposed based on sparse and infinite canonical correlation analysis. It directly models correlations
among labels and is one of few models which has the flexibility of dealing with missing labels. An
extension of Gaussian Process prediction to the multi-label setting was proposed in [15].

The state-of-the-art also includes two approaches based on the k-nearest neighbor idea. In [17],
label statistics from neighborhoods are used to build a Bayesian classifier. In [8], features are
constructed based on label information from neighborhoods and subsequently used in logistic re-
gression. In recent years, a family of methods based on multi-label dimensionality reduction has
emerged [18, 10]. Our proposed model also falls in this category. Another interesting approach
is presented in [7], where semi-supervised multi-label classification is proposed using the Sylvester
equation.

There are two major problems with most existing approaches. They have a tendency not to
explicitly model correlations among labels, but rather attempt to indirectly incorporate them. The
second issue is that most existing approaches are too complex to be applicable to large scale datasets.
Unlike most existing methods, our approach is a scalable probabilistic method which explicitly
models the correlation structure among labels.

3. Bayesian Multivariate Regression

In multi-label classification, every data object is associated with a subset of possible labels. As-
suming a total of c possible labels L = {�1, . . . , �c}, for any given data object x, the label information
can be captured by a c-length bit vector h ∈ {0, 1}c, where hs = 1 denotes the membership of x in
class s.

3.1. The Model. We now introduce our novel approach which we call Bayesian Multivariate Regres-
sion (BMR). For simplicity we transform our binary labels hs to truncated log odds ys ∈ {−C,C},
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Figure 2. Graphical model for Bayesian Multivariate Regression.

where C ∈ R. Log odds are defined as log{p(hs = 1)/(1 − p(hs = 1)}, for binary labels these values
are in {−∞,+∞}. By truncating the log odds we are effectively performing a relaxation of the
problem. Rather than modeling binary vectors directly, our approach thus performs multivariate
regression over the corresponding truncated log odds. Given a real valued feature vector x ∈ R

k

we assume a mapping W ∈ R
c×k, such that μ(x) = Wx. Subsequently we draw a latent label vec-

tor representation η from N(μ(x),Σ), where Σ ∈ Rc×c denotes a covariance matrix among classes.
While the covariance Σ is global in our model, the mean μ(x) differs for every data point. Our latent
variable can alternatively be expressed as

η = Wx + ζ

where ζ ∼ N(0,Σ). From this we can see that the empirical covariance of η will not be solely
determined by Σ, but rather jointly by the mean function μ(x) and Σ. The last step in our model
is to sample the label vector y from N(η, I). Integrating out the latent variable η, allows us to
incorporate the effects of Σ into W . Since it does not consider the marginal distribution over x,
BMR is a discriminative model.

Let xn denote a k-dimensional data point, the generative process for each label c-dimensional
label vector yn can be specified as follows:

(1) ηn ∼ N(Wxn,Σ).
(2) yn ∼ N(ηn, I).

The graphical model for BMR is shown in Figure 2. Given the model, the likelihood function of
yn is given by

p(yn|xn,Σ,W ) =
∫

ηn

p(ηn,yn|xn,Σ,W )dηn(1)

=
∫

ηn

p(ηn|Wxn,Σ)p(yn|ηn)dηn .

= Eηn
[p(y|ηn)]

Therefore, for a dataset with N data points X = {xn, [n]N1 } ([n]N1 ≡ n = 1 . . . N) and Y =
{yn, [n]N1 }, the likelihood function is

p(Y |X,Σ,W ) =
N∏

n=1

∫
ηn

p(ηn|Wxn,Σ)p(yn|ηn)dηn .(2)

=
N∏

n=1

Eηn
[p(y|ηn)] .

3.2. Inference and learning. For given data points X and corresponding Y , the learning task of
BMR involves finding the model parameters W and Σ, such that the likelihood of p(Y |X,Σ,W ) as
in Equation (2) is maximized. A general approach for such a task is to use multivariate optimization
algorithms. However, the likelihood function in (2) is intractable, implying that a direct application
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of optimization is infeasible. Therefore, we propose a variational inference method, which alter-
nates between obtaining a tractable lower bound to the true log-likelihood and choosing the model
parameters W and Σ to maximize the lower bound.

In order to obtain a tractable lower bound to (1), instead of using the true latent variable distri-
bution p(ηn|Wxn,Σ) in expectation calculation, we introduce a family of parameterized variational
distributions q(ηn|μ̂n, Σ̂n) as an approximation to p(ηn|Wxn,Σ), where q(ηn|μ̂n, Σ̂n) is a Gaussian
distribution, and μ̂n and Σ̂n are variational parameters denoting the mean and covariance. Following
Jensen’s Inequality [6], we have

log p(yn|xn,Σ,W ) ≥ Eq[log p(ηn,yn|xn,W,Σ)] − Eq[log q(ηn|μ̂n, Σ̂n)](3)

= Eq[log p(ηn|xn,W,Σ)] + Eq[log p(yn|ηn)] − Eq[log q(ηn|μ̂n, Σ̂n)] .

We can denote the lower bound (3) using L(μ̂n, Σ̂n,W,Σ), and each term in L(μ̂n, Σ̂n,W,Σ) are
given by

Eq[log p(ηn|xn,W,Σ)] = −
1
2

(
Tr(Σ−1Σ̂n) + (μ̂n − Wxn)T Σ−1(μ̂n − Wxn)

)
−

c

2
log 2π +

1
2

log |Σ−1|

Eq[log p(yn|ηn, I)] = −
1
2

(
yT

nyn − 2μ̂T
nyn + Tr(Σ̂n) + μ̂

T
n μ̂n

)
−

c

2
log 2π

Eq[log q(ηn|μ̂n, Σ̂n)] = −
k

2
−

k

2
log 2π +

1
2

log |Σ̂−1
n |

The best lower bound can be obtained by maximizing each L(μ̂n, Σ̂n,W,Σ) with respect to the
variational parameters μ̂n and Σ̂n, which gives

μ̂n = (Σ−1 + I)−1(Σ−1Wxn + yn)(4)

Σ̂n = (Σ−1 + I)−1 .(5)

The lower bound of the log-likelihood on the whole dataset Y is given by
∑N

n=1 L(μ̂n, Σ̂n,W,Σ).
To obtain the estimate for model parameters, we use this lower bound function as a surrogate ob-
jective to be maximized. Given a fixed value of (μ̂∗

n, Σ̂∗

n) from (4) and (5), the lower bound function∑N

n=1 L(μ̂∗

n, Σ̂∗

n,W,Σ) is a function of model parameters (W,Σ). By maximizing
∑N

n=1 L(μ̂∗

n, Σ̂∗

n,W,Σ)
with respect to W and Σ, we have

W =

(
N∑

n=1

μ̂nxT
n

)(
N∑

n=1

xnxT
n

)−1

(6)

Σ =
1
N

N∑
n=1

(
Σ̂n + (μ̂n − Wxn)(μ̂n − Wxn)T

)
.(7)

3.3. Variational optimization. Following the update equations in (4)-(7), we construct a varia-
tional optimization algorithm to learn the model. Starting from an initial guess of (W (0),Σ(0)), the
algorithm alternates between the following two steps in each iteration t:

(1) Inference-step: Given (W (t−1),Σ(t−1)), for each (xn,yn), find the optimal variational pa-
rameters

(μ̂(t)
n , Σ̂(t)

n ) = arg max
(μ̂n,Σ̂n)

L(μ̂n, Σ̂n,W (t−1),Σ(t−1)) ,

which can be done using (4) and (5).
(2) Optimization-step: Maximizing the aggregate lower bound gives us an improved estimate of

the model parameters:

(W (t),Σ(t)) = arg max
(W,Σ)

N∑
n=1

L(μ̂(t)
n , Σ̂(t)

n ,W,Σ) ,
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which can be done following (6) and (7).

After t iterations, the objective function becomes L(μ̂(t)
n , Σ̂(t)

n ,W (t),Σ(t)). In the (t + 1)th iteration,
we have

N∑
n=1

L(μ̂(t)
n , Σ̂(t)

n ,W (t),Σ(t)) ≤
N∑

n=1

L(μ̂(t+1)
n , Σ̂(t+1)

n ,W (t),Σ(t))

≤

N∑
n=1

L(μ̂(t+1)
n , Σ̂(t+1)

n ,W (t+1),Σ(t+1)) .

The first inequality holds because (μ̂(t+1)
n , Σ̂(t+1)

n ) maximizes L(μ̂n, Σ̂n,W (t),Σ(t)) in the Inference-
step. The second inequality holds because (W (t+1),Σ(t+1)) maximizes

∑N

n=1 L(μ̂(t+1)
n , Σ̂(t+1)

n ,W (t+1),Σ(t+1))
in the Optimization-step. Therefore, the objective function is non-decreasing until convergence.

We note that the computations involved per iteration during training are scalable. Most op-
erations involved are simple matrix multiplications or matrix-vector products. There is a matrix
inversion involving a d × d matrix in (6), but since the matrix only depends on the feature vectors
xn, the inverse can be computed offline, even before starting the iterations. The algorithm does
need to invert Σ in every iteration. Since Σ is a c × c matrix where c is the number of classes, the
inverse can be computed efficiently even for hundreds of classes.

3.4. Prediction. Assuming that Σ and W have been estimated from training data, we wish to
predict the label vector h̄ for an unseen data point x̄. First note that the maximum likelihood
estimate of η̄, given W and Σ is obtained by η̄

∗ = W x̄, since η̄ ∼ N(W x̄,Σ). Similarly the
maximum likelihood estimate for ȳ given η̄ is obtained as ȳ∗ = η̄, since ȳ ∼ N(η̄, I). We thus
formulate our prediction as follows:

(8) ȳ∗ = W x̄

with

h̄i =

{
1 if ȳ∗

i > 0
0 otherwise .

(9)

Effectively the prediction task in our model reduces to a matrix multiplication. For this reason our
model can be seen as rather simple, and unlike most existing approaches, it can be easily used on
millions of data points. Note that our model can also be interpreted as performing dimensionality
reduction, whereby the matrix W incorporates information from both the observed labels and Σ.

3.5. Relationship to Probabilistic Principal Component Analysis (PPCA). Given high di-
mensional data points x ∈ R

k, in PPCA the objective is to obtain a lower-dimensional representation
in y ∈ Rc, where c << k. In particular the assumption is made [11]:

p(x|y, Z, β) = N(x|Zy, β−1I)(10)

where Z ∈ R
k×c, and β−1I denotes a spherical covariance matrix. PPCA proceeds by defining a

prior of over y and integrating it out, while maximizing over Z.
While at first the assumptions that we make in BMR may appear similar, there are subtle but

very important differences in our model. In our case both x and y are known. We define a mapping
W from the higher dimensional space to the lower-dimensional space, and not the other way around
as in PPCA. The covariance matrix Σ is not spherical in our case and is of size c × c, rather than
k × k. Lastly in our model we introduce a latent variable η, which connects observed (x,y) pairs.

BMR can be though of as a supervised dimensionality reduction approach where (x,y) pairs are
known upfront. We learn a mapping W which best captures the observed label vectors and the
underlying correlations.
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3.6. BMR for document classification. In the generative process of Section 3.1, xn could be any
feature representation. In the application of document classification, instead of using the original
vector of word occurrences, we opt to use the low-dimensional topic representation obtained from
LDA. Most of the widely used topic models, such as Latent Dirichlet Allocation [6] and Correlated
Topic Models [3], have a topic vector znd assigned to each of the Dn words in the document n. Given
k topics, znd for topic i is a k-dimensional 0-1 vector with only the ith dimension being 1 and others
being 0. We then use z̄n = 1

Dn

∑Dn

d=1 znd as xn in the generative process. The choice of z̄n is due to
the following three reasons: (1) Interpretability: z̄n is a low-dimensional representation in the topic
space. It is more interpretable than the original document representation, hence a more reasonable
representation. (2) Optimality: Given znd for each word, the best representative is always the mean
according to a wide variety of divergence functions [2]. (3) Simplicity: It is simple to take the mean
of znd for each document. The complexity of the model would increase if we were to use other
complicated transformations such as a non-linear function. (4) Efficiency: Our inference approach
in any given iteration has to invert matrices of size k × k. Using a lower-dimensional representation
keeps the inference very efficient.

4. Empirical Evaluation

In this section we present our experimental results on both topic modeling and multi-label classi-
fication. All of our experiments were conducted on a subset of the ASRS data. In particular, 66309
reports were extracted which are labeled as anomalous events. Within these extracted reports there
are 58 predefined classes. For instance “anomaly.ground-encounters.vehicle” would denote one such
class name. For our topic modeling analysis, we used all 66309 reports. We refer to this data set as
ASRS-66309.

Our multi-label classification results are generated by conducting 5-fold cross validation on a
randomly selected subset of 10,000 reports pertaining to anomalies. The feature vectors for these
10,000 reports are obtained using LDA with number of topics assigned to 200. We refer to this data
set as ASRS-10000. The size of the data set used for classification purposes is limited simply because
some of the approaches that we compare against cannot easily handle much larger data sets.

4.1. Topic Modeling Experiments. We used LDA to extract topics from ASRS-66309. Table 1
shows some examples of obtained topics. The right column denotes a list of top-ranked words within
a given topic, and the left column contains a name which is manually assigned to the topic in question.
As we can see, these word lists are quite interpretable, and provide a reasonable representation for
discussed topics.

Figure 3 shows the number of documents in each of the 58 classes. We can see that the classes
are highly unbalanced with some classes containing more than ten thousand documents and others
containing less than 50. The four largest classes are “anomaly.other-anomaly.other”, “anomaly.non-
adherence.published-procedure”, “anomaly.non-adherence.clearance”, and “anomaly.non-adherence.far”,
meaning that quite a few anomalies are the non adherence of prescribed procedures or clear-
ance. The four smallest classes are “anomaly.ground-encounters.gear-up-landing”, “anomaly.ground-
encounters.animal”, “anomaly.cabin-event.galley-fire” and “anomaly.inflight-encounter.skydivers”.
Judging from these names, we can see that all of them are potentially dangerous accidents, hence
should rarely happen.

We investigate the relationship between 58 classes and 200 topics in ASRS-66309 data set. The
number of topics was chosen upfront to be multiple times larger than the number of predefined
classes. For each document, we have a posterior over all 200 topics. We assign a document to its
most likely topic. Meanwhile, each document is also assigned to multiple classes. Therefore, we can
count the number of the documents falling in both class s and topic i, a higher value indicates a closer
relationship. Such a strategy yields a 58 × 200 matrix M , with M(s, i) denoting the approximate
relationship between class s and topic i. We visualize the matrix M in Figure 4, where a lighter color
indicates a closer relationship. As we can see, there are several bright rows in the figure. The classes
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maintenance light, illuminated, caution, master, lights, panel, overhead,
on lights checklist, warning, maintenance
passenger encountering flight, passenger, attendants, seat, turbulence, seated, attendant,
turbulence sign, hit, cabin
avoiding ground terrain, ground proximity warning system, warning, approach,
proximity pull, climb, received, maneuver, approximately, air traffic control
thunderstorm heavy, rain, moderate, turbulence, area, thunderstorms, radar, due, difficult, feel
pressurization cabin, pressurization, descent, emergency, pressure, masks, control,
in the cabin oxygen, horn, passenger
avoiding collision cessna, aircraft, evasive, collision, appeared, action, passed,

avoid, directly, approximately
snow and ice snow, conditions, braking, run way, action, poor, repeated, aircraft, ice, airport
gas leak fuel, gauge, leak, quantity, aircraft, maintenance, tank,
maintenance indicator, inoperative, problem
fire in cabin smoke, fire, cabin, passenger, aircraft, flight, evacuate,

emergency, attendant, cockpit
weather conditions visual flight rules, instrument flight rules, airspace, airport, aircraft,
on clearance traffic, flight, area, approach, conditions
taking off tower, runway, position, control, hold aircraft, take off, clearance, final, heard
approaching intersection, cross, descent, approach clear, clearance, xing,
destination restricted, arrival, control
passenger passenger, medical, emergency, flight, oxygen, attendant, board,
medical emergency aircraft, landing, assistance
system failure system, failure, failed, electrical, emergency, flight, aircraft, lost, problem loss
complying instructed, instructions, instruction, issued, complied, comply, immediately,
instructions received, air traffic control, acknowledged
door maintenance door, open, closed, doors, opened, aircraft, handle, maintenance, flight, close
maintenance on tire, wheel, tires, aircraft, maintenance, brake, found,
tire and brake main, installed, change

Table 1. Extracted topics using LDA from ASRS database.

corresponding to these rows are “anomaly.other-anomaly.other”, “anomaly.non-adherence.published-
procedure”, “anomaly.non-adherence.clearance”, and “anomaly.non-adherence.far”. These classes
are the largest classes in Figure 3. Since the size of these classes is large, they have a higher chance
to co-occur with the topics. This also reflects the fact that some of the larger classes include very
broad types of documents. For instance anomaly.other-anomaly.other is lumping together anomalies
which are not described by other predefined classes.

Table 2. anomaly.aircraft-equipment-problem.critical

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
engine take off oil cabin smell
landing aircraft engine pressurization smoke

emergency knots pressure descent odor
checklist runway repeat emergency cabin
failure abort maintenance pressure flight
shut maintenance quantity masks emergency

declared engine low control cockpit
shut down aborted shut oxygen electrical

single roll information horn burning
runway gate stated passenger landing
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Figure 3. The number of documents in each of 58 classes.

Table 3. Top ranked topics in anomaly.excursion.taxiway

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
taxiway aircraft ramp ground snow

turn runway aircraft taxiway conditions
taxi landing area control braking

runway touchdown taxi taxi runway
taxiways reverse spot runway action
airport normal parking clearance poor
aircraft braking personnel controller repeated

area brakes parked instructions aircraft
lights thrust terminal told ice
turned captain turn cleared airport

For each class, we can rank topics according to how likely they are to occur within a given class.
We examine the top ranked topics for each class. Some examples with top five topics are presented
in Tables 2-6. Overall, the topic lists in each class appear reasonable. Some topics in the same class
are similar to each other, and some are different but explain the class from different perspectives.
For example, in Table 6, the first two topics are somewhat similar. Both of them are directly related
to fire or smoke. However upon closer examination, one can see subtle differences even within these
topics. The first topic appears to incorporate potential passenger attendant interactions. While
the second topic includes words such as odors, smells, electrical, cockpit, indicating a potential
problem in the cockpit. The third topic is related to maintenance, indicating that the system may
need maintenance to avoid the fire problem. The fourth and fifth topics are related to passengers,
because their misconduct, such as smoking, could be one reason for the fire.

In Table 2, for the class named critical equipment problem, we find topics on engine, maintenance,
cabin pressure, and smoke. In Table 3, under taxiway excursion, we can see topics on taxiway,
braking, parking, clearance, and bad weather with snow/ice. Under passenger misconduct, Table 4,
we find misconduct in lavatory, cabin, security check, and also there is medical emergency and fire.
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Figure 4. The relationship among 58 classes and 200 topics. A lighter color indicates a
closer relationship.

Table 4. Top ranked topics in anomaly.cabin-event.passenger-misconduct

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
passenger flight agent passenger smoke

flight attendant passenger medical fire
captain attendants flight emergency cabin

seat passenger boarding flight passenger
attendant cabin aircraft oxygen aircraft

told cockpit security attendant flight
back back board board evacuate

lavatory told gate aircraft emergency
man captain asked landing attendant

purser called told assistance cockpit

In Table 5, the class of weather is associated with topics on thunderstorms, turbulence, and also
landing and deviation. Overall the extracted topics do appear interpretable and reasonable.

4.2. Multi-Label Classification Experiments. In this section we compare the performance of
our approach with existing state-of-the-art algorithms as well as baseline methods. To evaluate
performance we utilize five different evaluation measures. All multi-label classification experiments
are performed on the ASRS-10000 data set.
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Table 5. Top ranked topics in anomaly.inflight-encounter.weather

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
turbulence thunderstorms approach fuel flight
moderate deviation runway alternate passenger

severe thunderstorm instrument landing system air traffic control attendants
aircraft area missed emergency seat

encountered turn tower approach turbulence
flight due approaches minimum seated
light air traffic control briefed dispatch attendant

air traffic control avoid landing due sign
repeated emergency final divert hit

ride radar vectors declared cabin

Table 6. Top ranked topics in anomaly.other-anomaly.smoke-or-fire

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
smoke smell fire passenger flight
fire smoke warning flight attendant

cabin odor engine captain attendants
passenger cabin aircraft seat passenger
aircraft flight reporter attendant cabin
flight emergency emergency told cockpit

evacuate cockpit light back back
emergency electrical checklist lavatory told
attendant burning indication man captain
cockpit landing maintenance purser called

4.2.1. Algorithms. We compare BMR with three multi-label classification algorithms. As baselines,
we consider one-vs-rest SVM as a multi-label classifier, which we refer to as MLSVM. In addition we
use a one-vs-rest implementation of logistic regression, which we call MLLR. We also consider two
state-of-the-art approaches for multi-label learning: Multi-label K-nearest Neighbors (MLKNN) [17],
a method which applies the k-nearest neighbor idea to the multi-label setting; and Instance Based
Learning by Logistic Regression (IBLR) [8], where features are first transformed to incorporate label
information from local neighborhoods prior to applying logistic regression.

4.2.2. Evaluation Measures. We evaluated performance using five different measures: one error,
precision, coverage, ranking loss and hamming loss. Let g(x, l) denote a real-valued function which
assigns a score to label l for data point x, such that a larger score is considered better. Also, let
f(x) denote the classifier whose output is the predicted multi-label vector. Further, let Lx denote a
set of true labels associated with x.

1) One error evaluates how frequently the top ranked predicted label is not among the true labels.
If �[·] denotes the indicator function, we have:

(11) OneError(g) =
1
D

D∑
d=1

� [argmaxl∈L g(xd, l) �∈ Lxd
] .

2) For true labels l ∈ Lx, average precision evaluates the fraction of labels in Lx that rank at
least as high as l according to the scoring rule g on average. For any data point x and any label
l ∈ Lx, let R(x, l) = {l′ ∈ Lx|rankg(x, l′) ≤ rankg(x, l)}, where the ranking is among all possible
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labels. Then, average precision is:

(12) AvePrec(g) =
1
D

D∑
d=1

1
|Lxd

|

∑
l∈Lxd

|R(xd, l)|
rankg(xd, l)

.

3) Coverage reflects on average how far one needs to go down in the label ranking to cover all
actual labels of an instance:

Coverage(g) =
1
D

D∑
d=1

( max
l∈Lxd

rankg(xd, l) − 1) .(13)

4) Hamming loss evaluates the fraction of label instance pairs that were misclassified:

(14) HammingLoss(f) =
1
D

D∑
d=1

1
c
|f(xd)	Lxd

| .

where 	 denotes the symmetric difference between two sets.
5) Ranking loss reflects the average number of labels that are reversely ordered for a given instance.

Let T (xd) = {(l1, l2) | g(xd, l1) ≤ g(xd, l2), (l1, l2) ∈ Lxd
× L̄xd

}, where L̄xd
denotes the complement

of Lxd
. Ranking loss is defined as:

(15) RankLoss(g) =
1
D

D∑
d=1

|T (xd)|
|L̄xd

||Lxd
|

.

For both hamming loss and ranking loss, smaller values are considered better. In particular for a
perfect performance HammingLoss(h) = RankLoss(g) = 0.

4.2.3. Prediction Performance. Table 7 lists the prediction results when using five fold cross vali-
dation on ASRS-10000. MLSVM and MLLR, the two one vs. rest approaches perform the worst,
as expected. These results clearly illustrate that looking at hamming loss alone is actually quite
misleading. For instance MLSVM has a hamming loss of 11.9%, however its one error is at 85.8%.
This is especially important in ASRS, since some categories are present in only about 50 out of
66309 documents. Even for a degenerate classifier which predicts only zeros, one would obtain a low
hamming loss. For this reason we have opted to evaluate our results using a range of five different
evaluation measures, commonly used in multi-label classification.

Our proposed model clearly outperforms all other approaches, including MLKNN and IBLRML,
the two state-of-the-art methods across all five evaluation measures. Since we have used a data set
of significant size we can see that the standard deviations are quite low. It is also apparent that our
improvements are indeed statistically significant. Across all evaluation measures our approached
seems to be followed by IBLRML and then MLKNN. Considering the simplicity of our approach,
these results are quite interesting. After all, the predictive step in our model merely involves a
matrix multiplication, and yet we are outperforming very complex algorithms such as SVMs or even
state-of-the-art multi-label learning methods such as MLKNN and IBLRML.

For the top three algorithms, BMR, MLKNN and IBLRML, we also examined what happens when
a smaller fraction of the data set is labeled. We omitted the one vs. rest approaches to prevent
clutter, and also since we already established that their performance is substantially inferior. We
ran 5-fold cross validation on the ASRS-10000 data set, while gradually increasing the set of labeled
points from 3000 to 4000. Since the number of classes is rather large we did not consider smaller
sets. The results can be seen in Figure 5. The first thing that we can note is that the performance
of IBLRML appears to be worse than that of MLKNN when the set of labeled points is smaller.
However that is not the case when full 5-fold cross validation is performed (see Table 7). It appears
that IBLRML requires a larger training set to achieve a good performance. Across all evaluation
measures our proposed method, BMR, consistently outperforms both MLKNN and IBLRML. This
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Table 7. Five-fold cross validation on the ASRS-10000 data set. MBR clearly
outperforms all the other methods.

BMR MLKNN IBLRML MLLR MLSVM
OneError 38.5 ± 0.8 44.1 ± 0.7 44.3 ± 1.4 50.7 ± 1.6 85.8 ± 18.1
AvePrec 64.0 ± 0.5 59.9 ± 0.5 60.3 ± 0.6 57.0 ± 0.9 33.6 ± 8.2
Coverage 8.17 ± 0.14 9.20 ± 0.12 8.39 ± 0.29 9.63 ± 0.51 13.81 ± 0.87

HammingLoss 4.4 ± 0.0 4.6 ± 0.1 4.7 ± 0.0 5.5 ± 0.1 11.9 ± 1.1
RankLoss 5.7 ± 0.2 6.9 ± 0.1 6.7 ± 0.3 7.9 ± 0.6 12.9 ± 1.7

seems to indicate that our approach is robust with respect to the ASRS data, even when the size of
the training set is reduced.

4.2.4. Scalability. To contrast the computational cost involved in utilizing the MLKNN, IBLRML
and MBR we conducted an experiment in which we tested how long it takes to predict on data
sets between 1000 and 14000 data points. The MLKNN approach requires K-nearest neighbor
computations, as such it is the most expensive. IBLRML on the other hand constructs 58 separate
logistic regression classifiers and has to utilize each one of them. Figure 6 illustrates that our
proposed approach is clearly the most efficient.

5. Conclusion

In this paper, we have analyzed the ASRS data from two aspects. First, we applied Latent
Dirichlet Allocation to automatically extract the topics from reports in ASRS database. We have
established that the topics returned by LDA are indeed quite interpretable when it comes to the
ASRS data, and that they can be used to reason about potential problems that are being discussed.
In particular we could see that extracted topics within each predefined category are indeed similar
as one would expect. We have also successfully utilized LDA to obtain a lower-dimensional feature
representation for our subsequent classification task.

The second aspect that we have addressed involves multi-label classification. We have proposed
Bayesian Multivariate Regression (BMR), a novel multi-label classification algorithm, which explic-
itly models the correlation structure among labels. As illustrated by our empirical evaluation our
model is very effective and competitive with the state of the art across several evaluation measures,
at the same time it is simple enough that it could potentially be applied to millions of data points.
The scalability is possible since the learning step only involves matrix multiplications and inverting
small matrices and the prediction step involves only a matrix multiplication. While we have explored
this algorithm in the domain of ASRS data, its applicability extends to any domain where correlated
multi-label prediction problems occur.

For future work, we intend to create a joint model which combines BMR and topic modeling.
As illustrated in [14] creating a joint model may lead to even better performance. It will also be
interesting to further explore BMR from the perspective of supervised dimensionality reduction.

Acknowledgements. This research was supported by NASA grant NNX08AC36A, NSF grants
IIS-0916750, IIS-0812183, and NSF CAREER grant IIS-0953274.

References

[1] Aviation Safety Reporting System. http://akama.arc.nasa.gov/ASRSDBOnline/QueryWizard Filter.aspx.
[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. 6:1705–1749,

2005.
[3] D. Blei and J. Lafferty. Correlated topic models. NIPS, 2006.
[4] D. Blei and J. Lafferty. Dynamic topic models. In ICML, 2006.
[5] D. Blei and J. McAuliffe. Supervised topic models. In NIPS, 2007.
[6] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 3:993–1022, 2003.

95

2010 Conference on Intelligent Data Understanding



3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Number of Labeled Points

R
an

ki
ng

 L
os

s

Five Fold Cross Validation on the ASRS−10000 Data Set

mlknn
bmr
iblrml

(a) Ranking Loss

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Labeled Points

O
ne

 E
rr

or

Five Fold Cross Validation on the ASRS−10000 Data Set

mlknn
bmr
iblrml

(b) One Error

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Number of Labeled Points

C
ov

er
ag

e

Five Fold Cross Validation on the ASRS−10000 Data Set

mlknn
bmr
iblrml

(c) Coverage

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of Labeled Points

A
ve

ra
ge

 P
re

ci
si

on

Five Fold Cross Validation on the ASRS−10000 Data Set

mlknn
bmr
iblrml

(d) Average Precision

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

Number of Labeled Points

H
am

m
in

g 
Lo

ss

Five Fold Cross Validation on the ASRS−10000 Data Set

mlknn
bmr
iblrml

(e) Hamming Loss

Figure 5. Five fold cross validation on ASRS-10000 data set. To avoid clutter we
only include the top three algorithms. These plots indicate what happens when a
smaller fraction of the data set is labeled. Even in this setting BMR consistently
outperforms both MLKNN and IBLRML.
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OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS

BRADLEY W. JACKSON*, JEFFREY D. SCARGLE**, AND CHRIS CUSANZA, DAVID BARNES, DENNIS
KANYGIN, RUSSELL SARMIENTO, SOWMYA SUBRAMANIAM, TZU-WANG CHUANG***

Abstract. Consider piece-wise constant approximations to a function of several parameters, and
the problem of finding the best such approximation from measurements at a set of points in the
parameter space. We find good approximate solutions to this problem in two steps: (1) partition
the parameter space into cells, one for each of the N data points, and (2) collect these cells into
blocks, such that within each block the function is constant to within measurement uncertainty.
We describe a branch-and-bound algorithm for finding the optimal partition into connected blocks,
as well as an O(N2) dynamic programming algorithm that finds the exact global optimum over this
exponentially large search space, in a data space of any dimension. This second solution relaxes
the connectivity constraint, and requires additivity and convexity conditions on the block fitness
function, but in practice none of these items cause problems. From the wide variety of intelligent
data understanding applications (including cluster analysis, classification, and anomaly detection)
we demonstrate two: partitioning of the State of California (2D) and the Universe (3D).

1. Introduction

A common problem in science and engineering is the estimation of a multivariate signal – that is,
a function, the domain of which is a multidimensional parameter space – from a set of distributed
data points. The data are most commonly of two types: (1) measurements of a dependent variable,
or (2) locations of points within the data space. In the latter case the signal of interest is the density
of the points, per unit volume in the parameter space, as a function of position in the parameter
space. Out algorithms can apply to these and many other data modes, but the point, or event, data
mode (2) will be used here as the main example.

In one dimensional time series, an example is the measurement of the varying intensity, or light
curve, of an astronomical source by determining the arrival times of individual photons. In other
applications one might have a set of points in the plane or in a 3-dimenional space, again representing
the overall intensity of a signal, say from a collection of different sources. We also have the following
problem in astronomical data analysis. A key example described below is data on the positions
of galaxies in 3D space, determined in a redshift survey of perhaps a million galaxies. We want
to segment the galaxies into regions that are roughly uniform in density. The high-density regions
might represent galaxy clusters or other interesting structures. We start with a partition of the data
into cells, one for each galaxy, and consider subpartitions of this starting partition into blocks that
are unions of cells. The goal is to find the optimal such partition of the data.

In general, suppose we are given a set of N data points in a bounded region X of 
n and let
C be a set of N corresponding cells that partition the data space X, one cell for each point. A
convenient way to construct such a partition is as the Voronoi tessellation of the point. The Voronoi
cell corresponding to a point consists of the part of the data space closer to it than to any of the
N − 1 other points. A block B is defined to be any union of cells from C; in a connected block the
corresponding cells are connected.

For a given set of data points our goal is to find the best piece-wise constant function that rep-
resents the data. Each partition of the data into blocks defines a corresponding piece-wise constant

*Department of Mathematics, San Jose State University, jackson@math.sjsu.edu, **Space Science Division, NASA
Ames Research Center, Jeffrey.D.Scargle@nasa.gov, ***San Jose State University, Center for Applied Mathematics
and Computer Science.
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function that is constant on the blocks. To quantify what we mean by the best partition we assign
a numerical value to each partition and then try to solve the resulting combinatorial optimization
problem. Such a quantity goes by many names depending on the application: goodness of fit, risk,
cost, objective function, fitness, and many others. Here we simply use the generic term ”value”, and
for example refer to the value of a partition or of a block (since we see below that the value of a
partition is defined using the values of its blocks). This quantity is meant to measure how well the
corresponding block-wise constant model (i.e. constant over the blocks making up the partition) fits
the data.

This model optimization can be implemented by maximizing some measure of model fitness, such
as its posterior probability. As described elsewhere [Scargle(1998)], by marginalizing all the model
parameters except those defining the identities of the blocks, we get a value that depends on the
number of points in the block, and the size of the block, but not on the locations of the data points.
For any block, B, in P , we denote its size (length, area, volume, . . . ) by a(B), its population by n(B)
= the number of data points in block B, and the block’s point density by n(B)/a(B). Under suitable
assumptions, amounting to modeling the event detection process as a finite Bernoulli lattice, the
posterior for a block, marginalized over the event rate, is the β distribution [Scargle(1998)], eq.(23),

f(a(B), n(B)) = β(a(B) − n(B) + 1, n(B) + 1)(1)
= Γ(n(B) + 1) ∗ Γ(a(B) − n(B) + 1)/Γ(a(B) + 2).(2)

This formula holds for data in any dimension (the definition of a(B) changes to the appropriate
measure of volume for the given dimension). The likelihood of a given partition is the product of the
likelihoods over all the blocks in that partition since we assume that the probabilities on each region
are independent of each other. Thus the best (most likely) subpartition is one which maximizes

(3) V =
∏

f(a(Bi), n(Bi)) ,

where the product is over the blocks. We refer to a partition which achieves the maximum value as
an optimal partition. The algorithm finds the global optimum; in practice this solution is unique,
but there is no guarantee that this always holds. Note that a partition which maximizes V also
maximizes its logarithm:

(4) W = logV =
∑

g(a(Bi), n(Bi)),

where g(a(Bi), n(Bi)) = logf(a(Bi), n(Bi)). This logarithmic expression is introduced because the
dynamic programming algorithm only works if the fitness function is additive over the blocks. Thus
our final goal is to find a partition Pmax which maximizes W =

∑
g(a(Bi), n(Bi)), summed over all

the blocks in the partition.
It is not obvious at this point but our algorithm automatically determines the optimal number

of blocks. In stark contrast, in most other analysis methods this parameter must be fixed ahead of
time.

2. Finding Optimal Partitions in Dimension 1

Suppose that g is the function that assigns a value to any block; using eq. (4) the value W (P )
of any partition P is equal to the sum of the values of its blocks,

∑
g(a(Bi), n(Bi)), thus satisfying

the additivity required by the basic dynamic programming algorithm ([Jackson,Scargle,et.al.(2003)]).
Let Pmax be a partition optimal with respect to W , and let P0 be any subpartition of Pmax – that is,
a subset of the blocks making up Pmax. It follows from the additive property that P0 is an optimal
partition of the set that it covers. This is known as the principle of optimality [Bellman(1957)].
Using this principle we showed in [Jackson,Scargle,et.al.(2003)] that dynamic programming gives a
highly efficient O(N2) algorithm for finding the optimal partition of N data points on an interval.
Once the optimal partitions of the first j cells, j = 0, 1, 2, . . . , i are found, the optimal partition of
the first i + 1 cells can be found by determining which of the the following i + 1 partitions has the
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maximum value. For each j = 0, 1, 2, . . . , i consider the optimal partition of the first j cells followed
by a single block containing the remaining cells j + 1, . . . , i + 1. Using the principle of optimality
we see that the partition with the maximum value in this group will be the optimal partition of the
first i+1 blocks. This is the key relation that makes the optimization algorithm so simple.

The incremental way that this algorithm operates on the data also allows it to operate nicely in
an on-line mode (performing calculations on the first i data points as we are waiting for the next
data point to be transmitted). This mode has been found to be very useful in the rapid detection
of changepoints in a data stream, for example to detect x-ray or gamma-ray flares from NASA
space-borne observatories.

Dynamic programming has also been shown to be an efficient technique for finding the opti-
mal solution for a variety of other 1-dimensional data analysis problems [Hubert(1997), Kay(1998),
Kehagias,Nicolau,Fragkou,Petridis(2004), Quintana,Iglesias(2003), Vidal(1993)]. In most cases one
seeks the optimal partition into K blocks, for some fixed K. However, our algorithm is able to
compare partitions with different numbers of blocks, so the number of blocks is automatically deter-
mined by the data. This feature requires the specification of a prior distribution for K; as described
in [Scargle(1998)] a convenient choice is a geometric prior, which acts as an effective penalty against
large numbers of blocks. The parameter in this prior in principle is an undetermined parameter, the
value of which affects the number of blocks in the optimum solution. In practice it is relatively easy
to choose a good value, for example based on simulations using pure noise data sets, and calibrating
the prior parameter based on the desired false positive rate. In addition, the solution is relatively
insensitive to the value of the parameter, over a rather large range of its values.

There is relatively little literature dealing with finding the optimal partition of a set of data
points in higher dimensions. Indeed, for many standard problems in higher dimensions it is known
that the problem of finding the optimal partition is NP-complete. Unlike the situation in dimension
1, dynamic programming does not work nearly as well in higher dimensions. One limitation on
the efficiency of a dynamic programming algorithm is that one must, at some point, compute the
value of each possible connected block. In all dimensions the size of the search space, the set of
all possible partitions of the N data cells, is exponential in N . As remarked above, in 1D the
dynamic programming algorithm allows an implicitly complete search of this space in O(N2); but
in dimension 2 or higher this trick does not apply directly, and the worst-case complexity of even
dynamic programming will be exponential. In these dimensions, one can have a cell adjacent to
each of the other N − 1 cells and it will be contained in 2N−1 different connected blocks and any
straightforward dynamic programming algorithm will have to compute the value of each of these
blocks.

3. A Branch-and-Bound Algorithm for Data in Higher Dimensions

In higher dimensions we also wanted to find an efficient algorithm for determining the optimal
partition of a given set of cells into blocks. In applications there are two related but distinct problems:
Find the optimal partition of the data space into (1) arbitrary blocks (that is, with no constraints)
and (2) connected blocks. In the former, the cells making up a block can lie anywhere in the data
space, whereas in the latter, they must form a connected region. We say that a block B is connected,
if and only if for any two cells c, d in B there is a sequence of cells c = c0, c1, c2, . . . , cm = d in B such
that any two consecutive cells ci, ci+1 are adjacent, i = 0, 1, . . . , m − 1. Contour maps provide an
analogy. In the analog of (1) the levels may contain any number of separate contours that correspond
to the same value. In the analog of (2), contour curves for the same level that do not intersect each
other are considered distinct.

In principle, the two problems can be quite different. In practice, the main difference is that in
(1) regions of the data space widely separated from each other can combine their statistical weight
to make structures that in (2) would have a smaller value, since the components of a disconnected
block would be treated as separate smaller blocks and thus given less overall weight.
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Figures 1 and 2 exhibit these concepts for a simple example, treating California counties as data
cells and the population density as the dependent variable of interest. In the first figure the blocks,
indicated by colors, are constrained to be connected, and in the second this constraint is relaxed.
Note that in Figure 2 the block containing counties with densities in the range 12 to 32 persons
per square mile form a fragmented (purple) figure – with 5 parts under the edge-based definition
of connected, and 4 under the vertex-based one. In many applications one would consider these
fragments as effectively different blocks, for example if geographic differences were important. With
this re-interpretation of Figure 2 these two optimal partitions are rather similar.
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Figure 1. Partition of the state of California. The data cells are the counties, and
the blocks are connected sets of counties with similar population densities.
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Figure 2. Partition of the state of California.
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For most applications the unconstrained case, (1) above, seems appropriate: allow all possible
partitions into blocks, connected or not. We will exhibit an efficient dynamic programming algorithm
for finding the optimal partition in this case, as well as a branch-and-bound algorithm for case (2).

In comparing our partitioning techniques with some of the standard data clustering techniques
there are two main issues to consider. Note first that our method compares all partitions of the
data, regardless of the number of blocks. The standard techniques for clustering a set of data points
[Alpert,Kahng(1997)] into K clusters, so that the maximum cluster diameter (or the sum of the
cluster diameters) is minimized, require the number of clusters to be fixed ahead of time. It is
somewhat ironic that in similar contexts some authors have not noticed this feature of the dynamic
programming approach.

The second comparison issue has to do with computational complexity. For dimension 2 and
higher it is known that these standard problems are NP-complete [Garey,Johnson(1979)]. Our
O(N2) algorithm for finding the optimal partition of N data points into arbitrary blocks, in any
dimension, solves this exponentially complex problem by searching the solution space of all possible
partitions in a way that is exhaustive implicitly rather than explicitly. That our branch-and-bound
algorithm is implicit in this sense does not prevent the worst-case complexity from being exponential;
hence without special assumptions it is probably not practical for very large problems. We don’t
yet know if there is an efficient algorithm for finding an optimal partition into block constrained to
be connected.

Now turn to a more formal description of the problem and its solution. Let C be any con-
nected set of N cells partitioning a data space X in 
n. Let P be any partition of X into blocks
B1, B2, . . . , BM ,M ≤ N , consisting of connected unions of cells. Define P* to be the set of all such
partitions of X. Similarly, we define P** to be the set of partitions of X into arbitrary blocks (not
necessarily connected). Since the number of cells is finite the number of partitions in P* or P** is
also finite. According to the intermediate density property (see below) the problem of finding an
optimal partition of C into arbitrary blocks can be reduced to the 1-dimensional problem of finding
an optimal partition of the sorted cells C1, C2, . . . , CN (in order of monotone density) into blocks
assuming that cells Ci and Ci+1 are adjacent for i = 1, 2, . . . , N − 1; the optimal solution for this
problem can be found in O(N2) time using the 1D dynamic programming algorithm described above.
In order to apply a branch-and-bound algorithm to finding an optimal partition of P* we need to
be able to find ways of obtaining bounds on the value of a partition without actually computing
it. We are searching for the optimal partition in P*, the set of partitions of the initial cells into
connected blocks. To employ the branch-and-bound technique we expand our search to a larger class
of problems. We will search for the optimal partition P in P**, the set of partitions of the initial
set C of N cells into arbitrary blocks, using the dynamic programming algorithm described above.

Below we list the steps of our branch-and-bound algorithm for finding the optimal partition of
C in P*. The set S is a set of open subproblems that starts with a single problem, that of finding
the optimal partition of C in P**. Initially the algorithm’s running tally of the current optimum
value of the fitness function, called bestvalue, is set to negative infinity. As the algorithm progresses,
bestvalue stores the largest value of a partition in P* that has been discovered so far. The further
steps are as follows:

(1) For some problem T in S, we find the optimal partition P in P**.
(2) If the blocks of the optimal partition are connected, we say that P is a possible optimal

solution (POS). Even if the optimal partition P has disconnected blocks then the value of
P is an upper bound on the value of an optimal partition in P*, since P* is contained in
P**. This is the ”bounding” part of the branch-and-bound algorithm. If the value of P ,
g(P ), is less than or equal to bestvalue then T is removed from S since it cannot lead to
a POS with a higher value. If g(P ) is greater than bestvalue, we define bestvalue = g(P ).
Again T is removed from S and any other subproblem whose upper bound is less than or
equal to g(P ) is also removed from S. If S is empty, then bestvalue is the optimal value of
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a partition in P* and the corresponding partition is an optimal partition, so we stop. If S
is nonempty, we continue by returning to step 1 to look at another open problem in S.

(3) If P has disconnected blocks we branch about a pair of adjacent cells i and j. Usually we
let i be some cell in a disconnected block and let j be an adjacent cell outside of this block.
We consider two subproblems, T1, where cells i and j are merged (to form a single cell),
and T2, where cells i and j are separated (the adjacency between cells i and j is removed).
Note that the optimal solution of T1 will be the optimal partition in P* with i and j in
the same block. In the optimal solution of T2, cells i and j will not be merged directly. To
avoid redundancy in the branch-and-bound algorithm one should not consider any future
branches which involve merging a pair of cells that result in a cell that contains both i and
j since this possibility has already been considered when i and j were merged. We remove T
from S and add the two new problems T1 and T2. We continue by returning to step 1 to
look at another open problem in S. This is the ”branching” part of the branch-and-bound
algorithm.

Eventually every subproblem in S will end up with an associated optimal partition in P* since we
can only branch on an adjacency between two cells once and after branching on every pair of adjacent
cells we end up with a partition consisting of nonadjacent connected blocks. The corresponding
optimal partition is this partition, which is in P*. Thus the branch-and-bound algorithm terminates
when every subproblem is closed and the best POS discovered so far up to that point is now shown to
be optimal. The worst-case complexity of this algorithm is at most O(2M ), where M is the number of
adjacencies between the cells in the starting partition. In fact, if we are careful to avoid redundancy
as described in the third step above we see that this algorithm is O(2N ), where N is the number of
cells in the starting partition. Obviously if the branch-and-bound algorithm is implemented properly
we hope that the average complexity is much better than this worst-case complexity.

4. Intermediate Density Property

To implement the branch-and-bound algorithm described above efficiently, we use something
that we call the intermediate density property. This property allows the one-dimensional dynamic
programming algorithm to be used to find the optimal partition of the data into arbitrary blocks
(not necessarily connected), even when the data comes from a higher dimension. This property says
that if Pmax is an optimal partition of a collection of cells into arbitrary blocks, with cells c and d
in block B, and if e is a cell with density intermediate to the densities of cells c and d, then e must
also be in block B. The proof of the intermediate density property uses the strict convexity of the
function g that assigns a value (likelihood) to each of the blocks of a partition. If cell e is not in
block B as described above, then the convexity allows us to find a better partition, contradicting
the fact that Pmax is optimal. By the way, note that if the event density in a given application, it
may be possible to find some other surrogate of model fitness that has this property, and then the
cells can be ordered with respect to this quantity.

Definition: We say that a function g(x, y) is strictly convex on a region X if and only if for any
0 < λ < 1, and every pair of points (x1, y1), (x2, y2) in X,

(5) λg(x1, y1) + (1 − λ)g(x2, y2) ≥ g(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

with strict inequality holding unless x1 = x2 and y1 = y2.
Let C = C1, C2, . . . , CN be a set of cells partitioning the data space X, and let P represent a

partition of the cells into M blocks, B1, B2, . . . , BM . We usually assume that each cell has 1 data
point and thus the population of a block is equal to the number of cells that it contains. Suppose we
want to find the optimal partition Pmax in P** where blocks are allowed to be an arbitrary union
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of cells (not necessarily connected). We use the logarithmic form of the objective function

g(x, y) = log[f(x, y)](6)
= log[β(x − y + 1, y + 1)](7)

= log[
∫ 1

0

px−y(1 − p)ydp](8)

to compute the value of a partition P . Thus the value of P , W (P ) is
∑

g(a(B), n(B)) where the sum
is taken over all the blocks B in P . The density of block B is defined to be its population divided by
its area, d(B) = n(B)/a(B). The following result is what we call the intermediate density property.

The Intermediate Density Property: Let Pmax be a partition in P** that maximizes W . Let B
be any block in Pmax and let C1, C2, C3 be cells in C with C1 and C3 in B. If d(C1) < d(C2) < d(C3)
then C2 is also in B.

Let C = C1, C2, . . . , CN be the starting partition of the data space X in 
n into cells, sorted by
their densities so that

(9) d(C1) ≤ d(C2) ≤ · · · ≤ d(CN ).

The intermediate density property implies that for some optimal partition Pmax, every block B in
Pmax is the union of consecutive cells from C. Thus to find an optimal partition in P** we only need
sort the cells by their densities and then assuming that Ci is adjacent to Ci+1, for i = 1, 2, . . . , N −1,
we apply the 1-d dynamic programming algorithm to these cells in order to efficiently find an optimal
partition into arbitrary blocks. Since the same function g is used to assign values for a block no
matter what dimension the data comes from, then this algorithm can be applied to find the optimal
partition into arbitrary blocks regardless of the dimension of the data. If the blocks of a partition
are required to be connected then the branch-and-bound algorithm will have to be used to find the
optimal partition.

To prove the intermediate density property, we use several lemmas. First we prove (Lemma 1)
that the function g which assigns a value to each of the blocks in a partition is strictly convex, using
Holder’s inequality. Then we use several properties of a strictly convex function to complete the
proof of the intermediate density property.

Lemma 1: The function g(x, y) = log[f(x, y)] = log[β(x− y + 1, y + 1)] = log[
∫ 1

0
px−y(1− p)ydp] is

strictly convex on the region X = {(x, y)|x > 0, y > 0}.

Proof of Lemma 1: To show that g is strictly convex we need to show that for any 0 < λ < 1, and
every pair of points (x1, y1), (x2, y2) in X, λg(x1, y1) + (1 − λ)g(x2, y2) ≥ g(λx1 + (1 − λ)x2, λy1 +
(1 − λ)y2), with strict inequality holding unless x1 = x2 and y1 = y2. Note that
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g(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)(10)
= log(f(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2))(11)

= log(
∫ 1

0

pλ(x1−y1)+(1−λ)(x2−y2)(1 − p)λy1+(1−λ)y2dp)(12)

= log(
∫ 1

0

[pλ(x1−y1)(1 − p)λy1 ][p(1−λ)(x2−y2)(1 − p)(1−λ)y2 ]dp)(13)

= log(
∫ 1

0

[p(x1−y1)(1 − p)y1 ]λ[p(x2−y2)(1 − p)y2 ]1−λdp)(14)

≤ log([
∫ 1

0

px1−y1(1 − p)y1dp]λ[
∫ 1

0

px2−y2(1 − p)y2dp]1−λ)(15)

= λlog(f(x1, y1)) + (1 − λ)log(f(x2, y2))(16)
= λg(x1, y1) + (1 − λ)g(x2, y2).(17)

The inequality in Lemma 1 follows from Holder’s Inequality.

Holder’s Inequality: For any nonnegative functions A(x), B(x) and real numbers p, q such that
for some 0 < λ < 1, p = 1/λ and q = 1/(1 − λ) (equivalently 1/p + 1/q = 1), we have the following
inequality:

(18)
∫ 1

0

A(x)B(x)dx ≤ [
∫ 1

0

A(x)pdx]λ[
∫ 1

0

B(x)qdx]1−λ,

with equality holding if and only if A(x)p/B(x)q is constant almost everywhere on [0, 1].
To prove the inequality in Lemma 1 note that if A(x) = F (x)λ and B(x) = G(x)1−λ, then

∫ 1

0

F (x)λG(x)1−λdx(19)

≤ [
∫ 1

0

[F (x)λ]pdx]λ · [
∫ 1

0

[G(x)1−λ]qdx]1−λ(20)

= [
∫ 1

0

F (x)dx]λ · [
∫ 1

0

G(x)dx]1−λ,(21)

with equality holding if and only if F (x)/G(x) is constant almost everywhere on [0, 1].

Lemma 2: For any positive reals m,n1, n2, the function h(x) = g(x, n1) + g(m − x, n2) is strictly
convex on I = (n1,m − n2 + 1).

Proof of Lemma 2: First we note that g(x, n1) and g(m − x, n2) are both strictly convex by
Lemma 1. It is easy to show that the sum of two strictly convex functions is strictly convex.

Lemma 3: If h(x) is a strictly convex function on (a, b) ⊆ 
, and δ1, δ2 are positive real numbers
such that {x − δ1, x + δ2} ⊆ (a, b), then either h(x − δ1) > h(x) or h(x + δ2) > h(x).

Proof of Lemma 3: Assume h(x − δ1) ≤ h(x). Since h is strictly convex,

(22) h(x) < [δ2/(δ1 + δ2)]h(x − δ1) + [(1 − (δ2/(δ1 + δ2))]h(x + δ2).

Multiplying both sides of this inequality by δ1 + δ2 we get

(23) δ1h(x) + δ2h(x) < δ2h(x − δ1) + δ1h(x + δ2).
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Then since h(x− δ1) ≤ h(x), it must be that h(x + δ2) > h(x). By similar reasoning, if h(x + δ2) ≤
h(x), then h(x − δ1) > h(x).

Proof of the Intermediate Density Property: Let Pmax be a partition of C that maximizes
W . Let blocks B1 and B2 be any pair of different blocks in P , and let C1, C2, C3 be cells in C, with
{C1, C3} ⊆ B1 and d(C1) < d(C2) < d(C3). Assume for contradiction that C2 is in B2. If each
cell contains a single data point then a(C3) < a(C2) < a(C1). Thus δ1 = a(C2) − a(C3) > 0 and
δ2 = a(C1) − a(C2) > 0. We now consider two new partitions P1 and P2 created by swapping cell
C2 for each of C1, C3 in B1. Let

(24) P1 = (P − {B1, B2}) ∪ {B′

1, B
′

2}

and

(25) P2 = (P − {B1, B2}) ∪ {B′′

1 , B′′

2 }

where

(26) B′

1 = (B1 − {C3}) ∪ {C2},

(27) B′

2 = (B2 − {C2}) ∪ {C3},

(28) B′′

1 = (B1 − {C1}) ∪ {C2},

(29) B′′

2 = (B2 − {C2}) ∪ {C1}.

Let P ′ be the partition Pmax−{B1, B2}. The value of partition Pmax in terms of h(x) = g(x, n(B1))+
g(a(B1) + a(B2) − x, n(B2)) is

W (Pmax) =
∑

B∈Pmax

g(a(B), n(B))(30)

= g(a(B1), n(B1)) + g(a(B2), n(B2)) +
∑

B∈P ′

g(a(B), n(B))(31)

= h(a(B1)) + W (P ′).(32)

Similarly W (P1) = h(a(B1) − δ1) + W (P ′) and W (P2) = h(a(B1) + δ2) + W (P ′). By Lemma 2,
h(x) is convex and by Lemma 3, either h(a(B1) − δ1) > h(a(B1)) or h(a(B1) + δ2) > h(a(B1)).
Thus either W (P2) > W (Pmax) or W (P1) > W (Pmax) contradicting the fact that Pmax maximizes
W . Therefore C2 is not in B2 and since B2 is an arbitrary block different from B1, it must be that
C2 ∈ B1.

In [Scargle(1998)] we also have the following global likelihood for data that is prebinned into
evenly spaced intervals (with constant rate per bin equal to Λ),

(33)
∫

∞

0

ΛNe(−M+1)ΛdΛ = Γ(N + 1)/(M + 1)N+1

for a block of N data points in M bins. For prebinned data, the data cells in the starting partition
are taken to be the bins which can start with any number of data points. As before the likelihood
of a partition is assumed to be the product of the likelihoods of its blocks and taking the logarithm
we get a function that satisfies the additive property.

Also in [Scargle(1998)] we have a similar likelihood function for time to spill (TTS) data on an
interval. Assuming only every Sth photon is recorded and that τ1, τ2, . . . , τn−1 are the lengths of
the data cells (intervals between spill events) then the likelihood that the intensity is constant over
a block is
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(34) [(
N−1∏
n=1

τn)S−1/Γ(S)N−1] · [Γ(S(N − 1) + 1)/(M + 1)S(N−1)+1]

where M =
∑N−1

n=1 τn is the length of this block and S(N − 1) is equal to the number of data points
in this block. The likelihood for a partition of data cells into blocks is thus a constant (depends
only on S and N and not on the partition), multiplied by a function that is equal to the likelihood
function for the binned data.

Note that the proof of the intermediate density property given here requires that the number
of data points in each cell is 1. A similar, though slightly more complicated, proof shows that the
intermediate density property is still true for an arbitrary starting partition (cells can have any
number of data points). A proof quite similar to that in Lemma 1 shows that the likelihood function
for binned data is strongly convex as well and since the likelihood function for binned data is strongly
convex we see that the likelihood function for TTS data is also strongly convex. We deduce that
the intermediate density property holds for both binned data and TTS data. Thus the algorithms
described in this paper can be used to find the optimal partitions for data in equal-spaced bins and
for TTS data as well.

Another extension of the intermediate density property shows that if two cells of the starting
partition are equal in density, then they are in the same block of the optimal partition. Unfortunately
we haven’t yet been able to use either of these extensions of the intermediate density property to
speed up any of the algorithms described in this paper. The complexity of the branch-and-bound
algorithm we described earlier, for finding the optimal partition of a set of data points into connected
blocks, is exponential. We suspect that this problem is NP-complete in dimension 2 and higher, but
we have not yet been able to prove it.

We conclude with another example, in this case of optimal partitioning in 3D. Figure 3 is
based on 3D positions of 146,000 galaxies in the redshift sample of the Sloan Digital Sky Sur-
vey [York et al.(2000)], currently the largest survey with over 1 million redshifts measured thus far.
Voronoi cells were computed and the optimal partition into constant-density blocks was obtained
with the algorithm described above, using a maximum likelihood fitness function for the blocks. The
figures shows only a few of the highest density blocks, so that it is easier to see the so-called skeleton
of the cosmic web.

5. Future Work

The O(N2) 1D dynamic programming algorithm described in [?]Jackson, and which forms the
basis of our approach to higher dimensional prolems, is usable if significant computation power is
available for problems with N approaching 1, 000, 000. However it would be useful to construct say
a N log N implementation. We are pursuing ideas related to the empirical result that currently
arriving information does not much, or at all, affect changepoints earlier found earlier in the data
stream. This suggests that some sort of sliding-window approach to the analysis will work and be
much faster. There would be considerable use for a scheme to optimally partition data on a circle,
or a sphere, or other topologies. It would also be of some interest to elucidate the general conditions
under which the intermediate density properties holds for more general classes of fitness functions
than those considered here.
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Figure 3. Partition of the Universe. Only the highest density blocks are shown,
in order to reveal the connectivity of the extremely varied structural features.
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DISTRIBUTED ANOMALY DETECTION USING SATELLITE DATA FROM

MULTIPLE MODALITIES

KANISHKA BHADURI*, KAMALIKA DAS**, AND PETR VOTAVA***

Abstract. There has been a tremendous increase in the volume of Earth Science data over the

last decade from modern satellites, in-situ sensors and different climate models. All these datasets

need to be co-analyzed for finding interesting patterns or for searching for extremes or outliers.

Information extraction from such rich data sources using advanced data mining methodologies is

a challenging task not only due to the massive volume of data, but also because these datasets

ate physically stored at different geographical locations. Moving these petabytes of data over the

network to a single location may waste a lot of bandwidth, and can take days to finish. To solve this

problem, in this paper, we present a novel algorithm which can identify outliers in the global data

without moving all the data to one location. The algorithm is highly accurate (close to 99%) and

requires centralizing less than 5% of the entire dataset. We demonstrate the performance of the

algorithm using data obtained from the NASA MODerate-resolution Imaging Spectroradiometer

(MODIS) satellite images.

1. Introduction

The interest in Earth sciences has been growing steadily over the last two decades and together
with it there has been a tremendous increase in the volume of Earth science data collected and
generated by growing number of satellites, in-situ sensors and increasingly complex ecosystem and
climate models. This growth in volume and complexity is going to continue because in order for
the scientists to better understand and predict the Earth system processes, they will require far
more comprehensive data sets spanning many years and more complex models. With the launch of
NASA’s Terra and Aqua missions, and the expected launches of number of missions recommended
by the Decadal Survey, the need for more efficient and scalable data processing system is crucial.
The volume of data itself is often a limiting factor in obtaining the information needed by the
scientists and decision makers. This data volume will grow from hundreds of terabytes to tens of
petabytes throughout the lifespan of the proposed Decadal Survey missions. More data means more
information, only if there are sophisticated means of sifting through the data for extracting the
relevant information from this data avalanche.

A very interesting task relevant to the Earth science community is identification of anomalies
within the ecosystems (e.g. wildfires, droughts, floods, insect/pest damage, wind damage, logging),
so that experts can then focus their analysis efforts on the identified areas. There are dozens of
variables that define the health of the ecosystem and both long-term and short-term changes in
these variables can serve as early indicators of natural disasters and shifts in climate and ecosystem
health. These changes can have profound socio-economic impacts and it is important to develop
capabilities for identification, analysis and response to these changes in a timely manner. In order
to fully understand the Earth systems, scientists need to be able to analyze together a number of
datasets from satellites, ground sensors and models. Every data component has a different obser-
vation or predictive capability and therefore a global analysis on a combination of modalities gives
better results than studying a particular feature. For example, observing different but related phe-
nomena, predicting climate impacts at different timesteps, or providing observations of the same
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phenomena through different means, such as ground sensor or a radar are expected to enable better
comprehension and more accurate characterization of changes and disturbances in Earth systems.

The situation is greatly complicated by the fact most of the data representing different modalities
are stored at geographically distributed archives, such as NASA’s Distributed Active Archive Centers
(DAAC), each containing data specific to only a subset of the scientific community and thus it
is almost impossible to perform a globally consistent analysis. Given this scenario, the current
approach would be for the scientist to look at only a subset of the dataset available at one site (and
thereby compromise on the quality of the results) or to bring all the data together in one place
and then perform the analysis. While the second approach works for lower data volumes, it is not
feasible to centralize all the data when it grows beyond what can be gathered using current network
infrastructure in a timely manner. Another reason why complete centralization is not possible is
because the research is done in number of different science teams and organizations in different
countries. While there is a trend to consolidate more data at fewer data centers, the capabilities
to extract vital information from large distributed datasets will continue to be a key for the Earth
science community to be able to gather significant results by analyzing the growing data volumes
being accumulated world wide.

In this paper we describe a novel and efficient algorithm for anomaly detection in distributed
earth science databases. The contributions of this work, based on the state of the art in distributed
anomaly detection, can be enumerated as:

• To the best of the authors’ knowledge, this is the first algorithm that can scale to terabytes
of data when the data is distributed across several sites, with only a subset of features at
each site. In the distributed data mining literature this is known as the vertically partitioned
scenario.

• For the proposed algorithm, the amount of communication required is less than 1% of that
required for centralization, yet is 99% accurate compared to a centralized algorithm in finding
the outliers. The accuracy is a function of the data percentage communicated and can be
tuned based on the performance requirements and resources available to the users.

• The algorithm is capable of detecting significant outliers which are missed by using only a
subset of features, available at a single location.

The rest of the paper is organized as follows. In the next section (Section 2) we present the work
related tho this area of research. We discuss the notations and the one class SVM formulation in
Section 3. In Section 4 we present details about the proposed algorithm. We discuss the theoretical
analysis of the algorithm in Section 5. Performance of the algorithm on NASA satellite data is
presented in Section 6. Finally we conclude the paper in Section 7.

2. Related work

Outlier or anomaly detection refers to the task of identifying abnormal or inconsistent patterns
from a dataset. While outliers may seem as undesirable entities in a dataset, identifying them
have many potential applications such as in fraud and intrusion detection, financial market anal-
ysis, medical research and safety-critical vehicle health management. Broadly speaking, outliers
can be detected using supervised, semi-supervised or unsupervised techniques [11][8]. Unsupervised
techniques, as the name suggests, do not require labeled instances for detecting outliers. In this
category, the most popular methods are distance-based and density based techniques. The basic
idea of these techniques is that outliers are points in low density regions or those which are far from
other points. In their seminal work, Knorr et al. [13] proposed a distance-based outlier detection
technique based on the idea of nearest neighbors. The naive solution has a quadratic time com-
plexity since every data point needs to be compared to every other to find the nearest neighbors.
To overcome this, researchers have proposed several techniques such as the work by Angiulli and
Pizzuti [1], Ramaswamy et al. [15], and Bay and Schwabacher [3]. Density-based outlier detection
schemes, on the other hand, flag a point as an outlier if the point is in a low density region. Using
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the ratio of training and test data densities as an outlier score, Hido et al. [10] propose a new
inlier-based outlier detection technique. Supervised techniques require labeled instances of both
normal and abnormal operation data for first building a model (e.g. a classifier) and then testing
if an unknown data point is a normal one or an outlier. The model can be probabilistic based on
Bayesian inferencing [9] or deterministic such as decision trees, support vector machines and neural
networks [12]. Semi-supervised techniques only require labeled instances of normal data. Therefore,
they are more widely applicable than the fully supervised ones. These techniques build models of
normal data and then flag as outliers all those points which do not fit the model.

There exists a plethora of work on outlier detection from spatio-temporal databases. Barua and
Alhajj [2] present a technique for outlier detection from meteorological data using a parallel imple-
mentation of the well-known wavelet transformation. The authors show that by implementing the
algorithm on modern high performance multi-core processors, they achieve both improved speedup
and accuracy. Birant and Kut [5] discuss a way of identifying both spatial and temporal outliers in
large databases. They argue that existing methods do not identify both these outliers, and hence
they propose a new DBSCAN clustering method to first cluster the dataset based on the density of
points and then tags as outliers all points which have low density in its neighborhood. Now depend-
ing upon the type of outlier detected, either spatial or temporal neighborhood is considered. Both
these methods consider outliers as single points. In practice, there may be a group of points which
are outliers e.g. a tornado or other natural disaster affecting a large area. Zhao et al. [20] present an
outlier detection method based on wavelet transformation which can detect region outliers. In their
approach, they first transform the image to the wavelet domain and then isolate those coefficients
which are greater than a threshold. Inverse wavelet transformation on this thresholded pixels are
then candidates for outliers which are further filtered by running an outlier detection method. Land
cover change detection has been studied by Boriah et al. [6] and Potter et al. [14]. In [6], the
authors have proposed a recursive merging algorithm for change point detection. In their approach,
the data is stored as a matrix of N locations and 12 months. Two most similar consecutive annual
cycles are merged, and the distance is stored. This is applied recursively until only one annual
cycle is left remaining. The change score for any location is based on whether any of the observed
distances are extreme. They show how the method detects new golf courses, shopping centers and
other land cover changes. For more details on the recent work on change detection for land cover
data, readers are referred to [6] and the references therein. Several other techniques also exist for
building classification and prediction models for mining geospatial data such as [18].

Although there is this huge body of literature on anomaly detection techniques for Earth Science
data, many domain experts still continue to use primitive statistical measures such as points outside
μ± 3σ of a Gaussian distribution as measures for identifying potential outliers from the huge Earth
Sciences datasets. One of the reasons for this is the fact that most of the outlier detection techniques
fail to scale to the order of terabytes or petabytes which is the order of the Earth Science data sets
currently. Also, none of these techniques can handle the data when it is vertically partitioned
across a large number of sites. Although techniques exist for horizontally partitioned scenario (e.g.
[7]), extending them to vertically partitioned scenario is not obvious. Our proposed algorithm can
perform anomaly detection without centralizing all the data to one location and thus, can handle
massive datasets.

3. Background

In this section we first define the notations and then discuss ν 1-class SVM (where ν is a user
chosen parameter) which forms a building block for our distributed anomaly detection technique.

3.1. Notations. Let P0, ..., Pp be a set of computation nodes where P0 is designated as the master
node and the others are denoted as the computational nodes. Let the dataset at node Pi (∀i > 0)

be denoted by Di =

[
−→

x
(i)
1 . . .

−→

x
(i)
m

]T
consisting of m rows where

−→

x
(i)
j ∈ R

ni . Here each row
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corresponds to an observation and each column corresponds to a feature/attribute/sensor measure-
ment. It should be noted here that there should be a one-to-one mapping between the rows across
the different nodes. That kind of correspondence, if not available for the raw measured data, can
be established using standard cross matching techniques for data preprocessing that exist in the
literature e.g. the Sloan Digital Sky Survey1. In the distributed data mining literature, this is
referred to as the vertically partitioned data distribution scenario. The global set of features (n) is
the vertical concatenation of all the features over all nodes and is defined as n = [n1 n2 . . . np]
(using Matlab notation). Hence, the global data D is the m× n matrix defined as the union of all
data over all nodes i.e. D = [−→x1 . . . −→xm]T with −→xj ∈ R

n. Note that, here we make the implicit
assumption that the �-th row of all the sites corresponds to the �-th observation i.e. the observations
have been cross-matched.

Let Oi denote the set of local outliers at node Pi, detected by an outlier detection algorithm
running on Di such that |Oi| < |Di|. We give a precise definition of outlier and an algorithm
to detect those in the next section. The global set of outliers found by a centralized algorithm
having access to all the data is denoted analogously by the set Oc. The set of outliers found by the
distributed algorithm is denoted by Od.

3.2. One class ν-SVM. Given a training dataset containing two classes of examples, one class
SVMs, introduced by Schölkopf et al. [16], is a supervised learning method for drawing a separating
hyperplane that separates these two classes. In our discussion, we will refer to positively labeled data
points as normal and negatively label data points as outliers. Instead of using both types of examples
from the training data for constructing the hyperplane, one class SVM uses only instances with
positive labels to do the same. It also uses a parameter ν which denotes the maximum allowance of
outliers in the training data. During the training phase, the SVM algorithm optimizes the placement
of the hyperplane in order to maximize the margin between the hyperplane and the origin, which is
the lone representative of the second class with negative label.

In many cases, the decision boundary is non-linear in the input space and the trick is to transform
the input data to a higher dimension space; the latter allowing for linear separability. This mapping
is often made implicit using a kernel function k : Rd

×R
d
→ R (d is the dimension of the data) which

actually computes the inner product between the input vectors in this (possibly) infinite dimensional
space. Throughout this paper, we have used Radial Basis Function (RBF) kernel:

k(−→xi ,
−→xj) = exp

(
−‖

−→xi −
−→xj‖

2

2σ2

)
(1)

where ‖·‖ denotes the Euclidean norm and σ defines the kernel width. σ is often needs to be tuned
for a particular dataset.

Schölkopf [16] showed that in the high dimensional feature space it is possible to construct an
optimal hyperplane by maximizing the margin between the origin and the hyperplane in the feature
space by solving the following optimization problem,

minimize Q =
1

2

∑
i,j

αiαjk(
−→xi ,

−→xj) + ρ

(
νm−

∑
i

αi

)

subject to 0 ≤ αi ≤ 1, ν ∈ [0, 1](2)

where αi’s are Lagrangian multipliers, ν is a user specified parameter that defines the upper bound
on the fraction of the training error and also the lower bound on the fraction of support vectors,
and ρ is the offset of the hyperplane from the origin. The optimal solution returns a set of points
SV from the training set known as the support vectors for which the 0 ≤ αi ≤ 1 and also the value
of the bias term ρ. Now, for any test point −→xt , not in the training set, the optimal decision is based

1http://cas.sdss.org/astrodr6/en/tools/crossid/upload.asp
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on the following inner product computation:

f(−→xt) =
∑
i∈SV

αik(
−→xi ,

−→xj)− ρ(3)

The point −→xt is an outlier if f(−→xt) < 0.

3.3. Overview of algorithm. The distributed outlier detection algorithm that we have developed
achieves two things. First, it finds the correct set of outliers compared to a centralized execution,
i.e. it finds the same set of outliers as it would if all of the data were to be centralized and the
algorithm applied on it. Secondly, it tries to reduce the communication cost of centralization. Both
are achieved by using a prune rule which states that a multi-dimensional point is an outlier, if at
least one of the dimensions is an outlier. This reduces the communication cost dramatically since,
from each site, we only need to test those points which are local outliers. The steps of the algorithm
are as follows:

(1) Run an anomaly detection algorithm at each of the local sites on only the features present
at that site.

(2) Centralize all the local outliers at the master site.
(3) Collect a small sample from all the sites to build a global outlier detection model.
(4) Test all the local outliers from all the local sites against the global outlier detection model.

Figure 1 shows the proposed distributed architecture. We elaborate on each of these steps in the
next section.

.

.
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.
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.

.
.
.

x
(1)
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x
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n2 npn1
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(2)
2
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(2)
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(p)
1

x
(p)
2

x
(p)
m

O1

Global outliers Od

Op

Figure 1. This figure shows the proposed distributed architecture. P0 is the master
site and the other sites are the computation sites. Local outliers Oi are sent to P0,
which are then output the final outliers Od.
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4. Algorithm details

4.1. Pruning rule. As stated earlier, the goal of distributed outlier detection is two-fold: (1)
compute the correct set of outliers (with respect to a centralized execution) and (2) minimize the
cost of communicating the data to a central node for computation. Distributed algorithms often
define rules based on the data to minimize communication while guaranteeing that the global task
is accomplished [4][19][17]. These data dependent rules are such that, if satisfied by all nodes
independently, then certain global properties of the dataset hold. As a result, each node can stop
communicating messages as soon as the pruning rule is satisfied for that node.

In this paper we use the following observation to prune the number of messages that need to be
sent to the master site for determining the global set of outliers:

Pruning rule: An observation −→x ∈ D is a global outlier (with respect to all the features) i.e.
−→x ∈ Od, if it is an outlier with respect to at least one (or a subset) of the features i.e. ∃j ∈

{1 . . . p}, x(j)
∈ Oj.

While this statement may not be true in general, it provides us with a way of pruning the number
of observations that needs to be sent to the central site. In our experiments with the NASA Earth
Sciences climate data, we have found that this simple pruning strategy can detect more than 99%
of the outliers that a centralized execution would find with less than 1% of the communication cost
required for centralization. Figure 2 points out the intuition behind the rule for the 2 dimensional
case. In this figure, the green dots represent the normal points while a single red dot represents the
anomalous point. As seen, the red dot is quite far from the green dots. We argue that in order for
this to happen, the distance along at least one of the axes will be large. In other words, most of
the global outliers will be a local outlier in at least one of the distributed sites. We validate this
statement in our experiments using the NASA Earth sciences datasets.

x

y

Figure 2. This figure shows the basic idea of the pruning rule in 2-d. In this
figure, the green dots represent the normal points while a single red dot represents
the anomalous point. As seen, the red dot is far away from the green dots. The
true distance between the red dot and the closest green dot is show by a bold arrow.
The distance along the axes are shown using dotted lines. The observation is that
for any true outlier, far away from any of the normal points, the distance along the
axes will also be higher. Hence we can only analyze the local outliers from each
site.
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4.2. Detailed description. The overall distributed anomaly detection algorithm consists of two
stages. The pseudo code for the first step is shown in Alg. 1. In this step, each node computes the
local outliers independently. The input to this local step are the dataset at each node Di, the size
of training set Ts, a seed s of the random number generator, and the parameter ν. The algorithm
first sets the seed of the random number generator to s. Then it selects a sample of size Ts from Di

and uses it as the training set (Ti). The rest is used for the testing phase Hi. It then builds an SVM
model Mi using Ti and ν. Once the model has been built, all points in Hi are tested using the set
of support vectors defined by Mi. All those elements in Hi whose test score is negative is returned
as the set of outliers Oi.

In the second phase (Alg. 2), the local outliers are aggregated to the master site P0. A sample of
size Ts is drawn from each of the local sites Di such that the same index (observation) is selected
from each node. A global SVM model is then learned on this aggregated sample from all the sites.
Each element of

⋃p

i=1 Oi is tested against this global model to assign a score. All those elements in⋃p

i=1 Oi whose score is less than 0 is then reported as the true set of outliers Od by the distributed
algorithm.

Algorithm 1: Local outlier detection at each node Pi, i > 0

Input: Dataset(Di), Training sample size(Ts), ν, seed s

Output: Outlier set Oi

begin
setseed(s);
Ti = Sample(Di, Ts); // Training data

Hi ← Di \ Ti; // Test data

Mi ← SVMTraining(Ti, ν);
S ← SVMTest(Mi,Hi); // Assign a score to each point in Hi

for j=1 to |Hi| do
if S(j) < 0 then

Oi(j) ← [Hi(j) S(j)];
end
Send Oi to P0;

end
end

Algorithm 2: Global outlier detection at P0

Input: O1, . . . , Op, Training sample size(Ts), ν
Output: Outlier set Od

begin
T = Sample(

⋃p

i=1
Di, Ts); // Training data sampled from all sites

H ←
⋃p

i=1
Oi; // Test data

M ← SVMTraining(T, ν);
S ← SVMTest(M,H); // Assign a score to each point in H

for j=1 to |H | do
if S(j) < 0 then

Od(j) ← [H(j) S(j)];
end

end
end

5. Algorithm analysis

In this section we provide performance analysis of the distributed algorithm.

115

2010 Conference on Intelligent Data Understanding



5.1. Correctness. Correctness of our proposed distributed anomaly detection algorithm is based
on the prune rule. A globally correct prune rule guarantees global correctness. Figure 3 shows
a scenario of the algorithm execution in 2-dimension. The red and the green dots depict the two
classes in the dataset. Hyper-plane A is constructed when both dimension x and y are considered.
On the other hand, hyper planes B and C are constructed when only the y and x coordinates are
considered separately. Recall that all points that are closer to the origin are denoted as outliers.
The sets of outliers that are detected by each of these hyperplanes are not identical. However, the
outliers that are closest to the origin (and hence most anomalous points) are detected by all these
hyper planes. The missing ones are the boundary outliers, and hence they may offer less value when
detected as anomalous points.

A

C

B

y

x

Figure 3. This figure shows the different hyper planes drawn by the algorithm
when using all the variables (A), only y-dimension values (B) and only x-dimension
values (C). Note that different anomalies are found using the different hyper-planes.

5.2. Message complexity. The total number of bytes necessary to centralize all of the data at a
single location and run the centralized outlier detection algorithm is:

m× n1 +m× n2 + · · ·+m× np = m×

p∑
i=1

ni

For the distributed algorithm, we perform two rounds of communication. First, we centralize the
outliers from all the sites and then we gather a sample of size Ts from all of them to build a global
model and test the outliers found by each of the local sites. The total number of messages is given
by,

|O1| × n1 + |O2| × n2 + · · ·+ |Op| × np︸ ︷︷ ︸
centralizing outliers

+Ts × n1 + · · ·+ Ts × np︸ ︷︷ ︸
centralizing samples

=

p∑
i=1

|Oi| × ni + Ts

p∑
i=1

ni

Now since m �

∑p

i=1 |Oi|+ Ts, the distributed algorithm is far more communication efficient than
its centralized counterpart. We demonstrate this empirically in Section 6.
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Band Spectral wavelength (nm)

1 620 - 670
2 841 - 876
3 459 - 479
4 545 - 565
5 1230 - 1250
6 1628 - 1652
7 2105 - 2155

Table 1. Spectral band frequencies for MODIS data acquisition.

5.3. Running time. The running time for the traditional ν-SVM algorithm can be written as

O
(
m2

∑p

i=1 ni

)
or O

(
m (

∑p

i=1 ni)
2
)
, depending on the solution to the primal or the dual problem.

In either of these two cases, distributed computing can reduce the running time by splitting ni

across several nodes. Therefore, the load at one node can be reduced from O
(
m2

∑p

i=1 ni

)
or

O
(
m (

∑p

i=1 ni)
2
)

to O(m2ni) or O(mn2
i ) respectively. This formulation can provide significant

savings in terms of computational complexity at each node. We demonstrate this in the experimental
section.

6. Experimental evaluation

This section demonstrates the performance of the proposed algorithm on the California climate
dataset.

6.1. Dataset description. . The dataset used in paper is the MODerate-resolution Imaging Spec-
troradiometer (MODIS) Reflectance product MCD43A4 (version 5) which provides 500-meter re-
flectance data adjusted using a bidirectional reflectance distribution function (BRDF). The data is
collected at intervals of every 8 days as an image file of size 1203 × 738 where each entry is saved
as little-endian 32-bit float value. Each image is saved in 7 separate bands at different wavelengths.
Along with the actual reflectance data for each pixel, we also have the latitude and longitude in-
formation for them. At the top level, the data is organized by year from 2001 to 2008. Under this
top level directory structure are separate files for each band (1 - 7) and each 8-day period of the
particular year. Within the period the best observations were selected for each location. Each of
the files represent a 2D dataset with the naming conventions as follows:

MCD43A4.CA1KM.005. < Y Y Y Y DDD > . < BAND > .flt32

where < Y Y Y Y DDD > is the beginning year-day of the period and < BAND > represents the
observations in particular (spectral) band (band 1 - band 7). The indexing is 0-based, ranging from
0 - 6 (where 0 = band 1, and 6 = band 7). The spectral band frequencies for the MODIS acquisition
are as follows (see Table 1):

6.2. Dataset preparation. In order to apply our anomaly detection method, we have performed
the following preprocessing steps:

• We remove all the pixels which have a fill value of -999.
• For each band and each image (per day) we first convert the 2-D matrix of pixels into a
1-D representation (as a simple vector) and then append these vectors over all the days and
years to create a (very) long vector of intensities for this band. Combining for all the bands,
we get the size of this matrix as 12, 613, 391× 7.

• Along with this, we have also created a latitude and longitude matrix (each of size 12, 613, 391×
2) for each element in the data matrix.

Figure 4 shows the dataset and the final output of the preprocessing step.
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Figure 4. This figure shows how the data set is structured. Each file is an image
of size 1203× 738. There are seven bands (separate images) for each of the 46 days
per year (over 8 years), since data is saved every 8th day. The data contains of
both the intensity and the latitude and longitudes for each location. First we take
each (2-D) image containing the intensities as the pixels and convert it to a (1-D)
vector. Then we append these vectors, thereby creating a very long vector. We do
this separately for each of the bands, and concatenate them side by side (see figure
for details).

6.3. Measurement metric. In all of our experiments we measured these quantities: (1) the per-
centage of correct detection or detection rate, (2) the running time, and (3) the number of outliers
detected. By percentage of correct detection we mean the number of common outliers which are
found both by our distributed algorithm and a centralized algorithm having access to all of the
data but using the same sample size Ts for training as the distributed algorithm. When comparing
running time, we plot the running time of our method and the centralized algorithm running on all
the features. Note that, for our distributed algorithm since each site can run in parallel, we report
the average running time over all the sites. Finally we report the total number of outliers detected
by our distributed algorithm, the centralized algorithm, and the unique outliers detected by the
distributed algorithm only.

6.4. Performance evaluation. In this section we discuss the performance of the distributed algo-
rithm on the California MODIS dataset. The first figure (Figure 5) shows how the detection rate
(both mean and standard deviation) varies as the size of the training sample (Ts) is varied. The
results are an average of 10 trials. We have varied Ts from 10,000 (0.79% of the entire dataset)
to 1,000,000 (7.92% of the entire dataset). For a uniformly selected training set of size 10,000,
the percentage of correct detection is 98.33. It remains almost a constant for different sizes of the
training set. For 1 million test points, the correct detection rate is close to 99.79%. This shows
that our algorithm is extremely accurate and returns the true set of outliers over a different sample
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sizes. Note that in this context, true set of outliers refers to the outliers found by the centralized
algorithm.
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Figure 5. Variation of the percentage of correct detection with the size of the
training set as the latter is varied from 10,000 points (0.79% of the entire dataset)
to 1,000,000 points (7.92% of the entire dataset). The samples are selected at
random from the entire dataset. Percentage of correct detection means the number
of anomalies detected by the distributed method compared to a centralized SVM
algorithm using the entire dataset. As evident, the detection rate increases as the
sample size increases.

The next experiment demonstrates the gain of our algorithm with respect to running time. As
shown in Figure 6, the running time of our algorithm diverges from the centralized algorithm as
Ts is increased. For smaller Ts, the running time is comparable to the centralized algorithm. As
Ts increases, our algorithm starts performing better. This is intuitive since with increasing size of
training sample, more computation is needed and thus the running time of the centralized algorithm
increases sharply. On the other hand, the distributed algorithm exhibits a slower growth in running
time since the total processing load is distributed across all the processors. As shown in Section 5.3,
the distributed algorithm exhibits super linear complexity at each node which neatly concurs with
the graph in Figure 6.

0.1 1 2 5 10
x 105

200

400

600

800

1000

1200

1400

Size of training set

R
un

ni
ng

 ti
m

e 
(s

ec
s)

Distributed algorithm
Centralized algorithm

Figure 6. Variation of running time with the size of the training set. The samples
are selected at random from the entire dataset. Both the running times of our algo-
rithm and the centralized algorithm are shown. Clearly, the distributed algorithm
outperforms the centralized one as the sample size increases.

Message complexity of the algorithm is demonstrated in Figure 7. The x-axis shows the number
of samples used for the training and the y-axis refers to the ratio of the bytes transferred by the
distributed algorithm to that of the centralized algorithm, expressed in percentage. Note that a
value of y = 100 means that the distributed algorithm does not provide any communication savings.
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Sample size No of distributed outliers No of centralized outliers Average no of unique outliers

10,000 14747 15473 7179
50,000 15382 15473 7284
100,000 13068 13090 6176
200,000 12940 12964 5986
500,000 11033 11046 5090
1,000,000 11221 11197 5233

Table 2. Number of outliers detected by the distributed algorithm and the cen-
tralized algorithm. The last column shows the unique outliers detected by the
distributed algorithm and not detected at any of the local sites (using that feature
only).

For all the cases, the percentage message complexity varies between 0.134 and 7.934. This shows
that the proposed algorithm is highly communication efficient.
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Figure 7. Variation of the percentage of bytes communicated with the size of the
training set. The samples are selected at random from the entire dataset. The y-
axis refers to the ratio of the bytes transferred by the distributed to the centralized
algorithm, expressed in percentage. As depicted, the maximum percentage of bytes
transferred is close to 8%, demonstrating the excellent scalability of the proposed
algorithm.

Our final experiment shows the number of outliers detected by our algorithm and the centralized
version. Table 2 shows the outliers detected by the various methods. The first column shows the
number of outliers detected by the distributed algorithm. The second figure shows the number of
outliers detected by the centralized algorithm having access to all the data and using a sample size
equal to that of the distributed algorithm. The last column refers to the average number of outliers
found by the distributed algorithm and not by any of the sites individually. For each site, we first
compute Oi. Then we find the distributed outliers Od. For each site, then we compute {Od \ Oi}.
We take the average over all the sets in order to report the average number of unique outliers.

Figure 8 shows the top 50 outliers for training set size of 100,000. Figure 9 shows the top 50
outliers detected by the distributed algorithm but not detected by the feature at site 1 (i.e. Band1)
only. Note that the set of outliers in Figure 8 and 9 are different. This is because the top 50 outliers
absent in site 1 may be actually ranked lower than the top 50 outliers detected in Figure 8.

The outliers in Figure 8 can be an outcome of any of the following underlying phenomenon such as
change in vegetation due to fire, algorithmic problems with atmospheric corrections, clouded data,
bad sensor or pixels corrupted during transmission. This is the general problem with Earth Science
- the complexity of the system itself makes it extremely difficult to find the root cause for anomalies.
Sometimes it may be due to a simple change in vegetation due to fire, but sometimes it may be
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caused by other changes hundreds or thousands of miles away. As a next step, we plan to do a
correlation analysis of these outliers on the global dataset to validate their occurrence.

Figure 8. Top 50 outliers detected by the distributed algorithm for Ts = 100,000.

7. Conclusion

In this paper we have presented a distributed algorithm capable of detecting outliers from dis-
tributed data where each site has a subset of the global set of features. To the best of the authors’
knowledge, this algorithm is the first which does anomaly detection from vertically partitioned data
in a communication efficient manner. Our pruning rule allows us to achieve high accuracy and low
communication cost, a must for processing terabytes of data. We have provided a comprehensive
theoretical analysis of the algorithm to show its gains. Experimental evaluation is conducted with
the NASA MODIS satellite image dataset. The results show that the algorithm is approximately
99% accurate with only 1% of the communication needed for centralizing all the data.
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Figure 9. Top 50 outliers detected by the distributed algorithm but not detected
by the first site using its data only. This is for training set size of 100,000.
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LUNAR TERRAIN AND ALBEDO RECONSTRUCTION FROM APOLLO
IMAGERY

ARA V NEFIAN*, TAEMIN KIM**, MICHAEL BROXTON**, AND ZACH MORATTO**

Abstract. Generating accurate three dimensional planetary models and albedo maps is becoming
increasingly more important as NASA plans more robotics missions to the Moon in the coming
years. This paper describes a novel approach for separation of topography and albedo maps
from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo
disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps
are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar-
Lambert reflectance model. The method is demonstrated on a set of high resolution scanned
images from the Apollo era missions.

1. Introduction

High resolution, accurate topographic and albedo maps of planetary surfaces in general and Lunar
surface in particular play an important role for the next NASA robotic missions. More specifically
these maps are used in landing site selection, mission planing, planetary science discoveries and as
educational resources. This paper describes a method for topographic and albedo maps reconstruc-
tion from the Apollo era missions. The Apollo metric camera flown on an orbit at approximately
100km above the Lunar surface was a calibrated wide field (75◦) of view orbital mapping camera
that photographed overlapping images (80%). The scans of these film images recently made avail-
able [1, 2] capture the full dynamic range and resolution of the original film resulting in digital
images of size 22,000 × 22,000 pixels representing a resolution of 10 m/pixel. Figure 1 shows the
images of one Lunar orbit captured by the Apollo 15 mission. Our method for geometric stereo

Figure 1. Apollo Metric images from Orbit 33.

reconstruction and photometric albedo reconstruction is illustrated in Figure 2. Each component of
our system will be described in more detail in the following sections.

2. Bundle Adjustment

The Apollo-era satellite tracking network was highly inaccurate by today’s standards with errors
estimated to be 2.04-km for satellite station positions and 0.002 degrees for pose estimates in a typical
Apollo 15 image [3]. Such errors propagate through the stereo triangulation process, resulting in sys-
tematic position errors and distortions in the resulting DEMs ( Figure 3). These errors are corrected

*Carnegie Mellon University/NASA Ames, ara.nefian@nasa.gov
**NASA Ames, taemin.kim@nasa.gov, michael.broxton@nasa.gov, zach.moratto@nasa.gov.
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Figure 2. The overall system for albedo reconstruction.

Figure 3. Bundle adjustment is illustrated here using a color-mapped, hill-shaded
DEM mosaic from Apollo 15 Orbit 33 imagery. (a) Prior to bundle adjustment,
large discontinuities exist between overlapping DEMs. (b) After bundle adjustment,
DEM alignment errors are no longer visible.

using bundle adjustment techniques. Our bundle adjustment solution uses SURF feature points [4].
Our bundle adjustment approach follows the method described in [5] and determines the best camera
parameters that minimize the projection error given by ε =

∑
k

∑
j(Ik − I(Cj , Xk))2 where Ik are

feature locations on the image plane, Cj are the camera parameters, and Xk are the 3D positions
associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward projection) for a
given camera and 3D point. The optimization of the cost function uses the Levenberg-Marquartd
algorithm. Speed is improved by using sparse methods described in [6]. Outliers are rejected using
the RANSAC method and trimmed to 1000 matches that are spread evenly across the images. To
eliminate the gauge freedom inherent in this problem, we add two addition error metrics to this cost
function to constrain the position and scale of the overall solution. First, ε =

∑
j(C

initial
j − Cj)2

constrains camera parameters to stay close to their initial values. Second, a set of 3D ground control
points are added to the error metric as ε =

∑
k(Xgcp

k − Xk)2 to constrain these points to known
locations in the lunar coordinate frame. In the cost functions discussed above, errors are weighted
by the inverse covariance of the measurement that gave rise to the constraint. Figure 3 shows a
Lunar orbital DEM before and after the bundle adjustment processing.

3. Dense Disparity Maps

Apollo images are affected by two types of noise inherent to the scanning process: (1) the presence
of film grain and (2) dust and lint particles. The former gives rise to noise in the DEM values that
wash out real features, and the latter causes incorrect matches or hard to detect blemishes in the
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DEM. Attenuating the effect of these scanning artifacts while simultaneously refining the integer
disparity map to sub-pixel accuracy has become a critical goal of our system, and is necessary for
processing real-world data sets such as the Apollo Metric Camera data.

We investigated a large number of stereogrammmetric systems that can provide dense stereo
matching from orbital imagery [7, 8, 9, 10, 11, 12]. A common technique in sub-pixel refinement is
to fit a parabola to the correlation cost surface in the 8-connected neighborhood around the integer
disparity estimate, and then use the parabola’s minimum as the sub-pixel disparity value. This
method is easy to implement and fast to compute, but exhibits a problem known as pixel-locking:
the sub-pixel disparities tend toward their integer estimates and can create noticeable ”stair steps”
on surfaces that should be smooth [12], [11]. One way of attenuating the pixel-locking effect is
through the use of a symmetric cost function [8] for matching the “left” and “right” image blocks.

To avoid the high computational complexity of these methods another class of approaches based on
the Lucas-Kanade algorithm [13] proposes an asymmetric score where the disparity map is computed
using the best matching score between the left image block and an optimally affine transformed
block from the right image. For example, the sub-pixel refinement developed by Stein et. al. [12]
lets IR(m, n) and IL(i, j) be two corresponding pixels in the right and left image respectively, where
i = m + dx, j = n + dy and dx, dy are the integer disparities. They develop a linear approximation
based on the Taylor Series expansion around pixel (i, j) in the left image

IL(i + δx, j + δy) ≈ IL(i, j) + δx
dIL

dx
(i, j) + δy

dIL

dy
(i, j)(1)

where δx and δy are the local sub-pixel displacements. Let e(x, y) = IR(x, y) − IL(i + δx, j + δy)
and W be an image window centered around pixel (m, n). The local displacements are not constant
across W and they vary according to:

δx(i, j) = a1i + b1j + c1

δy(i, j) = a2i + b2j + c2.(2)

The goal is to find the parameters a1, b1, c1, a2, b2, c2 that minimize the cost function

E(m, n) =
∑

(x,y)∈W

(e(x, y)w(x, y))2(3)

where w(x, y) are a set of weights used to reject outliers. Note that the local displacements δx(i, j)
and δy(i, j) depend on the pixel positions within the window W . In fact, the values a1, b1, c1, a2, b2, c2

that minimize E can be seen as the parameters of an affine transformation that best transforms the
right image window to match the reference (left) image window.

The shortcoming of this method is directly related to the cost function that it is minimizing,
which has a low tolerance to noise. Noise present in the image will easily dominate the result of the
squared error function, giving rise to erroneous disparity information. Recently, several statistical
approaches (e.g. [7]) have emerged to show how stochastic models can be used to attenuate the
effects of noise. Our sub-pixel refinement technique [14] adopts some of these ideas, generalizing the
earlier work by Stein et. al. [12] to a Bayesian framework that models both the data and image
noise.

In our approach the probability of a pixel in the right image is given by the following Bayesian
model:

P (IR(m, n)) =
∏

(x,y)∈W

N(IR(m, n)|IL(i + δx, j + δy),
σp√
gxy

)P (z = 0) +(4)

+ N(IR(m, n)|μn, σn)P (z = 1)
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The first mixture component (z = 0) is a normal density function with mean IL(i + δx, j + δy) and
variance σp√

gxy
:

P (IR(m, n)|z = 0) = N(IR(m, n)|IL(i + δx, j + δy),
σp√
gxy

)(5)

The 1√
gxy

factor in the variance of this component has the effect of a Gaussian smoothing window
over the patch. With this term in place, we are no longer looking for a single variance over the
whole patch; instead we are assuming the variance increases with distance away from the center
according to the inverted Gaussian, and are attempting to fit a global scale, σp. This provides
formal justification for the standard Gaussian windowing kernel.

The second mixture component (z = 1) in Equation 5 models the image noise using a normal
density function with mean μn and variance σn:

P (IR(m, n)|z = 1) = N(IR(m, n)|μn, σn)(6)

Let IR(m, n) be a vector of all pixels values in a window W centered in pixel (m, n) in the right
image. Then,

P (IR(m, n)) =
∏

(x,y)∈W

P (IR(x, y))(7)

The parameters λ = {a1, b1, c1, a2, b2, c2, σp, μn, σn} that maximize the model likelihood in Equa-
tion 7 are determined using the Expectation Maximization (EM) algorithm. Maximizing the model
likelihood in Equation 7 is equivalent to maximizing the auxiliary function:

Q(θ) =
∑

k

P (k|IR, λt) log P (IR, k, δ|λ)

=
∑

k

∑
x,y

P (k|IR(x, y), λt) log P (IR(x, y)|k, λ)P (k|λ)(8)

Note that the M step calculations are similar to the equation used to determine the parameters
a1, b1, c1, a2, b2, c2 in the method presented in [12], except here the fixed set of weights is replaced
by the a posteriori probabilities computed in the E step. In this way, our approach can be seen as a
generalization of the Lucas-Kanade method. The complete algorithm is summarized in the following
steps:

• Step 1: Compute dIL

dx
(i, j), dIL

dy
(i, j) and the IR(x, y) values using bilinear interpolation.

Initialize the model parameters λ.
• Step 2: Compute iteratively the model parameters λ using the EM algorithm (see [14] for

details).
• Step 3: Compute δx(i, j) and δy(i, j) using Equation 2.
• Step 4: Compute a new point (x′, y′) = (x, y) + (δx, δy) and the IR(x′, y′) values using

bilinear interpolation.
• Step 5: If the norm of (δx, δy) vector falls below a fixed threshold the iterations converged.

Otherwise, go to step 1.
Like the computation of the integer disparity maps, we adopt a multi-scale approach for sub-pixel
refinement. At each level of the pyramid, the algorithm is initialized with the disparity determined
in the previous lower resolution level of the pyramid. Figure 4 shows an example of a stereo image
pair captured by the Apollo Metric Camera and used to generate a DEM of the Apollo 15 landing
site.

4. Photometric Reconstruction

Each pixel of the Apollo Metric Camera images was formed by a combination of many factors,
including albedo, terrain slope, exposure time, shadowing, and viewing and illumination angles.
The goal of albedo reconstruction is to separate contributions of these factors. This is possible in
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Figure 4. Apollo Metric Camera stereo pair showing Hadley Rille and the Apollo
15 landing site: (left) left image, (middle) right image, (right)oblique view of the
resulting DEM.

part because of redundancy in the data; specifically, the same surface location is often observed in
multiple overlapping images.

To do the albedo reconstruction, we include all of the factors in a image formation model. Many
of the parameters in this model such as digital terrain slopes, viewing angle, and sun ephemeris
are known. To reconstruct albedo, we first model how the Metric Camera images were formed as a
function of albedo, exposure time, illumination and viewing angles, and other factors. Then we can
formulate the albedo inference problem as a least-squares solution that calculates the most likely
albedo to produce the observed image data.

Starting with the first images from the Apollo missions a large number of Lunar reflectance models
were studied [15, 16, 17]. In this paper the reflectance is computed using the Lunar-Lambertian
model [15, 18]. As shown in Figure 5, we define the following unit vectors: n is the local surface
normal; l and v are directed at the locations of the Sun and the spacecraft, respectively, at the time
when the image was captured. We further define the angles i separating n from l, e separating n
from v, and the phase angle α separating l from v . The Lunar-Lambertian reflectance model is
given by

F = AR = A

[
(1− L(α)) cos(i) + 2L(α)

cos(i)
cos(i) + cos(e)

]
(9)

where A is the intrinsic albedo and L(α) is a weighting factor between the Lunar and Lambertian
reflectance models [19] that depends on the phase angle and surface properties. R is a photometric
function that depends on the angles α, i and e. The image formation model begins as follows. Let

�
�

�
�
��

Figure 5. Illumination and viewing angles used by the Lunar-Lambertian re-
flectance model.
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Iij , Aij , Rij be the pixel value, albedo and R function at image location (i, j), and T be a variable
proportional to the exposure time of the image. Then

Iij = TAijRij .(10)

Note that the image formation model described in Equation 10 does not take into consideration the
camera transfer function since the influence of the non-linearities of the camera transfer function
plays a secondary role in the image formation model [19]. From Equation 10 it can be seen that
when the observed pixel value, exposure time, and R value are known, the image formation model
in Equation 10 provides a unique albedo value. However, these values are subject to errors arising
from measurement (exposure time), scanning (image value) or stereo modeling errors (reflectance),
resulting in imprecise albedo calculations. The method proposed here mitigates these errors by
reconstructing the albedo of the Lunar surface from all the overlapping images, along with their
corresponding exposure times and DEM information. The albedo reconstruction is formulated as
the least squares problem that minimizes the following cost function Q:

Q =
∑

k

∑
ij

[
(Ik

ij −AijT
kRk

ij)
2Sk

ijw
k
ij

]
(11)

where super script k denotes the variables associated with the kth image and Sk
ij is a shadow binary

variable. Sk
ij = 1 when the pixel is in shadow and 0, otherwise. The weights wk

ij are chosen such that
they have linearly decreasing values from the center of the image (wk

ij = 1) to the image boundaries
(wk

ij = 0). The choice of these weights insures that the reconstructed albedo mosaic is seamless.
As shown by Equation 11 and illustrated in Figure 2 the steps of our photometric reconstruction
method are the computation of the shadow and relief map followed by albedo reconstruction. These
steps are described next.

Figure 6. Orbital image: (left) input image, (middle) binary shadow map with
shadow regions shown in white, (right) DEM confidence map (brighter areas have
higher estimated error).

4.1. Shadow map computation. Discarding unreliable image pixels that are in shadow and for
which the DEM and the reflectance models are unreliable plays an important role in accurate albedo
estimation [20, 21]. Figure 6(left, middle) shows an input image together with its binary shadow
map; shadowed areas are indicated in white.

4.2. Relief map computation. The geodetically aligned local DEM determine multiple values
for the same location on the Lunar surface. A simple average of the local DEM value determines
the value used in computing the local slopes and the reflectance value. The average DEM has the
following benefits for albedo reconstruction:
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• It is essential to the computation of a coherent “R map”, since each point of the Lunar
surface must have a unique DEM value.
• The statistical process produces more accurate terrain models by reducing the effect of

random errors in local DEMs and without blurring the topographical features. Figure 7
shows the R map of a subregion of the orbital image in Figure 6 before and after the DEM
averaging and denoising process. It can be seen that the noise artifacts in the original DEM
are reduced in the denoised DEM while the edges of the large crater and mountain regions
are very well preserved.
• The statistical parameters of the DEM values at each point are instrumental in building

a confidence map of the Apollo coverage DEM. Figure 6(right) shows the error confidence
map for the orbital image illustrated in Figure 6(left). The values shown in this error map
are the 0.05×the variance values of the DEM expressed in meters.

This step of the algorithm computes the values of the photometric function R described by
Equation 9 corresponding to every pixel in the image. We denote the set of R values as the “R
map” of the image. The accurate DEM calculation influences the R values through the effect of
surface normals on the angles i and e that appear in Equation 9.

Figure 7. R maps generated using (left) single local DEM and (right) denoised
DEM derived from multiple overlapping local DEM. Our denoising approach pre-
serves structure while reducing the artifacts shown in the insets.

Figure 8. Albedo reconstruction: (left) R map, (middle) reconstructed albedo,
(right) albedo confidence map (brighter areas have higher estimated error).
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Figure 9. Albedo reconstruction of orbit 33 of the Apollo 15 mission.

4.3. Albedo Reconstruction. The optimal albedo reconstruction [22] from multi view images and
their corresponding DEM is formulated as a minimization problem of finding

{Ãij , T̃
k} = arg min

Aij ,T k
Q(12)

for all pixels ij and images k, where Q is the cost function in Equation 11. An iterative solution to
the above least square problem is given by the Gauss Newton updates described below.

• Step 1: Initialize the exposure time with the value provided in the image metadata. Ini-
tialize the albedo map with the average value of the local albedo observed in all images.

Aij =
∑

k

Ik
ijw

k
ij

Rk
ijT

k
(13)

• Step 2: Re-estimate the albedo and refine the exposure time using
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• Step 3: Compute the error cost function Q (Eqn. 11) for the re-estimated values of the
albedo and exposure time.
• Convergence: If the convergence error between consecutive iterations falls below a fixed

threshold then stop iterations and the re-estimated albedo is the optimal reconstructed
albedo surface. Otherwise return to step 2.

Figure 8 shows the R map, the albedo map and the albedo reconstruction error map, respectively,
for the original orbital image in Figure 6. The albedo reconstruction error map is computed as
the absolute difference between the original image Ik

ij and the reconstructed image T kAijR
k
ij . For

display, the error values were multiplied by a factor 10 in Figure 8(right). Figure 9 illustrates the
reconstructed albedo for one orbit of the Apollo mission data overlayed over previous low resolution
Clementine imagery. The Clementine mission images were captured under incidence and emission
angles close to zero, therefore capturing images that describe the relative Lunar albedo. It can be
seen that the reconstructed albedo de-emphasizes the brightness variations shown in the original
imagery (Figure 1) between images and produces a seamless albedo mosaic.

5. Conclusions

This paper presents a novel approach for topographic and albedo maps generation from orbital
imagery. The method for sub-pixel disparity maps uses a novel statistical formulation for optimally
determining the stereo correspondence and reducing the effect of image noise. Our approach out-
performs existing robust methods based on Lucas Kanade optical flow formulations at the cost of a
higher computational complexity. The derived topographic maps are used to determine the albedo
maps from an image formation model that incorporates the Lunar-Lambertian reflectance model.
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The optimal values of albedo and exposure time are learned from multiple image views of the same
area on Luna surface. Further research will be directed towards a joint estimation of the topgraphic
and albedo information using shape from shading techniques specific for the Lunar reflectance model
and scanned image properties.
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DATA MINING THE GALAXY ZOO MERGERS

STEVEN BAEHR*, ARUN VEDACHALAM*, KIRK BORNE*, AND DANIEL SPONSELLER*

Abstract. Collisions between pairs of galaxies usually end in the coalescence (merger) of the two
galaxies. Collisions and mergers are rare phenomena, yet they may signal the ultimate fate of
most galaxies, including our own Milky Way. With the onset of massive collection of astronomical
data, a computerized and automated method will be necessary for identifying those colliding
galaxies worthy of more detailed study. This project researches methods to accomplish that goal.
Astronomical data from the Sloan Digital Sky Survey (SDSS) and human-provided classifications
on merger status from the Galaxy Zoo project are combined and processed with machine learning
algorithms. The goal is to determine indicators of merger status based solely on discovering those
automated pipeline-generated attributes in the astronomical database that correlate most strongly
with the patterns identified through visual inspection by the Galaxy Zoo volunteers. In the end,
we aim to provide a new and improved automated procedure for classification of collisions and
mergers in future petascale astronomical sky surveys. Both information gain analysis (via the
C4.5 decision tree algorithm) and cluster analysis (via the Davies-Bouldin Index) are explored as
techniques for finding the strongest correlations between human-identified patterns and existing
database attributes. Galaxy attributes measured in the SDSS green waveband images are found to
represent the most influential of the attributes for correct classification of collisions and mergers.
Only a nominal information gain is noted in this research, however, there is a clear indication of
which attributes contribute so that a direction for further study is apparent.

1. Introduction

1.1. Scientific Rationale. Current computational detection of a galaxy merger in astronomical
data is less than ideal. However, human pattern recognition easily identifies mergers with varied, but
strong, levels of accuracy. If this superior human input can be incorporated into the automated data
pipeline detection scheme, informed by machine learning models, then a more accurate assessment
of merger presence can be gained automatically in future large sky surveys. These improvements
could potentially lead to more powerful detection of various astronomical objects and interactions.

Our goal was to generate merger classification models using two prominent machine learning
approaches, as a preliminary exercise toward the incorporation of human input into future automated
pipeline classification models.

1.2. Citizen Science. Citizen Science refers to the involvement of layperson volunteers in the sci-
ence process, with the volunteers specifically asked to perform routine but authentic science research
tasks that are beyond the capability of machines. Complex pattern recognition (and classification)
and anomaly detection in complex data are among the types of tasks that would qualify as Citizen
Science activities. The Galaxy Zoo project (galaxyzoo.org) presents imagery from the Sloan Digital
Sky Survey (SDSS) to laypersons for classification (e.g., whether a galaxy is of the elliptical or spiral
type) via a web interface. The project went live in 2007, and already over 200 million classifications
have been provided by more than 260,000 individuals. During the classification process, volunteers
can flag a particular image as depicting a merger of two or more galaxies. Approximately 3000
prominent mergers in the SDSS (Sloan Digital Sky Survey) have been identified[3].

*George Mason University, Fairfax, VA.
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1.3. Related Work. Image recognition has long been a major deficiency in computation. Clas-
sification tasks such as facial recognition, trivially exercised with great accuracy and precision by
living organisms, have been predominantly inaccurate and slow when attempted using computers.
While current algorithms are fairly capable of recognizing substructures and details in imaging data,
recognition of gestalt in the data has proved more elusive. This shortcoming, combined with the
contemporary unyielding influx of data in the natural sciences and the vastness of a data domain
such as astronomy, has led to the necessity of attempting to tap into the effortless capability of
human cognition.

The Galaxy Zoo web application has as its goal the collection and application of human clas-
sifications applied to images of galaxies from the SDSS. Efforts have been made to use human
input to reinforce existing machine learning models such as artificial neural networks and genetic
algorithms[2]. Additionally, work has been done using supervised learning algorithms to classify
galaxy type (non-merging), with considerable success using spectroscopic data for training[1] and
data derived from human cognition[6]. It has been found that the introduction of parameters cho-
sen using human input shows great promise for improving current detection and classification of
astronomical objects.

2. Defining the Data

To help us identify the SDSS photometric attributes that show promise in merger classification,
data from the SDSS survey were collected in two distinct groups, one group chosen as a representative
sample of galaxy objects in SDSS, and the other to represent known mergers.

2.1. Data Sources. We utilized data strictly from the Galaxy Zoo project and SDSS. Galaxy
Zoo was used to obtain SDSS ID’s for merger objects, along with an attribute representing the
users’ confidence in the classification as a merger. All photometric data, merger or non-merger, was
obtained from the SDSS.

2.1.1. Mergers. The data chosen to represent known merging galaxies were represented by 2,810
of the 3,003 SDSS mergers presented in [3] (i.e., those that had the full set of attributes that we
examined).

These objects are known to be involved in mergers and to represent objects with relatively high
surface brightness (making human classification possible).

2.1.2. Non-Mergers. To build classification models, galaxies assumed to be predominantly non-
mergers were also needed as training examples.

As the vast majority of the 100 million SDSS galaxies are not mergers, a representative random
sample of SDSS galaxies was chosen for this role.

The sample (initially comprised of 3500 instances) was chosen at random from objects of galaxy
type within the SpecPhotoAll view in the SDSS database. This view represents objects that have
spectral data associated with them. The spectral data was necessary to obtain object redshift, which
was needed to remove distance dependence from the gathered attributes.

Utilizing objects with spectral data also had the ancillary impact of restricting the non-mergers
to those with similar surface brightness to the mergers.

2.2. Data Cleaning and Pre-Processing. Upon completion of these steps, the sample consisted
of 6,310 objects with 76 attributes, including the nominal attribute “merger/non-merger.” Con-
siderable pre-processing was necessary to ready the data for use as the training set for classifiers.
Some pre-processing steps were necessary for both of the two algorithms utilized. All attributes
that did not represent morphological characteristics were removed. For example, the SDSS object
ID’s, measurement error magnitudes, and attributes representing location or identity, rather than
morphology, were among those removed. In Astronomical Catalog missing values occurs for vari-
ety of reason from. It is not possible to estimate these values, as these values may be physically
meaningful. Therefore instances with placeholder values (in SDSS, ”-9999”) in any attribute were
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removed. Since data were gathered from bright objects, most objects did not require this removal.
Distance-dependent attributes were transformed, using redshift, to be distance-independent. A con-
centration index was also generated, using the ratio of the radii containing 50% and 90% of the
Petrosian flux within each galaxy.

2.3. Attributes. Note: Each of the following attributes typically exists for the five SSDS filter
wavebands u, g, r, i, z.

Attribute Description
petroMagug Petrosian magnitude colors. A color was calculated for four inde-

pendent pairs of bands in SDSS (u-g, g-r, r-i, and i-z).
petroRadu ∗ z Petrosian radius, transformed with redshift to be distance-

independent.
invConIndxu Inverse concentration index. The ratio of the 50% flux Petrosian

radius to the 90% flux Petrosian radius.
isoRowcGrad u ∗ z Gradient of the isophotal row centroid, transformed with redshift

to be distance-independent.
isoColcGradu ∗ z Gradient of the isophotal column centroid, transformed with red-

shift to be distance-independent.
isoAu ∗ z Isophotal major axis, transformed with redshift to be distance-

independent.
isoBu ∗ z Isophotal minor axis, transformed with redshift to be distance-

independent.
isoAGradu ∗ z Gradient of the isophotal major axis, transformed with redshift

to be distance-independent.
isoBGradu ∗ z Gradient of the isophotal minor axis, transformed with redshift to

be distance-independent.
isoPhiGradu ∗ z Gradient of the isophotal orientation, transformed with redshift

to be distance-independent.
textureu Measurement of surface texture.
lnLExpu Log-likelihood of exponential profile fit (typical for a spiral

galaxy).
lnLDeVu Log-likelihood of De Vaucouleurs profile fit (typical for an ellipti-

cal galaxy).
fracDevu Fraction of the brightness profile explained by the De Vaucouleurs

profile.

3. Machine Learning

3.1. Decision Trees. Decision trees are a straightforward machine learning algorithm that produces
a classifier with numerical or categorical input, and a single categorical output (the ’class’). Decision
trees have several advantages:

• The resulting tree is equivalent to a series of logical ’if-then’ statements, and is therefore
easy to understand and analyze.

• Missing attribute values can be incorporated into a decision tree, if necessary.
• Easy to implement as a classifier.
• Computationally cheap to ‘train’ and use in classification.

The most popular decision tree algorithm, C4.5, was published by Ross Quinlan in 1993 [8].
To generate a decision tree, the Weka data mining software suite was utilized. Weka is a robust
and mature open source Java implementation of many prominent machine learning algorithms.
It also automates many pre-processing tasks, including transformations of parameters and outlier
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detection/removal. Weka refers to its C4.5 implementation as J48. This is the routine we used to
build a decision tree for classification.

3.1.1. Decision Trees in Weka. The Weka J48 algorithm has several arguments. The relevant argu-
ments for our exploration are:

• binarySplits: If set to true, the generated tree will be binary. A binary tree is simpler to
interpret.

• confidenceFactor: The lower this is set, the more pruning that will take place on the tree.
More pruning can result in a simpler tree, at the expense of predictive power. However, too
little pruning can contribute to overfitting.

• minNumObj: The minimum number of instances required in each tree leaf. The higher
this is set, the simpler the resulting tree.

As the goal of this work is primarily to explore the strength of SDSS attributes in merger clas-
sification, emphasis in tree generation was on generating simple trees, and examining the strongest
predicting attributes. In particular, we are searching for those database attributes that contain the
most predictive power: those that show the highest correlation with Galaxy Zoo volunteer-provided
classification as a merger. These would be the attributes that match most strongly with the outputs
of human pattern recognition.

3.1.2. Information Gain. In the C4.5 and J48 algorithms, the tree design is predicated upon max-
imizing information gain (a measurement of entropy in the data). Using Weka, the information
gain was calculated for each of the attributes, using the 6310 instances referenced in section 2.2 with
tenfold cross-validation. The top five attributes are listed below. Notably, 4 of these top 5 attributes
are related to the SDSS observations in the green waveband. These are the attributes that have the
highest predictive power in merger classification accuracy.

Attribute Information Gain
lnLExpg 0.099
textureg 0.074
lnLDeVg 0.068
petroMaggr 0.065
isoAGradu ∗ z 0.057

3.1.3. Decision Tree Results. We decided to generate three different trees, with the following char-
acteristics:

(1) A tree that is trained on all instances. This tree should use all mergers, regardless of the
vote of merger confidence given by Galaxy Zoo users.

(2) A tree that is trained on merger instances with stronger Galaxy Zoo user confidence. This
tree was to be generated with only mergers that a majority of Galaxy Users flagged as such.
These instances are assumed to be the mergers that are, in some sense, ‘obvious.’

(3) A tree that is trained on merger instances with less than a majority of Galaxy Zoo users
indicating then as such. These instances are assumed to be less than obvious to the layperson.

If one simply classifies all galaxies as non-mergers, a predictive accuracy of 55% is obtained. In
the simplest tree with one split (seen in figure 1), a 66% correct classification occurs, so there is a
modest but definite information gain. The attribute lnLExpg is at the root node with values at or
below -426.586609 indicating a merger and all others classified as non-mergers.

When the minimum number of leaf instances is set to 500, and the confidence factor to 0.001, a
relatively simple tree is obtained that still has a reasonable predictive power of 70%. A 66%/34%
training/test set split was used. A portion of the model output is shown below.
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Figure 1. Visualization of decision tree with a single node.

Precision Recall F-Measure
Merger 0.659 0.682 0.670

Non-Merger 0.734 0.714 0.724
Weighted Avg. 0.700 0.699 0.700

The root node of this tree (as seen in figure 2) is lnLExpg, which is not a wholly unexpected
result, as will be discussed later in this paper.

Figure 2. Visualization of decision tree built using all mergers.

After removing merger instances with a user confidence of less than 0.50 (with the number of leaf
instances set to 200 to produce a simple tree and a 66%/34% split),we measured the precision, recall
and F-measure for each of the two classes to determine the accuracy of the model. For mergers,
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recall is calculated as the proportion of the number of mergers correctly classified as such out of the
total number of mergers. Precision is calculated as the proportion of the number of mergers correctly
classified as such out of all instances classified as mergers (correctly or not). The F-measure is a
commonly reported measure intended to incorporate both precision and recall into a single measure.
It is defined as 2·precision·recall

precision+recall .

Precision Recall F-Measure
Merger 0.657 0.456 0.538

Non-Merger 0.766 0.882 0.820
Weighted Avg. 0.730 0.741 0.726

Contrary to intuition, while the overall classification accuracy increases, the recall of the model
for mergers decreased significantly. With this approach, petroMaggr is now the strongest predictor
at the root of the tree. This can be seen in figure 3. lnLExp g is still a key attribute, but it is no
longer at the root. This model has very strong predictive power for non-mergers, but quite weak
recall for mergers.

Figure 3. Visualization of decision tree built using the strongest mergers.

After removing merger instances with a user confidence of more than 0.50 (with the number of
leaf instances set to 200 to produce a simple tree and a 66%/34% split), we achieve the output shown
below.
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Precision Recall F-Measure
Merger 0.416 0.167 0.238

Non-Merger 0.796 0.933 0.859
Weighted Avg. 0.712 0.762 0.721

The users’ confusion seems to be expressed in the resulting model, which has high overall accuracy,
but a very weak recall. This poor performance is due to its excessive tendency to classify as Non-
Merger, as the data set now is only comprised of objects that are not obviously mergers. Using these
weaker voted mergers, the model is rooted on petroMagui, as seen in figure 4.

Figure 4. Visualization of decision tree built using the weakest mergers.

3.1.4. Tree Strengths and Weaknesses. The trees generated are of varying usefulness.
The tree generated using all of the mergers exhibited an overall accuracy of about 70%, with

precision of 66% and recall of 68%. This is above average predictive power, but not incredibly
useful.

The trees generated using the stronger and weaker mergers separately seem to indicate two things:

(1) The user confusion over some mergers appears to be manifested in the resulting model, as
the parameters that are influential in the model are not strongly morphological, indicating
that the objects may be missing strong visual cues of merging.

(2) The confidence of users in some merger classifications results in a tree that incorporates
more strongly morphological attributes, but has diminished recall power. We feel that this
merits further investigation.

There are two especially interesting things about the decision trees generated from this data:

• The strongest predicting attributes seem to be associated with the SDSS green filter wave-
band.

• Poor exponential fit and small isophotal minor axis are among the strongest indicators of
merger presence.
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3.1.5. Significance of the Green Band. The strongest predicting attributes seem to be associated
with the green band. In the tree generated using all merger instances, The two strongest attributes
for merger prediction are associated with the green band, and fully half of the top ten information
gaining attributes are associated with this band. The green band seems to carry a disproportionate
amount of information relative to the other four bands measured in SDSS photometry.

Upon investigation, we discovered that strong green spectral lines are associated with stellar
formation via doubly ionized oxygen, and stellar formation is itself unusually abundant in galactic
mergers[7]. So it is not surprising that the green band seems to be important in the classification
models we have generated.

3.1.6. Significance of lnLExp and isoB Attributes. The attributes lnLExp and isoB both featured
prominently in the decision tree approach as influential values for merger detection.

The isoB attribute represents the length of the minor axis of the isophote of the galaxy’s sur-
face brightness in a given band. It is a reasonable expectation that tidal distortion from merger
involvement may influence an axis of such an isophote.

The lnLExp attribute represents the extent to which the galaxy object has a brightness profile
that is fit well by an exponential fit, the details of which can be found in [9]. It is not surprising that
this measure of morphology would be an influential factor in merger classification, as tidal distortion
would almost certainly affect the brightness profile of a galaxy involved in a merger and thereby
reduce the likelihood that the galaxy brightness profile would be fit by a standard non-distorted
spiral galaxy exponential function. It should also be noted that another measure of brightness
profile fit was featured among attributes with the highest information gain: lnLDeV . lnLDeV is
a measure of goodness of fit with the De Vaucouleur profile (which is the functional form of the
brightness profile in elliptical galaxies), and this would also be expected to exhibit irregularities in
the presence of tidal distortion in true colliding/merging galaxies.

3.1.7. Future Direction for Decision Trees. Given the modestly strong evidence that we have gener-
ated for the quality of green-band morphological attributes as merger predictors, a promising avenue
for further development of classifiers may be other attributes in this band. These may be novel image
characterization parameters or simply transformations of existing database parameters.

The inclusion of isophotal axis length among the influential parameters seems to indicate that
more examination of isophotal properties may be fruitful in this area.

4. Cluster Analysis

Identifying groups of similar observations in a dataset is a fundamental step in any data analysis
task. Classification and clustering are the two main approaches used to identify similar groups of
data instances. Whereas classification attempts to assign instances to one of several known classes,
clustering attempts to derive the classes themselves. In the case of one or two dimensions, visual
inspections of the data such as scatter plots can help to quickly and accurately identify the classes.
Datasets in astronomy are generally comprised of many more dimensions. With advancements in
astronomical data collection technology, astronomers are able to collect several hundred variables
for millions of observations. Not all these collected variables are useful for a given classification
task. There typically are many insignificant attributes that might prevent us from identifying the
structure of the data.

With the knowledge of class labels from the Galaxy Zoo catalog of merging and interacting
galaxies, we would like to be able to identify which morphological and photometric attributes in the
SDSS data correlate most strongly with the user-selected morphological class. These variables can
be identified by measuring the separation of the instances in the attribute feature space in which
the data reside: which attributes provide the best discriminator between different human-provided
patterns and classes? Measures like Dunn’s Validity Index[4] and Davies-Bouldin Validity Index[5]
are two metrics by which to achieve this.
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4.1. The Davies-Bouldin Index. Davies-Bouldin Validity Index (DBI) is a function of the ratio
of intra-cluster instance separation to inter -cluster instance separation. This is given by:

DB =
1

n

n∑
i=0

maxi�=j
Sn(Qi) + Sn(Qj)

S(Qi, Qj)

...where n is the number of clusters, Sn(Qi) is the average distance of all objects from the cluster
to their cluster center, and S(Qi, Qj) is the distance between clusters centers. Good clusters (i.e.,
compact clusters with respect to their separation) are found with low values of DBI, and poor
clusters (i.e., strongly overlapping groupings) have high values of DBI. For the inter-cluster distance
function S one could use single linkage, complete linkage, average linkage, centroid linkage, average
of centroids linkage, or Hausdorff metrics and for the intra-cluster distance function S one could
use complete diameter, average diameter, or centroid diameter[4]. For purposes of experimentation,
we picked used the centroid linkage and the centroid diameter as our measures to calculate the DB
index.

4.2. Approach. To determine the database attributes that influence the separation of the human-
provided galaxy classes (merger versus non-merger) most strongly, we first calculated the DB index
for the two clusters (i.e., the cluster of mergers versus the cluster of non-mergers) using each one
of variables individually. We then ranked the variables based on these calculated DBI values. The
variable that tops this list is the most important variable for instance separation, at least according
to this metric. This single variable of course cannot necessarily provide us with the best separation.
So we looked for any higher dimensional subset of the feature space that has improved separation for
these two classes of objects. To this end, we selected the top ten individual variables and calculated
the DB index of all possible combinations of these ten variables and ranked the combinations to
identify the subset of the original attribute set that provides the best separation.

4.3. Results. The following is the list of the top 10 features and subsets with the lowest DB index:

10 Best Separating Individual Attributes 10 Best Separating of all 1014
Subsets of Best 10 Attributes

isoAGradu ∗ z isoAGradu ∗ z
petroRadu ∗ z petroRadu ∗ z

textureu textureu
isoAz ∗ z isoAz ∗ z
lnLExpu lnLExpu
lnLExpg lnLExpg
isoAu ∗ z petroRadu ∗ z, isoBz ∗ z,

isoBGradu ∗ z, lnLExpg
isoBz ∗ z isoAGradu ∗ z, lnLExpg

isoBGradu ∗ z petroRadu∗z, isoAu∗z, isoBz∗z,
lnLExpg

isoAGradz ∗ z isoAGradu ∗ z, isoBGradu ∗ z,
lnLExpg

Features such as isoPhiGradi∗z, isoColcGradg∗z, isoColcGradu∗z, petroMagug, isoColcGradi∗
z, and fracDevz have a significantly large DBI and are therefore do not appear to be useful for
clustering. These features seem to be of little significance for decision tree classification as well, since
they were not present in any of the trees we generated. Also, visual inspection of the attributes
using histograms revealed that with the four individual attributes with lowest DB Index values (seen
in figure 5), little to no separation can be seen.

In the scatter plot (seen in figure 6) of mergers and non-mergers in isoAGradu ∗ z, lnLExpg
feature space shows slight separation between these two classes.
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Figure 5. Histograms of the four lowest attributes according to DBI.

4.4. Future Direction for Cluster Analysis. From the plots it is evident that there is not a
clear separation between mergers and non-mergers in the subsets of the feature space that we have
explored. This is also evident from the fact that the minimum value of all DBI’s that we calculated is
2.19, which is substantially greater than the ideal value of 1. This is an indication of relatively weak
clustering. The value 2.19 is the local minimum of the parameter-space. With further analysis of
all the possible (75-factorial!) combinations of the 75 numerical attributes, we might be able to find
the global minimum value where the clusters have the strongest separation. However, finding the
global minimum in this way would be extremely (in fact, prohibitively) computationally intensive.
It is, however, important to note that two of the top ten features according to individual DBI
are isoAGradu ∗ z and lnLExpg, which are also among the top five features in information gain.
Therefore, our approach to feature extraction is to some degree consistent with the information
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Figure 6. Merger and non-merger classes in isoAGradu ∗ z, lnLExpg space.

gain-based decision tree approach. With limited computation time and resources, only certain
combinations of the best ten attributes could be examined. Use of optimal search algorithms (such
as genetic algorithms) and use of a massively parallel computational environment (such as Cloud
computing) could empower us to discover the best separating subset of the attributes and provide
some interesting results.

5. Summary of Outcomes

We were able to generate a decision tree with accuracy of approximately 70%, including recall for
merger detection of approximately 66%. Two classes of morphological attributes were identified as
potentially having promise in future work on decision tree analysis:

• Attributes related to the SDSS green waveband, specifically brightness profile fits in this
band. This result is validated by the known characteristics of star formation emissions in
merging galaxies.

• Attributes related to the galaxy isophotes. This has validity due to the tidal distortions of
isophotes that are typically present in galactic mergers.
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Results from the cluster analysis also indicate the significance of these two feature-types, pro-
viding more evidence of their importance in merger classification. Further analysis might lead to
combinations of features that greatly improve the classification accuracy of mergers and non-mergers.
Mathematically derived or entirely novel features (especially of a more morphological nature) could
also be a promising avenue for improving merger classification, as success with the chosen features
was modest. Utilizing a combination of cluster-based feature extraction and decision tree analysis
will likely aid in further improvements to classification accuracy, and more generally, to the iden-
tification of the salient features that will enable automated pipelines to emulate human cognitive
powers and pattern recognition abilities, and thereby automatically indicate the presence of such
events in massive petascale sky surveys of the future.
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M. Doi, M. Fukugita, Z. Győry, M. Hamabe, G. Hennessy, T. Ichikawa, P. Z. Kunszt, D. Q. Lamb,
T. A. McKay, S. Okamura, J. Racusin, M. Sekiguchi, D. P. Schneider, K. Shimasaku, and D. York. Color
Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data. The Astronomical Journal,
122:1861–1874, Oct. 2001.

144

2010 Conference on Intelligent Data Understanding



KEYWORD SEARCH IN TEXT CUBE: FINDING TOP-K RELEVANT CELLS

BOLIN DING*, YINTAO YU*, BO ZHAO*, CINDY XIDE LIN*, JIAWEI HAN*, AND CHENGXIANG ZHAI*

Abstract. We study the problem of keyword search in a data cube with text-rich dimension(s)
(so-called text cube). The text cube is built on a multidimensional text database, where each row
is associated with some text data (e.g., a document) and other structural dimensions (attributes).
A cell in the text cube aggregates a set of documents with matching attribute values in a subset
of dimensions. A cell document is the concatenation of all documents in a cell. Given a keyword
query, our goal is to find the top-k most relevant cells (ranked according to the relevance scores of
cell documents w.r.t. the given query) in the text cube.

We define a keyword-based query language and apply IR-style relevance model for scoring and
ranking cell documents in the text cube. We propose two efficient approaches to find the top-k
answers. The proposed approaches support a general class of IR-style relevance scoring formulas
that satisfy certain basic and common properties. One of them uses more time for pre-processing
and less time for answering online queries; and the other one is more efficient in pre-processing and
consumes more time for online queries. Experimental studies on the ASRS dataset are conducted
to verify the efficiency and effectiveness of the proposed approaches.

1. Introduction

The boom of Internet and different database systems has given rise to an ever increasing amount
of text data associated with multiple dimensions (attributes), which is usually stored in tables. For
example, customer reviews in shopping websites (e.g., Amazon) are always stored and associated
with attributes like Price, Model, and Rate. In NASA’s ASRS database [15], after each commercial
flight in the United States, a report is written to describe how the flight went, with several attributes
specified, like Weather, Light, Flight Phase, and Event Anomaly.

We have extended a traditional OLAP data cube to summarize and navigate structured data
together with unstructured text data in [22]. Such a cube model is called text cube [22]. A cell in the
text cube aggregates a set of documents with matching attribute values in a subset of dimensions.

In this paper, we focus on cell documents, each of which is the concatenation of all documents in a
cell. We study how to support keyword-based search in text cube. More specifically, the goal is to: find
the top-k most relevant cells, ranked according to the relevance scores of cell documents w.r.t. the
given query, in the text cube. It provides insights about the relationship between multidimensional
attributes and text data.

Example 1.1 (Motivation). Table 1 shows a tiny sample from the ASRS database. It has both
structured data (e.g., Weather, Light, flight Phase, and event Anomaly) and Narrative about an
anomalous event written by a pilot or flight attendant after each flight as text data.

Suppose Jim, an analyst for flight safety, wants to know under which condition, the runway
excursion is likely to happen. He types a set of keywords: {“RWY”, “EXCURSION”}. Using
traditional IR techniques, the system can rank all the narratives (or reports) and output the most
relevant ones. However, as there are many reports relevant to the query, Jim have to spend much
time browsing through them one by one and summarizing different conditions by himself.

So, is it more desirable that a system provides users with “aggregated information”, such as “in
a rainy night, the runway excursion is likely to happen in the landing phase” (Weather = Rainy,
Light = Night, Phase = Landing, Anomaly = ∗), instead of returning individual narratives? This
is our intention to study such a new mechanism.

*Department of Computer Science, UIUC, {bding3, yintao, bozhao3, xidelin2, hanj, czhai}@uiuc.edu.
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Table 1. Motivation Example

Weather Light Phase Anomaly Narrative

Rainy Night Landing Equipment . . . RESULTED IN RWY EXCURSION DURING EN-
GINE FAIL . . .

Rainy Night Landing Excursion SMA RWY EXCURSION STRUCK RWY LIGHT . . .

Cloudy Night Landing Excursion RWY EXCURSION DURING TKOF FROM SNOW-
SLUSH COVERED RWY . . .

Sunny Daylight Descent Equipment INITIAL WEIGHT AND BALANCE ERROR . . .

A cell in the text cube is in the form of (Weather = Rainy, Light = Night, Phase = Landing,
Anomaly = ∗), which aggregates the first two narratives. Cell (Weather = ∗, Light = Night, Phase =
Landing, Anomaly = Excursion) aggregates the second and third narratives. Another cell (Weather
= Sunny, Light = Daylight, Phase = ∗, Anomaly = ∗) aggregates only the fourth narratives.

It can be seen that the first two cells are more relevant to Jim’s query than the third one. The
goal of our system is to rank all cells (in different levels and granularities), instead of individual
narratives, according to Jim’s query.

Given a database of text data (documents) associated with multidimensional attributes, tra-
ditional IR techniques to process keyword queries can be used to rank all the individual docu-
ments; however, they do not fully utilize the association between documents and attributes. Key-
word query has also been extended to RDBMSs to retrieve information from text-rich attributes
[2, 4, 7, 25, 13, 14, 16, 10, 11, 21, 23, 24, 19, 17, 18] and provide users with relevant linked struc-
tures: given a set of keywords, existing methods on keyword search in RDBMSs focus on ranking
individual tuples from one table or joins of tuples (e.g., linked by foreign keys) from multiple tables
that contain the keywords.

This paper studies the problem of keyword-based top-k search in text cube, i.e., given a keyword
query, find the top-k most relevant cells in a text cube. Different from keyword search in plain
documents (ranking individual documents) and RDBMSs (ranking relevant linked structures), our
ranking objects are cells. In a data cube model (a multidimensional space induced by the attributes),
e.g., the text cube, a cell aggregates the documents with matching values in a subset of attributes.
In particular, when ranking cells, we focus on cell documents, each of which is the concatenation
of all documents in a cell, and evaluate the relevance of this “big document” to the given keyword
query for each cell.

A collection of documents (or a “big document”, i.e., the concatenation of these documents) is
associated with each cell, corresponding to an analytical object (e.g., “landing phase in a rainy
night” in Example 1.1). This facilitates the analysis of the relationship between relational attributes
and text data, e.g., exploration of relevant cells (objects) w.r.t. a keyword query. When users want
to retrieve information from a text cube using keyword queries, we believe that relevant cells, rather
than relevant documents, are preferred as the answers, because: (i) relevant cells are easy for users
to browse; and (ii) relevant cells provide users insights about the relationship between relational
attributes and text data. While most data cube models can support basic operations like roll-up
and drill-down, it is unclear how to find the relevant cells using only these operations.

1.1. Overview of Model and Techniques. Following is an overview of our work.

Ranking Objects and Relevance Score: Given a keyword query, we want to rank all cells in text
cube. The first question is how to compute the “relevance” of a cell in a text cube for ranking. Note
that a cell corresponds to a collection of documents. Consider the following two different models.

• Average model: Any IR scoring function (e.g., Okapi) can be used to compute the relevance
score of each single document w.r.t. the given keyword query, and the relevance score of a
cell (a document collection) is the average of relevance scores of documents in this cell.

2
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• Cell document model: Documents in a cell are concatenated into a “big document”, called
a cell document. The relevance of the cell is the relevance of this cell document w.r.t. the
given keyword query.

The two scoring models above carry different semantics: the average model promotes the cells where
many documents contain the given keywords; and, the cell document model promotes the cells
which contain as many keywords as possible. Two models are suitable in different scenarios and user
preferences. It is important to mention that our previous work [8] focuses on the average model,
and we will focus on the cell document model in this work. Also note that the model studied in
this work is more general in some sense: to efficiently process keyword queries, we only require the
relevance scoring function (in Equation (2)) to be monotone w.r.t. the term frequencies and the
total length of documents in a cell.

Challenges: The first major computational challenge of this keyword search problem is the huge
number (increasing exponentially w.r.t. the dimensionality) of cells in a text cube, as we want to
rank all cells in different levels and granularities (cuboids). The second computational challenge is,
unlike the scoring formula in the average model (satisfying an apriori-like property called two-side
bound property [8]), we consider the relevance scoring formula in the cell document model, which
does NOT satisfy any monotone or apriori-like property in the cube lattice. This difficulty makes
the problem studied in this work significantly harder and different from the one in [8].

Efficient Algorithms: Unlike [8], which utilize an apriori-like property (two-side bound property)
of scoring formula in the average model to design ranking algorithms, this work introduces two
new ranking algorithms which are appliable in a more general class of scoring formula in the cell
document model. We design two efficient approaches for the keyword-based top-k search in text cube.
The first one, TACell, extends the famous TA algorithm [9] to our problem of keyword search in text
cube. It requires moderate pre-processing but is efficient in online query processing. The second
one, BoundS, estimates upper bounds and lower bounds of the relevance of cell documents in the
search space; upper/lower bounds are compared periodically for the early stop of search process, so
as to explore as few cells in the text cube as possible before outputting the top-k answers.

1.2. Contribution and Organization. In this paper, we study the problem of keyword-based
top-k search in text cube (or multidimensional text data): find the top-k cells relevant to a user-
given keyword query. Flexible keyword-based query language and relevance scoring formula of cells
(aggregation of text data) are developed based on the cell document model. We propose two efficient
approaches, TACell and BoundS, to support the query language in text cube. We also study the
effectiveness of the proposed approach in a case study.

Section 2 introduces the text cube model of multidimensional text data, defines the keyword-based
query language in text cube, and introduces the relevance scoring formula based on the cell document
model. Two algorithms TACell and BoundS are then introduced in Section 3 and 4, respectively,
for finding the top-k most relevant cells given a keyword query. Experimental study is reported in
Section 5, followed by related work in Section 6. Section 7 concludes this paper.

2. Keyword Queries in Text Cube

We first review our data cube model for multidimensional text data (Section 2.1), then formally
define the problem of keyword search in text cube together with the relevance scoring formula based
on cell document model (Section 2.2), and analyze the computational challenges (Section 2.3).

2.1. Preliminary: Text Cube, a Data Cube Model for Text Data. We first review the text
cube model introduced in [22, 8], and formally define the cell document model.

A set D of documents is stored in an n-dimensional database DB = (A1,A2, . . . ,An,D). An
attribute Ai is also said to be a dimension in data cube. Each row of DB is in the form of r =
(a1, a2, . . . , an, d): let r[Ai] = ai ∈ Ai be the value of dimension Ai, and r[D] = d be the document
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Dimensions Text Data

M P T S d (Document)

m1 p1 t1 s1 d1 = {w1, w1, w2, w2}
m1 p2 t1 s2 d2 = {w2, w5, w6}
m1 p3 t2 s2 d3 = {w3, w4, w3, w6}
m2 p1 t2 s2 d4 = {w1, w1, w1}
m2 p2 t2 s2 d5 = {w5, w6, w7, w8}
m2 p3 t1 s1 d6 = {w4, w5, w8, w9}

(a) A 4-Dimensional Text Database DB

Cell M P T S D (Cell Document C[D])

C0 * * * * d1 ◦ d2 ◦ d3 ◦ d4 ◦ d5 ◦ d6
C1 m1 * * * d1 ◦ d2 ◦ d3
C2 m2 * * * d4 ◦ d5 ◦ d6
C3 m1 * * s1 d1
C4 m1 * * s2 d2 ◦ d3
C5 m2 * t1 * d6
C6 m2 * t2 * d4 ◦ d5
C7 m1 * t1 s1 d1
C8 m2 p2 t2 s1 d1

(b) Some Cells in the Text Cube

in this row. A document d is a multi(sub)set of the term set W = {w1, . . . , wM}, i.e., a term wi

may appear multiple times in d.
The data cube model extended to the above multidimensional text database is called text cube

[22]. Several important concepts are introduced as follows.
In the text cube built on DB, a cell is in the form of C = (v1, v2, . . . , vn : D), where vi could either

be a value of dimension Ai or be a meta symbol ∗ (i.e., vi ∈ Ai ∪ {∗}). If vi = ∗, the dimension
Ai is aggregated in C. D is the concatenation of the documents in the rows (of the database DB)
having the same dimension values as C on the non-∗ dimensions. This “big document” D is called
the cell document of C. Formally, for a cell C = (v1, v2, . . . , vn : D),

D = the concatenation of r[D]′s, where for r ∈ DB s.t. r[Ai] = vi if vi �= ∗.
We use C[Ai] to denote the value vi of dimension Ai in the cell C, and C[D] to denote the cell
document D of C. To distinguish a document r[D] in a row of the database DB from the cell
document C[D] (C[D] is the concatenation of some r[D]’s), a document r[D] in a database row is
said to be a row document (distinguished from cell document). For simplicity, a cell is also written
as C = (v1, v2, . . . , vn). A cell is said to be empty if C[D] = ∅.

A cuboid is a set of cells with the same set of non-∗ dimensions. A cuboid with m non-∗ dimensions
is an m-dim cuboid. The n-dim cuboid (all dimensions are non-∗) is called the base cuboid. Cells in
an m-dim cuboid are called m-dim cells, and cells in a base cuboid are called base cells.

Cell C ′ is an ancestor of C (or C is a descendant of C′) iff “∀i : C ′[Ai] �= ∗ ⇒ C′[Ai] = C[Ai]”.
Note cell C is an ancestor (or descendant) of itself. We use ans(C) to denote the set of ancestors of
a cell C, and des(C) to denote the set of descendants of a cell C′. It is well-known that all the cells
in a data cube (or text cube) form a lattice, according to the ancestor-descendant relationship.

Example 2.1 (Text Cube). Table 1(a) shows a text database DB, with four dimensions, M, P, T,
and S. Term set W = {w1, w2, . . . , w8}. A total of six documents are stored.

Table 1(b) shows some cells and the corresponding cell documents in the text cube generated
from DB. Among them, C3, C4 are descendants of C1, and C5, C6 are descendants of C2. Note that
C1, C2 has some other descendants that are not listed in this table.

We use d1 ◦ d2 to denote the concatenation of documents d1 and d2. In this example, we have
d1 ◦ d2 = {w1,w1,w2,w2,w2,w5,w6}. C0 is the 0-dim cell and C8 is one of the base cells.

2.2. Keyword Search Problem in Text Cube. In traditional data cubes, operations like drill-
down and roll-up suffice for users to explore multidimensional data. However, in text cube, a large
portion of data is text. Since keyword query is an effective way for users to explore the text data,
we propose the keyword search problem in text cube.

Keyword Search Problem. A keyword query is a set of terms, i.e., q = {t1, t2, . . . , t|q|} ⊆ W.
Given a keyword query q, the goal is to find k cells C’s with the top-k highest relevance scores in
the text cube of DB.
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Note that a cell relevant to the query q may contain all or some of the terms t1, . . . , t|q|. The
relevance score of a cell C w.r.t. the query q is defined as a function rel(q, C[D]) of the cell document
C[D] and the query q. For brevity, it is also written as rel(q, C). We return the top-k cells in the
non-increasing order of relevance scores, because the total number of cells in the text cube could be
huge and it is not possible for a user to browse all of them. k can be specified by the user.

Relevance Scoring Formula. To rank all the cells and find the top-k ones, we need to define the
relevance scoring function rel(q, C[D]) (or rel(q, C) for brevity). Here, we treat the cell document
C[D] as a “big document”. We compute the relevance score of the cell C w.r.t. a keyword query q as
the relevance of this big document w.r.t. q. For example, we can simply apply the Okapi weighting:

(1) rel(q, C) =
∑

t∈q

ln
N − dft + 0.5

dft + 0.5

(k1 + 1)tft,D

k1((1− b) + b dlD
avdl

) + tft,D

(k3 + 1)qtft,q
k3 + qtft,q

, (Okapi weighting [27])

where N = |DB|, D is the cell document of C, tf t,D is the term frequency of term t ∈ q in D (the
number of times t appearing in D), dft is the number of documents in DB containing t, dlD is the
length of D, avdl is the average length of cell documents, qtft,q is the number of times t appearing
in q, and, k1, b, k3 are constants.

Our ranking algorithm can handle a more general form of relevance scoring formula:

(2) rel(q, C) = s(tf1, tf2, . . . , tf |q|, |D|).
where tfi is the term frequency of the ith term of q in the cell document D = C[D] of C, and |D|
(dlD) is the length of D. In principle, dft and qtft,q should also be parameters of the function s; but
since they are not critical in our ranking algorithm, we just omit them from (2) for the simplicity.

Note that (1) is a special case of (2), and our ranking algorithms introduced later can handle the
general form (2). We require only two basic property of the function s in (2):

• Monotone w.r.t. tfi: From any i,

tfi ≤ tf ′i ⇔ s(tf1, . . . , tfi . . . , tf |q|, |D|) ≤ s(tf1, . . . , tf
′
i, . . . , tf |q|, |D|).

• Monotone w.r.t. |D|:
l ≥ l′ ⇔ s(tf1, tf2, . . . , tf |q|, l) ≤ s(tf1, tf2, . . . , tf |q|, l′).

It is important to notice that even though the above two properties about term frequency and
document length, which are quite natural for relevance scores, are satisfied, the function rel does
not have any monotone or apriori-property in the cube lattice. A simple example is as follows.

Example 2.2 (No Monotone/Apriori Property in the Cube Lattice). Suppose the query q has three
terms t1, t2, t3, and there are three cells C1, C2, C3, each of them Ci contains exactly one term ti.
Suppose C is the ancestor of C1, C2, C3, and the cell document C[D] is the concatenation of cell
documents C1[D], C2[D], C3[D]. So C[D] contains exactly the three terms {t1, t2, t3}.

Now we use the relevance scoring formula in (1), and let k1 = 1, b = 1, avdl = 1. Then we have
rel(q, C) > rel(q, C1), rel(q, C2), rel(q, C3). However, if C[D] has a document length 10, then we have
rel(q, C) < rel(q, C1), rel(q, C2), rel(q, C3). So rel does NOT satisfy monotone or Apriori property in
the cube lattice.

Extended Form of Keyword Query. Users may want to retrieve answers from a certain part
of the text cube, by specifying a subset dimensions of interests and/or values of some dimensions,
together with a support threshold. The support of a cell C, denoted by |C|, is the number of
documents that are concatenated in the cell document C[D]. Motivated by this, the simplest form
of keyword queries q can be extended by adding dimension-value constraints and support threshold.

In an n-dimensional text cube, an extended keyword query is in the form ofQ = (u1, u2, . . . , un : q),
where ui ∈ Ai ∪{∗, ?}. We also use Q[Ai] to denote ui. Q[Ai] ∈ Ai specifies the value of dimension
Ai in a cell C; Q[Ai] = ∗ means the dimension Ai in a cell C must be aggregated; and Q[Ai] =?
(question mark) imposes no constraint on the dimension Ai of a cell C. A cell C is said to be feasible
w.r.t. the query Q iff

149

2010 Conference on Intelligent Data Understanding



(i) for dimension Ai s.t. Q[Ai] = ∗, we have C[Ai] = ∗ (Ai is aggregated in C);
(ii) for dimension Ai s.t. Q[Ai] ∈ Ai, we have C[Ai] = Q[Ai]; and
(iii) for dimension Ai s.t. Q[Ai] =?, we have no constraint on C[Ai].

Given an extended keyword query Q = (u1, u2, . . . , un : q) and a minimum support minsup, our
goal is to find the top-k feasible cells C’s s.t. supports |C| ≥ minsup with the top-k highest relevance
scores rel(q, C)’s in the text cube of DB.

In the rest part of this paper, we will first describe our algorithms for the simple form of keyword
query (i.e., a set of keywords without dimension-value constraints and support threshold), and then
discuss how our algorithm can be simply modified to handle extended form of keyword query.

2.3. Computational Challenges. There are two major challenges of this keyword search problem:
First, as shown in [8], the size of a text cube could be huge, increasing exponentially w.r.t. the

dimensionality of the text cube. There is an n-dimensional database DB = (A1,A2, . . . ,An,D)
with N rows, s.t. the non-empty cells in the text cube of DB is Ω(N · 2n) or Ω(

∏n
i=1(|Ai| + 1)),

where |Ai| is the number of different values in dimension Ai.
1 Therefore, only when the number of

dimensions is small (2 to 4), we can compute the relevance scores of all cells and then sort them to
find the top-k cells efficiently.

Second, as shown in Example 2.2, the relevance scoring formula rel considered here does NOT
satisfy monotone/Apriori property in the cube lattice. This increases the difficulty of our problem
further, as the early-stop condition for searching top-k is not easy to be obtained.

3. Threshold Algorithm for Finding Top-k Cells

Our first approach TACell naturally extends the famous threshold algorithm (TA) [9] for finding
the top-k relevant cells w.r.t. a given keyword query q. The basic idea is to treat each cell as a
ranking object in TA. Some preprocessing steps and additional space are needed.

Preprocessing: In the preprocessing stage, for each term t in W (the set of all terms), we build a
sorted list of cells Lt, where cells are sorted in the descending order of term frequency of t in each
cell document; then we have another sorted list Llen, where cells are sorted in the ascending order
of the lengths of cell documents. So there are a total of |W|+ 1 sorted list.

Online-processing: When a keyword query q = {t1, t2, . . . , tl} is given, our goal is to find the
top-k cells with the highest relevance scores rel(q, C). In this step, we apply the TA algorithm [9]
on the l + 1 sorted list Lt1 , Lt2 , . . . , Ltl , Llen. Recall rel(q, C) is defined in (2), and TA algorithm is
applied to output the top-k cells with the highest s(tf1, tf2, . . . , tf l, |C[D]|) (refer to Algorithm 2).

1: For each term t ∈ W, construct a sorted list Lt of cells. Cells C’s in Lt are sorted in the
descending order of term frequency of t in the cell document C[D].

2: Construct another sorted list Llen of cells. Cells C’s in Llen are sorted in the ascending
order of the length of cell document |C[D]|.

Algorithm 1: Preprocessing for TACell

Two points to be clarified in Algorithm 2:
First, in line 3, when a cell C is retrieved from some list, there are three possibilities: i) C is in

CAN ; ii) C is not in CAN and it is the first time that C is touched; iii) C is not in CAN but C

1To construct a text cube with N · (2n − 1) = Ω(N · 2n) non-empty cells, consider DB = {(a(i)
1

, a
(i)
2

, . . . , a
(i)
n , di) | i =

1, . . . , N} with N rows and a
(i)
j �= a

(i′)
j for any j and i �= i′. To construct a text cube with

∏n
i=1

(|Ai|+1) non-empty

cells, let N =
∏n

i=1
|Ai| and consider a database whose rows enumerate all possible configurations of the n attributes.

Even when the support threshold minsup (> 0) is nontrivial, the number of cells to be considered (those with support
≥ minsup) is still huge, since a data cube is “fat” in the middle. For example, suppose minsup is large enough s.t.

only d-dim cells with d ≤ n/2 have support ≥ minsup, we may still need to consider N · ( n
n/2

)
= Ω(N · 2n/2) cells to

select the top-k relevant ones w.r.t. a keyword query.
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1: Candidates of top-k CAN ← ∅. Pointer i ← 1.
2: Do a parallel scan of Lt1 , Lt2 , . . . , Ltl , Llen:
3: In each iteration, retrieve the ith cell of each list of Lt1 , . . . , Ltl , Llen (totally l + 1 cells),

compute its relevance score rel(q, C), and put it into CAN .
4: At any time, CAN keeps only the top-k cells with the highest score rel(q, C) and

the (k + 1)th cell will be deleted from CAN (if any).
5: Let the threshold TA ← s(tf ′1, tf

′
2, . . . , tf

′
l, l), where tf ′j is the term frequency of tj in

the ith cell of the list Ltj , and l is the cell document length of the ith cell of the list Llen.
6: If CAN has k cells in it and TA < the lowest score in CAN , then

output CAN and end;
7: Else i ← i+ 1 and goto line 2.

Algorithm 2: Online Processing of TACell

has been touched previously. Besides CAN , we do not keep track of whether C has been touched
before. And, we can observe that a cell would be put in and pop out from CAN for at most once.

Second, in line 5 of Algorithm 2, (tf ′1, tf
′
2, . . . , tf

′
l, l) may not be the term frequency and cell

document length for the same cell. TA = s(tf ′1, tf
′
2, . . . , tf

′
l, l) is nothing but the upper bound of

relevance score of any cell untouched by the parallel scan. It is used as a threshold for early-stop.
From Theorem 4.1 in [9] and how the lists Lt’s and Llen are sorted in Algorithm 1, we have the

correctness of Algorithm 2.

Corrollary 1. Given any query q against the text cube of DB, Algorithm 2 outputs the top-k cells
with the highest relevance scores rel(q, C)’s (the ones in CAN), when it terminates.

Handling Extended Form of Keyword Query: TACell (Algorithm 1&2) can be easily adapted
to handle extended keyword query Q = (u1, . . . , un : q) with support threshold minsup specified.
The idea is as follows. In line 3, a cell is put into CAN if and only if it is feasible and has support
no less than minsup. Moreover, to speed up the processing, in each list, we can prune the first p cells
(i.e., start from the (p+ 1)th cell), if all of them have supports less than minsup.

Complexity: The TA algorithm (extended as Algorithm 2 in our problem) is proved to be opti-
mal [9] in the sense that any other algorithm based on Lt1 , . . . , Ltl , Llen cannot stop sooner than
Algorithm 2. On the other hand, the actual running time of Algorithm 2 depends on the input and
parameters (although in the worst case, all the entries in every sorted list need to be scanned).

Moreover, each iteration of Algorithm 2 (line 2-7) can be efficiently implemented: i) if random
accesses of sorted lists are supported, the relevance score of retrieved cells can be efficiently computed
(line 3); and CAN is maintained in a priority queue with the relevance scores of cells in it as the
keys, so any operation (e.g., adding a cell into and deleting the (k + 1)th cell from CAN) (line 3-4)
can be done in O(log k) time [6].

The bottleneck of the TACell algorithm is the space consumption. As discussed in Section 2.3,
the total number of non-empty cells in a text cube is huge. So each list of Lt’s and Llen is very long,
and it might be impossible to put all of them into the main memory if the database is large and the
dimensionality is high (recall there is a list Lt for each term in W). If these lists are stored in the
disk, accessing them (especially the random accesses) in the online processing could be expensive,
not to mention that time consumed in the preprocessing stage could also be long.

So in the next section, we aim to design an algorithm which is more efficient in the preprocessing.

4. Bound-checking Search Algorithm

Our second approach BoundS does not require as much preprocessing as TACell. In the prepro-
cessing, it computes nothing more than the inverted indexes for all terms w.r.t. the documents (not
the cells). In the online processing, given a keyword query q = {t1, t2, . . . , tl}, the top-k cells with
highest relevance scores are output. The basic ideas of online processing in BoundS are as follows.
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• Heuristic Ordering of Row Documents: First, we order the row documents (the ones in the
rows of the database, rather than the cell documents in the cells) in the descending order of
relevance scores (w.r.t. the given keyword query). We later process the documents in this
order. The intuition is: A highly relevant cell documents is likely to consist of highly relevant
row documents; so starting from highly relevant row documents, we can touch the highly
relevant cell documents sooner. We also note that the ordering of these row documents does
NOT affect the correctness of our algorithm introduced in this section.

• Partial Cells and Finalized Cells: Initially, all cell documents are unseen/empty. As we scan
each row document, it is concatenated to the cell documents of cells that contain this row.
Before all the row documents in a cell are concatenated to the cell document, this cell is said
to be partial; and after that, it is said to be finalized.

• Lower Bounds and Upper Bounds: When we scan the row documents, we want to estimate
the lower bounds and upper bounds of the relevance scores of the cells we have seen. For
each cell C, let tf(C)i be the term frequency of ti ∈ q in the current cell document of C. As
we scan more row documents, tf(C)i will possibly increase before C is finalized, so a lower
bound of rel(q, C) is: (assume that the cell document length |C[D]| is precomputed)

(3) rel(q, C) ≥ rel(q, C)lb = s(tf(C)1, tf(C)2, . . . , tf(C)l, |C[D]|).
Let Δi be the total term frequency of ti ∈ q in the unseen row documents. We assume in
the extreme case, all the rest instances of ti in the unseen row documents are in the cell C,
and from the monotonicity of s w.r.t. tf(C)i, we have an upper bound of rel(q, C) is:

(4) rel(q, C) ≤ rel(q, C)ub = s(tf(C)1 +Δ1, tf(C)2 +Δ2, . . . , tf(C)l +Δl, |C[D]|).
• Condition for Output: Note that rel(q, C)lb’s and rel(q, C)ub’s are updated as we scan row

documents. Suppose all the cells are maintained in the descending order of rel(q, C)lb, and
let θ be the kth highest value of rel(q, C)lb. A cell can be pruned if rel(q, C)ub ≤ θ. An
obvious condition for output the top-k is that all cells except the top-k ones can be pruned.

In the following part, we present our BoundS in Algorithm 3, and then prove its correctness.

1: (Heuristic Ordering)
Sort all the row documents in the descending order of relevance scores.

2: (Initialization)
Before scanning the row documents:

3: Let tf(C)i ← 0 for any cell C and any term ti ∈ q (all cells are unseen);
4: Let Δi ← the total term frequency of ti in all row documents;
5: (Scanning Row Documents)

For each row document r = (a1, a2, . . . , an, d) (in the descending order of relevance scores) do:
6: For each term ti ∈ q ∩ d do: (let δi be the term frequency of ti in d)
7: Δi ← Δi − δi;
8: For each cell C containing the row r do:
9: tf(C)i ← tf(C)i + δi;

10: For each cell C containing the row r, update its relevance lower bound rel(q, C)lb, as in (3);
11: (Bound Checking and Output Condition Checking)

Compute θ as the kth highest value of rel(q, C)lb;
12: Compute CAN as the top-k cells with highest values of rel(q, C)lb;
13: Let CAN ′ be the cells not in CAN and with rel(q, C)ub > θ (rel(q, C)ub is defined in (4));
14: If CAN ′ = ∅, then output CAN and end.

Algorithm 3: Bound-checking Search Algorithm

Starting from line 5, we scan the row documents one by one, and the lower bounds of relevance
scores are updated for each C containing the row r (line 10) after we update the term frequency
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tf(C)i’s (line 9). Note that when the dimensionality is n, there are 2n cells containing r. And, we
do not need to maintain the relevance lower bounds for the unseen cells.

Bound checking and output condition checking (line 11-14) are NOT executed in every iteration, as
computing the upper bounds of relevance scores in line 13 is expensive (line 11 can be implemented
using the famous Hoare’s selection algorithm [12] in linear time). So in the implementation, we
execute line 11-14 after, e.g., every 1000 iterations of line 6-10.

A relaxation of the output condition in line 14 is: instead of checking whether CAN ′ = ∅, we
check if |CAN ′| ≤ M for a threshold M = 10k; if yes, we compute the relevance score of cells in
CAN ∪ CAN ′ and sort them for finding the top-k.

Theorem 1. Given any query q against the text cube of DB, Algorithm 3 outputs the top-k cells
with the highest relevance scores rel(q, C)’s, when it terminates.

Proof. First, from the above analysis, we know lower bounds rel(q, C)lb and upper bounds rel(q, C)ub
of relevance scores are correctly computed as (3) and (4), respectively. Line 6-9 of Algorithm 3 update
the parameters of these bounds as required.

For the output condition, let θ∗ be the kth highest value of rel(q, C). From the definition, we know
θ ≤ θ∗ (θ is computed in line 11). So for a cell C, rel(q, C)ub ≤ θ implies rel(q, C) ≤ rel(q, C)ub ≤
θ ≤ θ∗, and such a cell can be pruned. CAN ′ keeps the cells that are cannot be pruned and not in
CAN . So if CAN ′ = ∅, then CAN is the real top-k and can be output.

We also need to prove this algorithm will eventually terminate. This is because, sooner or later,
all the cells will be finalized (i.e., all the row document in each of them have been concatenated to
the cell document), and the real top-k ones must be kept in CAN . Then the output condition is
satisfied and the top-k are output.

In the relaxed version, we compute and sort relevance scores of cells in CAN ∪ CAN ′; this is
because all the other cells can be pruned. �

Handling Extended Form of Keyword Query: To handle a extended keyword query Q =
(u1, u2, . . . , un : q) with support threshold minsup, we can simply modify line 8,10,12,13 in Algo-
rithm 3 to filter in only the feasible cells with support no less than minsup. Adding this step cannot
deteriorate the performance of BoundS, as we are now focusing on a smaller number of cells.

5. Experimental Study

In this section, we evaluate the effectiveness of the two algorithms using a real dataset.

5.1. Datasets and Environment Setup. A real dataset NASA’s ASRS database (Aviation Safety
Reporting System) [15] is used in the experiments. We select 10 dimensions in the database together
with the narrative information in each row to form a multidimensional text cube. The 10 dimensions
are: Year, State, Person, Weather, Light, Make/Model, Flight Phase, Primary Area, Event Anomaly,
Resolutory Action. There are two dimensions with too many empty (sensitive) values, so in the
efficiency testing below, we consider only 8 dimensions.

In this database, we have a total of 34873 documents (each associated with 10 dimensions). After
all the stop words are removed, there are 39453 terms remaining (the number of terms may affect
the preprocessing time of TACell). The text cube constructed based on this database has 2634490
nonempty cells. More information about this database can be found in [15].

A demo system (http://inextcube.cs.uiuc.edu/nasa/Default.aspx?func=topcell) is con-
structed to conduct the case study.

All the experiments were conducted on a PC running the Microsoft Windows XP SP2 Professional
OS, with a 2.5 GHz Intel Core 2 Duo T9300 CPU, 3.0 GB of RAM, and 150 GB hard drive. Our
algorithms were implemented in C/C++ and compiled on Microsoft Visual Studio 2008.
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q1 RWY EXCURSION
q2 DOWNWIND RWY
q3 SHUT DOWN ENG
q4 TOOK EVASIVE ACTION
q5 GEAR NOT RETRACT
q6 VISIBILITY LIGHT FOG
q7 SAW OTHER ACFT
q8 RADIO MIDAIR COLLISION
q9 SMOKE FROM ENG GEAR
q10 CALLBACK CONVERSATION REPORTER HAT

Table 2. Example queries

5.2. Efficiency in Preprocessing and Online Processing. We first test the efficiency of our
algorithms in the preprocessing and online processing stages using our real dataset ASRS. Table 2
shows ten example queries used in the following experiments.

5.2.1. Exp-I: Varying the Number (n) of Dimensions. In this experiment, we study the effect of
dimensionality on the efficiency of preprocessing and online processing of TACell and BoundS. We
pick the first 4,6,8 dimensions of the ASRS database, and construct the corresponding text cubes
with 4,6,8 dimensions, respectively. We report preprocessing time and online processing time for both
algorithms. For online processing time, we report the time of outputting top-10 answers (average
of the ten queries in Table 2). In all the following experiments, we report the preprocessing/online
processing time in terms of seconds, if not specified.

TACell
Dimensionality Sorting cells w.r.t. cell document length Sorting cells w.r.t. term frequency
8 82.41 0.982 × 39453 ≈ 10 hours
6 20.24 0.091 × 39453 ≈ 1 hour
4 5.60 0.003 × 39453 ≈ 2 minutes

BoundS
Dimensionality Computing cell document lengths
8 20.66
6 5.14
4 2.00

Table 3. Varying the Number (n) of Dimensions (preprocessing)

Dimensionality 8 6 4
TACell 24.90333333 1.036666667 0.02
BoundS 23.28333333 3.68 1

Table 4. Varying the Number (n) of Dimensions (online processing)

The result is reported in Table 3-4. As we expected, BoundS performs similarly as TACell in online
processing, but is much more efficient than TACell in preprocessing. Note that in the preprocessing
of TACell, sorting cells in the descending order of term frequency (line 1 of Algorithm 1–the third
column in Table 3) can also be done online; but with this modification, the online processing of
TACell will be much slower than BoundS.
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Threshold γ Time # doc accessed total # doc # cells accessed total # cells
5 54.87 14833.33 34873 1356582 2634490
10 23.28 6400 34873 611773.33 2634490
20 5.67 1666.67 34873 219973.33 2634490
40 5.66 1666.67 34873 219973.33 2634490

Table 5. Varying the Parameter in BoundS (online processing)

5.2.2. Exp-II: Varying the Parameter in BoundS. Recall a relaxation of the output condition in
line 14 of Algorithm 2 (BoundS) is: “instead of checking whether CAN ′ = ∅, we check if |CAN ′| ≤ M
for a threshold M = γ · k (we use γ = 10 in Exp-I); if yes, we compute the relevance score of cells
in CAN ∪CAN ′ and sort them for finding the top-k.”

It is also interesting to verify the effect of the threshold γ on the performance of BoundS. We
use the text cube with 8 dimensions and report the performance of BoundS for outputting top-10
results, while varying γ from 5 to 40. The result is reported in Table 5. It can be found that a
reasonably large γ allows BoundS to access less documents and less cells. However, too large γ (e.g.
> 20) does not help much while more time is needed for the sorting CAN ∪CAN ′. So γ = 10 or 20
is a proper threshold for outputting top-10 answers.

5.3. Case Study. In this section, we verify the effectiveness of our model and algorithms by showing
a few example queries and the meaningful retrieval results.

Figure 1. Query results of {“RWY”, “EXCURSION”} in our demo system

5.3.1. Runway Excursion. Suppose we want to find out under which condition, the ”runway excur-
sion” is likely to happen. With these two keywords typed into our system, the result is shown in
Figure 1 (a screen shot from our demo system–each row above represents a cell in the text cube).

The top-1 result implies that this situation is likely to happen in a rainy night, during the phase
of landing roll, when there is a critical equipment problem detected. Moreover, nearly all the top-10
results are related to “rain” or “night”. And, three of the top-5 results are related to some model of
“McDonnell Douglas”.

5.3.2. Fog Weather. We are also interested in what will happen in a fog weather. So we type three
keywords “visibility”, “light”, and “fog”, and the result is shown in Figure 2.

There are four observations from the top-5 results: i) The fog weather is usually reported in the
night (maybe because it is more critical in the night). ii) The fog weather is usually reported during
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Figure 2. Query results of {“VISIBILITY”, “LIGHT”, “FOG”} in our demo system

the early phase of flight, e.g., the “ground: taxi” phase. iii) The anomaly of excursion (either on the
runway or the taxiway) is usually caused by the fog weather. iv) The resolutory action to be taken
could be “rejected takeoff” (that might be the reason why fights are usually delayed by fog).

5.3.3. Gear Does Not Retract. Now we want to know more about the situation when the gear does
not retract. With the three keywords “gear”, “not”, and “retract” typed into our system, the result
is shown in Figure 3.

Figure 3. Query results of {“GEAR”, “NOT”, “RETRACT”} in our demo system

It can be observed from the results that this problem is usually discovered by the lead technician
during the ground maintenance phase, and sometimes, during the “climbout: takeoff” phase. It is
usually categorized as a critical equipment problem.

Besides the above three, there could be many interesting and meaningful cases unreported and
unobserved. We believe that domain experts can better utilize our system than us.

6. Related Work

Keyword Search in RDBMs. Although based on different applications and motivations, keyword
search in text cube is related to keyword search in RDBMSs, which has attracted a lot of attention
recently [5, 3, 30]. Most previous studies on keyword search in RDBMSs model the RDB as a graph
(tuples/tables as nodes, and foreign-key links as edges) and focus on finding minimal connected
tuple trees that contain all the keywords. They can be categorized into two types. The first type
uses SQL to find the connected trees [2, 14, 13, 11, 23, 24]. The second type materializes the RDB
graph and proposes algorithms to enumerate (top-k) subtrees in the graph [4, 7, 16, 19, 10]. Some
of these studies model the keyword search problem as the group (or direct) Steiner tree problem
[26] (an NP-hard problem), and propose parameterized algorithms to find the optimal top-1 answer
[7, 20], and top-k answers (or approximate top-k answers) [19].
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Different from these two types of works, two recent studies [21] and [25] find single-center sub-
graphs from the RDB graph, and multi-center induced subgraphs, respectively.

OLAP on Multidimensional Text Data. The text cube model is firstly proposed in [22]. [22]
mainly focuses on how to partially materialize inverted indexes and term frequency vectors in cells
of text cube, and how to support OLAP queries (not keyword query) efficiently in this partially-
materialized cube.

The topic cube model is proposed in [32]. Different from the text cube, the topic cube materializes
the language model of the aggregated document in each cell. Efficient algorithms are proposed to
compute this topic cube.

The techniques in [22] and [32] cannot be used directly to support keyword search, because the
information materialized in text cube (term frequencies and inverted indexes) and in topic cube
(language model) is query-independent.

Analysis of Text Data with Multiple Attributes. Besides [32], there are some other works on
analyzing text data with multiple attributes, e.g. [28, 29]; though they cannot be directly applied in
our keyword search problem (as the models they focus on are query-independent). [28] introduces
a generative model of entity relationships and their attributes which can simultaneously discovers
groups among the entities and topics among the corresponding textual attributes. [29] generalizes
techniques such as principal component analysis to text with heterogeneous attributes. Note that,
unlike our ranking techniques in the text cube model, [28] and [29] do not start with the aggregation
of entities/rows on subsets of dimensions (i.e., cells and cuboids).

Keyword-based Search and OLAP in Data Cube. [1] studies answering keyword queries on
RDB using minimal group-bys, which is the work most relevant to ours. For a keyword query against
a multidimensional text database, it aims to find the minimal cells containing all (or some of) the
query terms in the aggregated text data. “Minimal” here means there is no descendant of this cell
containing more query terms. But, it unnecessary that documents (cells) with more query terms
are more relevant. And, [1] does not score or rank the answers. So when the number of returned
answers is large (e.g., a thousand), it is difficult for the user to browse all the answers.

Another relevant work is keyword-driven analytical processing (KDAP) [31]. Motivated by an
application scenario different from [1] and our work, it proposes a two-phase framework for effective
OLAP based on user-given keyword queries. In the first phase, differentiate phase, candidate sub-
spaces (i.e., possible join paths between the dimensions and the facts in a data warehouse schema)
are generated and ranked based on the given keyword query. The user is asked to select one of
candidate subspaces. Then it comes to the second phase, explore phase. The system computes the
group-by aggregates from all qualified fact points. Group-by attributes are ranked, and an interface
is provided to explore detailed aggregation. KDAP supports interactive data exploration using key-
words. Candidate subspaces are output to disambiguate the keyword terms. But, [1] and our work
focus on efficient answering of keyword queries. Efficiency is not a major concern in KDAP ([31]
does not report any experiment on the efficiency).

Our previous work [8] solves the same problem as this work, but focuses on another relevance
scoring model, average model. As discussed in Section 1.1, the properties of this model are different
from the ones of the model, cell document model, we are focusing on in this work. The algorithms
designed in [8] cannot be applied in this work. Moreover, two models have different semantics, and
are appliable in different scenarios and different user preferences.

7. Conclusions and Future Work

In this paper, we study the problem of keyword-based top-k search in text cube (i.e., multidi-
mensional text data). Flexible query language and relevance scoring formula are developed based
on cell document model. We design two efficient approaches for this problem. The first one extends
the famous TA algorithm to our problem, which are efficient but requires a large amount of space in
the preprocessing. The second one is based on lower/upper bound estimation and checking to find
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the top-k cells before exploring the whole text cube. It is efficient in both preprocessing and online
processing of keyword queries. We conduct extensive performance studies to verify the effectiveness
of the proposed approaches.

An interesting direction for future work is to evaluate and compare the effectiveness of the two
models average model (studied in [8]) and cell document model (studied in this paper). For this
purpose, user-studies need to be conducted among domain experts. We also believe that domain
experts can better utilize our system than us. It is helpful to know which one performs better in
which situation, when our methods are applied in practice.
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PROBABILITY CALIBRATION BY THE MINIMUM AND MAXIMUM PROBABILITY 
SCORES IN ONE-CLASS BAYES LEARNING FOR ANOMALY DETECTION

GUICHONG LI1, NATHALIE JAPKOWICZ1, IAN HOFFMAN2, R. KURT UNGAR2

ABSTRACT. One-class Bayes learning such as one-class Naïve Bayes and one-class Bayesian 
Network employs Bayes learning to build a classifier on the positive class only for discriminating
the positive class and the negative class. It has been applied to anomaly detection for identifying 
abnormal behaviors that deviate from normal behaviors. Because one-class Bayes classifiers can 
produce probability score, which can be used for defining anomaly score for anomaly detection, 
they are preferable in many practical applications as compared with other one-class learning 
techniques. However, previously proposed one-class Bayes classifiers might suffer from poor
probability estimation when the negative training examples are unavailable. In this paper, we 
propose a new method to improve the probability estimation. The improved one-class Bayes 
classifiers can exhibits high performance as compared with previously proposed one-class Bayes 
classifiers according to our empirical results.

1. INTRODUCTION
One-class classification [9][22][23] is a technique that builds a classifier on the positive 
class only by learning the data characteristics and building the decision boundary to 
discriminate the positive class and the negative class. In general, this is achieved by 
deriving the induction algorithm from the corresponding supervised learning algorithm. 
For example, one-class Support Vector Machine (OCSVM) [22], which is derived in the 
way similar to that of the corresponding supervised SVM, learns the maximum margin 
between the positive examples and the origin.  

Unlike OCSVM one-class Bayes classification applies Bayes learning to build one-class 
classifiers. For example, one-class Naïve Bayes, which is derived from the corresponding 
supervised Naïve Bayes, builds one-class classifier by assuming conditional independences
among attributes given the class. One-class Bayesian Network, which is derived from the 
corresponding supervised Bayesian Network, builds a Bayesian Network on the positive 
class only by learning dependencies of attributes from the positive class.

One-class Bayes classification has been widely used for anomaly detection [3][19], e.g., 
network intrusion detection [7], disease outbreak [28], wireless sensor detecting [20], 
spam filtering [26], etc. The salient advantage is that using Bayes’ rule it can produce 
probability scores, which can be used for defining anomaly score as the degree in which a 
test example is detected to be an abnormal case for anomaly detection. 

The main issue is that previously proposed one-class Bayes learning techniques suffer 
from some limitations to perform probability estimation properly. For example, a simple 
one-class Naïve Bayes [25] directly applies the supervised Naïve Bayes to the positive class 
with the assumption that there is at least one negative case to estimate conditional 
probability given the negative class in nominal cases for one-class learning. There are at 
least three limitations behind this assumption: first, it is ineffective when an application is
involved with continuous variables; secondly, the assumption suffers from the curse of 
dimensionality because it is insufficient in high dimension; thirdly, the method is 
unreliable in one-class learning when it is dependent of the assumption about the 
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negative class distribution. For another example, Naïve Bayes Positive Class [9], which is 
an early proposed one-class Naïve Bayes, only performs classification without outputting 
class membership probability.

Similarly, in previous research [8][28], one-class Bayesian Network, which is built on 
the positive class by using the corresponding supervised discrete Bayesian Network, 
produces probability scores, which are not straightforward to be a proper class 
membership probability. As a result, one-class Bayes classifiers often suffer from poor 
performance for anomaly detection in complex applications. These limitations 
unexpectedly degrade the performance of one-class Bayes learning in many circumstances 
where probability estimation becomes crucial when the costs of false positive cases and 
false negative cases are different [13].

Although people have proposed some approaches for probability calibration in decision 
trees and Naïve Bayes [30]. However, these methods such as the binning method [30], 
which is associated with negative examples for Naïve Bayes, are inapplicable because there 
are positive training examples only in one-class learning.

In this paper, our main work is to propose a new method to improve one-class Bayes 
learning algorithms such that they can produce class membership probability properly. 
The main advantage is that it is independent of the negative class distribution for one-
class learning. It is more effective than previously proposed methods in practical 
applications consisting of either nominal or continuous variables. The improved one-class 
Bayes learning algorithms are compared with previously proposed one-class Bayes 
learning algorithms by conducting experiments on the benchmark datasets from the UCI 
repository [17] and two practical applications for justification.

2. PRELIMINARY

2.1   One-Class Learning and Anomaly Detection
The basic definition of one-class classification [23], also called single class learning [9][22], 
has been described in various works.

One-Class Learning (OCL) is essentially a two-class classification task which follows an 
underlying binary distribution. A One-Class (OC) classifier is built on the single known 
class to predict a new pattern as being a member of the known class or  not. If it is not 
predicted to be a member of the known class, then it is automatically assumed to belong 
to the unknown class whose distribution is different from that of the known class.

The single known class is also called the positive class or the target, normal class while 
the unknown class to be estimated is called the negative class or the outlier, novelty [21],
anomaly class [4] in different applications.

Anomaly detection uses techniques to find patterns in data that do not conform to 
expected behavior [3][4]. The goal can be achieved by producing an anomaly score [4], 
also called outlier factor [2] or outlying degree [31], which is the degree to which an 
instance belongs to an anomaly class. Given an instance x, the decision rule using the 
anomaly score for predicting its class label y is defined as 

�
�
� �

�
otherwise,,1

,)(,,0
)( 0

negative
sxreAnomalyScoifpositive

xy (2.1)

where s0 is the cutoff value of the anomaly score.
According to whether labeled data and unlabeled data are available in the training set, 

anomaly detection techniques consist of three categories: unsupervised learning, 
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supervised learning, and semi-supervised learning [19]. Semi-supervised learning applies 
to positive cases and an abundant unlabeled database. There is, however, an extreme case 
in which people can obtain as many reliable positive cases as they want while obtaining 
negative cases is impractical. Unlabeled data in such settings are more likely to be positive 
cases. Obtaining negative cases is, then, prohibitively expensive. In general, in such cases, 
a few labeled negative examples or artificial negative examples are what are used for 
validating the false negative rate during training [23]. This is the essential distinction 
between one-class learning (the latter) and semi-supervised learning (the former).

Our recent research has been focused on the application of machine learning 
techniques to detect nuclear emissions from medical isotope production facilities. The 
task consists of classifying spectra obtained from NaI scintillation detectors located at two 
different locations in the Ottawa valley. Medical isotope production at Chalk River 
Laboratories routinely results in emissions of various radioactive isotopes that can easily 
be observed in the 15 minute sample acquisition intervals of the NaI detectors. The task is 
to classify each spectra as having nuclear emissions present or not in the presence of a 
fluctuating background. The task is made more difficult in that spectra acquired during 
precipitation events dramatically alter the spectra from those typical of normal 
background and of emission events. For general environmental radiation monitoring the 
observations of the negative class, or spectra containing nuclear emissions superimposed 
on a natural background environment are difficult to obtain, while the observations of the 
positive class for normal background are common. Insufficient sampling of the negative 
class may not describe the underlying distribution properly and a model that relied on 
such data might lead to a failure to predict the abnormal environmental changes. In 
particular, labeling a sufficient number of abnormal cases can be unreliable and 
unrealistic. One-class learning techniques in machine learning are, therefore, necessary,
for this type of environmental radiation monitoring.

Empirically, two-class supervised learning is superior to one-class learning when the 
positive class and the negative class are properly defined [18][23][29]. One-class learning, 
also called Negative selection [32], can be harder than two-class learning due to higher 
sample complexity [23].

2.2   Bayes Learning
Given a training set with a probability distribution P, in supervised learning, Bayesian 
learning defines a classifier with a minimized error, i.e.,

yi = ci = )()(maxarg)|(maxarg xPc,xPxcP i
Cc

i
Cc ii 		

� 
 )()(maxarg ii
Cc

cPx|cP
i	

)()|,...,,(maxarg n21 ii
Cc

cPcaaaP
i 	

�
(2.2)

Naïve bayes (NB) [10] assumes the probabilities of attributes a1, a2, …, an to be 
conditionally independent given the class ci. Therefore, P(x|ci) from the right side of (2.2) 
becomes

�
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For discrete attribute aj, P(aj |ci) can be estimated by using Maximum Likelihood 
Estimation (MLE) with Laplace smooth, i.e.,
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n
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c
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�
�

1
)|(ˆ (2.4)
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where njkc is the number of occurrences of the attribute value ajk in the class c, and nc is the 
number of examples in the class c, and l is the number of distinct values in the attribute aj.

Smoothing in (2.4) assumes that each attribute value at least occurs one time in each 
class by following a Dirichlet prior distribution over aj. In particular, in one-class learning, 
it can avoid the result of zero for probability estimation when the negative class c = c1 is 
empty if the traditional supervised Naïve Bayes algorithm is used. In the same way, the 
prior probability for the negative class c1 is estimated by )2(1)(ˆ

1 �� mcP , where m is the 
total number of training examples. 

For continuous attributes aj, P(aj | ci) can be estimated by using Gaussian Estimator
(GE) or Parzen–window density estimator. The latter is defined as 
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where K(x) is a kernel function placed at each observation xj in the d-dimension feature 
space in the window with the width hn. However, the estimation of the parameters related 
to the negative class c1 in one-class learning becomes impossible if the traditional Naïve 
Bayes algorithm is used. To avoid this, P(aj | c1) can be assigned by a small real number
default for the computation of the product in (2.3).

A Bayesian Network (BN) [10][15] with a directed acyclic graph (DAG) describes a joint 
probability distribution P on a set of random variables X =�xj�, j = 1, …, n, by encoding 
independencies among variables X given their parents. Further, BN is used for 
classification by estimating the conditional probability p(x|ci) and P(ci) in (2.2). Given an 
observation x = (a1, …, an), p(x|ci) can be rewritten as

�
�

���
n

j
injjini caaaPcaaaPcxP

1
121 ),,,...,|()|,...,,()|( (2.6)

According to the independence assumptions encoded in DAG, (2.6) can be rewritten as

�
�
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ijjini caPcaaaPcxP

1
21 ),|()|,...,,()|( � (2.7)

where p(aj|�j, ci) (i.e., xj = aj) is a class conditional probability that represents that xj is
independent of nonparent nodes given its parent variables �j and the class ci.

In practice, the DAG G can be learned by using a hill climbing algorithm to search for 
the dependent relationships among variables. Because the optimized DAG is intractable
[5], the hill climbing with a restricted order of variables is usually applied to build DAG [6]. 
A more efficient technique for building DAG is to find a maximal weighted span tree [15]. 

3. RELATED WORK
Bayesian Learning such as Naïve Bayes and Bayesian Network has been used for one-class 
learning [9][20][28]. The main idea is that a Bayes classifier can produce the probability 
score of a given input for the positive class. Given a threshold, the input belongs to the 
positive class if the estimated probability of the input is higher than the threshold. 
Otherwise, it is regarded as a negative case.

We introduce two kinds of one-class Bayes learning: one-class Naïve Bayes such as 
Naïve Bayes Postive Class (NBPC) [9], and One-Class Bayesian Network (OCBN)[28]. They 
are derived from the corresponding Bayes classifiers for one-class learning.
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3.1   One-class Naïve Bayes
Naïve Bayes Positive Class (NBPC) algorithm is a one-class Naïve Bayes method, which is 
derived from the original supervised Naïve Bayes algorithm [9]. Notice that we can only 
estimate the prior probability of the positive class because the negative class is not in the 
training set. Using the traditional Naïve Bayes inductive algorithm, the prior probability 
P(c0), defined in (2.2), of the positive class [9] is estimated as a fraction close to 1 by 
assuming at least one negative case for Laplace smooth. Further, because only positive 
cases are available in the training set, conditional probabilities of nominal attributes given 
the negative class can be estimated by assuming at least one negative case for Laplace 
smooth, as described in (2.4).

During the training period, the parameters of NBPC are calculated as in the traditional 
Naïve Bayes except an additional parameter, which is called the target rejection threshold
�, and is calculated in (3.1). For testing, a new instance is identified as positive if the 
probability output by the NBPC is greater than or equal to �. Otherwise, it is a negative 
case.

� = min{p(c0| )(kx )} = min{p(c0) ��
�

n

j

k
j cap

1
0

)( )|( } (3.1)

where )(kx = ( )(
1

ka , …, )(k
na )	 n

mD , k = 1, ..., m, and n
mD is a training set with n attributes and  

m training examples. Therefore, NBPC does not produce anomaly score but classification.
A simple one-class Naïve Bayes [25], which is also called the simple OCNB, actually is a 

Naïve Bayes built on the positive class only. It is similar to NBPC except the target 
rejection threshold. That is, it performs Laplace smooth by assuming at least one case to 
estimate the prior probability p(ci) and conditional probability p(aj | ci) for nominal 
attributes, as discussed in Section 2.2.

3.2   One Class Bayesian Network
A Bayesian Network (BN) [6] is a probability model that represents a joint probability 
distribution with a direct graph. The graphical structure describes the conditional 
dependences among attributes while it also encodes the conditional independences of the
attributes. It can describe complex relationships between attributes instead of using the 
conditional independence assumption of one-class Naïve Bayes.

Discrete Bayesian Networks have been used for anomaly detection in the multi-class 
setting [8][28]. This corresponding algorithm for one-class learning is called one-class 
Bayesian Network (OCBN), which is expected to be better than OCNB in some complex 
learning tasks because it can learn the dependencies of attributes.

During training, the Bayesian Network structure in the OCBN can also be built by using 
a hill climbing algorithm with a restricted order of variables [6] as in the original BN; the 
parameters for the conditional probability tables (CPTs) related to the negative class is 
initialized by using Laplace smooth as in NB by assuming that one nominal attribute value
at least happen one time in training examples. For testing, the decision rule defined in 
(2.2) is used for predicting the test example. As we can see, this one-class Bayesian 
Network is also called the simple OCBN similar to the simple OCNB because it is just a BN 
built on the positive class only. 

As we can see, both the simple OCNB and the simple OCBN are dependent of the 
negative class due to their assumptions about the negative distribution while NBPC does 
not perform probability estimation. They are only applicable for nominal cases.
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Further, in previous research, to improve the probability estimation in Naïve Bayes for 
supervised learning, the binning method [30] is first to sort training examples according to 
probability scores and dividing the sorted set into 10 bins with the lower and upper 
boundary during the training time. For testing, a new example x is placed in a bin b
according to its score. The corrected probability P(ci|x) = in� / n� , where n� is the number 
of training examples in b; in� is the number of training examples that actually belongs to 
the class i in b. However, the binning method is inapplicable in one-class Bayes learning 
because there are only positive examples for training.

4. PROBABILITY ESTIMATION AND ANOMALY SCORE
Although classification is required, the probability estimation of the class membership of a 
new instance is more critical in some circumstances. In particular, if the costs of 
misclassifications for the false positive and false negative cases are different, the 
probability estimation helps Cost-Sensitive learning [11][13][30]. This is often true when 
applying one-class learning to many practical applications. 

In general, an anomaly detection technique always outputs the anomaly score for 
decision, as defined in (2.1). If the anomaly score falls within [0, 1], it can be easily 
transformed into the class membership probability by defining p(c1|x) = AnomalyScore(x)
and p(c0|x) = 1 – p(c1|x). Both can be mutually exchanged, and can be directly used for 
classification. 

The main issue is that some previously proposed one-class Bayes algorithms do not 
perform probability estimation properly. For example, in NBPC, although the decision rule 
is defined according to �  in (3.1), the estimated probability P(c0|x) in (2.2) is not regarded 
as a proper class membership probability while it becomes a probability score. Because the 
negative class is unavailable in the training set, the prior class probability P(ci) and the 
marginal prior probability P(x) in (2.2) cannot be estimated properly from the data. Note
that in supervised learning the marginal prior probability P(x) is omitted. 

The probability estimation for class membership is not straightforward from (2.2) when 
negative training examples are unavailable. In the simple one-class Naïve Bayes, as 
discussed in Section 3.1, the assumption that there is at least one negative case for the 
probability estimation is unreliable in practice. As a result, it is not expected that the 
simple one-class Naïve Bayes performs probability estimation properly. No anomaly score 
is expected in these one-class Bayes approaches for anomaly detection.

When the minimum probability score in (3.1) is defined as the cutoff � for decision, we 
also can obtain the maximum probability score �̂ = max�p(c0|x(k))�, k = 1, …, m. As a result, 
we can define a new method for probability estimation in one-class Naïve Bayes, e.g., 
NBPC, according to� and �̂ , in (4.1).

� � � �
� ��
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�������
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where a sufficiently small number, e.g., � = 0.001, is given; and p(c0|x) is a probability 
score; )|(ˆ 0 xcp is the resulting class membership probability for the positive class, and

)|(ˆ 0 xcp = 0.5 + � if p(c0|x) = �; )|(ˆ 1 xcp = 1 – )|(ˆ 0 xcp , that is, 0 � )|(ˆ xcp i � 1, and the sum is 
equal to 1. In general, � is nonzero and �̂ > �. To avoid an invalid denominator due to �̂ = �,
the denominator is added with �. This extreme case also means that the classifier performs
poor probability estimation. As we can see, )|(ˆ 0 xcp is monotonic increasing with the 
probability score p(c0|x).
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The minimum probability score � and the maximum probability score �̂ are useful for 
probability calibration because one cannot expect that the probability scores p(c0|x) fully 
spread over the interval [0, 1]. )|(ˆ 0 xcp , defined in (4.1), is a probability function with 
respect to the probability score p(c0|x) and two related parameters, �̂ and �, i.e., )|(ˆ 0 xcp =
f(p(c0|x), �̂ , �). )|(ˆ xcp i , i = 0, 1, can be properly used as class membership probabilities.
Similarly, the probability estimation method in OCBN can be defined as in (4.1).

It can be easily seen that the probability function, defined in (4.1), is independent of the 
negative class distribution. This property is more important when negative examples are 
unavailable because they are too prohibitively expensive to obtain in some cases. The 
critical issue is that �, as defined in (3.1), might be inappropriate for target rejection in 
noise circumstances. In one-class learning, the target rejection rate r is defined as the 
proportion of training examples that will be classified as the negative class. Therefore, (3.1)
can be rewritten as 

� = min(p(c0|x(k)), r�m), k = 1, …, m (4.2)
where min(P, l) function returns the lth minimum value of P.

5. IMPROVED METHOD
According to the above discussion, we propose OneClassNaiveBayes (OCBN) and 
OneClassBayesNet (OCBN) algorithms, which improve previously proposed one-class 
Naïve Bayes and one-class Bayesian Network algorithms, respectively. The algorithms are 
derived from the traditional Naive Bayes and Bayesian Network. During the training time, 
the most parameters are calculated in the same way as in the original supervised methods 

OneClassNaiveBayes algorithm
Input D: training set

r: target rejection rate
Output OCBN: OneClassNaiveBayes 

classifier
1 assuming c0: target class, c1:

the negative class
2 calculate p(ak|c0), p(c0),

where k = 0,…,l-1; l: the 
number of attribute; MLE and GE 
for nominal and continuous 
attributes

3 � = min(p(c0|xi, r�m) in (4.2)
4 �̂ = max{p(c0|xi}, i = 0,…,m-1
5 return OCNB(p(aj|c0), p(c0), �,

�̂ ), j = 0,…, k-1,
end OCNB
Proc test(x)
6 get p(x|c0), p(c0) from 

p(ak|c0) in OCNB
7 calculate )|(ˆ 0 xcp , )|(ˆ 1 xcp =1-

)|(ˆ 0 xcp , according to (4.1)
8 return cj = )|(ˆmaxarg xcp j

j
,j=0,1

end test

OneClassBayesNet algorithm
Input D: training set

r: target rejection rate
Output OCBN: OneClassNaiveBayes 
classifier

1 assuming c0: target class, c1:
the negative class

2 learning Bayesian Nework 
structure

3 calculate p(ak|Pk,c0), p(c0),
where k = 0,…,l-1; l: the 
number of attribute; Pk is the 
parents of ak

4 � = min(p(c0|xi, r�m) in (4.2)
5 �̂ = max{p(c0|xi)}, i = 0,…,m-1
6 return OCBN(p(ak|Pk,c0), p(c0),

�, �̂ ), k = 0,…, l-1,
end OCBN
Proc test(x)
7 get p(x|c0), p(c0) from p(ak|Pk,

c0) in OCBN
8 calculate )|(ˆ 0 xcp , )|(ˆ 1 xcp =1-

)|(ˆ 0 xcp , according to (4.1)
9 return cj = )|(ˆmaxarg xcp j

j
,j=0,1

end test
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except two additional parameters described as above. OCBN and OCBN will learn two 
additional parameters: � and �̂ , as defined in Steps 3, 4 of the OCNB algorithm and Steps 
4, 5 of the OCBN algorithm, and use the proposed method for probability estimation in 
their test procedures.

As in the original Naive Bayes, the parameters of OCNB can be calculated by Gaussian 
estimator or Parzen-window density estimator for continuous attributes. It can be also 
built by discretizing continuous attributes. Further, as in the original BN, OCBN can be 
also built by a hill climbing algorithm with a restricted order on attributes for searching its 
network structure [6], or by learning a maximum weight span tree for the structure [15].

The main concern is that the discretization cannot be achieved by using the supervised 
method based on entropy [14] because no negative examples are available. Therefore, the 
10-bined unsupervised method is used for discretization in the discrete OCBN. 

6. EXPERIMENTS

6.1   Datasets
We chose 30 benchmark datasets from the UCI repository [17], and two real datasets: 
Ozone Level Detection [1][33] and OttawaRPB for ozone level detection and the 
environment radiation monitoring, respectively. Because the benchmark datasets have 
been built in high quality for supervised learning, and they often contain continuous and 
nominal attributes, this provides us to evaluate the new method for one-class Bayes 
learning on various domains. The characteristics of all datasets are described in Table 1. 

Ozone Level Detection datasets (the eight hour peak set and one hour peak set) were 
collected from 1998 to 2004 at the Houston, Galveston, and Brazoria area. One hour peak 
set (Ozone in Table 1) is chosen by ignoring the date in our experiment. In the dataset, the 
72 continuous attributes contains various measures of air pollutant and meteorological 
information for detecting ozone days. There are 73 ozone days labeled as the negative 
class in the class attribute in the dataset while the majority class consists of positive 
examples.

The OttawaRPB for the environmental radiation monitoring data is a complex domain 
consisting of 512 continuous attributes, the class attribute, and 2914 labeled instances with 
only 129 negative examples. OttawaRPB is described in Section 2.

For experiments on the benchmark datasets, each dataset was transformed into a 
binary domain consisting of the majority class and the rest of the data in advance of 
training time. 

All missing values were replaced with their modes and means for nominal attributes 
and continuous attributes, respectively, by using the unsupervised ReplaceMissingValues 
method in Weka [27] ahead of training. During training, each one-class classifier is built 
on only the majority class as the positive class (target class) of the binary domain. The 
majority class in the binary domain might be different from that one in the original 
dataset. Therefore, the positive class is always larger than the negative class, as shown in 
Table 1. As we can see, they are generally class imbalanced. The largest ratio of the positive 
class to the negative class is 33.74:1 in the Ozone case.

6.2   Algorithms for comparison
We used the Weka data mining and machine learning package [27] to implement two one-
class Bayes algorithms: one-class Naïve Bayes (OCNB) and one-class Bayesian Network 

167

2010 Conference on Intelligent Data Understanding



(OCBN) by improving the previous one-class Naïve Bayes approaches such as NBPC and 
the simple one-class NB for probability estimation. The improved OCNBs and improved 
OCBNs can be adapted with various settings for OCL, as described in Table 2. 
Table 1. Datasets in our experiments. The 30 benchmark datasets from the UCI repository, and two 
real datasets: ozone level detection (Ozone) and ottawaRPB for practical applications. #maj: the size 
of the majority class in the original dataset; #pos is the size of the majority class in the binary class; 
the ratio is given by #pos / (#ins-#pos).

Datasets #attr #ins #c #maj #pos ratio Datasets #attr #ins #c #maj #pos ratio
Anneal 39 898 6 684 684 3.20 Letter 17 20000 26 813 19187 23.60

Audiology 70 226 24 57 169 2.96 Lymph 19 148 4 81 81 1.21
Autos 26 205 6 67 138 2.06 Mushroom 23 8124 2 4208 4208 1.07

Balance-s 5 625 3 288 337 1.17 P-tumor 18 339 21 84 255 3.04
Breast-w 10 699 2 458 458 1.90 Segment 20 2310 7 330 1980 6.00

Colic 23 368 2 232 232 1.71 Sick 30 3772 2 3541 3541 15.33
Credit-a 16 690 2 383 383 1.25 Sonar 61 208 2 111 111 1.14
Diabetes 9 768 2 500 500 1.87 Soybean 36 683 18 92 591 6.42

Glass 10 214 6 76 138 1.82 Splice 62 3190 3 1655 1655 1.08
Heart-s 14 270 2 150 150 1.25 Vehicle 19 846 4 218 628 2.88

Hepatitis 20 155 2 123 123 3.84 Vote 17 435 2 267 267 1.59
Hypothyroid 30 3772 4 3481 3481 11.96 Vowel 14 990 11 90 900 10.00
Ionosphere 35 351 2 225 225 1.79 Waveform 41 5000 3 1692 3308 1.96

Iris 5 150 3 50 100 2.00 Zoo 18 101 7 41 60 1.46
Kr-vs-kp 37 3196 2 1669 1669 1.09 Ozone 73 2536 2 2463 2463 33.74

Labor 17 57 2 37 37 1.85 OttawaRPB 513 2941 2 2812 2812 21.80
For example, OCNB-Parzen is an improved OCNB with the Parzen-window density 

estimator. OCNB-SimpleGaussian, OCNB-SimpleParzen, and OCNB-SimpleDiscretize are 
actually the traditional supervised Naïve Bayes classifiers directly built on the positive 
class only. They perform as the simple one-class Naïve Bayes with different settings. Note
that the improved OCNB or the simple OCNB with different settings produces the same 
results on nominal domains. In the OCBN-K2, the Bayesian structure is learned by using a 
hill climbing algorithm with a restricted order of variables [6], and the conditional 
probability tables are directly estimated from data. Our purpose is to compare the 
improved OCNB and improved OCBN with simple Bayesian learning methods for one-
class learning. Finally, we also show two the original Naïve Bayes and Bayesian Network 
for supervised learning on the two practical applications. 

The most parameters in OCNB or OCBN are the same as those of NB or BN, 
respectively, except the target rejection rate (TRR). The improved OCNB and the 
improved OCBN need to adjust the TRR for training the related minimum probability 
score �. On the other hand, OCBN and BN have two main parameters for training: the 
estimator for conditional probability tables (CPTs) and the search algorithm for the 
network structure. The simple estimator is chosen for estimating the CPTs directly from 
data while several typical search algorithms such as K2, Hill Climbing, and TAN [15] are 
set in our experiments, as described in Table 2.

For experiments over the 30 benchmark datasets with small feature space (� 70), OCNB 
and OCBN are set with a default for TRR = 0.0, i.e., all the positive examples are accepted 
as true positive cases. For experiments over the two large datasets with large feature space
(> 70), we conducted experiments with different TRR settings for optimization.
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Table 2. Algorithms used in experiments: One-class Naïve Bayes (OCNB), one-class Bayesian 
Network (OCBN) with various settings for one-class Bayes learning; Naïve Bayes (NB) and 
Bayesian Network (BN) with defaults in Weka for supervised learning.

Algorithms Descriptions
OCNB-Gaussian Improved one-class Naïve Bayes with Gaussian estimator
OCNB-Parzen Improved one-class Naïve Bayes with Parzen-window density estimator
OCNB-Discretize Improved one-class Naïve Bayes with discretization
OCNB-SimpleGaussian Naïve Bayes with Gaussian Estimator for OCL
OCNB-SimpleParzen Naïve Bayes with Parzen-window density estimator for OCL
OCNB-SimpleDiscretize Naïve Bayes with discretization for OCL
OCBN-K2 Improved one-class Bayesian Network with a restricted order of variables
OCBN-Hill Improved one-class Bayesian Network with Hill climbing search
OCBN-TAN Improved one-class Bayesian network with TAN search
OCBN-SimpleK2 Bayesian Network with a restricted order of variables for OCL
OCBN-SimpleHill Bayesian Network with Hill climbing search for OCL
OCBN-SimpleTAN Bayesian Network with TAN search [15] for OCL
NB Naïve Bayes with default Gaussian estimator
BN Bayesian Network with default K2 search

6.3   Results
Our experiments were conducted by running 10 times the 10-cross validations. In each 
run, the dataset is separated into 10 fold by stratified sampling. In turn, one fold is held 
out for test, other folds are used for training. However, one-class classifiers were built on 
only the positive class in the training set while two-class classifiers were built on the whole 
training set containing the positive class and negative class. Therefore, the simple OCNB 
and the simple OCBN are built on the different portion of the training set as compared 
with the supervised NB and BN. The resulting classifiers were tested on the test set. 

The area under ROC curve (AUC) [16] is used for evaluation in our experiments. The 
AUC of a classifier is equivalent to the probability that the classifier will rank a randomly 
chosen positive instance higher than a randomly chosen negative instance [12][16]. The 
AUC’s salient advantage is to evaluate performance without specifying a threshold. It has 
been suggested as the preferred metric rather than the misclassification rate to evaluate a 
model [12]. In our experiments, the AUCs obtained in the 10-cross validations are averaged 
for evaluation.

To evaluate the proposed method for probability estimation in one-class Bayes 
learning, we first analyze relative performance with respect to AUC between the improved 
OCNBs and the simple OCNBs. This can be done first by using the ratio of OCNB-
SimpleDiscretize’s AUC to OCNB-Parzen’s AUC, as shown in Figure 1, where the diagonal 
line reflects the relative performance of OCNB-SimpleDiscretize against the compared 
algorithm; the vertical dotted line at x = 1.0 reflects the relative performance of OCNB-
SimpleDiscretize against OCNB-Parzen; the horizontal dotted line at y = 1.0 reflects the 
relative performance of OCNB-Parzen against the compared algorithm.

The vertical dotted lines at x = 1.0 from (a) to (d) in Figure 1 only reflects the relative 
performance of OCNB-SimpleDiscretize against OCNB-Parzen. As we can see, OCNB-
Parzen outperforms OCNB-SimpleDiscretize in most cases because most points are 
located at the left side of the vertical line. The horizontal dotted lines at y = 1.0 from (a) to 
(d) reflect the relative performance of OCNB-Parzen against the compared algorithm. As 
we can see, the OCNB-Parzen outperforms other OCNB in most cases because most 
points are below these horizontal lines. In particular, the improved OCNB-Parzen is much 
more successful than the OCNB-SimpleParzen for one-class Bayes learning over various 
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domains, as show in (d). In addition, the improved OCNB-Gaussian is better than the 
OCNB-SimpleGaussian on average according to (a) and (c) because more points are below 
the horizontal dotted line at y = 1.0 in (c) than in (a); according to (b), OCNB-Discretize is 
competitive with OCNB-SimpleDiscretize in most cases because most points lie on the 
diagonal line. In a word, the improved OCNB is more successful than simple OCNB for 
one-class learning over various domains, and the improved OCNB-Parzen is best among 
all OCNB.

Similarly, we show the relative performance between the improved OCBNs and simple 
OCBNs by using the ratio of OCBN-SimpleTAN’s AUC to OCBN-TAN’s AUC in Figure 2. 
From the vertical dotted lines at x = 1.0, OCBN-SimpleTAN are tied with OCBN-TAN in 
most cases because most points lie on the vertical lines. However, OCBN-TAN 
outperforms other improved OCBNs and other simple OCBNs because most points are 
below the horizontal lines at y = 1.0 from (a) to (d). In addition, because most points
crossing those diagonal lines are located toward the right-bottom corner, this shows that 
the OCBN-SimpleTAN is superior to other OCBNs in most cases except the improved 
OCBN-TAN. In a word, the improved OCBN-TAN and OCBN-SimpleTAN are better than 
other OCBN while both are tied with each other in most cases. 

Experimental results for the comparison between two one-class Bayes methods: OCNB 
and OCBN are shown in Figure 3 by their relative performances between OCBN-TAN and 
OCNB-Parzen, OCBN-TAN and other OCNB classifiers. It is easy to see that OCBN 
outperforms OCNB in most cases from the 30 benchmark datasets in the current settings. 

We conducted the paired t-test for comparison between the improved one-class Bayes 
learning methods and all simply one-class Bayes learning methods. The results were 
summarized in Table 3.  As a result, the improved OCBN-TAN seems not to exhibit super 
performance as compared with the simple OCBN-TAN while OCNB-Parzen and OCBN-
TAN are better than other related simple one-class Bayes learning methods, as shown in 

Figure 1. Relative perormance between OCNB-Parzen and other one-class Naïve Bayes classifiers.

(a) (b)

(c) (d)
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Figure 2. Relative performance between OCBN-TAN and other one-class Bayesian Network.

Figure 3. Relative peformance between improved OCBN-TAN and improved OCNBs (OCNB-Gaussian, 
OCNB-Parzen, and OCNB-Discretize).

Table 3. Summary of results for statistical tests between the improved OCNB-Parzen
and all simple OCNB methods, and between the improved OCBN-TAN and all simple 
OCBN methods; the numbers in the string “.\.\” represent the chances of wins, ties, and 
loses of the improve one-class Bayes methods against the compared simple one-class 
Bayes methods.

OCNB-SimpleGaussian OCNB-SimpleDiscrete OCNB-SimpleParzen NB (Gaussian)
OCNB-Parzen 19\13\0 13\17\2 19\13\0 1\3\28

OCBN-SimpleK2 OCBN-SimpleHill OCNB-SimpleTAN BN-K2
OCBN-TAN 16\12\4 18\10\4 1\30\1 1\5\26

Table 3. The same empirical result between the OCNB-Discrete and the OCNB-
SimpleDiscrete can be found in (b) of Figure 2. The assumption in simple OCBNs might 
help one-class Bayes learning in nominal cases. 

(c) (d)

(a) (b)
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Our main observation is that the default TRR in the improved OCNB and the improved 
OCBN might not be proper in a noise circumstance. Tuning TRR can help learn an 
optimal one-class Bayes classifier. Instead of tuning TRR for training optimal OCNB and 
OCBN over the 30 benchmark datasets, we show experimental results on two real datasets: 
Ozone and OttawaRPB by tuning the TRR in Figure 4, where from (a) to (c) we drawn 
ROC curves for OCNB-Parzen, OCNB-SimpleDisretize (OCNB-S-D), OCBN-TAN, OCBN-
SimpleTAN (OCBN-S-TAN), NB, and BN, which were built on Ozone. 

In an ROC space, the point (0, 1) is denoted as the best performance while the diagonal 
line from the left bottom to the top right corners is denoted as a random classifier. The 
closer the curve is to the upper left corner, the better the classifier performs. 

As we can see, when the TRR is set to the default 0.0 in (a) of Figure 4, two improved 
one-class Bayes classifiers: OCNB-Parzen and OCBN-TAN do not exhibit super 
performance while OCBN-S-D is worse than a random classifier. When TRR is set from 0.1 
to 0.5, OCNB-Parzen is much optimized while OCBN-TAN unexpectedly degrades, and 
OCNB-S-D remains as the worst case and OCBN-S-TAN remains as a random classifier
(no TRR). Further, experimental results on OttawaRPB by tuning optimal TRR is shown 
from (d) to (f) of Figure 4, where two improved one-class Bayes learning methods: OCNB-
Parzen and OCBN-TAN are quite improved while two simple one-class Bayes learning 
methods: OCNB-S-D and OCBN-S-TAN perform as random classifiers (no TRR). 

These observations show that the assumption of simple one-class Bayes learning has a 
restricted benefit for one-class learning. The improved method (e.g., OCBN-Parzen) can 
be better than the previously proposed simple one-class Bayes learning for probability 
estimation (e.g., OCBN-S-D) by tuning the TRR. However, from Figure 4, one-class Bayes 
classifiers such as OCNB-Parzen and OCBN-TAN are still inferior to the corresponding 
supervised learning methods, i.e., NB and BN, in two practical applications. 

7. CONCLUSION AND FUTURE WORK
One-class Bayes learning consists of one-class Naïve Bayes and one-class Bayesian 
Network. It has been recognized that previously proposed one-class Bayes learning 
methods such as the simple one-class Naïve Bayes suffer from some limitations with the 
assumption that each nominal attribute value occurs at least one time in the underlying 
negative class distribution for probability estimation. We claim that it is ineffective on the 
domains with continuous attributes, and it is insufficient for probability estimation if the 
negative class distribution behaves complex, and the dependence on the negative class 
distribution is unreliable when the negative examples are unavailable. Further, the 
previous one-class Bayes method NBPC does not perform the probability estimation. 

In this paper, we improve one-class Bayes learning by developing a new method for the 
probability calibration. The method learns the minimum probability score according to 
the target rejection rate, and the maximum probability score during the training time to 
help the probability estimation. The main advantages behind this new method are that it 
is independent of the negative class distribution and effective on various domains 
containing either nominal attributes or continuous attributes. 

Our experimental results show that improved methods exhibit higher performance 
than simple methods on various domains containing nominal attribute and continuous 
attributes in most cases. In particular, in two practical applications, the improved one-
class Bayes learning method is superior to simple one-class Bayes methods. This justifies 
the new probability calibration method for one-class Bayes learning. 
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When the improved one-class Bayes methods exhibit more successes than the previous 
one-class Bayes classifiers in practical applications, the main issue is that the current one-
class Bayes learning methods cannot address a complex domain if there is a mixture 
probability model in the domain because they only build single classifier on the domain. 
Our study makes it possible to further improve one-class Bayes learning by assuming a 
possible Meta learning technique (like E2, an ensemble of positive example-based learning 
[26] or combining one-class classifiers [24]) such that one-class Bayes classifiers can be 
competitive with the traditional supervised learning methods for anomaly detection.
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Figure 4. ROC curves of two improved Bayes classifiers: OCNB-Parzen and OCBN-TAN, and two 
simple one-class Bayes classifiers: OCNB-S-D and OCBN-S-TAN, and two supervised Bayes classifiers: 
NB and BN on Ozone and OttawaRPB. The figures from (a) to (c) are ROC curves of the classifiers 
built on Ozone with different TRRs; the figures from (d) to (f) are ROC curves of the classifiers built 
on OttawaRPB with different TRRs.
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A COMPARATIVE STUDY OF ALGORITHMS FOR LAND COVER CHANGE

SHYAM BORIAH*, VARUN MITHAL*, ASHISH GARG*, VIPIN KUMAR*, MICHAEL STEINBACH*,
CHRIS POTTER**, AND STEVE KLOOSTER***

Abstract. Ecosystem-related observations from remote sensors on satellites offer huge potential
for understanding the location and extent of global land cover change. This paper presents a
comparative study of three time series based algorithms for detecting changes in land cover. The
techniques are evaluated quantitatively using forest fire ground truth from the state of California
for 2000–2009. On relatively high quality data sets, all three schemes perform reasonably well,
but their ability to handle noise and natural variability in the vegetation data differs dramatically.
In particular, one of the algorithms significantly outperforms the other two since it accounts for
variability in the time series.

1. Introduction

The climate and earth sciences have recently undergone a rapid transformation from a data-
poor to a data-rich environment. In particular, climate and ecosystem related observations from
remote sensors on satellites, as well as outputs of climate or earth system models from large-scale
computational platforms, provide terabytes of temporal, spatial and spatio-temporal data. These
massive and information-rich datasets offer huge potential for advancing the science of land cover
change, climate change and anthropogenic impacts.

One important area where remote sensing data can play a key role is in the study of land cover
change. Specifically, the conversion of natural land cover into human-dominated cover types con-
tinues to be a change of global proportions with many unknown environmental consequences. In
addition, being able to assess the carbon risk of changes in forest cover is of critical importance for
both economic and scientific reasons. In fact, changes in forests account for as much as 20% of the
greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions.

Thus, there is a need in the earth science domain to systematically study land cover change in
order to understand its impact on local climate, radiation balance, biogeochemistry, hydrology, and
the diversity and abundance of terrestrial species. Land cover conversions include tree harvests
in forested regions, urbanization, and agricultural intensification in former woodland and natural
grassland areas. These types of conversions also have significant public policy implications due to
issues such as water supply management and atmospheric CO2 output. In spite of the importance of
this problem and the considerable advances made over the last few years in high-resolution satellite
data, data mining, and online mapping tools and services, end users still lack practical tools to help
them manage and transform this data into actionable knowledge of changes in forest ecosystems
that can be used for decision making and policy planning purposes.

For ecosystem data, change detection is the process of identifying changes in the cover type and/or
human use of the Earth. Examples include the conversion of forested land to barren land (possibly
due to deforestation or a fire), grasslands to golf courses and farmland to housing developments.
There is a large body of research in change detection using remotely sensed image data. Most pre-
vious change detection studies primarily rely on examining differences between two or more satellite
images acquired on different dates [9]. However, these techniques have well-known limitations (as
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** NASA Ames Research Center, chris.potter@nasa.gov
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discussed in Section 2) and are suitable for use in relatively small areas or to describe changes in
specific categories of interest [8, 13, 20, 21] because they are inherently unsuited for global analysis.

More recently, several time series change detection techniques have been explored in the context of
land cover change detection. Lunetta et al. [17] presented a change detection study that uses MODIS
data and evaluated its performance for identifying land cover change in North Carolina. Kucera
et al. [15] describe the use of CUSUM for land cover change detection. However, no qualitative
or quantitative evaluation was performed. The Recursive Merging algorithm proposed by Boriah
et al. [5] follows a segmentation approach to the time series change detection problem and takes the
characteristics of ecosystem data into account. They provide a qualitative evaluation using MODIS
EVI (Enhanced Vegetation Index) data for the state of California and MODIS FPAR (Fraction of
Photosynthetically Active Radiation) data globally.

In this paper, we investigate the performance of these three techniques and their variations for
the task of land cover change detection. In particular, we present a quantitative assessment of these
techniques using the forest fire ground truth data in California and analyze the key characteristics
of each technique that impact their suitability for land cover change detection problem.

1.1. Key Contributions. The key contributions of this paper are as follows:

• We systematically study the three algorithms (and their variations) for land cover change
detection. We quantitatively evaluate their performance using forest fire ground truth from
2000—2009 for the state of California.

• We compare the three algorithms and their variations in their ability to handle variability
inherently present in Earth Science data.

1.2. Organization of the Paper. We motivate the land cover change detection problem and
discuss previous work in Section 2. In Section 3, we present the three change detection algorithms
studied in this paper. Section 4 presents the experimental evaluation with multiple input data sets,
and provides a discussion of the results. Section 5 contains concluding remarks. Note that most
figures in this paper are best seen in color.

2. Time Series-based Land Cover Change Detection: Background and Related

Work

There is an extensive literature on time series change detection that can, in principle, be applied
to the land cover change detection problem. Time series based change detection has significant
advantages over the comparison of snapshot images of selected dates since it can take into account
information about the temporal dynamics of landscape changes. In these schemes, detection of
changes is based on the pattern of spectral response of the landscape over time rather than the
differences between two or more images collected on different dates. Therefore, additional parameters
such as the rate of the change (e.g. a sudden forest fire vs. gradual logging), the extent, and pattern
of regrowth can be derived. By contrast, for image-based approaches, changes that occur outside
the image acquisition windows are not detected, it is difficult to identify when the changes occurred,
and information about ongoing landscape processes cannot be derived. For illustration, Figure 1
shows an example of a land cover change pattern that is typically of interest to Earth Scientists.
The time series shows an abrupt jump in EVI in 2003. The location of the point corresponds to a
new golf course, which was in fact opened in 2003. Changes of this nature can be detected only with
high resolution data.

Time series change detection, in general, is an area that has been extensively studied in the fields
of statistics [12], signal processing [11] and control theory [16]. However, many of these techniques
are not suitable for the land cover change detection problem primarily because they are not scalable
or they are unable to take advantage of the inherent structure present in earth science data. For
example, the major mode of behavior in the vegetation signal is seasonality, i.e., the natural seasonal
growing cycle is a dominant characteristic of a time series and this intrinsic seasonality should not
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Figure 1. This figure shows an example of a change point in the San Francisco
Bay Area which corresponds to a new golf course constructed in Oakland, CA. This
golf course was built in 2003, which corresponds to the time step at which the time
series exhibits a change.

itself be called a change. In addition, there exists an inherent natural variability and noise in the earth
science data because of local weather, geography, and atmospheric conditions. Additional challenges
in global land cover change studies include the massive data size, high degree of geographic/inter-
region variation, missing data, disparate land cover types, and the large variety of changes that can
occur. There are three key approaches to time series change detection:

Parameter change: In this setting, the time series is expected to follow a particular distri-
bution and any significant departure from the distribution is flagged as a change. Fang et al.
[10] presented a parameter change based approach for land cover change detection. CUSUM
(and its variants) is the most well-known technique of the parameter change approach.

Segmentation: The goal of the segmentation problem is to partition the input time series into
homogeneous segments (the subsequence within a segment is contiguous). Segmentation is
essentially a special case of change detection since by definition, successive segments are
not homogeneous, which means there is likely to be a change point between the segments.
Recursive merging follows a segmentation-based approach to change detection.

Predictive: Predictive approaches to change detection are based on the assumption that one
can learn a model for a portion of the input time series, and detect change based on deviation
from the model. The underlying model can range from relatively simple smoothing models
to more sophisticated filtering and state-space models. The change detection algorithm used
to generate the Burned Area Product (a well-known MODIS data set) follows a predictive
approach. This algorithm performs very poorly in parts of North America such as California
[19] as illustrated in Figure 2. In addition, such products are geared towards specific kinds
of changes (such as fires), and are not capable of detecting the broad set of changes can
potentially be addressed (such as those due to deforestation, floods, droughts and insect
infestations).

For a more comprehensive discussion of related work in land cover change, and the broader
problem of time series change detection, we refer the reader to [4].

3. Algorithms for Land Cover Change

This section provides a brief description of the three time series change detection algorithms that
are being evaluated in this study.

3.1. Recursive Merging Algorithm. Segmentation based algorithms operate under the assump-
tion that given time series can be partitioned into homogeneous segments and boundaries between
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Figure 2. This figure illustrates the poor coverage of the Burned Area product in
California. The figure is a screen shot from Google Earth that shows the boundary
of a fire near San Diego in 2003 (red line), and the pixels detected by the Burned
Area product (circular markers).

the segments represent change points. There are two commonly used strategies to segment the time
series [14]. A top-down strategy recursively partitions the time series till a stopping criteria is met.
A bottom-up strategy on the other hand recursively merges smaller units . Existing techniques for
segmentation ignore many key characteristics of the underlying ecosystem data such as seasonality
and variability. Here we discuss the recursive merging algorithm [5] that follows a segmentation
approach to the time series change detection problem and takes the characteristics of the ecosystem
data into account.

The main idea behind the recursive merging algorithm is to exploit seasonality in order to dis-
tinguish between points that have had a land cover change and those that have not. In particular,
if a given location has not had a land cover change, then we expect the seasonal cycles to look very
similar going from one year to the next; if this is not the case, then based on the extent to which
the seasons are different one can assign a change score to a land location. Recursive Merging follows
a bottom-up strategy of merging annual segments that are consecutive in time and similar in value.
A cost corresponding to each merge is defined as a notion of the distance between the segments. We
use Manhattan distance in our implementation of the algorithm, although other distance measures
can be used. One of the strengths of the Manhattan distance is that it takes the seasonality of the
time series into account because it takes difference between the corresponding months. The key
idea is that the algorithm will merge similar annual cycles and most likely the final merge would
correspond to the change (if a change happened) and would have the highest cost of merging. In
case the maximum cost of merging is low, it is likely that no change occurred in the time series.

The algorithm described above takes into account the seasonality of the data but not the vari-
ability. A high cost of merge in a highly variable time series is perhaps not as reliable indicator of
change as a moderate score in a highly stable time series. In recursive merging algorithms the cost
for the initial merges can be used as an indicator of the variability within each model. To account for
this variability, the change score is defined as the ratio of the maximum merge cost (corresponding
to difference in models) to the minimum merge cost (corresponding to the intra-model variability).
Time series with a high natural variability, or time series with noise data due to inaccurate mea-
surement have a high minimum cost of merging also, thus a smaller change score. As we show in
Section 5.5 this method incorporates handling of noise and reduces false alarms in change detection.
We will refer to this scheme as RM0.
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3.2. Lunetta et al. Scheme. This anomaly based method for identifying changes relies on the fact
that in a spatial neighborhood most of the locations remain unchanged and only a few locations get
changed at any particular time interval.

For every location the algorithm computes the sequence of the annual sum of vegetation index
for each year. The difference between the annual sum of consecutive years is then computed. We
will refer to this as diff-sum. This is equivalent to applying first-order differencing [7] to the time
series of annual sums. High values for the difference in the annual sum for consecutive years indicate
a possible change. To determine the “strength” or “significance” of this change, Lunetta et al.
compute a z-score for this diff-sum value for the combination of each year boundary and spatial
location. When computing the z-score, Lunetta et al. define the standard deviation across all the
spatial neighbors of the pixel for that time window in the data set and they further assume that diff-
sum is normally distributed with a mean of 0 in the spatial neighborhood. An implicit assumption
made by the scheme (due to this method of z-score computation) is that at each yearly boundary,
same fraction of locations undergo land cover change. Note that high values of z-score indicate
a decrease in vegetation and vice-versa. In subsequent discussions, we will refer to the scheme
described above as the LUNETTA0 scheme.

3.3. CUSUM. Statistical parameter change techniques assume that the data is produced by some
generative mechanism. If the generative mechanism changed then the change will cause one of the
parameters of the data distribution to change. Thus changes can be detected by monitoring the
change in this parameter. CUSUM technique is a parameter change technique that uses the mean of
the observations as a parameter to describe the distribution of the data values. The basic CUSUM
scheme has an expected value μ for the process. It then compares the deviation of every observation
to the expected value, and maintains a running statistic (the cumulative sum) CS of deviations
from the expected value. If there is no change in the process, CS is expected to be approximately
0. Unusually high or low values of CS indicate a change. A large positive value if CS indicates
an increase in the mean value of the vegetation (and vice-versa). We will refer to this scheme as
CUSUM MEAN.

4. Experimental Evaluation

4.1. Earth Science Data. The Earth Science data for our analysis consists of snapshots of mea-
surement values for a vegetation-related variable collected for all land surfaces. The data observations
come from NASA’s Earth Observation System (EOS) [1] satellites and the data sets are distributed
through the Land Processes Distributed Active Archive Center (LP DAAC) [2].

The specific vegetation-related variable used in this analysis was the enhanced vegetation index
(EVI) product measured by the moderate resolution imaging spectroradiometer (MODIS) instru-
ment (although any other vegetation index such as FPAR or NDVI could have been used). EVI is
a vegetation index which essentially serves as a measure of the amount and “greenness” of vegeta-
tion at a particular location; Figure 3 shows a snapshot of EVI for the globe. MODIS algorithms
have been used to generate the EVI index at 250-meter spatial resolution from February 2000 to
the present; in this paper, the temporal coverage of the data is from the time period February
2000—January 2009.

4.2. Evaluation Data Set. Since our ground truth is about forest fires in California we created
two data sets DS1 and DS3 which consists of forest pixels in California as described below.1

1A land cover map obtained from the Ecosystem Modeling Group at NASA Ames Research Center was used to
subset forest pixels. The following land cover classifications were considered forest: Evergreen Needleleaf, Evergreen
Broadleaf, Deciduous Needleleaf, Deciduous Broadleaf Forest, Mixed Forests.
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Figure 3. The above MODIS Enhanced Vegetation Index (EVI) map shows the
density of plant growth over the entire globe for October 2000. Very low values of
EVI (white and brown areas) correspond to barren areas of rock, sand, or snow.
Moderate values (light greens) represent shrub and grassland, while high values
indicate temperate and tropical rainforests (dark greens).
Source: MODIS Land Group, Alfredo Huete and Kamel Didan, University of Arizona.

DS1: (Highest quality data).
To create DS1, we preprocessed the data to eliminate poor-quality measurements by performing the
following steps:

(1) The MODIS quality assurance (QA) flag (which describes atmospheric and sensor conditions
under which the spectral measurements were taken) was used to retain only those obser-
vations of good quality, removing all observations that were tagged as being of marginal
or of low quality. Another filtering step performed (recommended by earth science domain
experts) was the removal of EVI measurements less than or equal to 0 and above 0.9.

(2) To reduce the impact of quality filtering, we converted the biweekly data to monthly data
by averaging (using a simple mean) the available data for every month.

(3) We then discarded all locations that contained any missing data. In other words, the data
for a location is retained only if the entire time series is available with no missing values and
no low quality data.

DS3: (Unfiltered data).
DS3 consists of the raw data without any processing for quality, i.e., the quality flag is not examined
and we do not filter observations outside the recommended valid range.

The key characteristics and properties of the two data sets are summarized in Table 1. Note that
by permitting noisy values, there is an over five-fold increase in the spatial coverage.

Data Set # of pixels (N ) Frequency Length of Time
Series (T )

Noise Missing Data

DS1 148,770 Monthly 108 Low level No
DS3 787,777 Biweekly 207 High level No

Table 1. Summary of evaluation data sets.

4.3. Ground Truth Data. Change detection studies are frequently plagued by the lack of good
ground truth data [18] which forces the evaluation process to be more qualitative in nature. This
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Figure 4. Example of a polygon representing the boundary of a fire.

frequently makes it difficult to objectively answer the question: what is a change?. In this study, we
have utilized high quality ground truth data for fires generated by an independent source, and are
thus able to perform an objective quantitative evaluation. We obtained fire boundaries generated
by the state of California for the fire seasons for the years 2000 through 2008.

The ground truth data is in the form of polygons which represent the boundaries of forest fires.
Each polygon P is a closed shape that consists of N sides (N is usually in the hundreds), with
each vertex represented as a latitude/longitude coordinate pair, and may contain one or more holes
Hi, i = 1 . . . n. The boundary of an individual fire is then P \ {H1 ∪ H2 ∪ . . . ∪ Hn}. A example
of a fire boundary is shown in Figure 4; the fire occurred in 2004 near Santa Clarita, CA. The blue
filled region represents the polygon; the dark blue line is the outside boundary of the polygon, while
a hole can be seen in the middle of the map.

There are two issues with the ground truth that we are using for evaluation. First, there are
changes in California forests due to other reasons that fire(e.g due to logging). Since they are not
part of the ground truth, they will be considered false positives if they are discovered by the change
detection algorithm. Second issue arises due to the inaccuracy of the forest filter due to which many
non-forest locations such as farms also become part of our data set. These locations may have actual
change that is detected by the algorithm but again it will appear to us as false positive. However,
we expect these issues will impact all the algorithms similarly and thus we will still be able to make
judgement about there relative performance.

4.4. Evaluation Methodology. Given a time series data set D with N pixels, let us assume that
any change detection technique returns a list of change scores of length N , where each change
score is a measure of the degree of change for the corresponding pixel. We also have a ground
truth data set which consists of the true labels of each of the pixels; let M be the total number of
actual disturbances as determined by ground truth. To evaluate the performance of a given change
detection algorithm at rank n, we count the number of true disturbances in the top n portion of the
sorted change scores of all the pixels, where n is the number of actual disturbances (1 ≤ n ≤ M).
Let TPn be the number of actual disturbances in the top n predicted disturbances, and FPn be the
number of pixels that are in the top n portion but are not actual disturbances.

We evaluate performance by examining the sorted list of change scores. Specifically, performance
is measured in terms of the number of instances correctly identified and the number of instances
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Figure 5. Comparison of algorithms on DS1.
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Figure 6. Comparison of algorithms with noisy data (DS3).

missed in the top-n ranked instances. We use a precision metric (called pn) employed in context of
information retrieval [3] and anomaly/outlier detection [6], which is appropriate for the top-n ranked
setting. The performance metrics are defined as follows:

Precision, pn =
TPn

TPn + FPn
Recall, rn =

TPn

M

Note that as n increase, pn will tend to decrease (a greater fraction of lower scoring points are
likely to be false positives) and recall will increase (since, eventually for large enough n, all true
positives will be included). One specific value of interest is the one when n is equal to the number
of fire pixels (ground truth). At this value of n, pn = rn since TPn + FPn = M. Also, if the change
detection algorithm does the perfect job of identifying fires, then upto this value of n, pn will remain
1 (and then start to drop for increasing values of n) and rn will linearly increase from 0 to 1 (and
then stay at 1 for larger values of n).

4.5. Experimental Results. The three algorithm were run on datasets DS1 and DS3. Figure 5
and 6 shows precision and recall curve for each algorithm as n changes from 1 to the number of
fire pixels in the ground truth for each dataset (18450 in DS1 and 82311 in DS3). Tables 2 and 3
show overall results (aggregate count) broken down by each year. It is to be noted that the false
positives labelled by the ground truth can either be time series incorrectly classified as change by
the algorithms or can be changes other than fires like logging, conversion to golf course etc.

4.6. Observations.

(1) Performance is better on DS1 than DS3

Figure 5 and 6 show that all the three algorithms perform better on DS1 than DS3. The
primary reason is that data set DS3 has no quality filtering and thus contains time series
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# of pixels in fire polygons
Year Polygon Size RM0 LUNETTA0 CUSUM MEAN

2000 111 54 39 12
2001 1142 814 850 1009
2002 2407 1383 2119 2164
2003 4946 3609 3670 4338
2004 661 423 463 521
2005 192 96 128 134
2006 278 146 197 152
2007 1935 1413 1353 1360
2008 6778 5312 3811 490

SUM 18450 13250 12630 10180
pn(= rn) 1.00 0.72 0.68 0.55

1 The second column shows the # of pixels in the data set that fall in the fire polygons
2 The next three columns show the number of pixels detected by respective change detection

algorithms that fall in the fire polygons.

Table 2. Results of algorithms on DS1.

# of pixels in fire polygons
Year Polygon Size RM0 LUNETTA0 CUSUM MEAN

2000 1379 458 58 443
2001 6827 3661 105 5520
2002 12114 7061 1238 9335
2003 12292 8514 937 9915
2004 4218 2786 857 3152
2005 744 293 115 336
2006 6165 3900 442 3948
2007 10671 9285 423 6736
2008 27901 17581 2423 1742

SUM 82311 53539 6598 41127
pn(= rn) 1.00 0.65 0.08 0.50

1 The second column shows the # of pixels in the data set that fall in the fire polygons
2 The next three columns show the number of pixels detected by respective change detection

algorithms that fall in the fire polygons.

Table 3. Results of algorithms on DS3.

which are highly noisy. These time series can receive artificially high change score due to
noisy values.

(2) RM0 outperforms LUNETTA0 and CUSUM MEAN

Figure 5 and 6 show that RM0 consistently performs better than LUNETTA0 and CUSUM MEAN

on both the datasets DS1 and DS3. The difference in performance is especially significant
on the dataset DS3; The reason is that DS3 has more time series that are highly variable
because of no quality filtering and RMO is able to perform better since it has a built-in
notion of variability modeling (we illustrate this is greater detail in the next paragraph).
The following illustrative examples highlight the difference between the three algorithms in
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rank: 694 (FP)   location: 38.261458, −119.717100

Figure 7. Sample of a false positive detected by CUSUM MEAN MISSING on DS3.

their ability to handle variability in time series. Figure 7 shows a false positive that was
detected by CUSUM MEAN but not by RM0 and Figure 8 shows a false positive that was
detected by LUNETTA0 but not by RM0. RM0 due to its ability to account for variability
gives these time series a low change score and does not detect them as change points.

(3) RM0 does well because it takes into account the variability in the time series
To assess the ability of RM0 to model variability, we evaluate a variation of RM0 that does
not perform the normalization step of RM0 (i.e we do not divide the score by the minimum
of the scores of merging). We refer to this scheme as RM NO NORM. Figure 9 shows the
precision and recall curve for the RM NO NORM. It can be observed that the performance
of RM NO NORM degrades severely compared to RM0 especially on the dataset DS3. As an
illustration, Figure 10 shows a time series that is given a high change score by RM NO NORM

but not by RM0.
(4) LUNETTA0 can be improved by eliminating normalization

Table 4 and Figure 11 show the number of pixels burned in each year from 2001 to 2008 on the
DS1 data set. Also shown is the standard deviation of the annual differences corresponding
to each year. The data indicates that the standard deviation of annual differences is higher
for time periods when a greater number of pixels are burned (Similar conclusions were drawn
for DS3). For these years (especially 2008), the change scores will be diminished compared
to a year such as 2006. This means that if pixel ni has a fire in 2006 and pixel nj has
a fire in 2008 and they have exactly the same time series, pixel ni will receive a higher
change score than pixel nj . Thus, we observe that the normalization step performed in
Lunetta can lead to a suboptimal change score when there is a difference in the variability
of delta over different years (which is what happens in the case of forest fires). To test this
observation, we implemented a variation of LUNETTA algorithm that skips the normalization
step. We refer to this scheme as LUNETTA NO NORM. From Figure 12 it is clear that
LUNETTA NO NORM performs better than the original Lunetta scheme. However, it is to be
noted that LUNETTA NO NORM still performs worse than RM0.

5. Conclusion

A number of insights can be derived from the quantitative evaluation of the algorithms and their
variations presented in this paper. On relatively high quality datasets, all three schemes perform
reasonably well, but their ability to handle noise and natural variability in the vegetation data
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Figure 8. Sample of a false positive detected by LUNETTA0 on DS3.
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Figure 9. Performance of RM NO NORM on DS1 and DS3.

differs dramatically. In particular, Recursive Merging algorithm significantly outperforms the other
two algorithms since it accounts for variability in the time series.

However, the algorithm has several limitations that need to be addressed in future work. For
example, due to manner in which the segments are constructed from annual cycles, changes occurring
in the middle of segment boundaries are given lower scores than changes occurring at the segment
boundaries. The algorithm normalizes the change score for a given time series by the estimated
variability. The normalization is currently performed using the minimum distance between a pair of
segments, which is not optimal: Figure 13 illustrates how this normalization leads to false positives
when a time series with relatively low mean undergoes a small shift.

Additionally, there are several limitations of the experimental evaluation in this study. For ex-
ample, the ground truth data set consists of only one type of land cover change (forest fires), thus
excluding many other changes of interest. Furthermore, the nature of vegetation data in California
can be quite different from other parts of the world such as the tropics, where the issues of noise are
acute because of persistent cloud cover.
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Figure 10. Sample of a false positive detected by RM0 NO NORM on DS3.

Year # of fire pixels Standard
Deviation

2001 1142 0.20
2002 2407 0.32
2003 4946 0.27
2004 661 0.27
2005 192 0.28
2006 278 0.21
2007 1935 0.29
2008 6778 0.37

Table 4. Standard devia-
tion of integrated annual dif-
ferences on DS1.
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Figure 11. A visual represen-
tation of the data in Table 4.
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A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE

TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND

GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY

GLOBAL WARMING SCENARIOS

CAITLIN RACE*, MICHAEL STEINBACH*, AUROOP GANGULY**, FRED SEMAZZI***,
AND VIPIN KUMAR*

Abstract. The connections among greenhouse-gas emissions scenarios, global warming, and fre-
quencies of hurricanes or tropical cyclones are among the least understood in climate science
but among the most fiercely debated in the context of adaptation decisions or mitigation poli-
cies. Here we show that a knowledge discovery strategy, which leverages observations and climate
model simulations, offers the promise of developing credible projections of tropical cyclones based
on sea surface temperatures (SST) in a warming environment. While this study motivates the
development of new methodologies in statistics and data mining, the ability to solve challenging
climate science problems with innovative combinations of traditional and state-of-the-art methods
is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the rela-
tionship between sea surface temperatures and hurricane frequencies, and generate the most likely
projections with uncertainty bounds for storm counts in the 21st-century warming environment
based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions
Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science
and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that
remains tailored to the climate domain and complements physics-based climate model simulations
with a combination of existing and new computational and data science approaches.

1. Introduction

The possible link between global warming and hurricane activity, while critical in terms of hazards
preparedness, societal relevance and public perception, remains among the most hotly debated issues
in climate science [13]. Recent studies with observations [3] and climatemodel simulations [1] suggest
that while the overall frequency of Atlantic hurricanes may reduce under global warming scenarios,
the strongest of these hurricanes may grow even more intense. However, model simulations and their
interpretations do not necessarily agree [7, 1, 8], and disagreements remain about data quality issues
and trends extracted from observations as well as the influence of environmental factors beyond
ocean temperatures [9]. In addition, regional patterns in oceanic warming have been shown to
influence hurricane activity in different ways [6].

A conceptual model for hurricane activity [4] was recently developed by downscaling simulations
from the suite of models used for the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change. This approach and the corresponding results suggest that while the current gener-
ation of global climate models may not be able to directly produce predictive insights on hurricanes,
the simulations may nonetheless have relevant information content which can be extracted through
conceptual models.

In this paper, we demonstrate the ability of data mining methods and innovative computational
strategies to provide projections of hurricane activity based on warming scenarios. The prediction
and uncertainty assessment strategies rely on a previous approach [4] used for regional temperature

*University of Minnesota, racex008@umn.edu,steinbac@cs.umn.edu, kumar@cs.umn.edu
**Oak Ridge National Laboratory, gangulyar@ornl.gov
***North Carolina State University, fred semazzi@ncsu.edu.
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and heat waves, where model hindcasts is used for bias correction and uncertainty quantification,
model forecasts in the recent decade are used for cross-validation, and forecasts in the 21st century
are used for most likely projections with uncertainty bounds. We attempt to quantify the relation
between regional sea surface temperatures (SST) in the Atlantic off the coast of West Africa with
tropical cyclone activity, which was hypothesized in a previous work [2].

Although each step of the methodology has room for improvement, our preliminary investigations
do offer a number of interesting and novel insights. First, regional sea surface temperature patterns
shows influence on hurricane activity; in particular, the average correlation of storm counts with
the sea surface temperatures off West Africa is higher than what may be expected from random
chance. Second, the oceanic clusters discovered in the region of interest correlate reasonably well
with storm counts visually and through quantifiable metrics. Finally, projections with uncertainty
bounds show that an increase in the number of storms with a warming environment, even though
the uncertainties remain significant.

These insights demonstrate the potential to inform adaptation decisions through preparedness
efforts for hurricane-induced disasters as well as mitigation policies through projections of hurricane
activity based on warming projections which in turn rely on greenhouse-gas emissions scenarios.
However, further developments of the methodologies and thorough data analysis and mining of
multi-sensor observations, reanalysis data sets and multi-model simulations are required to confirm
or reject these preliminary insights.

2. Data and Methods

The observed data for this research are monthly averages of reanalysis SST data, obtained from
the National Center for Atmospheric Research (NCAR) at http://dss.ucar.edu/datasets/ds090.2 [5].
This data is available on a Gaussian grid (1.875◦ × 1.904◦) in Kelvin for every month from 1948-
2007. The tropical cyclone count data are a vector of cyclone counts occurring in the area of interest
each August for the 25 years from 1982 to 2007. These counts are shown in Figure 1.
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Figure 1. Tropical storm counts off the Western Coast of Africa for 1982-2007.

The simulation data used were outputs of the Community Climate System Model 3.0 (CCSM)
from http://www.earthsystemgrid.org/, all having surface temperature components measured in
Kelvin on a 1.406◦ grid, averaged by month. The specific outputs are the Climate of the 20th Model
(20c3m) available from 1870-1999, and B1, A1FI, A2, and A1B, all available from 2000-2099. While
20c3m is hindcast data, B1, A1FI, A2, and A1B are all simulations for the future based on the
Intergovermental Panel for Climate Change (IPCC) Special Report on Emissions Scenarios (SRES)
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[10]. In the cases (B1, A2, A1B, and 20c3m) where there are multiple initial condition ensembles,
we used the average of all available ensembles to account for uncertainty [10]. The B1 scenario,
sometimes called the best case for climate change, focuses on clean, efficient technologies with global
problem-solving techniques. On the other hand, the A1FI scenario, or the worst case, assumes
rapid economic growth and a convergence among global regions that use fossil-fuel intensive energy
sources. The A2 and A1B cases are more moderate, however. A1B is similar to A1FI except it
includes a balance of energy sources. A2 is a scenario where the economic focus is on local, rather
than global, markets, with slower economic and technological growth than the other scenarios.

All analyses were done in MATLAB and R. The details of the various analysis steps are described
in more detail in each section.

3. Relationship of SST to tropical storm counts

A visual indication of the strength of the relationship between SST for the month of August
and tropical cyclone counts is provided by a Figure 2. To generate this figure we computed the
correlation of the storm counts with August SST for each of the 12,134 locations in the reanalysis
SST data set.1 The resulting correlations were then mapped to a longitude–latitude grid using the
locations that accompany each SST time series. Note that the correlation varies relatively smoothly
as the location changes, as we would expect from physical considerations. Some locations, including
those off the Western coast of Africa, have relatively high correlation—up to 0.7 for some points—to
the storm counts. (Note that we have drawn a box around a region of SST in that area and will
perform further analysis on it shortly.) Although other regions of the globe also show moderately
high levels of correlation, this may be because of teleconnections or just due to spurious correlation.
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Figure 2. Correlation of August SST versus August storm count for 1982-2007.
Best viewed in color.

Indeed, even though it is physically plausible that SST off the West African coast may be related
to storm counts, it is important to check that it is not spurious. A full evaluation would require
a more extensive study, but for this initial study, we compared the correlation of the SST in the
boxed region to randomized storm counts. More specifically, to test the statistical significance of
the correlations of the SST in the boxed region, a randomization test was performed by comparing

1August was chosen since it gave the highest correlations to storm counts of any month. July and September also
showed high correlations, whereas winter months did not.
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the mean correlation of the actual SST data and tropical cyclone counts to a distribution of mean
correlations of SST and randomized counts. Because the actual mean correlation of the region,
which is 0.28, is greater than 99.41% of all the correlations from the randomized storm counts, we
take this as reasonably strong evidence that there is a non-spurious connection. See figure 3.
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Figure 3. Histogram of mean correlations of August SST off the West African
Coast to randomized August hurricane counts. n=10,000.

4. Relationship of known climate indices to tropical storm counts

A climate index is a time series that summarizes the behavior of the oceans and/or atmosphere in
some region of the world. Climate researchers have used climate indices to investigate the connections
between different parts of the climate system, e.g., the impact of El Nino on droughts in Australia.
It is well know that many climate indices have strong connections to the SST in various regions of
the globe. For example, climate indices such as the Southern Oscillation Index (SOI) have a strong
connection to SST temperatures off the western coast of South America. Indeed, some indices, e.g.,
NINO12, are defined in terms of SST. Thus, it is worth investigating whether they may also be a
relationship between known climate indices and the topical cyclone counts.

We took a collection of well-known climate indices and computed the correlation between their
August values and the storm counts for the 1982–2007 period. However, correlating the tropical
cyclone counts to known climate indices produces insignificant results at p=0.05 (Table 4). It should
be noted, however, that this lack of correlation does not necessary mean a lack of connection since
we were examining a subset of tropical storms and only for a particularmonth. Also, we didn’t check
for non-linear or time-lagged relationships, although we plan to do this in further work. Others (e.g.,
see http://www.cpc.noaa.gov/products/outlooks/hurricane.shtml) have used climate indices such as
El Nino for predicting hurricanes, but again, the problem they consider is more general in both time
and space than ours.
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Table 1. R2 values of correlating known climate indices with storm counts.
Index Name R2 p value

SOI 0.004 0.76
NAO 0.010 0.62
AO 0.0002 0.95
PDO 0.017 0.53
PNA 0.024 0.45
QBO 0.009 0.64
WP 0.027 0.42

NINO12 0.073 0.18
NINO3 0.042 0.31
NINO4 0.009 0.64
NINO34 0.015 0.55

5. Clustering

Results discussed in Section 3 indicate a non-random correlation of SST off the Western coast of
Africa and tropical storm counts. However, to quantify this relationship, it would be useful to derive
a single time series summarizing SST behavior. However, summarizing the region specified above
with a single time series, which is like creating a climate index from this region, does not yield the
ideal results since the correlation of individual SST time series within this region to storm counts
varies widely. Also, the choice of this region was somewhat arbitrary, leaving such an approach open
to question. Thus, we decided to investigate whether we could find a climate index that was (1)
defined in a non-arbitrary manner, but (2) in this general region, and (3) had a good correlation to
storm counts. We provide a brief summary of this approach and then present the results.

In the past, Earth scientists have used observation and, more recently, eigenvalue analysis tech-
niques, such as principal components analysis (PCA) and singular value decomposition (SVD), to
discover climate indices [12]. These techniques are only useful for finding a few of the strongest sig-
nals and impose a condition that all discovered signals must be orthogonal to each other. We have
developed an alternative methodology [11] for the discovery of climate indices that overcomes these
limitations and is based on clusters that represent geographic regions with relatively homogeneous
behavior. These clusters are found using the shared nearest neighbor (SNN) clustering approach we
had previously developed [11]. The centroids of these clusters are time series that summarize the
behavior of these geographical areas.

Figure 4 shows the clusters produced by shared nearest neighbor (SNN) clustering of SST for the
period 1982-2007 [11]. Many pairs of clusters in this clustering are highly correlated with the known
climate indices. In particular, some of these clusters are very highly correlated (correlation > 0.9)
with well-known climate indices (some of the El Nino indices) and are located in approximately the
same location as where these indices are defined. See [11] for more details. The SST clusters that
are less well correlated with known indices may represent new Earth science phenomena or weaker
versions or variations of known phenomena. Indeed, some of these cluster centroids provide better
‘coverage,’ i.e., higher correlation to land temperature, for some areas of the land [11]. Only one
cluster produced by this clustering was in the same area as the region discussed above and had
significant correlation with the storm counts. See the red-circled cluster in Figure 4.

Testing the predictive value of this cluster centroid against the vector of storm count values yields
an R2 value of 0.3106 (p<0.01). To visually display the correlation, we plotted the normalized cluster
centroid and the storm counts for the years 1982-2007. See Figure 5. Qualitatively, the two time
series seem to track each other fairly well.
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Figure 4. SNN clusters of SST using reanalysis data from 1982-2007. The different
colors are used to distinguish different clusters.

6. Using a model relating SST and storm counts to predict future storm counts

To get a forecasting equation, we regressed the mean of the selected SNN cluster centroid from
reanalysis SST data to a vector of storm counts from 1982-2007. In order to do predictions, cluster
centroids from hindcast and simulated data were normalized to have the same mean value as the
original SST data. Those data sets were then used to build the predictive model. Validation on
this model was then done by comparing the actual storm counts vs. the predicted storm counts for
hindcast and simulated data during the years where all sets of data were available. The forecasted
storm counts for the hindcast data are within the range of the actual storm counts, so we proceeded
to use our model for the 21st century. Figure 6 shows these predictions.

The A1FI scenario is a ”worst case” scenario. As expected, the number of storms increases
significantly over the course of the century, as storms are positively correlated with SST in the
model we have created, and in the worst case, global sea surface temperature increases significantly
with time. The B1 scenario is regarded as a ”best case” scenario, and the number of predicted
storms stays relatively constant. For the less extreme cases of A2 and A1B, the results show an
increasing storm count over the century, but at a slower rate than that of the A1FI scenario. Note
that A1B seems to level off at the end of the century, while A2 appears to increase exponentially
with predicted counts approaching that of the A1FI scenario.
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Figure 5. Storm counts and mean-adjusted, standard-normalized cluster centroid
averages: August, 1982-2007

We would emphasize the limited scope of this exploratory analysis and the need for further inves-
tigation to take into account additional types of data, e.g., Saharan dust and wind data, additional
modeling approaches, e.g., nonlinear regression, and the previous work that was mentioned earlier
in this paper.

7. Conclusion and Future Work

The primary contribution of this paper is a proof-of-concept demonstration that shows that
attempts to address one of the most pressing gaps in climate change science and among the most
hotly debated issues in the context of shaping public perception and informing policy: How does
global warming impact hurricane frequency and can we generate credible projections of storm counts
under warming scenarios? The debates in the scientific community clearly indicate that the climate
modeling community has not been able to arrive at a clear consensus, while the discussions in the
public sphere point to the perceived and real importance of this issue for perceptions, preparedness
and emissions policy. The fact that we were able to develop predictions with uncertainty bounds
by combining physics-based climate model simulations with data-guided insights from observations
and simulations represents an important step forward, which could not have been achieved based on
either physics-based or data-guided models on their own.

The development of hurricane projections relies on three hypotheses: first, there is information
content in sea surface temperatures relevant for hurricane counts which can be extracted from ob-
served data; second, climate model simulations of sea surface temperatures retain information about
hurricane counts, and third, the data-guided strategy developed for extracting information content
from observations can be generalized to model simulations. The first hypothesis is tested by investi-
gating observed storm counts with reanalysis datasets, which in this case are assumed to represent
surrogate observations, and used to develop a data-guided model which relates sea surface temper-
ature clusters to storm counts. The second and third hypotheses are validated by examining the
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Figure 6. Predicted storm counts and accompanying 66% confidence intervals for
some IPCC scenarios. Best viewed in color.

degree to which the results based on reanalysis datasets agree with climate model simulations gen-
erated in hindcast mode till 2000 and in forecast mode in the current decade. These hypotheses and
the results derived based on these provide the necessary information for producing the projections of
hurricane frequencies in the 21st-century, which are conditioned both on the underlying physics en-
capsulated within the climate models as well as the predictive insights extracted from observed and
model-simulated data. Our approach suggests that relating the methodological development to the
science challenges and the underlying hypotheses or critical science gaps may be as important (if not
more important) to the development of an integrated and strategic computational solution than pro-
ducing relatively incremental innovations in any specific methodologies. However, this conclusion is
expected to be case-specific and may need to be tested further in climate and other multidisciplinary
settings.

Future research is urgently motivated in two directions: climate science and computational sci-
ence. From a climate science perspective, there is a need to further validate the hypotheses and
enhance the predictions along with uncertainty quantifications by using multiple climate model sim-
ulations as well as observations or their surrogates. Thus, the entire suite of IPCC AR4 global
climate models, as well as multi-sensor observations or reanalysis datasets, need to be used for
longer historical periods to further validate the hypotheses and develop credible projections. From
a knowledge discovery perspective, we believe we have barely explored the tip of the iceberg. The
possibilities presented on this paper can be further expanded by developing or utilizing new and
state-of-the-art tools, for example in the context of network analysis, clustering and regression, as
well as by refining and fine-tuning the integrated knowledge discovery strategy. Additional variables,
such as wind, also need to be considered. These issues will be explored in depth in our future work.
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UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH
SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

AMY MCGOVERN1, TIMOTHY SUPINIE2, DAVID JOHN GAGNE II2, NATHANIEL TROUTMAN1,
MATTHEW COLLIER3, RODGER A. BROWN4, JEFFREY BASARA5, AND JOHN K. WILLIAMS6

Abstract. Major severe weather events can cause a significant loss of life and property. We
seek to revolutionize our understanding of and ability to predict such events through the mining
of severe weather data. Because weather is inherently a spatiotemporal phenomenon, mining
such data requires a model capable of representing and reasoning about complex spatiotemporal
dynamics, including temporally and spatially varying attributes and relationships. We introduce
an augmented version of the Spatiotemporal Relational Random Forest, which is a Random Forest
that learns with spatiotemporally varying relational data. Our algorithm maintains the strength
and performance of Random Forests but extends their applicability, including the estimation of
variable importance, to complex spatiotemporal relational domains. We apply the augmented
Spatiotemporal Relational Random Forest to three severe weather data sets. These are: predicting
atmospheric turbulence across the continental United States, examining the formation of tornadoes
near strong frontal boundaries, and understanding the translation of drought across the southern
plains of the United States. The results on such a wide variety of real-world domains demonstrate
the extensive applicability of the Spatiotemporal Relational Random Forest. Our long-term goal
is to significantly improve the ability to predict and warn about severe weather events.

1. Introduction

The majority of real-world data, such as the weather data studied here, varies as a function of
both space and time. For example, a thunderstorm evolves over time and may eventually produce
a tornado through the spatiotemporal interaction of components of the storm. In this paper, we
introduce and validate a greatly augmented version of the Spatiotemporal Relational Random Forest
(SRRF) algorithm for use with severe weather data. The SRRF is a Random Forest (RF) [4]
approach that directly reasons with spatiotemporal relational data and is a major contribution to
the research in spatiotemporal relational models. Due to the increased complexity introduced by
spatiotemporally varying data, most data mining algorithms ignore one or both of these aspects
(e.g. temporal only relational models such as [7, 12, 23]) and our recent work is the the only work
that we know of that addresses both spatiotemporal and relational data [15, 26, 2].

Our work is motivated by and validated in three real-world earth science domains. The first is
predicting thunderstorm-induced turbulence as experienced by aircraft, focusing on the continental
United States. Such turbulence is inherently spatiotemporal, with thunderstorms causing increased
turbulence on a short time scale in the local region around a storm and also on a longer time scale
across a greater spatial extent. With this domain, our goal is to enhance the current operational
products that provide turbulence prediction to aviation interests by improving the spatiotemporal
reasoning of the models. Prior work demonstrated that RFs were a promising approach in the turbu-
lence domain [29]. This summer, we are performing case studies of the SRRF and and investigating
the possibility of integrating the trained SRRFs into an operational turbulence guidance product
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Spatiotemporal data mining using the SRRFs can aid the development of effective turbulence
predictions by uncovering and exploiting relationships between storm features and environmental
characteristics that go beyond mechanisms that are currently understood by atmospheric scientists.
In doing so, it has the potential to not only create practical predictive systems, but also to improve
scientific understanding of turbulence.

The second domain is that of understanding and predicting tornadoes. The results presented in
this paper are a piece of a larger overall project focusing on revolutionizing our understanding of
tornadoes. In this paper, we look at the interaction of tornadoes and frontal boundaries as they
moved across the state of Oklahoma over a 10 year period. Prior tornado research has found that
70% of strong tornadoes in 1995 were located within 30 km of a front [14]. The goal of this part
of the project is to use SRRFs and objective front analysis to perform a climatological study of
tornadic supercell thunderstorms and how the relative positions of fronts affect them.

The National Oceanic and Atmospheric Administration’s National Weather Service has a goal of
developing Warn-on-Forecast capabilities by 2020, instead of the current warn on detection approach
[25]. The Warn-on-Forecast concept hopes to increase the lead time of severe weather and tornado
warnings by accurately predicting the time and location of severe storms using numerical models.
Our data mining approach promises to identify those within-storm features that discriminate between
storms that will produce tornadoes and those that will not. It can be directly used within the
numerical modeling of storms and given to the weather forecasters who issue the warnings.

In the third domain, we study the progression of droughts across the Southern Great Plains for
a 134 year period. Drought is a spatiotemporal phenomenon that operates on a very different time
scale than tornadoes or turbulence. While those appear and disappear relatively quickly, drought
takes months to years to progress. The goal with this work is to improve the prediction of drought
through an improved understanding of how drought moves in each local region.

RFs [4] are a simple and powerful algorithm with a strong track record (e.g., [22, 17, 8, 3, 28]).
RFs learn an ensemble of C4.5 [20] trees, each of which is trained on a separate bootstrap resampled
dataset and using a different subset of the attributes. The power of the approach comes from the
differences in the trees, which enable the forest to capture more expressive concepts than with a
single decision tree. Since the trees are each trained on a different subset of the data, they can focus
on different aspects of the overall classification problem. In addition to their predictive capabilities,
one of the reasons that RFs are so popular is their ability to analyze the variables for their overall
importance at predicting the concept.

We introduced a preliminary version of the SRRFs in [26]. This paper represents a significant
extension of that work. The contributions of this paper are: 1) The SRRF algorithm has been
extended to address variable importance of spatiotemporal relational data. Since we are working
directly with the domain scientists, the human interpretability of the models is critical. A single
tree can be examined easily but an entire forest is more difficult to analyze, making the variable
importance aspect crucial. 2) Our underlying Spatiotemporal Relational Probability Tree (SRPT,
[15]) algorithm has been considerably enhanced to improve the spatiotemporal distinctions. This
gives us the ability to represent temporally and spatially varying fields within objects, which signifi-
cantly augments our ability to mine and understand severe weather. 3) We have thoroughly explored
the parameter space of the algorithm on all of our domains. 4) We have significantly extended the
application to multiple real-world severe weather domains in preparation for extensive field testing
occurring in the summer and fall of 2010.

2. Growing SRRFs

Growing a SRRF is very similar to the approach used to grow a RF [4] with a few critical changes
required by the nature of the spatiotemporal relational data. Algorithms 1, 2, and 3 describe the
learning process in detail. Before discussing these, we describe how we represent the spatiotemporal
relational data for efficient learning.
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Aircraft
Altitude
Bearing

Wind Speed
Richardson Number

Temperature
Cape
CINH

Hail (>= 60dBZ)
<same as rain>

Convection (>= 40dBZ)
<same as rain>

Rain (>= 20dBZ)
Cloud Top Temperature <T2F>

Reflectivity <T2F>
Relative Height <T>

Area <T>
Cape <T>

VIL (>= 3.5kg/m2)
<same as rain>

Contains
Coverage <T>

Contains

Contains

Contains

Contains

Nearby
Relative Azimuth <T>

Range <T>

Nearby

Nearby

Nearby

Figure 1. Schema for aircraft turbulence data set. Object and relationship types
are underlined and bolded. Temporal attributes are denoted with a T and fielded
attributes with a F (with 2F specifying 2-dimensional fields).

The data are represented as spatiotemporal attributed relational graphs [15]. This representation
is an extension of the attributed graph approach [19, 18, 11] to handle spatiotemporally varying data.
All objects, such as people, places, or events, are represented by vertices in the graph. Relationships
between the objects are represented using edges. With the severe weather data, the majority of
the relationships are spatial. Both objects and relationships can have attributes associated with
them and these attributes can vary both spatially and temporally. In the case of a spatially or
spatiotemporally varying attribute, the data are represented as either a scalar or a vector field,
depending on the nature of the data. This field can be two or three dimensional for space and can
also vary as a function of time. In addition to attributes varying over space and time, the existence
of objects and relationships can also vary as a function of time. If an object or a relationship is
dynamic, it has a starting and an ending time associated with it.

To illustrate the data representation, Figure 1 shows the schema for the turbulence data. All
objects and relations are required to be typed. In this case, the attributes on the rain, hail, con-
vection, and vertically integrated liquid objects are all 2-dimensional spatiotemporal scalar fields.
The attributes on the aircraft object are all static as they are measured at a single moment in time.
Note that the schema shows the types of objects and relationships possible but any specific graph
can vary in the number of such objects present. For example, all graphs in the turbulence data will
have an aircraft object but they may have any number (including 0) of rain, hail, and convective
regions as defined by the weather nearby the aircraft.

An SRRF is composed of individual Spatiotemporal Relational Probability Trees (SRPTs) [15],
which are probability estimation trees similar to Relational Probability Trees [19] but with the ability
to split the data based on spatiotemporal attributes of both objects and relations. Since our initial
introduction of SRPTs, their capabilities have significantly expanded. The most significant change
is their ability to represent and reason about attribute fields within objects. We summarize the
types of questions that the SRPTs can use to make distinctions about the data.

The non-temporal splits are:

• Exists: Does an object or relation of a particular type exist?
• Attribute: Does an object or a relation with attribute a have a [MAX, MIN, AVG, ANY] value

≥ than a particular value v?
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Algorithm 1: Grow-SRPT
Input: s = Number of distinctions to sample, D = training data, m = Maximum depth of tree, d =

current tree depth, p p-value used to stop tree growth
Output: An SRPT
if d ≤ m then

tree ← Find-Best-Split(D,s,p)
if tree �= ∅ then

for all possible values v in split do
tree.addChild(Grow-SRPT(D where split = v))

end
Return tree

end

end
Return leaf node

Algorithm 2: Find-Best-Split
Input: s = Number of samples, D = training data, p p-value used to stop tree growth
Output: A split if one exists that satisfies the criteria or ∅ otherwise
best ← ∅
for i = 1 to s do

split ← generate random split
eval ← evaluate quality of split (using chi-squared)
if eval < p and eval < best evaluation so far then

best ← split
end

end
Return best

• Count Conjugate: Are there at least n yes answers to distinction d? Distinction d can be any
distinction other than Count Conjugate.

• Structural Conjugate: Is the answer to distinction d related to an object of type t through a
relation of type r? Distinction d can be any distinction other than Structural Conjugate.

The temporal splits are:
• Temporal Exists: Does an object or a relation of a particular type exist for time period t?
• Temporal Ordering: Do the matching items from basic distinction a occur in a temporal

relationship with the matching items from basic distinction b? The seven types of temporal
ordering are: before, meets, overlaps, equals, starts, finishes, and during [1].

• Temporal Partial Derivative: Is the partial derivative with respect to time on attribute a on
object or relation of type t ≥ v?

The spatial and spatiotemporal splits are:
• Spatial Partial Derivative: Is the partial derivative with respect to space of attribute a on

object or relation of type t ≥ v?
• Spatial Curl: Is the curl of fielded attribute a ≥ v?
• Spatial Gradient: Is the magnitude of the gradient of fielded attribute a ≥ v?
• Shape: Is the primary 3D shape of a fielded object a cube, sphere, cylinder, or cone? This

question also works for 2D objects and uses the corresponding 2D shapes.
• Shape Change: Has the shape of an object changed from one of the primary shapes over to a

new shape over the course of t steps?
Algorithm 1 describe the procedure for growing an individual tree. This procedure follows the

standard greedy decision tree algorithms with the exception of the sampling of the splits. Because
there is a very large number of possible instantiations for the split templates listed above, we sample

216

2010 Conference on Intelligent Data Understanding



the specific splits using a user specified sampling rate. For each sample, a split template is selected
randomly and the pieces of the template are filled in using randomly chosen examples in the training
data. This process is described in Algorithm 2. The split with the highest chi-squared value is chosen
so long as its p-value satisfies the user specified p-value threshold. This threshold can be used to
control tree growth, with higher values enabling the growth of deeper trees and lower values enabling
potentially higher quality splits but less complicated trees.

Algorithm 3: Growing SRRFs
Input: s = Number of distinctions to sample, n = number of trees in the forest, D = training data
Output: An SRRF
for i = 1 to n do

[in-bag-data, out-of-bag-data] ← Bootstrap-Resample(D)
Ti ← Grow-SRPT(in-bag-data, s)

end
Return all trees T1...n

Algorithm 3 shows the overall learning approach for growing a SRRF. The SRRFs preserve as
much of the RF training approach as possible. The training data for each tree in the forest is still
created using a bootstrap resampling of the original training data. The difference in the learning
methods arises from the nature of the spatiotemporal relational data and the SRPTs versus C4.5
trees. In the RF algorithm, each node of each tree in the forest was trained on a different subset of
the available attributes. Since the individual trees were standard C4.5 decision trees, this limited
the number of possible splits each tree could make. Because each tree was also trained on a different
bootstrap resampled set of the original data, the trees were sufficiently different from one another
to make a powerful ensemble. Because there are a very large number of possible splits that the
SRPTs can choose from, an SRPT finds the best split through sampling, as described above. Like
the original RF trees, SRPTs are still built using the best split identified at each level. With fewer
samples, these splits may not be the overall best for a single tree, but they will be sufficiently different
across the sets of trees that the power of the ensemble approach will be preserved. However, if the
number of samples is too small, the number of trees needed in the ensemble to obtain good results
may be prohibitively large. We examine these hypotheses empirically in the experimental results.

For a particular attribute a, RFs measure variable importance by querying each tree in the forest
for its vote on the out-of-bag data. Then, the attribute values for attribute a are permuted within
the out-of-bag instances and each tree is re-queried for its vote on the permuted out-of-bag data.
The average difference between the votes on the unpermuted data for the correct class and the votes
for the correct class on the permuted data is the raw variable importance score. We have directly
converted this approach to the SRRFs and can measure variable importance on any attribute of an
object or relation. Spatially and temporally varying attributes are treated as a single entity and
permuted across the objects/relations but their spatial and/or temporal ordering is preserved. We
examine the variable importance in each of our data sets.

3. Parameter Exploration

In order to study the effects of the parameters on the SRRF algorithm, we performed a combi-
natorial experiment on two datasets. The primary parameters that affect the performance of the
SRRF are the number of possible splits each SRPT can examine at each level of tree growth (this
is analogous to the number of attributes in a C4.5 tree), the maximum depth the tree is allowed to
reach, the number of trees in the forest, the p-value used to control tree growth (using the chi-squared
statistical test), and the types of distinctions the tree can use.
• Number of samples: [10, 100, 500, 1000, 5000].
• Maximum depth of the tree: [1, 3, 5].
• Number of trees in the forest: [1, 10, 50, 100].
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• We fixed the p-value to 0.01
• Distinctions: [all, non-temporal only]

This yields 120 parameter sets in total, each of which is run 30 times for statistical testing. Due to
space limitations, these results are presented online at http://idea.cs.ou.edu/cidu2010/.

4. Convectively-induced turbulence

Convectively-induced turbulence (CIT) – atmospheric turbulence in and around thunderstorms
– is a major hazard for aviation that commonly causes delays, route changes and bumpy rides for
passengers, particularly in the summer. Turbulence encounters can cause structural damage to
aircraft, serious injuries or fatalities, and frightening experiences for travelers. Better information
about likely locations of turbulence is needed for airline dispatchers, air traffic managers and pilots to
accurately assess when ground delays are truly necessary, plan efficient routes, and avoid or mitigate
turbulence encounters. For these reasons, enhanced prediction of CIT is one of the stated goals of
the FAA’s current effort to modernize the national air transportation system, called NextGen.

An existing system for forecasting turbulence over the US is called Graphical Turbulence Guid-
ance (GTG) [24]. GTG was developed by the FAA’s Aviation Weather Research Program, and
currently runs operationally at NOAA’s Aviation Weather Center1. The GTG algorithm is based on
a combination of turbulence “diagnostic” quantities derived from an operational numerical weather
prediction (NWP) model’s 3-D forecast grids. For example, the Richardson number measures the
ratio of atmospheric stability to wind shear; low values of this quantity suggest the transition from
laminar to turbulent flow [27]. Unfortunately, operational NWP models run on a grid that is too
coarse to resolve thunderstorms, and thus are unable to fully capture CIT generation mechanisms
even if they are quite accurate. Therefore, the best hope for CIT prediction is to couple model-derived
information about the storm environment and diagnostics of turbulence with timely observations
from satellite or radar that characterize the location, shape, and intensity of a storm.

The advent of an automated turbulence reporting system on board some commercial aircraft
makes it possible to associate objective atmospheric turbulence measurements with features from
NWP models and observations. The system uses rapid measurements of the vertical acceleration of
the aircraft to deduce the atmospheric winds, and then performs a statistical analysis of the wind
fluctuations to determine the turbulence intensity, which is measured in terms of eddy dissipation
rate (EDR) over 1-minute flight segments. The data used in these experiments were collected from
United Airlines Boeing 757 aircraft in the summer of 2007. Convection is most prevalent in the
summer and studying this time period helps to generate a dataset in which convection is the most
prevalent source of turbulence.

One difficulty in using intelligent algorithms to predict turbulence is that the data contain an
overwhelming number of cases with null or light turbulence reported. Turbulence is a rare phenom-
enon to begin with, and the data were collected from aircraft whose pilots were doing their best to
avoid turbulence so as to maximize passenger comfort and safety. As a result, light-to-moderate or
greater (LMOG) turbulence occurs in less than 1% of the data points and an algorithm can achieve
99% accuracy by simply predicting “no turbulence” everywhere. To counteract this, we resampled
the data, retaining only 3% of the null or light turbulence cases. The final data set contains 2055
cases, approximately 26% of which are LMOG turbulence (1514 negatives and 541 positives).

The data available for this study comes from a combination of the the measurements collected
from the United aircraft, archived weather observations for the same time period, and archived real-
time NWP model data (Rapid Update Cycle2). This is transformed to a spatiotemporal relational
representation using the schema shown in Figure 1. The in-situ aircraft data and the interpolated
NWP model data were used to make the aircraft objects, and the gridded model and observation
data were used to make the other objects. Each of the objects represents a meteorological concept

1See http://aviationweather.gov/adds/turbulence/
2http://ruc.noaa.gov/
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Figure 2. AUC for the Turbulence data as a function of the number of splits
sampled at each node of tree growth size for 10-, 50-, and 100-tree SRRFs and a
single SRPT. The maximum tree depth was fixed at 5 and the chi-squared threshold
at 0.01.

or distinct region. We applied thresholds to the radar reflectivity data to obtain connected areas
greater than 20 dBZ (“rain” objects), 40 dBZ (“convection” objects) and 60 dBZ (“hail” objects). We
then extracted connected regions within 40 nautical miles of the aircraft, and co-located them with
infrared satellite and NWP model data. The same method was used for radar-derived vertically
integrated liquid (VIL), with a threshold of 3.5 kg m−2. The aircraft objects are static and the
observations are available only at the same time that the turbulence was measured. The other
objects are tracked for 30 minutes (in 5 minute increments).

Figure 2 shows the Area Under the Receiver Operating Characteristic Curve (AUC) for the SRRF
turbulence predictions on an independent test set as a function of the number of distinctions sampled
in the forest. AUC is a standard measure of performance of a probabilistic classifier. An AUC of
1 indicates perfect performance and an AUC of 0.5 indicates random performance. The maximum
tree depth for this graph was fixed at 5. As the sample size increases, the performance of the forest
increases and then asymptotes. This is expected, as increasing the number of samples increases the
probability that the tree will ask a question that splits the data well, but eventually also reduces
the diversity of the forest and increases the risk of overfitting. The asymptotic behavior of the
performance occurs because if the sample size is large enough, the trees have probably examined
all the best distinctions. Additionally, increasing the number of trees in the SRRF increases the
performance. This behavior is also expected as ensembles with more members are expected to better
capture the underlying relationships. Increasing the number of trees in the SRRF also appears to
yield an asymptotic performance gain. This is likely occurring for two reasons. The first is that
bootstrap sampling becomes more uniform with the larger number of ensemble members, so the
effectiveness of the ensemble is reduced. The second is that, as the number of samples increases, the
trees become more similar. RF performance has also been shown to asymptote as the diversity of
the trees in the forests is reduced [4].

Table 1 gives the importance of the top 10 attributes in the turbulence data. Attributes on objects
list the object they are associated with (e.g. VIL.Area means the area attribute of objects of type
VIL) and attributes listed with an arrow are on the relations. For example, the contains relationship
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Table 1. Top 10 statistically significant important attributes (α = 0.05) in the
turbulence data for a forest with 100 trees, 1000 samples at each node, max tree
depth of 5. This is computed over 30 runs.

Attribute Mean Variable Importance
VIL.Area 0.198
Aircraft.RichardsonNumber 0.106
Rain→Contains.Coverage→VIL 0.085
Rain→Contains.Coverage→Convection 0.084
Convection→Contains.Coverage→VIL 0.061
Rain.Area 0.056
Hail.CloudTopTemperature 0.054
Aircraft→Nearby.Range→Rain 0.053
VIL.CloudTopTemperature 0.052
Aircraft→Nearby.Range→Vil 0.048

between Rain and VIL objects has a Coverage attribute that is the second most important attribute.
Most of these attributes characterize the storm environment. The most important attribute, the
area on VIL objects, reflects the size of active thunderstorms in the vicinity of the aircraft. Large
thunderstorms are often more intense and longer-lived, with greater outflow and environmental
disturbance than smaller storms. The Rain object’s area may play a similar role, though somewhat
less effectively. Cloud top temperatures within Hail and VIL objects provide additional indications
of storm severity; cold cloud tops suggest deeper clouds and potentially more powerful updrafts,
downdrafts and gravity waves. The range attribute on the relationship between aircraft and both
rain and VIL objects indicates the proximity of the plane to precipitating cloud or active convection,
and hence is related to the storm’s ability to influence it. The coverage attribute on the contains
relationship between Rain and VIL and Convection objects denotes the fraction of active convection
the larger rain regions, which may help distinguish rain due to convection from less turbulence-prone
stratiform or orographic rainfall. Only one of these top 10 attributes is derived from the NWP model
analysis: the Richardson number at the plane location indicates both turbulence due to the model-
resolved storm and also non-CIT turbulence related to environmental factors such as the jet stream
that may also occur in the dataset.

5. Surface boundaries and tornadogenesis

When different air masses meet, such as along a warm front or a cold front, boundary regions
exist. Given that air mixes continuously, the transition zone along the boundary is not instantaneous
and includes regions of strong temperature and moisture gradients. In addition to fronts, boundaries
also occur along drylines or due to outflow from thunderstorms. While boundaries are commonly
associated with the generation of storms through the lifting of warm, moist air over cool, dry air,
their overall impact on the generation of tornadoes is not well understood. Markowski et al. [14]
describe how boundaries can yield a zone of enhanced horizontal rotation. A supercell thunderstorm
with a strong updraft moving through the zone can vertically tilt the enhanced horizontal rotation
which assists with the process of producing a tornado. That study analyzed strong tornadic super-
cell thunderstorms over a one-year period and found that 70% occurred near frontal boundaries.
However, due to the limited sample size and time period, further study was needed to quantify the
relationship between boundaries and tornadoes over longer periods.

Our data was created from a ten-year analysis of supercell thunderstorms and surface boundaries
in the state of Oklahoma. The supercell data came from a climatology of 926 Oklahoma supercells
from 1994-2003 by Hocker and Basara [9]. Surface frontal boundaries associated with each supercell
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     Wind DSD: Wind Direction Standard Deviation
     Wind SSD: Wind Speed Standard Deviation
     LCLH:  Heigh of the Lifted Condensation Level
     BRGPrev: Previous Bearing
     TFP: Thermal Front Parameter

Figure 3. Schema for tornadogenesis data. Temporal data is denoted with a <T>
and 2-dimensional fielded data with a <T2F>.

Table 2. The distribution of tornadic and non-tornadic supercell durations.

Tornadic Non-Tornadic
Count 215 711

Proportion 0.235 0.765
Median Duration (hr) 2.71 1.71
Mean Duration (hr) 2.90 1.96

Std. Dev. Duration (hr) 1.48 1.09
Max. Duration (hr) 9.33 7.06
Min. Duration (hr) 0.32 0.08

were analyzed from Oklahoma Mesonet surface observations [16] using objective front analysis tech-
niques [21, 10]. Each group of supercells and frontal boundaries was labeled based on whether or
not the supercell produced a tornado. The front and supercell data were related using the schema
shown in Figure 3, where Nearby relationships indicated storms and fronts less than 40 km apart
and On Top Of relationships indicated a distance of less than 10 km apart, the typical diameter of
a supercell thunderstorm. This data included a wide variety of temporal and spatial attributes.

Table 2 shows the class distribution of the supercell thunderstorms and Figure 4 shows the spatial
distribution of tornadic supercells in Oklahoma. Most supercells in the data were found to be non-
tornadic. Tornadic supercells were found to last an hour longer on average than non-tornadic
supercells, a significant (p=0.01) difference. Although duration is well correlated with tornadic
supercells, it is not a predictive variable and is not useful while a storm is developing as its final
duration is not known until the storm has ended.

To determine what impact environmental variables have on the distribution of tornadic supercells,
we applied the SRRFs to this data. As with the previous experiment, we examined the AUC as a
function of the number of trees in the forest and the number of distinctions sampled at each level.
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Figure 4. Number of tornadic supercells that have passed within 30 km of a point
from 1994-2003.
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Figure 5. AUC for the Fronts and Tornado Data as a function of sample size for
10- and 50-tree SRRFs and a single SRPT. Error bars indicated 95% confidence
intervals.

These results are shown in Figure 5. The AUC indicates that this is a robust classifier and the forests
are again able to outperform the single SRPT. Also, as with the turbulence data, the performance
asymptotes as a function of the number of trees in the forest and as the number of splits sampled
at each level of tree growth increases.

To understand which variables are the most important in determining whether a supercell is tor-
nadic, we calculated the variable importance for the resampled data, as shown in Table 3. Seven
of the top ten variables were associated with the storm only, indicating that characteristics of the
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Table 3. The top 10 most important variables for the front and tornado data,
averaged over 30 runs of a 100-tree SRRF with a sample size of 1000 and a maximum
tree depth of 5.

Attribute Mean Variable Importance
Storm.AirTempature 0.162
Storm.ThetaE 0.130
Storm.NetDisplacement 0.120
Storm→Nearby.RelativeAzimuth →Front 0.117
Storm.DewPoint 0.112
Storm.Bearing 0.109
Front.ThetaE 0.088
Front.ThermalFrontParameter 0.085
Storm.Pressure 0.085
Storm.LiftedCondensationLevelHeight 0.079

storm environment are generally more influential than conditions along surrounding boundaries.
Air temperature, equivalent potential temperature (theta-e), and dewpoint were all among the most
important variables, which is potentially indicative that storms have different tornadic probabilities
given different moisture and heating conditions. Net displacement is tied to the duration of the
storm, which is consistent with the findings of [5] that long duration supercells are more likely to be
tornadic. The angle between the storm and the front and the bearing of the storm considered highly
important but not the distance to the front, so how the storm moves relative to local boundaries is
more indicative of tornadic potential than how far away a boundary is. A storm’s motion can affect
how long it remains in a favorable environment and from there affect the tornadic potential. Storm
pressure is related to the intensity of the storm. Lifted Condensation Level (LCL) Height estimates
the distance from the cloud base to the ground and is directly related to the dew point depression.
Bunkers [5] and others have shown that lower LCL heights are associated with weaker downdrafts
and cold pools, leading to longer-lasting supercell storms and more favorable environments for tor-
nadoes. As shown by the selection of important variables, the SRRF confirms trends discussed in
the literature for the studied domain.

6. Drought

Drought, loosely defined as insufficient water for normal purposes, has one of the highest costs of
any natural event in terms of socioeconomic loss. In the United States alone, drought has cost the
economy over $5B annually on average since 1980 and extreme drought events rival hurricanes in
their destructive potential [13]. Although drought differs significantly from the previous application
domains, the impact demonstrates that there is a need for an improved understanding of drought.
One of the interesting differences for SRRFs is that drought acts on a much slower temporal and
much wider spatial scale.

The geographical extent of our drought analysis roughly corresponds to the Southern Great Plains
of the United States. Because we have previously demonstrated [6] that the Palmer Drought Severity
Index (PDSI) exhibits strong spatial and temporal structure in terms of its predictability, we continue
to focus on the PDSI data. The PDSI drought data is provided on a 2.5 degree geographic coordinate
grid and each coordinate has 134 years of data recorded in one month intervals3. Incomplete data
records due to the presence of bodies of water and the slow early establishment of meteorological
records reduce the number of useful grid cells around the edges.

Figure 6a shows the schema for the spatiotemporal relational data used to study the PDSI. The
inherent gridded nature of the data logically leads to using each grid point as an object and the

3http://iridl.ldeo.columbia.edu/
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Figure 6. a) Schema for the drought data. b) AUC as a function of the number
of distinctions sampled and the number of trees in the forest at Tulsa, Oklahoma.

relations are the spatial relationships between the grid points. We focus on labeling the center point
of a 3x3 spatial grid given the PDSI value over the previous 3 months at all neighboring locations.
A graph is labeled as positive if the center grid point is in drought in the current month. With 134
years of data, we have approximately 1600 graphs for each location.

For the drought data, we performed several experiments. First, we varied the number of trees
in the forest and the number of samples as described for all of the previous domains. For this
experiment, we focused on the location of Tulsa, Oklahoma. The reason for running this experiment
on only one location was to find the best set of parameters and then repeat those parameters across
the entire data set, focusing on the variable importance analysis.

Figure 6b shows the AUC as a function of the number of distinctions samples and the number
of trees in the forest. As with the previous domains, performance increases as the number of trees
increases and asymptotes around 50 to 100 trees. Performance also improves as a function of the
number of samples while asymptoting around 500 samples.

Domain scientists want to be able to use such a model to better understand drought, not just to
predict it. We focus on the variable importance for this aspect. For this experiment, we trained a
SRRF with 50 trees and 100 samples for all 18 locations that have sufficient data at all neighboring
locations. We ran 30 runs of this training with the same parameter set and used variable importance
to analyze which direction is most important in predicting drought.

Figure 7 shows the corresponding map of the results obtained using the SRRF. The length of
the arrows emanating from each grid point indicates the variable’s importance. For example, a
long arrow pointing towards the southeast would indicate that spatiotemporal information to the
southeast of the center grid point is more useful in predicting the future occurrence of drought in
the center than a direction that exhibited a lower variable importance (shorter arrow).

It is immediately seen that spatiotemporal structure exists in the abilities of the various cardinal
and inter-cardinal directions to predict the presence of drought at the center grid points. This
highlights the potential ability of the SRRF algorithm to aid in drought response planning and
mitigation over short time spans. However, not only does Figure 7 demonstrate the ability to
predict, it also begins to hint at geographic structure with regards to how drought responds to
its spatiotemporal informational surroundings. This is most clearly seen from the similarity of
the rosettes of variable importance surrounding the sites in Eastern and Central Kansas. Their
qualitative similarity is suggestive that drought behaves similarly across this geographic region.
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Figure 7. Importance of spatiotemporal information, as a function of direction, in
the prediction of future states of drought.

Other potential regions may be seen in the Western Oklahoma/Northern Texas Panhandle, and in
the Southeastern New Mexico/Southern Texas Panhandle rosettes.

Our results are encouraging and warrant further investigation into the strength of the similarity
between rosettes, the inclusion of seasonality into the study, and the variations that drought indices
different from the PDSI might present. And finally, as nearly all geographic regions exhibit indi-
vidualized behavior, rather than relying upon Tulsa to calibrate the experimental parameters, each
grid cell should be examined for its own set of “best parameters.”

7. Conclusions

We have introduced and validated a significantly augmented Spatiotemporal Relational Random
Forest, a new Random Forest based algorithm that learns with spatiotemporally varying relational
data. We have focused our application of the SRRF algorithm on three real-world severe weather
domains: turbulence, tornadoes and drought. In each domain, we demonstrated that the SRRF is a
strong predictor and that the variable importance analysis significantly aids human understanding
of the results. The contributions of this paper include the enhanced SRRF algorithm, the variable
importance analysis for spatiotemporally varying relational data, the enhancements of the underlying
SRPT, parameter exploration, and a thorough validation on real-world severe weather data.

The current FAA turbulence prediction algorithm, GTG [24], is based primarily on NWP model
data, though efforts are underway to integrate observations to better diagnose convective turbulence
[29]. We anticipate that the SRRF will aid in this improvement by uncovering new spatiotemporal
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relationships with predictive value via the variable importance analyses. Furthermore, to evaluate
its potential to become a useful component of the prediction algorithm, we are evaluating gridded
predictions made by the SRRF on case studies drawn from selected days. Based on the results of
this study, we hope to integrate the SRRF into the current prediction product in the Fall of 2010.

Our work in the tornado domain is a piece of a larger project focusing on understanding the
formation of tornadoes through high resolution simulations as well as the analysis of observational
data. Future work on this same 10-year climatological data set includes extending the time period,
extending the period before each storm, and expanding the set of environmental variables. All
of our work on tornadoes will also be immediately relevant for the Warn-on-Forecast models being
developed for the National Weather Service. Our study of a 10 year dataset of tornadoes in Oklahoma
is helping to better understand “what” atmospheric variables are critical “when”. This provides basic
new insights into the overall set of processes related to the occurrence of tornadic supercells. In the
future, this will be integrated with the knowledge gained through field studies such as VORTEX 24.

Our drought application is also a piece of a larger project studying the predictability of drought in
the continental United States using a variety of data mining techniques. The goal of this project is
to improve our understanding of how drought moves and thus to improve the predictions of drought,
enabling those affected by it to mitigate the impact.

Research Reproducibility: All of the graphs from the parameter exploration studies, the data,
and the code used for all of the experiments are available at: http://idea.cs.ou.edu/cidu2010.
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ADAPTIVE MODEL REFINEMENT

FOR THE IONOSPHERE AND THERMOSPHERE
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Abstract. Mathematical models of physical phenomena are of critical importance in
virtually all applications of science and technology. This paper addresses the problem of
how to use data to improve the fidelity of a given model. We approach this problem using
retrospective cost optimization, a novel technique that uses data to recursively update an
unknown subsystem interconnected to a known system. Applications of this research are
relevant to a wide range of applications that depend on large-scale models based on first-
principles physics, such as the Global Ionosphere-Thermosphere Model (GITM). Using
GITM as the truth model, we demonstrate that measurements can be used to identify
unknown physics. Specifically, we estimate static thermal conductivity parameters, and
we identify a dynamic cooling process.

1. Introduction

The goal of this work is to use data to build better models. Figure 1 illustrates this
objective. Models serve a variety of purposes by capturing different phenomena at varying
levels of resolution. High-resolution models are desirable when the goal is to understand
scientific phenomena or assimilate data, whereas a coarser model may be preferable when
the goal is to capture critical details in an efficient manner, for example, for fast prediction
or control. Consequently, the fidelity of a model must be gauged against its intended usage.

Figure 1. This diagram illustrates the goal of this work, namely, initial model +
data = improved model.

Most models are constructed from collections of interconnected subsystem models, which
in turn are based on a combination of physical laws and empirical observations. For exam-
ple, the core of a model might be the Navier-Stokes or MHD equations, while various source
terms (such as chemistry, heating, and friction) may be modeled using either first principles
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submodels or empirical relations that have different levels of self-consistency and complex-
ity. Physical laws embody first-principles knowledge, whereas empirical observations may
include relations that are based on the statistical analysis of data, for example, regression.
Physics can provide the backbone of a model, while empirical relations can flesh out details
that are beyond the ability of analytical modeling (e.g., sub-grid-scale phenomena).

When data are available, an empirical model can be constructed by means of system
identification methods. The construction of a linear dynamic model that relates measured
inputs to measured outputs is well developed [14, 15, 16]. A more challenging problem is
to develop methods for nonlinear system identification. Since nonlinear models can have a
vast range of structures, the problem of nonlinear system identification requires the choice
of a suitable model structure as well as an algorithm that uses data to tune the parameters
of the model. Model structures range from black-box (unstructured) models, such as neural
networks, to grey-box and white-box models, where some or all of the structure of the model
is specified [17, 18, 19, 20].

Accessibility impacts the ability to perform nonlinear model identification. For exam-
ple, the Hammerstein and Wiener grey-box model structures, in which a static nonlinear
mapping is cascaded with a dynamic linear subsystem, are reasonably tractable for model
identification [21]. However, when the static nonlinear mapping of a dynamic linear sys-
tem is not directly accessible, in the sense that neither its input nor its output is directly
measured, then the identification problem becomes significantly more difficult. The highest
degree of accessibility arises when two variables are measured and the unknown subsystem
is a static mapping between the variables.

System identification is typically concerned with the construction of a model of the entire
system. In contrast, our goal is to identify a specific subsystem of the model, where the
remainder of the model is assumed to be accurate and the goal is to improve understanding
of the physics of the poorly modeled subsystem despite its low accessibility. With this
concept of accessibility in mind, we introduce the problem of data-based model refinement,
where we assume the availability of an initial model, which may incorporate both physical
laws and empirical observations. The components of the initial model may have varying
degrees of fidelity, reflecting knowledge or ignorance of the relevant physics as well as the
availability of data. With this initial model as a starting point, our goal is to use additional
measurements to refine the model. Components of the model that are poorly modeled
can be updated, thereby resulting in a higher fidelity model, as shown in Figure 1. This
problem is variously known as model correction, empirical correction, model refinement,
model calibation, or model updating, and relevant literature includes [1, 2, 3, 4] on finite-
element modeling, [5, 6, 7] on meteorology, [8] on feedback control, as well as our algorithmic
research [9, 10, 11] with applications to health monitoring [12, 37].

The uncertain physics of a subsystem may range from the simplest case of an unknown
parameter (such as a diffusion constant), to a multivariable spatially dependent static map-
ping (such as a conductivity tensor or boundary conditions), to a fully dynamic relation-
ship among multiple variables (such as reaction kinetics). The difficulty of identifying these
phenomena from empirical data depends on something we call accessibility, which refers,
roughly, to the degree of separation between the data and the subsystem. The ability to use
data to update a model despite limited accessibility is the ultimate goal of model refinement.

In this paper we examine model refinement for a first principles model of the ionosphere
and thermosphere. Specifically, our approach is to use the Global Ionosphere Thermosphere
Model (GITM) [28] to provide a known initial model.
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GITM is a 3-dimensional spherical code that solves the Navier-Stokes equations for the
thermosphere. These types of models are more effective than empirical models because
they capture the dynamics of the system instead of snapshots of steady-state solutions.
GITM is different from most models of the atmosphere in that it solves the full vertical
momentum equation instead of assuming that the atmosphere is in hydrostatic equilibrium,
where the pressure gradient is balanced by gravity. While this assumption is fine for the
majority of the atmosphere, in the auroral zone, where significant energy is dumped into the
thermosphere on short time-scales, vertical accelerations often occur. This heating causes
strong vertical winds that can significantly lift the atmosphere [29].

The grid structure within GITM is fully parallel and uses a block-based two-dimensional
domain decomposition in the horizontal coordinates [30]. Since the number of latitude
and longitude blocks can be specified at runtime, the horizontal resolution can easily be
modified. GITM has been run on up to 256 processors with a resolution as fine as 0.31∘

latitude by 2.5∘ longitude over the entire globe with 50 vertical levels, resulting in a vertical
domain from 100 km to roughly 600 km. This flexibility can be used to validate accuracy
by running model refinement at various levels of resolution.

First principles models, such as GITM, are drastically influenced by unknowns such as
thermal conductivity coefficients and cooling processes in the atmosphere. These effects
cannot be directly measured at each altitude. We identify these subsystems, which are
assumed to be unknown or uncertain using data that are readily available from simulated
satellites on orbit, and we correct the uncertain model to demonstrate the feasibility of
implementing model refinement techniques.

2. Adaptive Model Refinement for Subsystem Identification

Model refinement is concerned with the identification of a specified subsystem of a larger
overall model. The challenge is to perform this identification despite the fact that the
subsystem of interest has low accessibility, that is, when neither the inputs nor the outputs
of the subsystem are accessible in the form of data. The innovation of this paper is to
recognize as in [9, 10, 11, 12, 35] that this problem is equivalent to a problem of adaptive
control theory. This equivalence is evident when the model-refinement problem is cast in
the form of a block diagram, as in Figure 2.

Figure 2 shows a block diagram of adaptive model refinement. Each block is labeled
to denote its uncertainty status. The blocks labeled “Known Subsystem” and “Unknown
Subsystem” represent the physical system, whose inputs include known and unknown in-
puts (also called “physics drivers”). These subsystems are connected through feedback,
which captures the fact that each subsystem impacts the other. Although serial and paral-
lel interconnections can also be considered, feedback interconnection provides the greatest
generality in practice. The majority of the dynamics of the system are assumed to be in-
cluded in the “Known Subsystem” block, while the “Unknown Subsystem” block includes
static or dynamic maps that are poorly known. The objective is to use data to better
understand the “Unknown Subsystem” block.

The lower part of the diagram in Figure 2 constitutes the “Simulated System.” The
“Physics Model,” which is implemented in computation, captures the dynamics of the
“Known Subsystem” and serves as the initial model. This model is interconnected by
feedback with the block labeled “Identified Physics,” which is refined (updated) recursively
as data become available. This model refinement occurs through the “Physics Update”
procedure, which is denoted by the diagonal arrow. The subsystem model update is a
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tuning procedure that recursively identifies the unknown physics to provide a model of the
“Unknown Subsystem” block. This tuning procedure is driven by the model-error signal
𝑧, which is the difference between the data from the “Physical System” and the computed
output of the “Simulated System.”

Figure 2. This block diagram illustrates the model refinement problem, where the
goal is to identify the “Unknown Subsystem” of the “Physical System.” By depicting
this problem as a block diagram, it becomes evident that the model refinement
problem is equivalent to a problem of adaptive disturbance rejection.

When cast in the form of a block diagram in Figure 2, the model refinement problem
has a form of an adaptive control system. This resemblance suggests that adaptive control
methods may be effective in tackling the model refinement problem. To do this, we require
techniques for adaptive control that are sufficiently general and computationally tractable
to address the features of large-scale physically meaningful applications.

2.1. Retrospective Cost Optimization. To address the model refinement problem, we
apply techniques that we have developed for adaptive control. These techniques, which are
described in [22, 23, 24], are distinct from standard adaptive control approaches in several
crucial ways. Specifically, the approach of [22, 23, 24, 35] requires minimal modeling infor-
mation concerning the “Known Subsystem,” and is applicable to a wide range of adaptive
control problems, including command following, disturbance rejection, stabilization, and
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model following. The algorithm utilizes a surrogate cost function that entails a closed-
form quadratic (and thus convex) optimization step. Surprisingly, the controller update
requires information about only the zeros of the system; no information about the poles is
needed. Even more surprising is the fact that the control update requires only knowledge
of the nonminimum-phase zeros of the system. This result is truly remarkable in that it
shows definitively that nonminimum-phase zeros are the crucial modeling information that
is needed for adaptive control.

For model refinement, the specific problem of interest is adaptive disturbance rejection,
where the “disturbance” to be rejected is the unknown driver 𝑣. The performance signal in
the example application described below is the error in neutral mass density of the upper
atmosphere, and this signal is used to drive the “Physics Update.”

The novel feature of the technique developed in [22, 23] is the use of a retrospective

cost criterion to update the estimate of the “Unknown Subsystem.” Unlike many adaptive
control techniques that are limited to systems with minimum-phase zeros and low relative
degree, this approach is effective for systems with arbitrary poles and zeros. This unique
flexibility allows us to apply the technique of retrospective cost adaptive control to the
problem of model refinement.

Although the techniques developed in [22, 23, 24] apply to linear systems, the exam-
ple discussed in the next subsection shows that the method can be effective for large-scale
nonlinear systems such as GITM. Additional relevant literature on retrospective cost opti-
mization includes [13, 31, 32, 33, 34, 36, 38, 39, 40].

Retrospective cost optimization depends on several parameters that are selected a pri-

ori. Specifically, 𝑛c is the estimated order of the unknown subsystem, 𝑝 ≥ 1 is the data
window size, and 𝜇 is the number of Markov parameters obtained from the known model.
The methodology for choosing these parameters is as follows. The subsystem order 𝑛, is
overestimated, that is 𝑛𝑐 is chosen to be greater than the expected order of the unknown
subsystem; for parameter estimation, 𝑛𝑐 is zero. 𝜇 is generally chosen to be 1, however, a
larger value is needed if nonminimum phase zeros are present in the initial model.

The adaptive update law is based on a quadratic cost function, which involves a time-
varying weighting parameter 𝛼(𝑘) > 0, referred to as the learning rate since it affects the
convergence speed of the adaptive control algorithm.

We use an exactly proper time-series controller of order 𝑛c such that the control 𝑢(𝑘) is
given by

𝑢(𝑘) =

𝑛c∑
𝑖=1

𝑀𝑖(𝑘)𝑢(𝑘 − 𝑖) +

𝑛c∑
𝑖=0

𝑁𝑖(𝑘)𝑦0(𝑘 − 𝑖),(1)

where 𝑀𝑖 ∈ ℝ
𝑙𝑢×𝑙𝑢 , 𝑖 = 1, . . . , 𝑛c, and 𝑁𝑖 ∈ ℝ

𝑙𝑢×𝑙𝑦0 , 𝑖 = 0, . . . , 𝑛c, are given by an adaptive
update law. The control can be expressed as

𝑢(𝑘) = 𝜃(𝑘)𝜓(𝑘),(2)

where

𝜃(𝑘)
△
=
[
𝑁0(𝑘) ⋅ ⋅ ⋅ 𝑁𝑛c

(𝑘) 𝑀1(𝑘) ⋅ ⋅ ⋅ 𝑀𝑛c
(𝑘)

]
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is the controller parameter block matrix and the regressor vector 𝜓(𝑘) is given by

𝜓(𝑘)
△
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑦0(𝑘)
...

𝑦0(𝑘 − 𝑛c)
𝑢(𝑘 − 1)

...
𝑢(𝑘 − 𝑛c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℝ

𝑛c𝑙𝑢+(𝑛c+1)𝑙𝑦0 .

For positive integers 𝑝 and 𝜇, we define the extended performance vector 𝑍(𝑘) and the
extended control vector 𝑢(𝑘) by

𝑍(𝑘)
△
=

⎡
⎢⎣ 𝑧(𝑘)

...
𝑧(𝑘 − 𝑝 + 1)

⎤
⎥⎦ , 𝑈(𝑘)

△
=

⎡
⎢⎣ 𝑢(𝑘)

...
𝑢(𝑘 − 𝑝c + 1)

⎤
⎥⎦ ,

where 𝑝c
△
= 𝜇 + 𝑝.

From (2), it follows that the extended control vector 𝑢(𝑘) can be written as

𝑈(𝑘)
△
=

𝑝c∑
𝑖=1

𝐿𝑖𝜃(𝑘 − 𝑖 + 1)𝜓(𝑘 − 𝑖 + 1),

where

𝐿𝑖
△
=

⎡
⎣ 0(𝑖−1)𝑙𝑢×𝑙𝑢

𝐼𝑙𝑢
0(𝑝c−𝑖)𝑙𝑢×𝑙𝑢

⎤
⎦ ∈ ℝ

𝑝c𝑙𝑢×𝑙𝑢 .

We define the surrogate performance vector 𝑍(𝜃, 𝑘) by

𝑍(𝜃, 𝑘)
△
= 𝑍(𝑘) − 𝐵̄𝑧𝑢

(
𝑈(𝑘) − 𝑈̂(𝑘)

)
,(3)

where

𝑈̂(𝑘)
△
=

𝑝c∑
𝑖=1

𝐿𝑖𝜃𝜓(𝑘 − 𝑖 + 1),(4)

and 𝜃 ∈ ℝ
𝑙𝑢×[𝑛c𝑙𝑢+(𝑛c+1)𝑙𝑦0 ] is the surrogate controller parameter block matrix. The block-

Toeplitz surrogate control matrix 𝐵̄𝑧𝑢 is given by

𝐵̄𝑧𝑢
△
=

⎡
⎢⎢⎢⎣

0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢 𝐻𝑑 ⋅ ⋅ ⋅ 𝐻𝜇 0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢

0𝑙𝑧×𝑙𝑢

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0𝑙𝑧×𝑙𝑢

...
0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢 0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢 𝐻𝑑 ⋅ ⋅ ⋅ 𝐻𝜇

⎤
⎥⎥⎥⎦ ,

where the relative degree 𝑑 is the smallest positive integer 𝑖 such that the 𝑖th Markov
parameter 𝐻𝑖 of the initial model is nonzero. The leading zeros in the first row of 𝐵̄𝑧𝑢

account for the relative degree 𝑑. The algorithm places no constraints on either the value
of 𝑑 > 0 or the rank of 𝐻𝑑 or 𝐵̄𝑧𝑢.
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We now consider the cost function

𝐽(𝜃, 𝑘)
△
= 𝑍T(𝜃, 𝑘)𝑅1(𝑘)𝑍(𝜃, 𝑘) + tr

[
𝑅2(𝑘)

(
𝜃 − 𝜃(𝑘)

)T
𝑅3(𝑘)

(
𝜃 − 𝜃(𝑘)

)]
,(5)

where 𝑅1(𝑘)
△
= 𝐼𝑝𝑙𝑧 , 𝑅2(𝑘)

△
= 𝛼(𝑘)𝐼𝑛𝑐(𝑙𝑤+𝑙𝑣), and 𝑅3(𝑘)

△
= 𝐼𝑙𝑤 . Substituting (3) and (4) into

(5), 𝐽 is written as the quadratic form

𝐽(𝜃, 𝑘) = 𝑐(𝑘) + 𝑏Tvec 𝜃 +
(
vec 𝜃

)T
𝐴(𝑘)vec 𝜃,

where

𝐴(𝑘) = 𝐷T(𝑘)𝐷(𝑘) + 𝛼(𝑘)𝐼,

𝑏(𝑘) = 2𝐷T(𝑘)𝑓(𝑘) − 2𝛼(𝑘)vec 𝜃(𝑘),

𝑐(𝑘) = 𝑓(𝑘)T𝑅1(𝑘)𝑓(𝑘) + tr
[
𝑅2(𝑘)𝜃T(𝑘)𝑅3(𝑘)𝜃(𝑘)

]
,

where

𝐷(𝑘)
△
=

𝑛c+𝜇−1∑
𝑖=1

𝜓T(𝑘 − 𝑖 + 1) ⊗ 𝐿𝑖,

𝑓(𝑘)
△
= 𝑍(𝑘) − 𝐵̄𝑧𝑢𝑈(𝑘).

Since 𝐴(𝑘) is positive definite, 𝐽(𝜃, 𝑘) has the strict global minimizer

𝜃 =
1

2
vec−1(𝐴(𝑘)−1𝑏(𝑘)).

The controller gain update law is

𝜃(𝑘 + 1) = 𝜃.

The coefficients of the time series (1) contain information about the unknown subsystem.
For parameter estimation, the entries of 𝜃(𝑘), in the case 𝑛𝑐 = 0, are parameter estimates
that can be used to correct the initial model. For dynamic subsystem identification, the
entries of 𝜃(𝑘), when 𝑛𝑐 > 0, are parameters of a system of equations that describe the
unknown dynamics. We demonstrate the both scenarios on GITM.

3. Application of Model Refinement to Ionospheric Parameter

Estimation

To illustrate adaptive model refinement, we consider the problem of using upper atmo-
spheric mass-density measurements, as can be obtained from a satellite, to estimate the
thermal conductivity of the thermosphere. This problem is challenging due to the fact that
we do not assume the availability of measurements that can serve as inputs or outputs to the
“Unknown Subsystem” modeling thermal conductivity. In other words, the objective of the
identification in this particular application is inaccessible relative to the available measure-
ments. Furthermore, the identified subsystem parameters must be physically representative
of the unknown subsystem. Specifically, the identified subsystem must not only refine the
true model such that the closed-loop outputs of the known and unknown subsystem match
the output of the known and identified subsystem, but the identified parameters must also
match the unknown parameters to provide useful information about the unknown physics
of the system.
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Figure 3. This block diagram specializes Figure 2 to the case of model refine-
ment for a model of the ionosphere-thermosphere. Simulated data are generated by
using the 1D Global Ionosphere-Thermosphere Model (GITM), where the thermal
conductivity is assumed to be unknown. The goal is to estimate the thermal con-
ductivity by using measurements of the neutral mass density. The fact that this
problem is precisely a problem of adaptive control allows us to apply retrospective
cost adaptive control methods. This problem is difficult for conventional parameter
estimation methods due to the low accessibility of the unknown physics relative to
the available measurements.

We use GITM to simulate the chemistry and fluid dynamics in a 1D column in the
ionosphere-thermosphere. The temperature structure of the thermosphere depends on many
factors, such as the Sun’s intensity in extreme ultraviolet (EUV) wavelengths, eddy diffusion
in the lower thermosphere, radiative cooling of the O2 and NO, frictional heating, and the
thermal conductivity.

The basic structure of the thermal conductivity is 𝜆 = 𝐴𝑇 𝑠, where 𝐴 and 𝑠 are the thermal
conductivity and rate coefficients, respectively. The thermal conductivity may depend on
chemical constituents (e.g., N2, O2, and O). Uncertainty concerning the values for 𝐴 and 𝑠

[27], can strongly control the temperature structure. The need to estimate these coefficients
from available data is shown in Figure 4, where published values of these coefficients vary
depending on the reference source. We use this uncertainty in the literature as a bound on
performance. Ideally, the estimates we obtain using data should be within these bounds.
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Figure 4. Steady-state globally averaged temperature structure using three pub-
lished conductivity values.

To estimate the unknown thermal conductivity coefficient, we apply the retrospective
cost adaptive control algorithm to the simulated measurements of neutral mass density
provided by 1D GITM. We do this by running a “truth model,” from which we extract
mass-density data at 400-km altitude (a typical altitude for satellites). The thermal con-
ductivity coefficient is initialized to be zero, and its value is updated recursively by the
retrospective cost adaptive control algorithm. Figure 5 shows the evolution of the estimate
of the thermal conductivity as more data become available. The estimate is seen to converge
to a neighborhood of the true value within about 0.6 × 104 data points.

To further illustrate the model refinement method, we now assume that both the thermal
conductivity, 𝐴, and rate coefficient, 𝑠, are unknown. The parameters 𝐴 and 𝑠 are initialized
as zero, and are updated simultaneously and recursively. Figure 6 shows the update of the
estimates. Both estimates converge to within a neighborhood of the true values within
0.6 × 105 data points.

The performance gains attributed to the refined parameters are shown in Figure 7. The
upper figure is a performance comparison of a nominal GITM model, which is assumed to
be the truth model, while another GITM model with a thermal conductivity coefficient is
set to zero. Within the simulated model, this value prevents energy deposited in one layer
of the atmosphere from remaining in that layer. The lower plot of Figure 7 illustrates the
reduction in model error obtained by including the identified coefficients, thereby accounting
for the thermal conductivity of this species. The benefits of refining the GITM model are
evident by the improvement in model accuracy.

4. Application of Model Refinement to Ionospheric Dynamics Estimation

To illustrate model refinement in the case of an unknown dynamic subsystem, the NO
radiative cooling was removed from GITM to provide an initial model but retained in GITM
for the truth model. The goal is to reproduce the missing process. This is nontrivial since
the functional form of the cooling was assumed to be unknown as were the dynamics. We
assumed only that something was missing from the energy equation, and that this was
most likely a function of temperature. The dynamics of the cooling were estimated at
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Figure 5. This plot shows the true and estimated thermal conductivity coeffi-
cient. The initial guess for the thermal conductivity is zero. The estimate converges
to a neighborhood of the true value within about 0.6× 105 data points. The lack of
final convergence is due to nonlinearities in the dynamics of the system. However,
the oscillations are well within the uncertainty bounds, which reflect the range of
published values for this coefficient.

three different altitudes, connecting the other altitudes through linear interpolation, which
is obviously an approximation, but illustrates the technique. Nothing else about this energy
sink was assumed. The thermospheric density was utilized as data at 407 km altitude from
a simulated truth model that included NO cooling. The result of the model refinement
in Figures 8 and 9 demonstrates that this technique captured the actual dynamics in the
system. The height profile of the cooling matches the actual cooling quite well. Furthermore,
the temporal variation of the maximum cooling matched the cooling simulated by the model.

Three linear dynamical equations were derived (one for each of the three chosen altitudes),
which reproduced the dynamics of the cooling. To determine the relevant drivers, the
temperature estimate was fed into the model refinement technique. What resulted was a
profile that looks remarkably like the natural logarithm of the NO density, indicating that
this may be the source of the cooling, which it actually is. This technique can thus be used
to refine and improve an initial model (or models, if several are hypothesized) that is either
uncertain or erroneous. In turn, the improved model provides a more accurate foundation
for data assimilation aimed at wind and density estimates in the presence of solar storm
disturbances. Figure 10 shows a comparison of the model without correction versus the
model with correction, both of which are baselined against the truth model. Without data-
based model refinement, the estimated density measurements degrade as time increases.
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Figure 6. These plots show the true and estimated thermal conductivity coeffi-
cient as well as the true and estimated rate coefficient. The initial guesses for both
coefficients are zero. The estimates converge to a neighborhood of the true value
within about 0.6 × 105 data points. The estimates are also within the uncertainty
limits, which are determined by the range of published values for these coefficients.

5. Conclusions

In this paper we presented a method for improving the fidelity of models using empirical
data, which is known as model refinement. Model refinement presents challenges relative to
standard input-output system identification, specifically, a lack of accessibility to the sig-
nals required to identify the refining subsystem. For model refinement we use retrospective
cost optimization to identify the unknown model. We demonstrated the feasibility of the
method in refining first principles models. In particular, to model the ionosphere and ther-
mosphere using the global ionosphere-thermosphere model (GITM). We to demonstrated
how uncertain parameters are identified when the structure of the refining model is known.
Furthermore, we demonstrated how unknown dynamics are identified from data when the
internal structure of the updated subsystem is unknown.
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PADMINI: A PEER-TO-PEER DISTRIBUTED ASTRONOMY DATA MINING
SYSTEM AND A CASE STUDY

TUSHAR MAHULE*, KIRK BORNE**, SANDIPAN DEY*, SUGANDHA ARORA*,
AND HILLOL KARGUPTA***

Abstract. Peer-to-Peer (P2P) networks are appealing for astronomy data mining from virtual
observatories because of the large volume of the data, compute-intensive tasks, potentially large
number of users, and distributed nature of the data analysis process. This paper offers a brief
overview of PADMINI—a Peer-to-Peer Astronomy Data MINIng system. It also presents a case
study on PADMINI for distributed outlier detection using astronomy data. PADMINI is a web-
based system powered by Google Sky and distributed data mining algorithms that run on a
collection of computing nodes. This paper offers a case study of the PADMINI evaluating the
architecture and the performance of the overall system. Detailed experimental results are presented
in order to document the utility and scalability of the system.

1. Introduction

As the amount of data available at various geographically distributed sources is increasing rapidly,
traditional centralized techniques for performing data analytics are proving to be insufficient for
handling this data avalanche. For instance, astronomy research which relies primarily on the data
available at various sky surveys presents such challenges. Downloading and processing all the data at
a single location results in increased communication as well as infrastructural costs. Moreover, such
centralized approaches cannot fully exploit the power of emerging distributed computing networks
such as Peer-to-Peer (P2P) user-networks. An alternative to this approach is to distribute such
computationally intensive tasks among various participating nodes which can also be geographically
distributed. Data mining solutions that pay careful attention to the resource-consumption in a dis-
tributed environment need to be developed. This paper particiularly considers P2P networks for
creating such distributed solutions.

In this paper we report a case study for the PADMINI—Peer-to-Peer Astronomy Data MINIng
system1. Unlike centralized data mining systems, PADMINI is a web-based system powered by vari-
ous distributed data mining algorithms that run on a collection of computing nodes forming a Peer-
to-Peer (P2P) network. PADMINI is an easy to use and scalable system for submitting astronomy
jobs in which the collection of data for these jobs and their execution is performed in a distributed
fashion. This distributed web application is designed to help astronomy researchers and hobbyists in
analyzing data from Astronomy Virtual Observatories (VOs). The back-end distributed computa-
tion network supports two frameworks, namely the Distributed Data Mining Toolkit (DDMT) and
Hadoop.

The rest of the paper is organized as follows: Section 2 presents the motivation behind build-
ing the PADMINI system. It explains the specific astronomy data mining problem that the paper
intends to address. Section 3 briefly describes the related work in the field of P2P data mining.
Section 4 gives an overview of the architecture of the system and describes each of it’s components
in detail. The implementation details of the system are described in Section 5. Secion 6 describes
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the outlier detection algorithm that addresses the problem defined in section 2. The implementation
of this algorithm on the PADMINI system is also discussed here. Section 7 presents the results
detailing the performance of the system and the accuracy of the algorithm implemented therein.
Finally, Section 8 concludes the paper along with a brief discussion on the future work.

2. Motivation

Scientific knowledge discovery from the massive datasets that are produced by very large sky
surveys is playing an increasingly significant role in today’s astronomy research[6]. The astronomy
community has access to huge multi-terabyte sky surveys, with petabyte-scale sky surveys coming
online within the next few years, each of which separately has a tremendous potential for new dis-
coveries. When the datasets from multiple sky surveys are used in combination, the potential for
scientific discovery increases quadratically in the number of surveys inter-compared. Such discoveries
range from identification of serendipitous objects and outliers that fall outside the expectations of
our standard models to the detection of very rare (but previously undetected) events that models
claim should be there[5].

Many projects (such as GALEX [18], 2MASS [1], and SDSS [33]) are producing enormous ge-
ographically distributed catalogs of astronomical objects. The challenge of modern data-intensive
astronomy is to enable research that accesses, integrates, and mines these distributed data collec-
tions. The development and deployment of a U.S. National Virtual Observatory (NVO) is a step
in this direction. These collections are naturally distributed and heterogeneous, containing different
attributes and being represented by a variety of schema. Processing, mining, and analyzing dis-
tributed and vast data collections are fundamentally challenging tasks, since most off-the-shelf data
mining systems require the data to be downloaded to a single location before further analysis. This
imposes serious scalability constraints on the data mining system and fundamentally hinders the
scientific discovery process. Consequently, scientific knowledge discovery in this data environment
will be difficult to achieve without a computational backbone that includes support for queries and
data mining across distributed virtual tables of de-centralized, joined, and integrated sky survey cat-
alogs. This motivates the need to develop communication-efficient distributed data mining (DDM)
techniques, including the possibility of constructing Peer-to-Peer (P2P) networks for data sharing
and mining. We are exploring the possibility of using distributed and P2P data mining technology
for exploratory astronomical discovery from data integrated and cross-correlated across multiple
distributed sky surveys. We then apply distributed data mining algorithms to analyze these data
distributed over a large number of compute nodes.

We focus on one particular type of application from this domain - the detection of serendipitous
correlations and outliers in high-dimensional parameter spaces derived from multiple distributed
databases. This motivates our work on a P2P outlier detection system that we implement with a
DDM algorithm. Cosmology catalogs are mined for novel features and surprising correlations, using
parameters that correspond to the measured physical characteristics (e.g., size, shape, luminosity,
flux ratios, color, group membership) for the myriads of galaxies and quasars that are detected
within large sky images. The cosmology catalogs that we will study (i.e., the SDSS [Sloan Digital
Sky Survey] and 2MASS [2-Micron All-Sky Survey]) are the aggregated (and organized) collections
of all the structured information content (hundreds of attributes) representing the hundreds of mil-
lions of galaxies and quasars detected within the massive collections of sky images that represent
the sky survey source data. Regarding outlier detection, we note that the discovery of novelty,
outliers, anomalies, and surprise within large data sets represents one of the most exciting aspects
of science – finding something totally new and unexpected. This can lead to a quick research paper,
or it can make your career. As scientists, we all yearn to make a significant discovery. Massive
scientific datasets potentially offer a multitude of such discovery opportunities. We will explore
high-dimensional parameter spaces for outliers and correlations among a variety of scientific at-
tributes, going beyond the traditional scientist’s 2-dimensional scatter plots and correlation plots.

244

2010 Conference on Intelligent Data Understanding



The PADMINI system can in principle explore parameter spaces in significantly high dimensions,
by taking advantage of the P2P distributed computing architecture.

3. Related Work

Distributed data mining deals with analysis of data in an environment where the data, computing
resources as well as users are geographically distributed [25]. Heterogeneous data can contain differ-
ent representations of the same data or may observe entirely distinct set of features and can also be
located at distributed locations. Knowledge discovery through such heterogeneous data sources is
demonstrated in [23]. A Collective Principal Component Analysis (PCA) technique is proposed and
a distributed clustering algorithm based on Collective PCA is developed. Interested reader can refer
to [30] to get an extensive overview of the Distributed Data Mining paradigm, the main algorithms
and their applications.

Peer-to-Peer (P2P) systems employ distributed resources to perform tasks collectively. They can
be used for performing complex tasks in a decentralized and efficient fashion. Various data mining
algorithms have been modified and developed to run on Peer-to-Peer networks. Calculating aver-
ages of inputs located on nodes in a P2P network is described in [29]. Two algorithms to perform
K-means clustering over P2P networks are proposed and analyzed in [10]. Luo et. al. address the
problem of distributed classification in P2P networks in [27]. The PADMINI system is powered by
two frameworks on which most of these algorithms can be implemented. A detailed overview of
Distributed Data Mining in context of P2P networks can be found in [9].

The following subsections talk about the past work done specifically in the area of Astronomy
Data Mining:

3.1. Astronomy Data Mining. The US National Virtual Observatory [34], and the International
Virtual Observatory Alliance [22], enable astronomical researchers to find, retrieve, and analyze
astronomical data. This data includes datasets collected from various sky surveys like Sloan Digital
Sky Survey (SDSS) [33] and Two Micron All Sky Survey (2MASS) [1]. Mining data from these sky
survey datasets is playing an increasingly important role in Astronomy research [15]. FMASS[17],
Digital Dig - Data Mining in Astronomy[11] and GRIST: Grid Data Mining for Astronomy[20] are
some of the frameworks that have been developed to aid the knowledge discovery from astronomical
data. Some dedicated data mining projects include Class-X [7], the Auton Astrostatistics Project [2],
and additional VO-related data mining activities such as SDMIV [32]. The DEMAC system which
provides tools for distributed data mining and can be integrated on top of Virtual Observatories is
described in [19]. Data will be generated at the rates of petabytes by future sky surveys like the ones
using the Large Synoptic Survey Telescopes (LSST)[26] to create a data stream like scenario. The
problem of change detection using local distributed eigen monitoring algorithms in such scenarios is
addressed in [8]. A distributed algorithm for Outlier Detection from Astronomy catalogs is discussed
in [14]. The Top-K Outlier Detection described in [14] partitions the data vertically while the
PADMINI system hosts an Outlier Detection algorithm that partitions the data horizontally and
relies on the parallelism provided by Hadoop to offer a highly scalable implementation. We also
focus more on the efficiency of the implementation of this algorithm that we present in Section 6.

A slightly similar work by Bhaduri et. al. [3] is currently in submission and being reviewed. While
that work mentions the PADMINI system, the focus is on change detection in a streaming scenario.
Also, the implementation and testing platform for [3] is the DDMT whereas we have implemented it
on Hadoop. [28] discusses the PADMINI system as a whole, while here we also present a case study
on a specific algorithm implemented on the PADMINI system.

4. Overview of PADMINI

Figure 1 depicts the high level architecture of the PADMINI system and the following subsections
describe the role of these major system components in detail.
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4.1. Web Server. The Web Server is an HTTP Server that hosts the main interface for the PAD-
MINI system. Apache Tomcat is used as the Web Server as well as the Servlet Container for the
system and MySQL is used as the database. It is used to store the information related to users, jobs
submitted by them, the astronomy catalogs and attributes supported by the system etc.

Figure 1. System Architecture

4.2. Distributed Data Mining Server. The Distributed Data Mining (DDM) Server accepts job
requests from the web server. Depending on the availability of the resources in the backend com-
putation network, a job is either submitted for execution of stored in a queue. However, the notion
of priority is not supported for the final job submission. The DDM Server currently supports only
First-Come-First-Served scheduling.

Extensibility has been one of the key design decisions in building the PADMINI system. To this
effect, the DDM Server can also act as an independent server accepting job submission requests
from clients other than the Web Server. This is achieved by implementing a Web Services API that
allows clients to submit jobs, cancel them, check the status of running jobs or retrieve the results of
the complete jobs. We intend to expose this API once the API development is completely tested.
Keeping the DDM Server separate from the Web Server to make sure that load of user requests and
web services requests is evenly balanced. This modular design also makes the system more flexible
and easier to manage.

The backend P2P computation network supports two disparate distributed programming frame-
works, namely Hadoop and Distributed Data Mining Toolkit (DDMT). While Hadoop is more
suitable for distributed parallel algorithms which can be expressed in terms of map and reduce [13]
tasks, the DDMT provides a framework for implementing highly asynchronous distributed algo-
rithms. In this paper, we focus more on the Hadoop framework and the outlier detection algorithm
implemented on that framework.

4.3. Databases.

4.3.1. Server database. This database stores the information related to the users, the jobs submitted
by them and the results of the most recent jobs. The information related to the algorithms supported
by the system also resides here. Astronomy data can be extremely large in size and is readily available
from the various Virtual Observatories on demand. To avoid redundancy, we do not store any data
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required for the jobs in our databases. Hence, this database stores only a list of astronomy catalogs
and attributes supported by the system. Using this meta-data, the actual actual input data required
for the submitted job is downloaded individually by the peers from the selected catalogs. Currently,
the peers download the data using the web services provided by the OpenSkyQuery2. This approach
leads to a communication cost efficient system and a single point of data management failure in the
system is avoided.

4.3.2. Jobs database. This database stores the information related to the backend network and also
maintains the queues of the jobs that are submitted and the status of those jobs. The results of the
completed jobs are related to the user who submitted the job. Hence, are not stored in this database
and stored in the server database instead.

4.4. Peer-to-Peer Network. The Peer-to-Peer network forms the backbone of the computation
network. This network supports two frameworks, namely Hadoop [21] and the Distributed Data
Mining Toolkit [12]. The framework to which a job is to be assigned is decided by the DDM Server
based on the algorithm required for the incoming job.

The following sections describe each of the supported frameworks in detail.

4.4.1. Hadoop. Hadoop is a framework developed by Apache that supports distributed applications
that can be written as MapReduce [13] tasks. The Hadoop architecture has one master node and
multiple worker nodes. The master node splits set up a job into tasks and assigns them to the
worker nodes. Though Hadoop can execute algorithms in a parallel fashion, the platform does not
support running all the types of distributed algorithms. For example, distributed algorithms that
rely on message passing cannot be effectively implemented using the Hadoop framework. However,
the highly scalable nature of Hadoop makes it an ideal choice for distributed algorithms that can be
expressed in terms of parallel and independent tasks.

4.4.2. Distributed Data Mining Toolkit. Distributed Data Mining Toolkit (DDMT) is a framework
for writing event driven distributed algorithms, written in Java and built on top of the Java Agent
Development (JADE) framework. The algorithms can run in distributed as well as pseudo distributed
mode in which one machine simulates multiple nodes. It is also easy for an user to become a part of
the PADMINI computation network and the DDMT framework by installing the DDMT software
available through the Web interface. For algorithms running on the DDMT framework, the user
generated input is not sent to the DDM server in such cases.

The PADMINI system also supports a distributed P2P text classifier learning algorithm. This
algorithm has been implemented on the DDMT framework. Collaborative tagging plays a crucial
role in the algorithm as the input is the feature vectors generated from user tagged text. Dutta
et. al.[16] describe a Peer-to-Peer system for learning classifiers using the text documents tagged by
various users. More details about the implementation of this algorithm on the PADMINI system
can be found in [28].

5. Implementation of PADMINI

5.1. Technology. Almost all the of the PADMINI system is implemented using the Java technol-
ogy. The Web based interface to the PADMINI system is developed using HTML, Javascript, Java
Server Pages and Servlets. Hadoop provides an extensive Java API using which highly scalable
Map Reduce algorithms can be implemented. The Distributed Data Mining Toolkit (DDMT) is
implemented in Java and is based on the Java Agent Development (JADE) Framework.

2http://openskyquery.net/Sky/skysite/
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Figure 2. Home Page of the PADMINI system

(a) Google Maps interface for selecting regions of the
sky

(b) Selecting astronomy catalogs and attributes

Figure 3. Astronomy data mining job submission
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5.2. Databases. MySQL is used as the database and Hibernate is used for object-relational map-
ping. Use of Hibernate eases the process of developing the database interface of the system. With
the help of Hibernate, it is also easy to migrate the data to a different database by changing just a
few configuration files.

5.3. Web Services. Apache Axis2 is used as the core engine for web services. With the new Object
Model defined by Axis2, it is easier to handle SOAP messages. Axis2 has a pull based XML parser
which leads to efficient parsing of long XML files leading to faster web services. All the web service
requests are directed to the DDM Server. The DDM Server then calls the corresponding methods
and starts the requested job. Axis2 parses the incoming SOAP requests and call the appropriate
function as described in the Web Services Definition Language (WSDL) [35] file.

Figure 4. Flow diagram of the Outlier Detection algorithm on Hadoop

5.4. User Interface. Figure 2 shows the home page of the Web based interface for the PADMINI
system. To start submitting jobs users are required to open an account by registering on the website.
Every user has a profile page where the users can change password, view the submitted jobs and
their status. As the jobs submitted by the user can take arbitrarily long time to complete, this
feature saves a lot of time for the user.

Figures 3(a) and 3(b) show the interface provided to the user for specifying a job. Figure 3(a)
shows a Google Sky interface where the user can mark a region of the sky to specify an input region.
The user can also provide a plain text document with a list of ra and dec coordinates of objects as
the input. Figure 3(b) shows the three astronomy catalogs currently supported by the PADMINI
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system. These are SDSS, 2MASS and GALEX. When a user selects any of these catalogs, a list of
attributes related to that catalog is shown in the Attribute List box below. The user can select any
number of attributes from this list. After the job is submitted, the data for the attributes selected
by the user is downloaded from the respective catalogs for the objects in the marked input region
or for the list of objects uploaded by the user.

6. Outlier Detection using PADMINI

Sky surveys [33][1] store huge amount of data related to objects in the sky. We want to find
outliers from amongst a set of celestial objects using this data in a fast and distributed manner.
Hence, we partition the sky into several regions and process the data first locally and in parallel
and then combine the processed information to obtain the global outliers. Here we note that finding
outliers locally may not be a good choice, since the local outliers may not be global outliers. In-
stead, we shall use PCA and eigen-analysis and define the global behavior, by the notion of global
eigenvectors. These are obtained from the global covariance matrix which is derived by aggregating
the local covariance matrices.

Algorithm 1: Distributed Parallel Outlier Detection

1: Horizontally partition the data Xm×n into N data chunks Xi
mi×n, X =

N⋃
i=1

Xi and assign ith

partition to node ℵi, (where m =
N∑

i=1

mi).

2: Z-score-normalize the data matrix Xi (so that each column is with 0 mean) at each node ℵi.

3: Compute the local covariance matrix Ci = E[XT
i Xi] =

1
mi

mi∑
i=1

XT
i Xi on each node ℵi.

4: Combine all the local covariance matrices to obtain the global covariance matrix

Cg = E[XT X] =
1
m

m∑
i=1

XT
i Xi =

N∑
i=1

miCi

N∑
i=1

mi

[24].

5: Compute the set of global eigenvectors by eigen decomposition of the global covariance matrix
Cg = VgΛgV

T
g .

6: Choose top k most dominant eigenvectors (V̂ k
g , corresponding to the k largest eigenvalues from

the diagonal matrix Λg) and send them back to each node ℵi.
7: Project the local data in each of the nodes ℵi onto the top k most dominant global

eigenvectors: X̂i = Xi.V̂
k
g .V̂ kT

g .
8: For each data tuple Xj

i at node ℵi, parallely calculate the corresponding error term in

projection by ||Xj
i − X̂j

i ||2 and assign a normalized outlier score (in the range [0, 1], measuring

the degree of outlierness, 1 with the most outlying properties) by sj
i = ||X

j

i
−

ˆ
X

j

i
||2

max
j

||X
j

i
−

ˆ
X

j

i
||2

.

9: Mark the top k outliers, with the highest k outlier scores.

We query the Virtual Observatories to get the data for the list of objects in the region of the
sky selected by the user or for the list of objects uploaded by the user. The result of these queries
can bring in a huge amount of data. We exploit the parallelism offered by Hadoop to download and
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process this data. Hence we partition the data horizontally, i.e., each peer running Hadoop gets a
set of objects for which it queries and downloads the data from the Virtual Observatories.

6.0.1. The Algorithm. Our algorithm for distributed outlier detection is based on Principal Compo-
nent Analysis (PCA) [24]. We compute distributed PCA on the data using the additively decom-
posable property (that comes from linearity of expectation) of the covariance matrix [24]. The most
dominant eigenvectors found by the eigen-analysis of the covariance matrix capture the directions
with highest variance in data. Accordingly, tuples that do not fall in these directions represented by
the eigenvectors are outliers [14].

6.0.2. Implementation on PADMINI. The algorithm is implemented in two map reduce phases using
Hadoop as it fits perfectly into the MapReduce paradigm. In the first MapReduce phase the meta-
data ((ra, dec) coordinates) is divided into several chunks (by Hadoop) and given to the parallel
map instances. The map task first queries the VO with (ra, dec) coordinates and a list of attributes
as arguments and fetch the actual data from the VOs. The fetched data is then normalized and the
local covariance matrix is calculated. The local covariance matrices from all maps are sent to the
reduce phase along with the fetched data tuples. In reduce task, we combine the local covariance
matrices obtained from the maps to find the global covariance matrix. The top k global eigenvectors
of this global covariance matrix are then written to the HDFS, along with the normalized data. In
the second MapReduce phase data and the global top k eigenvectors received from the first phase
are divided into several chunks (by Hadoop) and assigned to parallel map instances. The data is
then projected onto the global top k eigenvectors. We then compute the normalized error terms as
described in the algorithm and assign outlier scores to the individual data tuples. The reduce task
in this phase writes the outlier scores to the HDFS. Figure 4 gives a detailed visual representation
of the map reduce phases involved in the computation of outlier detection.

7. Experimental Evaluation

7.1. Setup. The problem that we are addressing is that of finding outliers (non-standard, unusual
astronomical objects) among a large set of celestial objects. We have performed two types of exper-
iments:

• Accuracy of outlier detection
• Performance of the PADMINI system

For the accuracy experiments, we have used the SDSS quasar dataset [31], which consists of over
46,000 quasars, for which 23 parameters have been recorded in the database. From this dataset, we
have used 30,000 objects and the following attributes for our experiments:

• A1: g mag minus r mag (g−r): this is the negative log of the flux ratio in the green optical
band (g) to the red optical band (r).

• A2: r mag minus i mag (r − i): this is the negative log of the flux ratio in the red optical
band (r) to the near-infrared band (i).

• A3: X-ray minus Radio: this is log of the flux ratio in the X-ray band to the radio band.
• A4: J minus H (J −K): this is log of the flux ratio in two of the infrared bands (J and K).
• A5: H minus K (H − K): this is log of the flux ratio in two of the infrared bands (H and

K).
• A6: Absolute magnitude (M i): this is log of the total intrinsic luminosity of the quasar in

the near-infrared band (i).
These parameters represent intrinsic properties of each quasar. Each parameter measures a dif-

ferent feature of the quasar. These features are all mutually independent. We expect that unusual
(outlying) objects will deviate from the main distribution of quasars in this 6-dimensional feature
space, and consequently our outlier detection experiments would discover anomalous or otherwise
surprising instances of quasar properties.
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It should be noted that the data required for the computation at each node is downloaded in-
dividually by the nodes using the OpenSkyQuery service, thus emulating a scenario of distributed
data. The PADMINI system does not store any data centrally.

To run experiments, we downloaded and installed Hadoop 0.20.1 on two machines. One is a Intel
Pentium 4, 3.06GHz machine with 1.5 GB Memory while the other is a Intel Pentium 4, 2.20GHz
machine with 1.0 GB memory. Both the machines have a cache size of 512 KB. The DDM Server
acts as the JobTracker i.e. the node to which the jobs are submitted. The JobTracker, hosted on
machine A, takes care of dividing the job into small parts and assigning those to the TaskTrackers
which are the other nodes in the Hadoop. While this is a small setup, we intend to perform large
scale experiments using the Bluegrit[4] cluster deployed in the CSEE department in the University
of Maryland, Baltimore County in future.

7.2. Results.

7.2.1. Accuracy. We have described a technique for outlier detection which is PCA based (and
hence not distance based). Since the most dominant eigenvectors capture the direction of maximum
variance in the dataset, the least dominant ones are expected to reflect the outlier points in the
dataset. The degree of outlierness of a point is measured in terms of outlier scores which are
calculated as described in Algorithm 1.
We now describe the experimental results undertaken to determine the accuracy of the outlier

Figure 5. Variation in attribute values and assigned outlier scores for the data tuples

252

2010 Conference on Intelligent Data Understanding



detection algorithm:
We ran the outlier detection algorithm on a dataset having 30,000 tuples with 6 attributes each.

We got the outlier scores as shown in figure 5. The plots also show the variation in attribute values
for each tuple along with the outlier scores assigned to each of them. It can be seen from the figure
that objects with high outlier scores show up as outlier points in one or more of the attribute plots.
Thus, a high outlier score does not necessarily mean that the object is an outlier in all attributes,
but an object can have a high outlier score even if it is an outlier in only one or two attributes.

Figure 6. Scatter plots with different 2-attribute combinations and color coded
display of outliers

We obtained the scatter-plots taking 2-attributes at a time from the set of 6 attributes, some of
which are as shown in figure 6. The tuples with high outlier scores are colored coded with darker
colors. As we hoped, most of the visually discernible outlier points are assigned high outlier scores
(marked by circles).

Finally we obtained the parallelcoords plot using Matlab. This plot shows the variation along
all the 6 attribute values. The tuples are grouped (with different colors) according to their scores
assigned by the algorithm. Figure 7 shows two plots with different intervals of the outlier scores. As
it can be seen, the most outlying points obtained the highest scores.

Another validation of the accuracy of the outlier results is seen in Figures 5 and 6. Scientifically,
the true outliers in a quasar sample will usually appear as outliers in only one or two of the attributes
in our selected feature space. The reason for this is due to the fact that the colors of quasars can
easily be dominated in one or two color bands by the appearance of some very strong atomic emis-
sion features in the spectrum of the quasar (for example: hydrogen Lyman-alpha or transition lines
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of ionized carbon or magnesium). As one of these spectrum emission lines moves into or out of a
particular color waveband, due to the quasar being at some particular redshift, then this quasar will
appear as an outlier relative to the color distribution of all other quasars (which are at other red-
shifts, none of which correspond to that strong emission line appearing in that specific waveband).
One of the key indicators that this is what is happening in these quasars (and consequently, in our
objects with high outlier scores) is that the corresponding quasars will have anomalous (outlying)
colors in at least one color attribute and in much fewer than five attributes (i.e., our full set of five
color attributes), which is exactly what we see in our outlier scores (Figures 5 and 6).

Figure 7. Parallelcoords plot for all the 6 attributes

The scientific utility of this result is the following. Astronomers are always searching for elegant
and effective methods to identify interesting quasars (with unusual spectrum features) or to identify
quasars within a narrow redshift range. Since nearly all astronomical sky surveys are imaging surveys
(hence no spectroscopic data available for the millions of quasar candidates), then the only way to
detect such interesting quasars is through methods similar to the one that we have demonstrated here.
The detection and scoring of anomalous (outlier) quasars is a critical step in reducing the sample
of potentially interesting quasars (a sample of millions) to the sample of truly interesting quasars
(a sample of tens or hundreds). The latter is completely manageable in a scientific experiment, but
the former is hopelessly too large. Our outlier scoring method applied to a very large sample using
P2P data mining techniques could be a significant contribution to quasar research, and to research
involving a multitude of other interesting classes of objects, within the very large imaging-only sky
surveys of the future, such as LSST.

7.2.2. Performance. The PADMINI system uses the OpenSkyQuery service to fetch the data. How-
ever, some of the attributes described in the dataset as described in section 7.1 are not supported
by the Open Sky Query. Hence another data set was created by randomly mixing Galaxy objects
with Star objects. We have performed the performance experiments using up to 10,000 astronomical
objects and data was collected for 8 attributes for each object.

The time required to complete an execution of the algorithm varies with respect to the size of the
dataset and the number of nodes in the network. Figure 8 shows the variation in the response time
with respect to increasing number of objects in the dataset and keeping the total number of map
tasks at constant to 10. The effectiveness of the Hadoop system is closely related to the amount
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Figure 8. Response time of Outlier Detection algorithm versus data size

(a) For 3,000 input objects (b) For 10,000 input objects

Figure 9. Response time of Outlier Detection algorithm versus the number maps

data that can be efficiently processed by one map. The sharp drop in the response time at 2000
objects shows that this size on input runs most efficiently when the number of maps in 10. As the
input size goes on increasing, the advantage of parallelism is subdued by the overhead of processing
more data in each map.

To demonstrate the effect of increasing parallelism, we change the number of map tasks and ob-
serve the corresponding response times. Figure 9(a) shows the results for 3000 objects in this case.
Similar tests were done with the dataset containing around 10,000 objects, the results of which are
shown in Figure 9(b). In both the cases a drop in the response time can be observed as expected.
The significant drop seen in Figure 9(b) as compared to Figure 9(a) demonstrates the ability of the
Hadoop system to handle larger data sizes more effectively than smaller ones.

8. Conclusion

As more and more amount of data becomes available at various geographically distributed lo-
cations, data mining applications need to evolve and adapt to this change. Having a distributed
system to perform these data driven tasks efficiently has become imperative. In this paper, we have
introduced a Peer-to-Peer data mining system for Astronomy and presented a case study of the
same. The scalable and extensible nature of the system is discussed with the help of the frameworks
supported by the system. We believe that this is a first of it’s kind system to bring together two
disparate frameworks for running distributed algorithms and presenting them with a uniform Web
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interface. The architecture and implementation details of the system explain the overall working of
the system. Using the PADMINI system, the user can easily select the data and submit multiple
jobs without having to install any software. Astronomers who are the primarily targeted users of
the website should find it very easy and intuitive to submit jobs using the Google Sky interface.

The two computation frameworks supported by the PADMINI system make it a readily exten-
sible system. However, currently only two algorithms have been implemented on the system. In
future, we intend to add implementations of popular data mining algorithms to the system. After
developing a more extensive web services API for the various tasks supported by the system, we
intend to publish the API so that interested developers can use them to develop various systems
with new interfaces that utilize our back end computation network.
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MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A
MULTI-VIEW APPROACH

VARUN CHANDOLA* AND RANGA RAJU VATSAVAI*

Abstract. Multispectral remote sensing images have been widely used for automated land use
and land cover classification tasks. Often thematic classification is done using single date image,
however in many instances a single date image is not informative enough to distinguish between
different land cover types. In this paper we show how one can use multiple images, collected at
different times of year (for example, during crop growing season), to learn a better classifier. We
propose two approaches, an ensemble of classifiers approach and a co-training based approach, and
show how both of these methods outperform a straightforward stacked vector approach often used
in multi-temporal image classification. Additionally, the co-training based method addresses the
challenge of limited labeled training data in supervised classification, as this classification scheme
utilizes a large number of unlabeled samples (which comes for free) in conjunction with a small
set of labeled training data.

1. Introduction

Multispectral images collected by remote sensing instruments present an immense opportunity
for understanding the dynamic characteristics of the earth surface. In the last couple of decades
land use and land cover (LULC) identification with remotely sensed images has become of great
interest to researchers from various disciplines including earth scientists and data miners, and it
has been applied to a variety of applications such as urban planning, natural resource management,
water resource monitoring, environmental and agricultural analyses. Remotely sensed multispectral
imaging is one of the most widely used technologies for LULC mapping and monitoring, and it
provides synoptic and timely information over large geographical areas.

Thematic classification is the most widely used technique for extracting useful and interesting
patterns from remote sensing imagery. Several classification algorithms have been proposed in the
literature for analysis of remote sensing imagery. These algorithms can be broadly grouped into
two categories, supervised and unsupervised, based on the learning scheme used. Among supervised
classification methods, the maximum likelihood classifier (MLC) is the most extensively studied and
utilized for classifications of multi-spectral images. Other broad classification schemes are neural
networks, decision trees, and support vector machines. Among unsupervised methods, the K-Means,
C-Means (also known as Migrating Means or ISODATA) and Fuzzy C-Means techniques are popular
in remote sensing. Most of these methods work well if the land cover classes are spectrally separable.
In reality, the classes under investigation are often spectrally overlapping as the reflectance from these
classes is dependent on several extraneous factors like terrain, soil type, moisture content, acquisition
time, atmospheric conditions, etc. Though such factors can be incorporated into classification via
ancillary data, spectral overlapping due to temporal nature of classes can be separated by the
utilization of multi-temporal images. As an illustration we show two images, one taken in May and
the other acquired in July. Figure 1 shows how two thematic classes, Soybean (three red plots) and
corn (two black plots), which are highly overlapping (meaning, the class spectral reflectances are
highly similar) in May (all 5 plots are almost same indigo color) are spectrally dissimilar in July
(corn is greenish and soybean is purplish – thus easy to separate). Though Corn and Soybean can
be easily separated in June, there may be other classes which are not easily separable in July but

*Oak Ridge National Laboratory, chandolav@ornl.gov, vatsavairr@ornl.gov.
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may be separable in May or some other date. This is the basic motivation for multi-temporal image
classification, where one seeks to accurately classify thematic classes which are highly overlapping
in any single date image.

(a) AWiFS May 3, 2008, FCC (RGB Bands 4, 3, 2),
Thematic Classes (C-Corn, S-Soybean)

(b) AWiFS July 14, 2008, FCC (RGB Bands 4, 3, 2),
Thematic Classes (C-Corn, S-Soybean)

Figure 1. False color composite (FCC) images of same location at two different dates

The rest of this paper is organized as follows: Section 2 describes the related work. Section 3
presents background information on learning with multiple views and section 4 provides basic notions
used. In section 5, we describe the maximum likelihood classification framework that provides
backbone for Bayesian model averaging (described in Section 6) and co-training (Section 7). Datasets
used in this study are described in Section 8 followed by the results and comparative analysis of
various classification schemes in Section 9. Finally, conclusions and future directions are provided
in Section 10.

2. Related Work

Several studies have used machine learning tools such as decision trees [9, 10] and support vec-
tor machines (SVM) [22, 4, 16, 2, 18] to build a multi-class classifier for crop classification using
multispectral remote sensing data as well as explored methods to extract features to enhance the
classification performance [14, 18]. Such methods typically deal with a single multispectral image.
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However, these methods can be readily applied to multi-temporal images by combining all bands
(features) – an approach known as stacked vector. Though, stacked vector approach do not require
any modification to existing approaches, increasing number of features require addition ground truth
data which is often costly to obtain. Typically one needs 10-30 times d (d - number of dimensions)
samples for accurate fitting of the learning model [15]. Therefore, multi-temporal image classification
requires careful design and should not increase the need for additional training data.

In contrast, several papers have used the time series of spectral observations collected across a
temporal span, as a data instance for every location[6, 13, 8, 5]. Typically, such approaches do
not use the entire spectrum but use a single composite observation, such as Normalized Difference
Vegetation Index (NDVI), to construct a univariate time series at each spatial location.

The multi-temporal image classification approach proposed in [12], is based on“decision fusion”,
where a classification model was built separately on each image, and the decisions (predictions)
combined using two different fusion criteria. Though our proposed approaches are conceptually
similar to the above method, the co-training method substantially differs in two respects: first, it
does not fuse the independent classification decisions in the end as with the other methods; second, it
incorporates unlabeled training samples, thus offers a more cost-effective solution for multi-temporal
image classification.

3. Learning with Multiple Views - Background

In this paper, we treat multi-temporal images as multiple views of same phenomena under study.
There are four broad approaches to learn a classifier from data described using multiple views. The
first approach is to simply train a classifier on a single view which gives best performance. The
choice of the best view can be either made using domain knowledge or through empirical evaluation.

For the second approach, also known as the stacked vector approach, feature vectors from all views
are concatenated together to get a single composite view of the data. The stacked vector approach
results in a increase in the dimensionality of the data.

The third approach is to learn individual classifiers using each view of the data and then combine
the predictions of the individual classifiers. Such classification methods are also broadly referred
to as multiple classifier systems [1, 21, 17, 20, 7]1. Bayesian Model Averaging (BMA) [11, 7] is a
probabilistic method for combining the output of multiple classifiers. We describe this method in
more detail in Section 6.

The fourth approach has been developed in the context of semi-supervised learning, i.e., using a
small set of labeled data and a larger set of unlabeled data. One of the earliest work in this direction
was proposed by Blum and Mitchell [3], known as co-training. The authors assume that each data
instance can be described using two disjoint sets of features, such that each feature set is sufficient
for learning, given enough labeled data. In the co-training framework, the key idea is to learn a
classifier on each view of the data independently, and then use the predictions of each classifier on
unlabeled data instances to augment the training data set for the other classifier. By learning in an
iterative fashion, the authors argue that the overall classification performance can be improved.

We describe a generalized co-training based algorithm for multi-temporal (multi-view) classifica-
tion in Section 7.

4. Notation

We first describe the notations used in this paper. Labeled training examples are denoted as
{(xi, yi)}li=1, such that each example x is described using v views, i.e., x ≡ 〈x(1),x(2), . . . ,x(v)〉 and
xk ∈ �d, for k = 1 . . . v. In this paper, we are concerned with a multi-class classification problem,
where y ∈ {c1, c2, . . . , ck}. Additionally, there exist unlabeled training examples, denoted as {ẋi}ui=1.
The labeled training set is also denoted as X and the unlabeled training set is denoted as U .

1Note that these are different from ensemble classification methods such as bagging and boosting which learn multiple
classifiers using a single view of the data.
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Note that in the above notation scheme all views are assumed to be described using d continuous
valued features. In general, however, the different views can be defined using different number
of features. Moreover, the features are not constrained to be in � and can have arbitrary type
(categorical, binary, ordinal), as long as the base classifier that uses those features can handle such
types. For simplicity, we follow the above stated notation.

5. Maximum Likelihood Classification

All classification approaches investigated in this paper, i.e., single view, stacked vector, Bayesian
model averaging, and co-training, require a base classifier. Maximum Likelihood Classifier (MLC)
is the most widely used method for land cover classification based on multi-spectral remote sensing
imagery because of its simplicity and efficiency[19]. Therefore we employed MLC as a base classifier
in this research.

A typical maximum likelihood classifier models the class-conditional distribution, p(x|y) as a
multivariate Gaussian distribution:

(1) p(x|y = ci) ∼ N(μi,Σi)

The parameters for the multivariate Gaussian for each class are obtained using maximum likelihood
estimation using the labeled training examples. To assign a class label to a test example, x∗, the
posterior probability for each class, given the test example, is computed as:

(2) P (y∗ = ci|x∗, {(xi, yi)}li=1) ∝ p(x∗|y∗ = ci)P (ci)

where p(x|y = ci) is computed using (1) and P (ci) denotes the prior probability for each class. The
class with maximum posterior probability is chosen as the predicted class for the test instance, x∗.

The above described MLC algorithm can be directly used for the single view as well as the stacked
vector approach to handle the multiple views.

6. Bayesian Model Averaging

The Bayesian model averaging approach [11, 7] combines the output of multiple classifiers to
obtain a single decision for an unseen test instance. In the context of this paper, the multiple
classifiers are learnt using different views of the data and are represented as {�1, �2, . . . , �v}.

According to the BMA approach, the posterior probability for a class ci is computed as:

(3) P (ci|x∗, {(xi, yi)}li=1) =
v∑

j=1

P (ci|x∗, {(xi, yi)}li=1, �j)P (�j |{(xi, yi)}li=1)

where P (ci|x∗, {(xi, yi)}li=1, �j) is the posterior density obtained for class ci using the jth view (See
(2)). The second term in the right hand side of (3) is the model posterior for the jth model, and is
computed as:

(4) P (�j |{(xi, yi)}li=1) ∝ P (�j)
l∏

i=1

P (xi, yi|�j)

P (�j) is the model prior. Each term in the product in (4) is the joint probability for the training
example, xi, and the true class, yi, and can be expressed as: P (xi, yi|�j) ∝ P (yi|xi, �j) which is the
posterior probability of class yi assigned by the classifier �j (See (2)). Finally, the class assigned to
the test instance x∗ is the one for which the posterior in (3) is maximum. Thus the BMA approach
assigns more weight to the classifier which assigns high posterior probabilities to the true class for
the training examples.
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7. Co-training

In this section we present a co-training based algorithm based on the original algorithm proposed
by Blum and Mitchell [3]. While originally, co-training was proposed for two views of the data, we
propose a generalized version in which data can be defined using more than two views. Algorithm
1 lists the steps for the training part of the co-training algorithm. The output of this algorithm is a
set of v classifiers, one for each view.

Input: (X = {(xi, yi)}li=1,U = {ẋi}ui=1),δ
Output: {�j}vj=1

Sample m instances without replacement from U into a set U ′ = {ẍi}mi=1

while U is not empty do
foreach j = 1 : v do

Learn MLC �j using {(x(j)
i , yi)}li=1

Assign class label ÿi to each ẍi ∈ U ′ using �j

foreach i = 1 : m do
if P (ÿi|ẍi, �j) ≥ δ then

Add (ẍi, ÿi) to X
Sample one instance without replacement from U into U ′

end
end

end
end

Algorithm 1: Co-training

The co-training algorithm starts with the labeled training set X and unlabeled training set U . A
smaller unlabeled training set, U ′ is sampled from U . A MLC classifier is learnt using first view of
training set X. The classifier then assigns labels to the unlabeled instances in U . The predictions
for which the prediction probability is greater than a certain threshold, δ, are added to the labeled
training set. In the next step, a classifier is learnt using the second view of the augmented training
set. This process is repeated until all unlabeled instances in U are labeled and added to X. The
algorithm finally returns the v classifiers trained on individual views of the final training data set
X. The threshold δ is used to include only those unlabeled instances to the training data set which
are predicted with high probability.

The order in which the views are used in the co-training algorithm is arbitrary. In the above
algorithm we use the natural ordering of the views, though experimentally we have observed that
the choice of ordering does not have a significant impact on the performance.

For testing, the algorithm follows the same procedure as that of the BMA classifier (See Section
6).

8. Data

This research was carried out in the north-west portion of the Iowa state, U.S.A. The predominant
thematic classes in this study areas are corn and soybean. Table 1 shows other thematic classes and
the number of labeled samples (plots) collected over different portions of the image. Each training
plot size is 3 x 3 window (that is, 9 pixels). The ground truth for training, testing and thematic
classes were all based on the crop data layer data produced by the United Stated Department of
Agriculture (USDA). The remote sensing images used in this study were acquired on four different
dates in 2008: May 03, July 14, August 31, and September 24, by the IRS-P6 satellite using the
Advanced Wide Field Sensor (AWiFS) camera. There are four spectral bands in each image with
a spatial resolution of 56 meters. Sample image covering 370 x 370 km along with spatial location
is shown in Figure 2. For this study we used 3 bands (red, near-infrared, and short-wave infrared)
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from each images. Black dots are the sample locations where ground truth (training and testing)
data was collected.

Figure 2. False color composite (FCC; Bands 4,3,2) Image Acquired on May 08,
2008 by IRS-P6, AWiFS, over Iowa

9. Results and Analysis

In this section we compare the performance of various classification methods discussed in this
paper on MODIS data described in Section 8. MLC is used as the base classifier for all approches.
A uniform prior is assumed over all classes in 2. For BMA, a uniform prior is assumed over all
classifiers (�i, �2, . . . , �v) in (4). For co-training, the δ threshold was set to 0.90. We experimentally
observed that the performance of the co-training based classifier is not sensitive to δ in the range of
[0.8, 0.95]. For each classifier we report the following:

(1) Confusion matrix.
(2) Per-class recall, precision, and F-measure.
(3) Misclassification error.
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9.1. Comparing Bayesian Averaging and Stacked Vector Approach. We first compare the
performance of the two supervised methods to handle multiple views of data, i.e., Bayesian averaging
and stacked vector approach. For comparative purpose, we also report the performance of a ML
classifier using an individual view (image) only. For each of these experiments we trained on labeled
data set corresponding to 945 locations and tested on a validation data set corresponding to 963
locations. For each location there are four views, corresponding to four images collected in four
different months (May, July, August, September) and each view consists of three spectral bands.
The details of the training and validation data sets are summarized in Table 1.

Class ID Class Training Validation

1 Corn 261 261
5 Soybean 225 225
36 Alfa alfa 27 27
62 Grass 189 180
111 Water 18 18
121 Developed 90 99
141 Deciduous Forest 117 117
190 Wetlands Forest 18 36

Total: 945 963

Table 1. Details of Training and Validation Data Set

The confusion matrices obtained from data corresponding to individual views are shown in Tables
2–5, respectively. In all the confusion matrix tables, we also report the per-class recalls in the last
column, and the per-class precisions and per-class F-measures in the last two rows of the table,
respectively. The last value in the precision row is the fraction of instances that are correctly
classified. The last value in the F-measure row is the average F-measure across all classes.

Predicted

Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 191 45 0 12 0 2 11 0 0.73
soy 126 96 0 1 0 0 2 0 0.43
alfa 0 0 18 9 0 0 0 0 0.67

grass 8 0 16 144 0 7 5 0 0.80
water 11 0 0 0 4 0 0 3 0.22

dvlpd 2 9 2 10 0 74 2 0 0.75

forest 0 0 0 1 0 9 107 0 0.91
wetlnd 1 0 0 0 0 0 2 33 0.92

Preci 0.56 0.64 0.50 0.81 1.00 0.80 0.83 0.92 0.69

Fi 0.64 0.51 0.57 0.81 0.36 0.77 0.87 0.92 0.68

Table 2. Confusion matrix for MLC on May image only.

In order to understand the overlapping nature of classes in various images and its impact on
classification accuracy, we computed pairwise transformed divergence. Transformed divergence is a
signature separability measure often used by remote sensing analysts to gain understanding into the
class separability in feature space. The formula for transformed divergence Tij between classes i and
j is:

(5) Tij = 2000(1− exp(−Dij

8
))

where Dij is the divergence between classes i and j, and can be computed as:

(6) Dij =
1
2
tr((Σi − Σj)(Σ−1

i − Σ−1
j )) +

1
2
tr(((Σ−1

i − Σ−1
j ))(μi − μj)(μi − μj)T)
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Predicted
Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 208 11 0 22 0 0 20 0 0.80

soy 4 202 0 19 0 0 0 0 0.90
alfa 9 18 0 0 0 0 0 0 0.00

grass 48 36 0 90 0 6 0 0 0.50
water 0 0 0 0 18 0 0 0 1.00

dvlpd 0 4 0 3 0 89 0 3 0.90

forest 9 0 0 0 0 0 98 10 0.84
wetlnd 0 0 0 0 0 0 24 12 0.33

Preci 0.75 0.75 – 0.67 1.00 0.94 0.69 0.48 0.74

Fi 0.77 0.81 0.00 0.57 1.00 0.92 0.76 0.39 0.65

Table 3. Confusion matrix for MLC on July image only.

Predicted
Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 232 3 0 0 0 0 17 9 0.89
soy 12 186 9 18 0 0 0 0 0.83
alfa 7 9 9 0 0 0 2 0 0.33
grass 5 13 21 119 0 11 2 9 0.66

water 0 0 0 0 18 0 0 0 1.00

dvlpd 0 0 0 2 0 96 0 1 0.97
forest 7 0 0 0 0 2 94 14 0.80
wetlnd 0 0 0 0 0 0 36 0 0.00

Preci 0.88 0.88 0.23 0.86 1.00 0.88 0.62 0.00 0.78

Fi 0.89 0.85 0.27 0.75 1.00 0.92 0.70 0.00 0.67

Table 4. Confusion matrix for MLC on August image only.

Predicted

Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 171 27 3 19 0 4 29 8 0.66
soy 12 180 2 11 0 20 0 0 0.80

alfa 0 0 9 18 0 0 0 0 0.33
grass 27 22 13 109 0 0 1 8 0.61

water 0 0 0 0 12 6 0 0 0.67
dvlpd 9 25 0 0 0 60 5 0 0.61

forest 8 0 0 0 0 18 66 25 0.56

wetlnd 0 8 0 0 0 10 18 0 0.00

Preci 0.75 0.69 0.33 0.69 1.00 0.51 0.55 0.00 0.63

Fi 0.70 0.74 0.33 0.65 0.80 0.55 0.56 0.00 0.54

Table 5. Confusion matrix for MLC on September image only.

A transformed divergence value of less than 1500 between two classes indicates that those two
classes can’t be separated, in other words, there will be lot of misclassification between those two
classes. In conjunction with transformed divergence, results of the ML classifier trained on individual
views provide several interesting insights:

(1) In May (crop planting season), the corn and soybean crops are not clearly distinguishable,
but are clearly separable in later months. Transformed divergence between corn and soy
in May is 957.98 (Table 6) which indicates that these two classes are highly overlapping.
MLC shows that 45 samples from corn are misclassified as soy and 126 samples of soy are
misclassified as corn. On the other-hand, a transformed divergence value of 1610.59 (Table 7)
indicates that these classes are fairly separable, which is also reflected in MLC performance
in July image.
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corn soy alfa grass water dvlpd forest wetlnd
corn 0.00 957.98 2000.00 1999.98 2000 1999.45 1859.75 2000
soy 957.98 0.00 2000.00 2000.00 2000 2000.00 1999.11 2000
alfa 2000.00 2000.00 0.00 2000.00 2000 1998.70 1999.89 2000

grass 1999.98 2000.00 2000.00 0.00 2000 1790.64 1973.95 2000
water 2000.00 2000.00 2000.00 2000.00 0.00 2000.00 2000.00 2000
dvlpd 1999.45 2000.00 1998.70 1790.64 2000 0.00 1817.02 2000
forest 1859.75 1999.11 1999.89 1973.95 2000 1817.02 0.00 2000

wetlnd 2000.00 2000.00 2000.00 2000.00 2000 2000.00 2000.00 0.00
Table 6. Transformed Divergence Between Classes from May Image

corn soy alfa grass water dvlpd forest wetlnd
corn 0.00 1610.59 2000 927.95 2000 2000.00 1993.94 1999.65
soy 1610.59 0.00 2000 1252.87 2000 1997.30 2000.00 2000.00
alfa 2000.00 2000.00 0.00 2000.00 2000 2000.00 2000.00 2000.00

grass 927.95 1252.87 2000 0.00 2000 1992.04 1999.50 1999.76
water 2000.00 2000.00 2000 2000.00 0.00 2000.00 2000.00 2000.00
dvlpd 2000.00 1997.30 2000 1992.04 2000 0.00 2000.00 1999.31
forest 1993.94 2000.00 2000 1999.50 2000 2000.00 0.00 1734.34

wetlnd 1999.65 2000.00 2000 1999.76 2000 1999.31 1734.34 0.00
Table 7. Transformed Divergence Between Classes from July Image

(2) Likewise one can see in Table 7 that grass in July image is confusing with corn and soy
classes, however they are fairly separable in May image.

(3) Wetlands are better identified when using May data but are completely missed by classifiers
that use August and September data.

(4) The classifier that uses May data performs poorly in identifying water, but the classifiers
using data from later months perform significantly better for water.

Predicted
Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 252 0 0 2 0 0 7 0 0.97
soy 0 224 0 1 0 0 0 0 1.00
alfa 0 0 0 27 0 0 0 0 0.00

grass 9 0 0 170 0 1 0 0 0.94
water 0 0 0 0 0 18 0 0 0.00
dvlpd 0 0 0 0 0 99 0 0 1.00
forest 4 0 0 3 0 0 110 0 0.94

wetlnd 14 0 0 2 0 2 18 0 0.00

Preci 0.90 1.00 – 0.83 – 0.82 0.81 – 0.89

Fi 0.93 1.00 0.00 0.88 0.00 0.90 0.87 0.00 0.57

Table 8. Confusion matrix for the stacked vector method.

The confusion matrices for the classifiers trained using the stacked vector and Bayesian averaging
classifier are shown in Tables 8 and 9, respectively. On average, both of these methods perform
better than the classifiers trained using individual views. This is expected, since data collected from
different months have distinguishing abilities for different types of land cover. The stacked vector
method classifies 89% of instances correctly, but the F-measure reveals that it completely misses the
smaller classes, like alfa-alfa, water, and wetlands. The reason for this is that the dimensionality of
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Predicted
Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 232 3 0 0 0 0 17 9 0.89

soy 12 186 9 18 0 0 0 0 0.83
alfa 7 9 9 0 0 0 2 0 0.33

grass 5 13 21 119 0 11 2 9 0.66
water 0 0 0 0 18 0 0 0 1.00

dvlpd 0 0 0 2 0 96 0 1 0.97

forest 7 0 0 0 0 2 94 14 0.80
wetlnd 0 0 0 0 0 0 36 0 0.00

Preci 0.88 0.88 0.23 0.86 1.00 0.88 0.62 0.00 0.78

Fi 0.89 0.85 0.27 0.75 1.00 0.92 0.70 0.00 0.77

Table 9. Confusion matrix for the Bayesian averaging method.

the input is large (12) and hence the parameter estimation for the smaller classes is inaccurate (also
known as the Hughes effect). Since the Bayesian averaging method learns classifiers for individual
views, it does not get affected by the high-dimensionality issue and hence performs better on small
classes. Since the Bayesian averaging method combines the classifiers trained on individual views,
it is able to perform better than the individual classifiers, though it cannot correctly identify any of
the instances belonging to the wetlands class.

9.2. Comparing Co-training with Supervised Multi-view Learning Approaches. In this
section we present results using the co-training method. Since co-training is a semi-supervised
learning approach we use a small fraction of the available labeled training data for training. The
remaining training instances are used as the unlabeled data used by the co-training algorithm. The
labeled instances are picked randomly. We experimented with 10 different random samples and
report the average results of the 10 resulting confusion matrices. Table 10 shows the confusion
matrix obtained for the co-training approach using a labeled data set of size 120. Table 11 shows
the confusion matrix when the size of the labeled data set was 400.

Predicted

Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 245 6 0 1 0 0 9 0 0.94
soy 14 209 1 1 0 0 0 0 0.93
alfa 0 0 18 9 0 0 0 0 0.67
grass 10 0 17 136 0 12 0 5 0.76
water 0 0 0 0 18 0 0 0 1.00
dvlpd 0 3 0 1 0 94 1 0 0.95

forest 6 0 0 0 0 0 108 3 0.92
wetlnd 0 0 0 0 0 0 23 13 0.36

Preci 0.89 0.96 0.50 0.92 1.00 0.89 0.77 0.62 0.87

Fi 0.91 0.94 0.57 0.83 1.00 0.92 0.84 0.46 0.81

Table 10. Confusion matrix for co-training using 120 labeled training instances.

We immediately notice from Table 10 that the co-training based method uses only 120 labeled
training instances and still significantly outperforms the stacked vector and Bayesian averaging based
classifiers which use 945 labeled training instances. Increasing the number of training instances for
co-training to 400 only marginally improves the performance. Moreover, the co-training classifier
performs well on all classes, even those for which other classifiers performed poorly, like alfa-alfa,
water, and wetland. The key strength of co-training is that it iteratively adds high quality unlabeled
instances to the training set and hence builds classifiers (for each view) using a relatively higher
quality training data compared to the entire data set used by the other methods.

For comparison we also report the performance of the stacked vector and the Bayesian model
averaging methods using the same labeled training data set (of size 120) as used by the co-training

267

2010 Conference on Intelligent Data Understanding



Predicted
Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 244 8 0 0 0 0 9 0 0.93

soy 15 209 0 1 0 0 0 0 0.93
alfa 1 0 10 16 0 0 0 0 0.37

grass 10 0 7 146 0 10 1 7 0.81
water 0 0 0 0 18 0 0 0 1.00

dvlpd 0 2 0 1 0 96 0 0 0.97

forest 3 0 0 0 0 0 113 1 0.97
wetlnd 0 0 0 0 0 0 26 11 0.30

Preci 0.89 0.95 0.59 0.89 1.00 0.91 0.76 0.58 0.88

Fi 0.91 0.94 0.45 0.85 1.00 0.94 0.85 0.39 0.79

Table 11. Confusion matrix for co-training using 400 labeled training instances.

algorithm. This was done to ensure that the subset of 120 instances, by itself is not enough to
learn a good classifier. Tables 12 and 9.2 show that the performance of these classifiers significantly
deteriorates compared to when the larger training data is used (Tables 8 and 9). This indicates
that the iterative augmentation of training data by co-training is indeed a better way to incorporate
multiple views of the data as well as unlabeled training instances.

Predicted
Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 231 0 0 28 0 0 2 0 0.89
soy 28 162 0 35 0 0 0 0 0.72

alfa 0 0 0 27 0 0 0 0 0.00
grass 0 0 0 180 0 0 0 0 1.00
water 4 0 0 5 0 9 0 0 0.00

dvlpd 17 0 0 53 0 29 0 0 0.29
forest 6 0 0 70 0 0 41 0 0.35

wetlnd 6 0 0 19 0 5 6 0 0.00

Preci 0.79 1.00 – 0.43 – 0.67 0.84 – 0.67

Fi 0.84 0.84 0.00 0.60 0.00 0.41 0.49 0.00 0.40

Table 12. Confusion matrix for stacked vector method using 120 labeled training instances.

Predicted

Class corn soy alfa grass water dvlpd forest wetlnd Reci

Actual

corn 212 12 0 20 0 0 15 3 0.81
soy 11 194 4 15 0 0 0 0 0.87
alfa 8 15 3 1 0 0 0 0 0.11

grass 29 29 6 105 0 8 0 2 0.59

water 0 0 0 0 18 0 0 0 1.00
dvlpd 1 6 0 4 0 83 0 5 0.84

forest 12 0 0 1 0 1 83 21 0.70

wetlnd 0 0 0 0 0 0 18 18 0.50

Preci 0.78 0.76 0.23 0.72 1.00 0.90 0.72 0.37 0.74

Fi 0.79 0.81 0.15 0.65 1.00 0.87 0.71 0.42 0.67

Table 13. Confusion matrix for Bayesian averaging method using 120 labeled
training instances.

10. Conclusions

In this paper we proposed two approaches for classifying multi-temporal images. In the first
approach, we used fusion of predictions from ensemble of classifiers using Bayesian model averaging.
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In the second approach we generalized co-training method for multiple views. We compared the
performance of these two classification schemes with regular MLC and straightforward stacked vector
approach that are often used in multi-temporal image classification. All four methods were evaluated
on multi-temporal images from four different dates spanning crop growing season in 2008. Evaluation
on independent test dataset shows the better overall performance of co-training based method over
all three other methods. The key strength of co-training is that it iteratively adds high quality
unlabeled instances to the training set and hence builds classifiers (for each view) using a relatively
higher quality training data compared to the entire data set used by the other methods. As co-
training requires less number of labeled samples as compared to the other methods, this methods
can be widely used in multi-temporal image classification over large geographic regions.
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DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE
ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY*, JOHN N. RAJADAS**, AND CLYDE COELHO*

Abstract. Fatigue damage and its prediction is one of the foremost concerns of structural in-
tegrity research community. The current research in structural health monitoring (SHM) is to
provide continuous (or on demand) information about the state of a structure. The SHM system
can be based on either active or passive sensor measurements. Though the current research on
ultrasonic wave propagation based active sensing approach has the potential to estimate very small
damage, it has severe drawbacks in terms of low sensing radius and external power requirements.
To alleviate these disadvantages passive sensing based SHM techniques can be used. Currently,
few efforts have been made towards, time-series fatigue damage state estimation over the entire
fatigue life (stage-I, II & III). A majority of the available literature on passive sensing SHM tech-
niques demonstrates the clear trend in damage growth during the final failure regime (stage-III
regime) or during when the damage is comparatively large enough. The present paper proposes a
passive sensing technique that demonstrates a clear trend in damage growth almost over the entire
stage-II and III damage growth regime. A strain gauge measurement based passive SHM frame-
works that can estimate the time-series fatigue damage state under random loading is proposed.
For this purpose, a Bayesian Gaussian process nonlinear dynamic model is developed to map the
reference condition dynamic strain at a given instant of time. The predicted strains are compared
with the actual sensor measurements to estimate the corresponding error signals. The error signals
estimated at two different locations are correlated to estimate the corresponding fatigue damage
state. The approach is demonstrated for an Al-2434 complex cruciform structure applied with
biaxial random loading.

Nomenclature

an nth damage level damage index
dn nth damage level damage value
ΔN Number of fatigue cycles between two adjacent damage level
gn nth damage level nonlinear function with respect to hidden state x
hn nth damage level nonlinear function with respect to strain measurements u or y
HU→uTransfer function between environmental load U and input strain u
HU→yTransfer function between environmental load U and output strain y
m Time lag coefficient in sensor observation at nth damage level
n (Superscripts) Symbolizes discrete damage level
u Input strain at location 1
U Environmental load
xn nth damage level hidden state
y Output strain at location 2
εi Strain at location i
0 (Superscripts) Symbolizes reference or healthy condition
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1. Introduction

Real-time structural health monitoring (SHM) is an emerging research area with multiple appli-
cations in aircraft structures. The design and operation of civil and military aircraft require a strict
regiment of inspection and maintenance based on damage tolerant [6] principles, that ensures the
operational safety from the structural point of view. The inspection and maintenance cost typically
constitutes approximately 30-40 percent of any individual aircraft’s total life cycle cost. The current
research on structural health monitoring [2, 7, 20] can lead to lower inspection and maintenance
cost and reduces the long overhauling time for maintenance. Currently there are two different SHM
techniques based on active and passive sensing approaches. For an active sensing based SHM tech-
nique, a fixed input signal is introduced to the host structure using an actuator. The corresponding
sensor signals are analyzed to interrogate the presence of damage in the structure and to estimate its
extent and severity of damage. The passive SHM infers the state of the structure using passive sensor
signals that are monitored over time. Currently there is a sizeable amount of research being con-
ducted on active sensing based damage interrogation techniques [1, 10, 14, 15, 18]. These techniques
are related to narrowband wave propagation based pitch-catch, pulse-echo, phased array structural
radar approaches. Also research has been initiated in the area of time-series fatigue damage state
estimation [5, 10, 11]. To estimate fatigue damage, continuous monitoring of the structure is re-
quired over its entire fatigue life. Recently Mohanty et al [12] proposed an unsupervised broadband
active sensing technique, which can estimate sub-millimeter level damage over the entire fatigue life,
including stage-I, II and III crack growth regime. The technique was effectively used to monitor
critical structural hot-spots such as lug-joints that connect the fuselage with the main wing box. It
must be noted that although the active wave propagation based interrogation technique can estimate
very small damage, it has a few drawbacks. The sensing radius of an individual active sensing node
is very small (of the order of centimeters), thus requiring a large number of actuators and sensors
to monitor a large structure. The need for large number of sensors can limit the usability of active
sensing approach in large structures such as aircraft wing. Also the wave based techniques require
an external excitation source, which limits their applications. Keeping in mind both the advantages
and disadvantages of active sensing techniques, it is practical to use active wave based techniques
in highly sensitive and localized hotspot, whereas the rest of the structure can be monitored using
passive sensing [3, 19]. The passive sensing technique has some advantages over active wave based
techniques. For example passive techniques are more global and can monitor large structures if
sensors are placed strategically. In addition, passive sensing techniques do not require any exter-
nal power source. Though the use of different types of passive sensors is application specific, the
accelerometer based damage monitoring approaches [8, 16, 22] are less sensitive to detect incipient
smaller damage, which can lead to the estimated damage signatures become prominent only dur-
ing the final failure regime. To alleviate the disadvantages of both wave based active sensing and
accelerometer based passive sensing approaches, a novel strain gauge measurements based passive
damage interrogations technique is used in the present paper. Though the strain gauge measure-
ment is more local to accelerometer measurement, it is more global to wave based active sensing
techniques. The strain gauges can be placed strategically in structural hot-spots for passive and
continuous monitoring of fatigue damage. It is to be noted that the strain gauge sensing techniques
are more mature compared to wave based active sensing techniques. They do not require any exter-
nal power source. Recently Mohanty and et al [11] have demonstrated the use of strain gauges for
real-time and time-series damage state estimation of an Al-6061 cruciform specimen under biaxial
constant amplitude fatigue loading. However, damage estimation under random loading is more
complicated compared to damage interrogations under constant amplitude fatigue loading. The
present paper discusses a novel strain gauge measurement based passive sensing technique that can
estimate time-series damage states under random loading. The approach is demonstrated for an
Al-2024 cruciform specimen subjected to biaxial random loading.
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2. Theoretical Approach

Structural systems such as an aircraft in flight undergo random loading. Different locations of the
structure may experience different strain fields. There exists a particular correlation pattern between
the dynamic strain fields measured at those locations, which may change due to damage. The change
in correlation pattern can be mapped as a time-varying transfer function which can be a measure of
time-varying damage condition. A schematic of the nth damage level transfer function (Hn) between
dynamic strains at two points is shown in Figure (1). The dynamic strain at location 1 i.e., ε1 can
be considered as input u, whereas the dynamics strain at location 2 i.e., ε2 can be considered as
output for the estimation of Hn. Note that the strain at both the locations are function of the
environmental load U and the damage condition of the structure at that time. Structural fatigue
damage condition can be monitored in real-time by acquiring real-time signals from passive sensors
such as strain gauges. By using the strain measurements at two different locations, the damage state
of the structure between those two points can be estimated. To estimate the time-series damage
states, the over all fatigue damage process can be divided into multiple short term discrete instances
(Figure 2). For constant cycle fatigue loading, these discrete damage states can be estimated by
directly correlating the corresponding dynamic strains measured at different locations, which has
already been demonstrated by Mohanty and et al. [11]. However, for random loading, estimation
of time-series damage states is more complicated, due to the variation in the strain correlation
(between two points) pattern with varying loads. That means it is not possible to directly identify
whether the correlation pattern change is due to change in load or due to damage. It should be
noted that in the work reported by Mohanty and et al. [11] the load information was not included
in the damage index formulation. For accurate damage state estimation under random loads, the
loading information should be included in the damage index formulation. In addition to the loading
information, other time varying input parameters such as temperature and humidity can also be
included in the damage index formulation. Details of the damage index formulation are discussed
in the following sections.

Figure 1. Schematic showing strain at two points of a structure and the time-
varying transfer function between them.

2.1. Dynamic model estimation. One of the major steps in the proposed time-series damage
state estimation approach is to estimate the nonlinear dynamic model using strain gauge and envi-
ronmental load measurements. Two models have to be estimated one between environmental loading
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Figure 2. Schematic showing the division of overall fatigue life to multiple discrete
short term instances.

U and input strain u(= ε1) at location 1 and the other between environmental loading U and out-
put strain y(= ε2) at location 2. The following sections describe the procedure for dynamic model
estimation.

2.1.1. Generic nonlinear dynamic model. Assume that the nth damage level can be described by
sensor signals acquired between n = N and n = N + ΔN fatigue cycle, where ΔN is the interval
in fatigue cycles between which the damage state has to be estimated. It is assumed that during
n = N to n = N + ΔN fatigue cycle, the damage condition of the structure remains unchanged.
The sensor measurements between n = N and n = N + ΔN fatigue cycles are indexed by m =
0, 1, . . . , M . The nth damage level nonlinear dynamic model [23] between environmental input
Un(m) = {Ln(m), Tn(m),Hn(m)} and input strain un(= ε1) at location 1 can be expressed as

xn(m) = gn
u(xn(m − 1), Un(m), dn)(1)

un(m) = hn
u(xn(m), Un(m), dn)(2)

Similarly the nth damage level nonlinear dynamic model between environmental input Un(m) and
output strain yn(= εy) at location 2 can be expressed as

xn(m) = gn
y (xn(m − 1), Un(m), dn)(3)

yn(m) = hn
y (xn(m), Un(m), dn)(4)

where the superscript n represents the nth damage level, xn(·) represents the nth damage level
hidden states, dn is the quantitative value of damage condition at nth damage level, Un(m) =
{Ln(m), Tn(m),Hn(m)} represents the input environmental conditions with Ln(m), Tn(m) and
Hn(m), represent the nth damage level load, temperature and humidity, respectively, with lag
coefficient m. Ln(m) is a vector with input from multiple loading sources. In addition gn

(·) and
hn

(·) are two nonlinear mapping functions. In the present work with laboratory test condition there
is not much change in temperature and humidity. Because of this in numerical validation of the
developed techniques the temperature and humidity variables will not considered. However, for
generality temperature and humidity variables are included in the discussed theoretical formulation.
It is also to be noted that in the present formulation time is not explicitly considered as an input
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variable. However, for time dependant degradation cases such as in case of creep damage, time has
to be considered as additional input parameter. For example with applied mechanical and thermal
load the input variable can be represented as Un(m) = {Ln(m), Tn(m),Hn(m), n}. Again to note
that, in the present formulation it is assumed that during n = N to n = N + ΔN fatigue cycle, the
damage condition of the structure remains unchanged. If time dependant creep damage has also to
be considered between n = N and n = N + ΔN fatigue cycles the input variable can be further
modified as Un(m) = {Ln(m), Tn(m),Hn(m), n(m)}.

2.1.2. Nonlinear dynamic modeling using Bayesian Gaussian Process. Nonlinear dynamic modeling
and signal processing have been gaining increased interest from researchers in recent years. Nu-
merous researchers have contributed to the development and increased understanding of these fields
[13]. Examples of different nonlinear models are with smooth nonlinearities, multiple-values nonlin-
earities, (e.g., hysteresis), non-smooth nonlinearities with discontinuities. The smooth nonlinearities
can be represented by polynomial models. To describe a polynomial nonlinear system, the Volterra
expansion has been the most widely used model for the last thirty years. The continuous-time
Volterra filter model is based on Volterra series expansion. However the Volterra kernel nonlin-
ear model is computationally intensive for highly nonlinear systems. In addition, polynomial type
Volterra methods are more suitable to model smooth nonlinearity. However fatigue damage consists
of multiple-valued nonlinearities, e.g., hysteresis effect, in stress-strain relation and requires a better
robust approach to model it. The Bayesian Gaussian Process (GP) model [4, 9, 17] can be use-
ful for modeling the nonlinear dynamics associated with the individual discrete damage instances.
Using GP based high-dimensional kernel transformation, the nonlinear relation between the input
environmental loading Un(m) = {Ln(m), Tn(m),Hn(m)} and the input/output strain (i.e un(= ε1)
or yn(= ε2) can first be mapped in a high-dimensional space. The high-dimensional transformation
is performed using assumed kernel functions [4, 9, 17]. It is assumed that in the transformed high-
dimensional space the input environmental load and the input/output strain follow a linear relation.
In the high-dimensional space the mapping between the new transformed input X = Φ(Un(m))) and
observed input/output strain (i.e un(= ε1) or yn(= ε2) can be modeled as a Markovian model. It
is to be noted that the high-dimensional mapping is performed in a subtle Bayesian framework and
the mapped input-output relation cannot be directly envisioned. With first order Markov dynamics
assumption and considering process noise ϑn

(·) the equivalent form of Eq. (1 and 2) for input strain
un(= ε1) at location 1 can be expressed as

Xn(m) = gn
u(Xn(m − 1), dn;An

u) + ϑn
X(m)(5)

un(m) = hn
u(Xn(m), dn;Bn

u ) + ϑn
u(m)(6)

and for output strain yn(= ε2) at location 2 can be expressed as

Xn(m) = gn
y (Xn(m − 1), dn;An

y ) + ϑn
X(m)(7)

yn(m) = hn
y (Xn(m), dn;Bn

y ) + ϑn
y (m)(8)

where Xn(m) ∈ Rd denotes the d-dimensional latent coordinates at mth lag coefficient of the nth

damage level. Also ϑn
(·) is the zero-mean, white Gaussian process noise, gn

(·) and hn
(·) are nonlinear

mapping functions parameterized by An
(·) and Bn

(·) respectively. The nonlinear mapping functions
gn
(·) and hn

(·) at nth damage level can be expressed as linear combination of basis functions φ and ψ

and is expressed as below.
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gn
(·)(X

n(m − 1), dn;An) =
∑

i

An
i φn

i(9)

hn
(·)(X

n(m − 1), dn;Bn) =
∑

j

Bn
j ψn

j(10)

where An = {An
1 , An

2 , . . . , An
M} and Bn = {Bn

1 , Bn
2 , . . . , Bn

M} are weights. In order to fit the param-
eters of this model to training data, one must select an appropriate number of basis function i.e., in
other way to select the proper order of the system. One must ensure that there is enough data to
constrain the shape of the basis functions. Ensuring enough data and finding the proper order of
the system can be very difficult in practice. However, from a Bayesian perspective, the specific form
of mapping function gn

(·) and hn
(·) are incidental and therefore should be marginalized out. Following

GP regression modeling [4, 9, 17], the discrete short term time-series measurements at nth damage
level can be modeled for the input strain un(= ε1) as

f(un|{Xn
m}m=1,...,M ) =

1
(2π)M/2

√
detKn

u

exp[−
1
2
(un − μu)T (Kn

u)−1(un − μu)](11)

Similarly for output strain yn(= ε2) as

f(yn|{Xn
m}m=1,...,M ) =

1

(2π)M/2
√

detKn
y

exp[−
1
2
(un − μy)T (Kn

y )−1(un − μy)](12)

where un = [un(m = 1), un(m = 2), . . . , un(m = M)] or un = [εn
1 (m = 1), εn

1 (m = 2), . . . , εn
1 (m =

M)] is the short term input time series at nth damage level. Similarly yn = [yn(m = 1), yn(m =
2), . . . , yn(m = M)] or yn = [εn

2 (m = 1), εn
2 (m = 2), . . . , εn

2 (m = M)] is the short term output time
series at nth damage level. In addition Kn

u and Kn
y are M × M kernel matrices with respect to

X → u and X → y mappings. The elements of kernel matrix can be found using assumed kernel
functions. There are different types of kernel functions (e.g., constant kernel, Radial basis kernel,
Multilayer perceptron kernel, etc.) [21]. From the modeling point of view the choice of kernel should
best suit our data. In the present application Multilayer perceptron (MLP) kernel is used. It is to
be noted that the MLP kernel is a non-stationary kernel and is assumed that the MLP kernel will
be more suitable to model a non-stationary fatigue damage process, particularly if the damage state
does not remain constant between n = N and n = N + ΔN fatigue cycles. The elements of nth

damage level kernel matrix can be found using MLP kernel function as shown below.

(Kn
(·))i,j = k(Xi,Xj) = k(Φ(Ui),Φ(Uj))

= (θn
(·))pSin−1

UT
i (θn

(·))wUj√
(UT

i (θn
(·))wUi + 1)(UT

j (θn
(·))wUj + 1)

+ (θn
(·))ϑ

(13)

In Eq. (13), (θn
(·))p, (θn

(·))w, (θn
(·))ϑ are the process, width and noise hyperparameters, respectively.

There are two sets of hyperparameters: Θn
u = {(θn

u)p, (θn
u)w, (θn

u)b, (θn
u)ϑ} for X → u mapping and

Θn
y = {(θn

y )p, (θn
y )w, (θn

y )b, (θn
y )ϑ} for X → y mapping and can be found by minimizing the following

two negative log-likelihood functions.
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Γn
u = −

1
2
logdetKn

u −
1
2
(un)T (Kn

u)−1un −
M

2
log2π(14)

Γn
y = −

1
2
logdetKn

y −
1
2
(yn)T (Kn

y )−1yn −
M

2
log2π(15)

2.2. Time-series fatigue damage state estimation. Above subsection discussed how to estimate
the nonlinear dynamic model for any individual damage instance. This subsection discusses how to
estimate the time-series damage states at individual damage instances. The estimation of dynamic
model for any individual damage instance is a fast scale dynamical system identification problem.
Compared to this, the time-series damage state estimation for entire fatigue life is a slow scale
dynamical system identification problem. The process for time-series damage state estimation for
the entire fatigue life is discussed below.

2.2.1. Reference model estimation. Given the reference environmental condition U0(m) = {Ln(m), Tn(m),Hn(m)}
and input strain u0(= ε01) and output strain y0(= ε02) the reference nonlinear dynamic models H0

U→u

(to estimate Θ0
u) and H0

U→y (to estimate Θ0
y) can be estimated by minimizing the respective reference

condition negative log-likelihood functions given below.

Γ0
u = −

1
2
log det K0

u −
1
2
(u0)T (K0

u)−1u0 −
M

2
log2π(16)

Γ0
y = −

1
2
log det K0

y −
1
2
(y0)T (K0

y)−1y0 −
M

2
log2π(17)

In Eq. (16 and 17) the kernel matrix can be written in the functional form as

K0
u = Ω(U0, u0, k(Xi,Xj))(18)

K0
y = Ω(U0, y0, k(Xi,Xj))(19)

In Eq. (18 and 19) k(Xi,Xj) is the assumed kernel function given in Eq. (13).

2.2.2. Current damage level dynamic strain mapping. Once the reference (n = 0) level dynamic mod-
els H0

U→u and H0
U→y are estimated, for a new environmental conditions Un = [Un(m = 1), Un(m =

2), . . . , Un(m = M)]T , the corresponding input strain un
p = [un

p (m = 1), un
p (m = 2), . . . , un

p (m = M)]
and output strain yn

p = [yn
p (m = 1), yn

p (m = 2), . . . , yn
p (m = M)] can be predicted using the proba-

bility density function (pdf)given below.

f(un
m|Θ0

u,K0
u,Xn(m)) = N

[
μu(m), σ2

u(m)
]
;m = 1, 2, . . . , M(20)

f(yn
m|Θ0

y,K0
y,Xn(m)) = N

[
μy(m), σ2

y(m)
]
;m = 1, 2, . . . , M(21)

where Xn(m) = Φ(Un(m)) is the high dimensional transformation of the new environmental input
Un(m) at nth damage level. N represents the Gaussian distribution with mean

μu(m) = (kn
u(m))T (K0

u)−1u0 ; m = 1, 2, . . . , M(22)

μy(m) = (kn
y (m))T (K0

y)−1y0 ; m = 1, 2, . . . , M(23)

and variance

σ2
u(m) = κn

u(m) − (kn
u(m))T (K0

u)−1u0 ; m = 1, 2, . . . , M(24)

σ2
y(m) = κn

y (m) − (kn
y (m))T (K0

y)−1y0 ; m = 1, 2, . . . , M(25)
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where (M ×M) K0
(·) matrix, (M ×1) kn

(·)(m) vector and scalar κn
(·)(m) can be found using the larger

(M + 1 × M + 1) partitioned matrix given below.

Kn
(·)(m) =

[
K0

(·) kn
(·)(m)

(kn
(·)(m))T κn

(·)(m)

]
; m = 1, 2, . . . , M(26)

Following Eq. (20 - 26) the predicted input strain at nth damage level can be rewritten as un
p =

[μn
u(m = 1), μn

u(m = 2), . . . , μn
u(m = M)] and output strain given as yn

p = [μn
y (m = 1), μn

y (m =
2), . . . , μn

y (m = M)]

2.2.3. Current damage level error signal estimation. Due to damage the nonlinear dynamical model
given by Eq. (1 - 4) will change from one damage level to other damage level. However if the
dynamic model parameter is kept fixed (as reference model parameter), the nth damage level pre-
dicted input strain un

p will not be same as the actual input strain un
a (measured in real-time from

the corresponding sensors). Similar is the case for the predicted output strain yn
p . The error in

predicted signal and actual signal at a given damage level can be a measure of the damage state at
that damage level. The error signals en

(·) for both the input and output strain are given as

en
u(m) = un

a(m) − un
p (m) ; m = 1, 2, . . . , M(27)

en
y (m) = yn

a (m) − yn
p (m) ; m = 1, 2, . . . , M(28)

2.2.4. Time-series damage state estimation. Once the error signal with respect to the input and
output strain are estimated the corresponding scalar damage index an at nth damage level can be
estimated using either of the following two damage index formulations. The expression for root
mean square error based damage index is given as,

an =

√√√√ 1
M

m=M∑
m=1

[en
(u or y)(m)]2 ; n = 1, 2, . . . , N − ΔN,N,N + ΔN(29)

where en
(·)(m) are the error signals as described in Eq. (27) and (28). This damage index formulation

can depend on either the input error signal (en
u(m)) or the output error signal (en

y (m)). A second
damage index formulation using both the input error signal (en

u(m)) and output error signal (en
y (m))

is described below. This damage index is based on our previous work[11] for online damage state
estimation under constant amplitude fatigue loading in which, the damage index was formulated
by directly correlating the input dynamic strain (un(m) = εn

1 (m)) with the corresponding output
dynamic strain (yn(m) = εn

2 (m)). In contrast to the present random loading case, the damage index
is formulated by correlating the input error signal (en

u(m)) with output error signal (en
y (m)). The

expression for the developed damage index is given below.

an =

√√√√∑m=M

m=−M (γn
euey

(m) − γ0
euey

(m))2∑m=M

m=−M (γ0
euey

(m))2
; n = 1, 2, . . . , N − ΔN,N,N + ΔN(30)

where γn
euey

(m) is the mth lagged cross correlation coefficient between the error signal eu and ey.
Superscripts ′n′ and ′0′, represent the nth and reference state damage levels, respectively. It is to
be noted that the reference damage level does not have to be the healthy condition of a structure.
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3. Results and Discussion

Validation of the numerical model described in the previous section is a complex task. The ”de-
scribed” numerical prediction must to be validated by experimental results. Towards the validation
goal, a fatigue test was conducted under biaxial random load. Using the real-time test data, damage
states were estimated at different fatigue damage levels. The details of the numerical exercise are
discussed below.

3.1. Fatigue experiment and data collection. The experimental validation of the developed
model was carried out using data from fatigue tests performed on an Al-2024-T351 cruciform spec-
imen under biaxial random loading. The cruciform specimen loaded in an MTS biaxial fatigue test
frame can be seen in Figure 3. The specimen was instrumented with strain gauges as shown in
Figure 4A. Two strain gauge rosettes are placed at different locations to measure the input strain ε1
and the output strain ε2, respectively. In the present case, the individual strain gauges of the 3-axis
rosette gauges are aligned along the X-axis, 45o to X-axis and Y-axis of the MTS frame, respectively.
Although in a typical application it is not necessary to follow any particular alignment direction,
for better correlation of sensor signals the input and output rosettes should be placed parallel to
each other. Figure 4A also shows the healthy condition of the cruciform specimen, while Figure 4B
shows its failed condition. To accelerate the crack propagation, a 1.5 mm EDM notch was made
at the bottom right boundary of the central hole. Also, to further accelerate the crack growth, the
specimen was fatigued under constant cycle loading (maximum load of 4800 lbf and minimum load
of 480 lbf), to achieve a visible crack (in front of the EDM notch) length of 1-2 mm. Then the
specimen was tested under biaxial random loading. From the finite element stress analysis results
the yield load was found to be 7200 lbf. Based on this limiting yield load, random load patterns
were generated. The original patterns were generated using MATLAB and then coded to the MTS
controller. Typical 1 block (equivalent of 300 cycles) of original random load pattern is shown in
Figure 5. In the present random loading case all the blocks are non-repetitive which means that
each block is different from every other block. The random loading patterns were generated using
MATLAB while maintaining the maximum load limitat equal to 80 percent of the yield load and
minimum load limited to 6.6 percent of the yield load. For every random loading block strain gauge
signals and MTS load cell signals were acquired using a 48-channel NI-PXI data acquisition system
(Figure 3). During testing both the X and Y-axis load frame actuators were programmed to operate
at the same phase with a cyclic frequency of 10Hz. However, to capture high-frequency damage
signatures, the strain gauge signals were acquired at a 1000 Hz sampling frequency. In order to
maintain same data length, the MTS X and Y-axis load cell signals were also acquired with the
same sampling frequency. The load cell and strain gauge measurements for a typical (healthy or
reference state) random load block is shown in Figure 6. Part of the data based on Figure 6 is shown
in Figure 7 in a magnified form. It is to be noted that, in the present work, the GP state estimation
approach only requires relative strain signals at different locations. Hence it was not necessary to
acquire the true or absolute strain field of the structure and so the strain gauges were not calibrated.
Figures 6 and 7 show the uncalibrated strain signals.

3.2. Time-series damage state estimation. An approach for estimating the current damage
level (nth damage level) input and output error signals was presented in theoretical section. The
estimated error signals at different damage levels can be used to estimate the corresponding scalar
damage states. The individual damage states can be estimated using either the root mean square
error (RMSE) based damage index or the correlation analysis (CRA) based damage index given in
Eq. (29) and Eq. (30). The normalized damage states estimated using root mean square error based
damage index formulation is shown in Figure 8. The normalized damage states estimated using both
input strain error signal as well as output strain error signal are shown. In addition, the figure shows
the normalized crack length estimated from the visual image captured by a high resolution camera.
It is to be noted that the random loading fatigue test was started with a pre-cracked (with 1.5 mm
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Figure 3. Biaxial testing experimental setup. The figure shows a MTS biax-
ial/torsion frame mounted with an Al-2024 cruciform specimen.

Figure 4. A) Instrumented Al-2024 undamaged cruciform specimen. Two 3-axis
rosette strain gauges were placed on both sides of the crack path to monitor dynamic
strain. B) Damaged Al-2024 cruciform specimen.

crack in front of 1.5mm EDM notch) specimen. In the pre-cracked specimen a stable crack grew up
to the bottom wedge boundary resulting in a total length of 43.1 mm (Figure 4B) then a second
crack started at the top edge of the central hole. The stable crack (equivalent to 43.1 mm crack
length) reached the bottom boundary of the central wedge in approximately 380680 fatigue cycles.
The second crack growth was unstable and grew to a total length of 28 mm (Figure 4B) within
3320 fatigue cycles. Figure 8 shows only the time-series damage state estimation in the stable crack
growth regime. For proper comparison the estimated damage states from both proposed SHM model
and visual images are normalized against their maximum value. From Figure 8 it can be seen that
the estimated damage states using the input strain error signal follows a similar trend as that of
estimated damage states using the output strain error signal. However, it can be seen that except
during the final failure regime, the estimated damage states do not follow the trend of normalized
visual measurements. A similar trend in estimated damage states only during the final failure regime
is also observed by other works [22, 8]). However it is clear that it is better to identify the fault
trend long before the final failure regime. The correlation analysis based damage state estimation
given by Eq. (30) can be used to improve the prediction horizon. The estimated damage states
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Figure 5. 1-block of random load. Each block of random load is equivalent to
300 fatigue cycles. Individual random load blocks were generated using MATLAB
random number generator.
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Figure 6. Plot of the raw sensor signals collected at a typical (reference or healthy
state) damage level. The plot shows both load cell (from MTS frame X and Y-axis
load cells) measurements and signals from different strain gauges.

using Eq. (30) is shown in Figure 9. It can be seen that there is a very good correlation between
predicted damage states and normalized visual measurements over almost the entire stage-II and III
damage growth regime.
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Figure 7. Magnified version of the time-series signals shown in Figure 6
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Figure 8. Time-series damage states using root mean square error (rmse) based
damage index

4. Conclusion

A passive sensing based SHM technique has been developed to estimate the real-time fatigue
damage state of complex structures subjected to random fatigue loading. The methodology uses
the predicted and actual dynamic strains at two different locations in the structure. Ideally these
locations are positioned on opposite sides of the damage path. First, individual reference condition
dynamic models are estimated by mapping the reference condition applied load with the reference
condition estimated equivalent strain. The reference condition equivalent strains are estimated
using the measurements from 3-axis strain gauge rosettes placed at the corresponding locations.
The reference condition dynamic models are estimated using Bayesian Gaussian process approach.
Once the reference models are estimated, the dynamic strains are predicted for any applied load at
any given instant of time using these models. The predicted strains are compared with the actual
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Figure 9. Time-series damage states using correlation analysis (CRA) based dam-
age index

sensor measurements to estimate the corresponding error signals. Finally the error signals at the
two locations are correlated to estimate the corresponding fatigue damage state. The approach
is demonstrated for time-series damage state estimation of an Al-2024 cruciform test structure
subjected to biaxial random fatigue loading. To verify the accuracy of the approach, the predicted
damage states are compared with the actual damage states estimated using visual images. The
comparison shows a good correlation between the predicted and actual time-series damage states
almost over the entire stage-II and III crack growth regime. Further improvement of the prediction
accuracy can be achieved by using global optimization and advanced signal processing techniques.
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MULTI-LABEL ASRS DATASET CLASSIFICATION USING SEMI-SUPERVISED
SUBSPACE CLUSTERING

MOHAMMAD SALIM AHMED1, LATIFUR KHAN1, NIKUNJ OZA2, AND MANDAVA RAJESWARI3

Abstract. There has been a lot of research targeting text classification. Many of them focus
on a particular characteristic of text data - multi-labelity. This arises due to the fact that a
document may be associated with multiple classes at the same time. The consequence of such a
characteristic is the low performance of traditional binary or multi-class classification techniques on
multi-label text data. In this paper, we propose a text classification technique that considers this
characteristic and provides very good performance. Our multi-label text classification approach
is an extension of our previously formulated [3] multi-class text classification approach called
SISC (Semi-supervised Impurity based Subspace Clustering). We call this new classification model
as SISC-ML(SISC Multi-Label). Empirical evaluation on real world multi-label NASA ASRS
(Aviation Safety Reporting System) data set reveals that our approach outperforms state-of-the-
art text classification as well as subspace clustering algorithms.

1. Introduction

Based on the number of labels that can be associated with a document, text data sets can be
divided into three broad categories. These three types of data sets are binary, multi-class and multi-
label data sets. In case of binary data sets, a data point or document may belong to either of
two possible class labels. In case of multi-class data sets, however, more than two class labels are
involved and just like binary data, each data point can be associated with only a single class label.
Finally, in case of multi-label data sets, there are more than two class labels involved and each data
point may belong to more than one class label at the same time.

The NASA ASRS (Aviation Safety Reporting System) data set is a multi-label text data set. It
consists of aviation safety reports that the flight crews submit after completion of each flight. Each
such report describes the events that took place during a flight. Since ASRS is a multi-label data
set, each report may belong to multiple class labels. Our objective is to propose a classification
model that can successfully associate class labels to each report in the ASRS data set.

There are a number of challenges associated with the ASRS data set. First of all, these reports
are written in plain English language. The characters are all uppercase letters. Also there are
usually quite a few technical terms and jargons present in each of the reports. So, it is hard to
distinguish between acronyms and normal words. The usual challenges of classifying text data are
also present in this data set. These include very high and sparse dimensionality. This high and
sparse dimensionality happens as the dimension or feature space consists of all the distinct words
appearing in all the reports. Such a report (with key parts boldfaced) is provided next, as an example.

1The University of Texas at Dallas, salimahmed@utdallas.edu, lkhan@utdallas.edu
2NASA Ames Research Center, nikunj.c.oza@nasa.gov
3Universiti Sains Malaysia, mandava@cs.usm.my.
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I TAXIED SMALL TRANSPORT X FROM WALLACE FACTORY TO HOLD SHORT OF RUNWAY . I HAD AN-
OTHER SMALL TRANSPORT Y TAXI OUT FROM PHH FOR RUNWAY . I COORDINATED WITH LOCAL CON-
TROL TO TAXI SMALL TRANSPORT X ACROSS THE RUNWAY . LOCAL CONTROL COULD NOT APPROVE
THE CROSSING , SO I DECIDED TO EXPEDITE MY GROUND TRAFFIC BY DIVERTING SMALL TRANS-
PORT WEST TO A DIFFERENT INTERSECTION AND TAKING SMALL TRANSPORT Y AT PHH TO THE END
OF RUNWAY . WHEN I CALLED SMALL TRANSPORT Y AT PHH I USED THE NUMBERS OF SMALL TRANS-
PORT X AT THE WALLACE INTERSECTION AND TOLD HIM TO TAXI TO THE END OF RUNWAY . SMALL
TRANSPORT X CROSSED THE RUNWAY WHILE SMA Z STARTED HIS TAKEOFF ROLL . WHEN I NOTICED
THAT SMALL TRANSPORT Y PHH WAS NOT MOVING , MY SCANNING CAUGHT SMALL TRANSPORT
X CROSSING AT THE INTERSECTION . I IMMEDIATELY REALIZED MY MISTAKE AND SINCE SMALL
TRANSPORT X WAS HALFWAY ACROSS THE RUNWAY AND SMA Z WAS NEARLY 4000 FEET DOWN THE
RUNWAY , I ELECTED TO LET SMALL TRANSPORT X CONTINUE ACROSS AND TOLD THE LOCAL CON-
TROLLER TO LET SMA Z TAKE OFF , SINCE SMALL TRANSPORT X WOULD BE CLEAR BEFORE SMA Z
BECAME A FACTOR . NO EVASIVE ACTION WAS TAKEN BY THE PILOTS , NO OTHER ACTION BY ME WAS
REQUIRED , EXCEPT TO NOTIFY MY SUPERVISOR OF WHAT TOOK PLACE . I BELIEVE MY SCANNING
HELPED PREVENT A MORE SERIOUS OUTCOME , BUT I MUST ENDEAVOR TO BE MORE POSITIVE IN
TRANSMITTING INSTRUCTIONS TO BE ASSURED THAT THIS WILL NOT HAPPEN AGAIN .

Anomaly class labels:
• Conflict : Ground Less Severe

• Incursion : Runway
• Non Adherence : Required Legal Separation

In face of all these challenges, traditional as well as state-of-the-art text classification approaches
perform poorly on the ASRS data set, as we have found through our experiments. We, therefore,
looked through all these challenges and came up with a text classification approach that handles
each of them.

If we look into the literature for multi-label classification, we can see that most traditional ap-
proaches try to transform the multi-label problem to multi-class or binary class problem. For
example, if there are T class labels in the multi-label problem, one binary SVM (i.e., one vs. rest
SVM) classifier can be trained for each of the class labels. But, this does not provide a correct inter-
pretation of the data. Because for a binary SVM classifier corresponding to the class label Incursion

: Runway, the above report belongs to both the positive and negative classes simultaneously.
In order to correctly interpret the multi-labelity of such data, we found that clustering can perform

this interpretation in a more meaningful way. In fact, we found that the notion of subspace clustering
matches that of text data, i.e., having high and sparse dimensionality and multi-labelity. Subspace
clustering allows us to find clusters in a weighted hyperspace [9] and can aid us in finding documents
that form clusters in only a subset of dimensions. In this paper, we are only considering soft subspace
clustering where each dimension contributes differently in forming the clusters. Applying subspace
clustering can, to a large degree, divide the documents into clusters that correspond to individual
or a particular set of class labels. For this reason, we have formulated SISC-ML as a subspace
clustering algorithm.

Another important consideration during text classification is the availability of labeled data.
Manual labeling of data is a time consuming task and as a result, in many cases, they are available
in limited quantity. If we consider just the labeled data, then we are sometimes left with too little
data to build a classification model that can perform well. On the other hand, if we ignore the class
labels of the labeled data for unsupervised learning, then we are forsaking valuable information that
could allow us to build a better classification model. Facing both these extremes, we have designed
our subspace clustering algorithm in a semi-supervised manner. This allows us to make use of both
the labeled and unlabeled data.

Usually, text classification approaches focus on a specific characteristic of text data. There are
text classification approaches that consider its high dimensionality, some consider its multi-labelity
and some try to train using a semi-supervised approach. As a result, many of these methods can not
be used universally. Sometimes, the underlying theory of these methods may become incorrect. For
example, the K-Means Entropy based method [11] uses a subspace clustering approach that is based
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on the entropy of the features or dimensions. If the data is multi-label, then the entropy calculation
no longer holds ground. Similarly, methods that are supervised, depend heavily on the amount of
labeled data and smaller amount of labeled data may hinder the generation of high quality classifiers.
In our previous work, we formulated SISC to consider the high dimensionality and limited labeled
data challenges [3]. In this paper we extend SISC to handle the multi-label scenario. Therefore,
this algorithms called SISC-ML handles all three challenges associated with ASRS and any other
text data set.

There are a number of contributions in this paper. First, we propose SISC-ML, a semi-supervised
subspace clustering algorithm that performs well in practice even when a very limited amount of
labeled training data is available. Second, this subspace clustering algorithm successfully finds clus-
ters in the subspace of dimensions even when the data is multi-label. To the best of our knowledge,
this is the first attempt to classify multi-labeled documents using subspace clustering. Third, at the
same time, this algorithm minimizes the effect of high dimensionality and its sparse nature during
training. Finally, we compare SISC-ML with other classification and clustering approaches to show
the effectiveness of our algorithm over ASRS and other benchmark multi-label text data sets.

The organization of the paper is as follows: Section 2 discusses related works. Section 3 presents
the theoretical background of our basic subspace clustering approach SISC in semi-supervised form.
Section 4, then provides the modification of our subspace clustering approach to handle multi-label
data. Section 5 discusses the data sets, experimental setup and evaluation of our approach. Finally,
Section 6 concludes with directions to future work.

2. Related Work

We can divide our related work based on the characteristic of our SISC-ML algorithm. As
the name suggests, SISC-ML is a semi-supervised approach, it uses subspace clustering, and most
important of all, it is designed for multi-labeled data. Therefore, we have to look into the state-of-
the-art methods that are already in the literature for each of these categories of research. Also, we
need to discuss classification approaches that have been applied to our target ASRS data set. First
of all, we shall present the current state-of-the-art for multi-label classification algorithms, followed
by semi-supervised approaches and subspace clustering methods. We will conclude this section
by presenting some research that targets ASRS data set and analyzing how our newly proposed
SISC-ML method is different from existing methods (including our previously formulated SISC [3]).

Multi-label Classification: Classifying text data has been an active area of research for a long
time. Usually, each of these research works focus on some specific properties of text data. And,
one such property is its multi-labelity. Multi-label classification studies the problem in which a data
instance can have multiple labels at the same time. Approaches that have been proposed to ad-
dress multi-label text classification include margin-based methods, structural SVMs [18], parametric
mixture models [20], κ-nearest neighbors (κ-NN) [23], Ensemble of Pruned Set method [15] and Met-

aLableler [17] approach. One of the most recent works include RAndom k-labELsets (RAKEL) [19].
In a nutshell, it constructs an ensemble of LP (Label Powerset) classifiers and each LP is trained
using a different small random subset of the multi-label set. Then, ensemble combination is achieved
by thresholding the average zero-one decisions of each model per considered label. MetaLabeler is
another approach which tries to predict the number of labels using SVM as the underlying classifier.
Most of these methods utilize the relationship between multiple labels for collective inference. One
characteristic of these models is that they are mostly supervised [15, 17, 19]. SISC-ML is different
from these approaches as it considers the multi-label problem as a whole, not just a collection of
binary classification problems and also does not remove class label information (like [15]).

Semi-supervised Approaches: Semi-supervised methods for classification is also present in the
literature. This approach stems from the possibility of having both labeled and unlabeled data
in the data set and in an effort to use both of them in training. In [6], Bilenko et al. propose
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a semi-supervised clustering algorithm derived from K-Means, MPCK-MEANS, that incorporates
both metric learning and the use of pairwise constraints in a principled manner. There have also
been attempts to find a low-dimensional subspace shared among multiple labels [11]. In [22], Yu
et al. introduce a supervised Latent Semantic Indexing (LSI) method called Multi-label informed

Latent Semantic Indexing (MLSI). MLSI maps the input features into a new feature space that
retains the information of original inputs and at the same time captures the dependency of output
dimensions. Our method is different from this algorithm as our approach tries to find clusters in the
subspace. Due to the high dimensionality of feature space in text documents, considering a subset
of weighted features for a class is more meaningful than combining the features to map them to
lower dimensions [11]. In [7] a method called LPI (Locality Preserving Indexing) is proposed. LPI

is different from LSI which aims to discover the global Euclidean structure whereas LPI aims to
discover the local geometrical structure. But LPI only handles multi-class data, not multi-label data.
In [16] must-links and cannot-links, based on the labeled data, are incorporated in clustering. But, if
the data is multi-label, then the calculation of must-link and cannot-link becomes infeasible as there
are large number of class combinations and the number of documents in each of these combinations
may be very low. As a result, this framework can not perform well when using multi-label text data.

Subspace Clustering: In legacy clustering techniques like K-Means clustering, the clustering is
performed using all the features where the all of them are equally important. In case of subspace clus-
tering, however, not all features are regarded with equal importance. Based on how this importance
of features is handled, subspace clustering can be divided into hard and soft subspace clustering. In
case of hard subspace clustering, an exact subset of dimensions are discovered whereas soft subspace
clustering assigns weights to all dimensions according to their contribution in discovering correspond-
ing clusters. Examples of hard subspace clustering include CLIQUE [2], PROCLUS [1], ENCLUS [8]
and MAFIA [10]. A hierarchical subspace clustering approach with automatic relevant dimension
selection, called HARP, was presented by Yip et al. [21]. HARP is based on the assumption that
two objects are likely to belong to the same cluster if they are very similar to each other along many
dimensions. But, in multi-label and high dimensional text environment, the accuracy of HARP may
drop as the basic assumption becomes less valid due to the high and sparse dimensionality. In [12], a
subspace clustering method called nCluster is proposed. But, it has similar problems when dealing
with multi-label data.

ASRS Data Set: There has been some research that uses ASRS data set to detect anomalies.
One of the more recent works uses linear algebraic methods [4]. More specifically, the authors use
NMF ( Non negative Matrix Factorization) to generate a subset of features after which they apply
clustering. Finally, they assign anomaly relevance scores to each document. The main focus in this
work is the feature selection, not multi-labelity. A similar work is done in [5] where NMF and NMU

(Nonnegative Matrix Underapproximation) are used to find a reduced rank (i.e., low dimensional)
representation of each document. Just like [4], multi-labelity is not considered here. Mariana [14]
is another method that has been applied to ASRS data set. In short, it is an SVM approach and
utilizes Simulated Annealing to find the best hyperparameters for the classification model. It is,
therefore, a supervised approach and limited labeled data may affect the classification performance
adversely.

SISC: Our previously formulated SISC and our proposed new multi-label extension SISC-ML,
both use subspace clustering in conjunction with κ-NN approach. In this light, both of them are
closely related to the work of Jing et at. [11] and Frigui et at. [9]. The closeness is due the subspace
clustering and fuzzy framework respectively. However, they do not consider the Impurity present in
the clusters. Another significant difference with Frigui et at. [9] is that it is unsupervised in nature.
Hence, it disregards the labeling information present in the data. Another work that is closely
related to ours is the work of Masud et al. [13]. In [13], a semi-supervised clustering approach called
SmSCluster is used. They have used simple K-Means Clustering and it is specifically designed to
handle evolving data streams. Therefore, their algorithm is not appropriate for high dimensionality
or multi-labeled data. Although our text classification task is different in this perspective, we have
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used and extended the cluster impurity measure used in SmSCluster. Also, SmSCluster is not
designed to handle high dimensional text data.

The difference between SISC-ML and all these methods is that SISC-ML addresses all the chal-
lenges associated with text classification simultaneously. It can perform better even when the data
is high dimensional, or it is multi-label or in the face of limited labeled data. The main reason be-
hind this performance gain is the use of our subspace clustering algorithm that finds clusters in the
subspace based on the cluster impurity and Chi Square Statistic. Also the fuzzy cluster membership
allows effective generation of the probabilities of a test instance to belong to each class label. Which
in turn helps our SISC-ML to handle the multi-label problem.

3. Impurity Based Subspace Clustering

We need a proper understanding of our previously formulated SISC [3] classification model before
we describe SISC-ML, our proposed multi-label text classification approach. First of all, let us
introduce some notations that we will be using to formally describe the concept of SISC. Let X =
x1, x2 . . . , xn be a set of n documents in the training set, where each document xi, i = 1 : n, is
represented by a bag of m binary unigram features d1, d2 . . . , dm. di ∈ xj indicates that the unigram
feature di is present in the feature vector of data point xj . The total number of class labels is T
and a data point xi can belong to one or more of them. During clustering, we want to generate k
subspace clusters c1, c2, . . . , ck. Each data point in the training data set is a member of each of the
clusters cl, l = 1 : k, but with different weights w1, w2, . . . , wk. The set of labeled points in cluster
cl are referred to as Lcl

. Apart from these notations, we also use the following two measures in our
subspace clustering algorithm.

3.1. Impurity Measure. Each cluster cl, l = 1 : k, has an Impurity Measure (Impl) associated
with it. As the name of this measure suggests, this measure quantifies the amount of impurity within
each cluster cl. If all the data points belonging to cl have the same class label, then the Impurity

Measure of this cluster Impl is 0. On the other hand, if more and more data points belonging to
different class labels become part of cluster cl, the Impurity Measure of this cluster also increases.
Formally, Impl is defined as

Impl = ADCl × Entl

Here, ADCl indicates the Aggregated Dissimilarity Count and Entl denotes the entropy of cluster
cl. In order to measure ADCl, we first need to define the Dissimilarity Count [13], DCl(xi, yi):

DCl(xi, yi) = |Lcl
| − |Lcl

(t)|
if xi is labeled and its label yi = t, otherwise DCl(xi, yi) is 0. Lcl

indicates the set of labeled points
in cluster cl. In short, it counts the number of labeled points in cluster cl that do not have label t.
Then, for class label t, ADCl becomes

ADCl =
∑

xi∈Lcl

DCl(xi, yi)

The Entropy of a cluster cl, Entl is computed as

Entl =
T∑

t=1

(−pl
t ∗ log(pl

t))

where pl
t is the prior probability of class t, i.e., pl

t = |Lcl
(t)|

|Lcl
|

. It can also be shown that ADCl is
proportional to the gini index of cluster cl, Ginil [13]. But, we are considering fuzzy membership
in our subspace clustering formulation. So, we have modified our ADCl calculation. Rather than
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Figure 1. SISC Top Level Diagram

using counts, we use the membership weights for the calculation. This is reflected in the probability
calculation.

(1) pl
t =

n∑
j=1

wlj ∗ jt

where, jt is 1 if data point xj is a member of class t, and 0 otherwise. This Impurity Measure is
normalized using the Global Impurity Measure, i.e., the Impurity Measure of the whole data set,
before using it in the subspace clustering formulation.

3.2. Chi Square Statistic. From a clustering perspective, the conventional Chi Square Statistic

becomes,

χ2
li =

m(ad − bc)2

(a + c)(b + d)(a + b)(c + d)
where

a = number of times feature di occurs in cluster cl

b = number of times feature di occurs in all clusters except cl

c = number of times cluster cl occurs without feature di

d = number of times all clusters except cl occur without feature di

m = number of dimensions

This Chi Square Statistic χ2
li indicates the measure for cluster cl and dimension di.

3.3. Top Level Description of SISC. The semi-supervised clustering utilizes the Expectation-

Maximization(E-M) approach that locally minimizes an objective function. We use fuzzy clustering,
allowing each data point to belong to multiple clusters. We apply this approach as clusters can form
in different subsets of dimensions or features, in case of high dimensional text data. We consider
the weight of a dimension in a cluster to represent the probability of contribution of that dimension
in forming that cluster. The progress of the algorithm can be partitioned into the following steps as
shown in Figure 1:

290

2010 Conference on Intelligent Data Understanding



3.3.1. E-Step. In the E-Step, the dimension weights and the cluster membership values are updated.
Initially, every point, whether labeled or unlabeled, is regarded as a member of all the clusters with
equal weights. All the dimensions are also given equal weights.

3.3.2. M-Step. In this step, the centroids of the clusters are updated and the summary statistics,
i.e., the representation (percentage) of each class label within each of the clusters, is updated for use
in the next step. During the summary calculation, the membership weights are summed up rather
than using a threshold value to decide the membership of a point in a cluster. We employ this
approach so that membership weights can play useful role in class representation within a cluster
and to prevent the appearance of a new parameter.

3.3.3. κ-NN formulation. In this step, the κ nearest neighbor (κ-NN) clusters are identified for each
test data point. Here, κ is a user defined parameter. The distance is calculated in the subspace
where the cluster resides. If κ is greater than 1, then during the class probability calculation, we
multiply the class representation with the inverse of the subspace distance and then sum them up
for each class across all the κ nearest clusters.

3.4. Objective Function. SISC uses the following objective function as part of subspace cluster-
ing. The Chi Square Statistic has been included in the objective function so that more dimensions
can participate during the clustering process and clusters are not formed using just a few dimensions.
Impurity Measure [13] has also been used to modify the dispersion measure for each cluster. This
component helps in generating purer clusters in terms of cluster labels. But Impl can be calculated
using only labeled data points. If there are very few labeled data points, then this measure do not
contribute significantly during the clustering process. Therefore, we use 1+ Impl, so that unlabeled
data points can play a role in the clustering process. Using Impl in such a way makes our clustering
process semi-supervised.

The objective function, is written as follows:

(2) F (W, Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wf
ljλ

q
liDlij ∗ (1 + Impl) + γ

k∑
l=1

m∑
i=1

λq
liχ

2
li

where

Dlij = (zli − xji)2

subject to

k∑
l=1

wlj = 1, 1 ≤ j ≤ n, 1 ≤ l ≤ k, 0 ≤ wlj ≤ 1

m∑
i=1

λli = 1, 1 ≤ i ≤ m, 1 ≤ l ≤ k, 0 ≤ λli ≤ 1

In this objective function, W, Z and Λ represent the cluster membership, cluster centroid and
dimension weight matrices respectively. Also, the parameter f controls the fuzziness of the mem-
bership of each data point, q further modifies the weight of each dimension of each cluster (λli) and
finally, γ controls the strength of the incentive given to the Chi Square component and dimension
weights.

Since we are using fuzzy cluster membership, a point can be member of multiple clusters at the
same time. However, in order to calculate a, b, c, d and m using the previously provided definitions
in Section 3.2, we have to use a threshold to determine which point can be regarded as a member of
a cluster (i.e., if the membership value of a point in a cluster is larger than a predefined threshold, it
is considered a member of that cluster). This, not only brings forth another parameter, but also the
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membership values themselves are undermined in the computation. So, we modify the calculation
of these counts to consider the corresponding membership values of each point. As a result, we get,

a =
n∑

j=1

∑
di∈xj

wlj , b = 1 −

n∑
j=1

∑
di∈xj

wlj

c =
n∑

j=1

∑
di /∈xj

wlj , d = 1 −

n∑
j=1

∑
di /∈xj

wlj

m = total number of labeled points

3.5. Update Equations. Minimization of F in Eqn. 2 with the constraints, forms a class of con-
strained nonlinear optimization problems. This optimization problem can be solved using partial
optimization for Λ, Z and W. In this method, we first fix Z and Λ and minimize F with respect to
W. Second, we fix W and Λ and minimize the reduced F with respect to Z. And finally, we minimize
F with respect to Λ after fixing W and Z.

3.5.1. Dimension Weight Update Equation. Given matrices W and Z are fixed, F is minimized if

(3) λli =
1

Mlij

∑m

i=1
1

Mlij

where

Mlij =

⎧⎨
⎩

n∑
j=1

wf
ljDlij ∗ (1 + Impl) + γχ2

li

⎫⎬
⎭

1
q−1

In order to get the above equation, first, we use the Lagrangian Multiplier technique to obtain the
following unconstrained minimization problem:

minF1({λli}, {δl}) =
k∑

l=1

n∑
j=1

m∑
i=1

wf
ljλ

q
liDlij ∗ (1 + Impl) + γ

k∑
l=1

m∑
i=1

λq
liχ

2
li −

k∑
l=1

δl(
m∑

i=1

λli − 1)(4)

where [δ1, ..., δk] is a vector containing the Lagrange Multipliers corresponding to the constraints.
The optimization problem in Eqn. 4 can be decomposed into k independent minimization problems:

minF1l(λli, δl) =
n∑

j=1

m∑
i=1

wf
ljλ

q
liDlij ∗ (1 + Impl) + γ

m∑
i=1

λq
liχ

2
li − δl(

m∑
i=1

λli − 1)(5)

for l = 1, ..., k. By setting the gradient of F1l with respect to λli and δl to zero, we obtain

(6)
∂F1l

∂δl

=

(
m∑

i=1

λli − 1

)
= 0

and

(7)
∂F1l

∂λlr

=
n∑

j=1

wf
ljqλ

(q−1)
lr Dlrj ∗ (1 + Impl) + γqλ

(q−1)
lr χ2

lr − δl = 0

Solving the above equations, we get

λli =
1

Mlij

∑m

i=1
1

Mlij

where

Mlij =

⎧⎨
⎩

n∑
j=1

wf
ljDlij ∗ (1 + Impl) + γχ2

li

⎫⎬
⎭

1
q−1
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3.5.2. Cluster Membership Update Equation. Similar to the dimension update equation, we can
derive the update equations for cluster membership matrix W, given Z and Λ are fixed. The update
equation is as follows:

(8) wlj =
1

Nlij

∑k

l=1
1

Nlij

where

Nlij =

{
m∑

i=1

λq
liDlij

} 1
f−1

In order to derive the above equation, again, we use the Lagrangian Multiplier technique to obtain
an unconstrained minimization problem. By setting the gradient of F1l with respect to wlj and δl

to zero, we obtain

(9)
∂F1l

∂δl

=

(
k∑

l=1

wlj − 1

)
= 0

and

(10)
∂F1l

∂wlt

=
m∑

i=1

fw
(f−1)
lt λq

liDlij ∗ (1 + Impl) − δl = 0

Solving these equations, we can derive the update equation for cluster membership.

3.5.3. Cluster Centroid Update Equation. The cluster center update formulation is similar to the
formulation of dimension and membership update equations. We can derive the update equations
for cluster center matrix Z, given W and Λ are fixed. The update equation is as follows:

(11) zli =

∑n

j=1 wf
ljxij∑n

j=1 wf
lj

4. Semi-supervised Impurity Based Subspace Clustering For Multi Labeled Data

(SISC-ML)

If the data is multi-labeled, then the Impurity Measure calculation provided in the previous section
does not hold true. This happens as the classes may overlap. Therefore, the sum of probabilities
may become greater than 1. Hence, we modify the impurity calculation in the generalized case (i.e.,
not fuzzy) as follows:

The Entropy of a cluster cl is then computed as

Entl =
T∑

t=1

(−pl
t ∗ log(pl

t) − (1 − pl
t) ∗ log(1 − pl

t))

where pl
t is the prior probability of class t as defined in Eqn. 1. We also modify ADCl and we

can show that ADCl is proportional to the multi-label gini index of cluster cl:
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ADCl =
∑

xi∈Lcl

(DCl(xi, yi) + DC ′

l(xi, yi))

=
T∑

t=1

((|Lcl
(t)|)(|Lcl

| − |Lcl
(t)|) + (|Lcl

(t′)|)(|Lcl
| − |Lcl

(t′)|))

= (|Lcl
|)2

T∑
t=1

((pl
t)(1 − pl

t) + (p′lt )(1 − p′lt ))

= (|Lcl
|)2(T −

T∑
t=1

(pl
t)

2 −

T∑
t=1

(1 − pl
t)

2)

= (|Lcl
|)2 ∗ Ginil

where, t′ consists of all classes except t and Ginil is the gini index for multi-labeled data.
We can then use this ADCl in our calculation of Impurity. It is apparent that, all the update

equations remain the same, only the calculation of Impurity differs. We apply the previous for-
mulation of fuzzy probability calculation in Eqn. 1 in this case too, in order to use the Multi-label

Impurity Measure in our model.

5. Experiments and Results

We have performed extensive experiments to find out the performance of SISC-ML in a multi-
label environment. In the next part, we will describe the data sets used in the experiments and also
the base line methods against which we have compared our results.

As mentioned in the introduction, we have focused our classification on the ASRS data set. We
have also used another 2 multi-label data sets to verify the effectiveness of our algorithm. In all
cases, we used fifty percent of the data as training and the rest as test in our experiments as part of
2-fold cross-validation. Similar to other text classification approaches, we performed preprocessing
on the data and removed stop words from the data. We used binary unigram features as dimensions,
i.e., features can only have 0 or 1 values. If a feature is present in a document, the corresponding
feature gets a value of 1 in the feature vector of that document, otherwise it is 0. The parameter γ
is set to 0.5. For convenience, we selected 1000 features based on information gain and used them
in our experiments. In all the experiments related to a data set, the same feature set was used. We
performed multiple runs on our data sets. And, in each case, the training set was chosen randomly
from the data set.

5.1. Data sets. We describe here all the three multi-label data sets that we have used for our
experiments.

(1) NASA ASRS Data Set: We randomly selected 10, 000 data points from the ASRS data set
and henceforth, this part of the data set will be referred to as simply ASRS Data Set. We
considered 21 class labels (i.e., anomalies) for our experiments. This is a multi-label data
set and it allows us to determine the performance of our proposed multi-label method.

(2) Reuters Data Set: This is part of the Reuters-21578, Distribution 1.0. We selected 10, 000
data points from the 21, 578 data points of this data set and henceforth, this part of the
data set will be referred to as simply Reuters Data Set. We considered the most frequently
occurring 20 class labels for our experiments. Of the 10, 000 data points, 6651 are multi-
labeled. This data set, therefore, allows us to determine the performance of our multi-label
formulation.
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(3) 20 Newsgroups Data Set: This data set is also multi-label in nature. We selected 15, 000
documents randomly for our classification experiments. Of them 2822 are multi-label doc-
uments and the rest are single labeled. We have performed our classification on the top 20
class labels of this data set.

5.2. Base Line Approaches. We have chosen 3 sets of baseline approaches. First, we compared
our method with the basic κ-nearest neighbor (κ-NN) approach as we are using κ-NN method
along with clustering in SISC-ML. Second, we compare two subspace clustering approaches with
our method. They are SCAD2 [9] and K-Means Entropy [11] approaches. The reason behind
using them as baseline approaches is that they have similarities in objective functions with our
method. So, a comparison with them will show the effectiveness of our algorithm from a subspace
clustering perspective. Finally, we perform experiments using two multi-label classification methods
and compare them to SISC-ML. They are Ensemble of Pruned Set (referred to simply as Pruned

Set for convenience) and MetaLabeler approaches. Both these methods that we have chosen, are
state-of-the-art multi-label approaches. Below we describe these 5 baseline approaches briefly.

5.2.1. Basic κ-NN Approach. In this approach, we find the nearest κ neighbors in the training set
for each test point. Here κ is a user defined parameter. After finding the neighbors, we find how
many of these neighbors belong to the t-th class. We perform this calculation for all the classes.
We can then get the probability of the test point belonging to each of the classes by dividing the
counts with κ. Finally, using these probabilities, for each class, we generate ROC curves and take
their average to compare with our method.

5.2.2. SCAD2. SCAD2 [9] is a soft subspace clustering method with a different objective function
than our method. This clustering method is also fuzzy in nature and can be considered the most
basic form of fuzzy subspace clustering, as it does not consider any other factors during clustering
except for dispersion. Its objective function has close resemblance to the first term of our proposed
objective function. As mentioned earlier, the reason we have used this method as benchmark is due
to this similarity. The objective function of SCAD2 is as follows:

F (W, Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wf
ljλ

q
li|xij − zli|(12)

After performing this clustering using the same E-M formulation of our algorithm, we use κ
nearest clusters of each test point to calculate label probabilities.

5.2.3. K-Means Entropy. This is another soft subspace clustering approach that we compare with
SISC-ML. Its objective function has two components, the first one is based on dispersion and the
second one is based on the negative entropy of cluster dimensions. Another difference between this
approach and SCAD2 is that it is not fuzzy in nature. So, a training data point can belong to only a
single cluster. The objective function that is minimized, as specified in [11] to generate the clusters,
is as follows:

F (W, Z,Λ) =
k∑

l=1

n∑
j=1

m∑
i=1

wljλliDlij + γ

k∑
l=1

m∑
i=1

λlilog(λli)(13)

5.2.4. MetaLabeler. This is a multi-label classification approach [17] that learns a function from the
data to the number of labels. It involves two steps - i) constructing the meta data set and ii) learning
a meta-model. The label of the meta data (example shown in Table 1) is the number of labels for
each instance in the raw data. There are three ways that this learning can be done. We have applied
the Content-based MetaLabeler to learn the mapping function from the features to the meta label,
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Data Labels
x1 C1, C3

x2 C1, C2, C4

x3 C2

x4 C2, C3

Meta Feature Meta Label
φ(x1) 2
φ(x2) 3
φ(x3) 1
φ(x4) 2

Table 1. Construction of Meta Data In MetaLabeler

Methods ASRS Reuters 20 Newsgroups
SISC-ML 0.666 0.815 0.84

κ-NN 0.552 0.585 0.698
SCAD2 0.482 0.533 0.643

K-Means Entropy 0.47 0.538 0.657
MetaLabeler 0.58 0.762 0.766
Pruned Set 0.469 0.56 0.60

Table 2. Area Under The ROC Curve Comparison Chart For Multi-Label Classification.

that is the number of labels. As specified in [17], we consider the meta learning as a multi-class
classification problem and use it in conjunction with One-vs-Rest SVM using the following steps:

(1) Given an instance, obtain its class membership ranking based on the SVM classifier scores.
(2) Construct the input to the meta-model for each instance using Content-based MetaLabeler

method.
(3) Predict the number of labels kv for test instance xv based on the meta-model.
(4) Pick the kv highest scoring class labels as prediction for test instance xv.

We, therefore, train T + 1 SVM classifiers where T is the total number of class labels in the
data set. Of these classifiers, one is multi-class and the rest are One-vs-Rest SVM classifiers for
each of the class labels. We then normalize the scores of the predicted labels and consider them as
probabilities for generating ROC curves.

5.2.5. Pruned Set. The main goal of this algorithm is to transform the multi-label problem into
a multi-class problem. In order to do so, the Pruned Set [15] method finds frequently occurring
subsets of class labels. Each of these sets (or combinations) of class labels are considered as a
distinct label. The benefit of using this approach is that, the user has to consider only those class
label combinations that occur in the data set, the number of which is small. If all possible class label
combinations were considered, then the user would have to handle an exponential number of such
class combinations. The user specifies parameters like what is the minimum count of a class label
combination to be considered as frequent and the minimum size (i.e., class combinations having at
least r class labels) of such sets or combinations.

At first, all data points with label combinations having sufficient count are added to an empty
training set. This training set is then augmented with rejected data points having label combinations
that are not sufficiently frequent. This is done by making multiple copies of the data points, only
this time the assigned class label is a subset of the original label set. So, some data points may be
duplicated during this training set generation process. This training set is then used to create an
ensemble of SVM classifiers. The number of retained label subsets, that is added to the training
set, is also varied and the best result is reported.

5.3. Evaluation Metric. In all of our experiments, we use the Area Under ROC Curve (AUC)

to measure the performance of our algorithm. For all the baseline approaches and our SISC-ML

method, we generate each class label prediction as a probability. Then, for each class we generate an
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Figure 2. ROC Curves for (a) NASA ASRS Data Set (b) Reuters Data Set (c) 20
Newsgroups Data Set.

DataSets 10% Labeled 25% Labeled 50% Labeled 75% Labeled 100% Labeled
Data Data Data Data Data

ASRS 0.658 0.662 0.678 0.675 0.666
Reuters 0.821 0.818 0.795 0.808 0.815

20 Newsgroups 0.836 0.858 0.838 0.826 0.84

Table 3. AUC Comparison Chart For Different Percentages Of Labeled Data Using
SISC-ML.

ROC curve based on these probabilities. After generating all the ROC curves, we take the average
of them to generate a combined ROC curve. Finally, the area under this combined ROC curve is
reported as output. This area can have a range from 0 to 1. The higher the AUC value, the better
the performance of the algorithm.

5.4. Results and Discussion. As can be seen from Figure 2(a), SISC-ML performs much better
than the baseline approaches. In Table 2, the AUC values for SISC-ML and all the baseline ap-
proaches are provided. The AUC value for SISC-ML is 0.666 on the ASRS data set. The closest
performance for this data set is provided by the state-of-the-art MetaLabeler approach which is 0.58.
Therefore, there is around 8% increase in performnace with our approach.

Similar results can be found for Reuters and 20 Newsgroups data sets. In Figure 2(b) and
Figure 2(c), we provide these results. Just like the ASRS data set, SISC-ML provides the best
result. For Reuters data set, our algorithm achieves an AUC value of 0.815 and the nearest value
is 0.762, achieved by the MetaLabeler approach. And, for 20 Newsgroups data set, our algorithm
achieves AUC value of 0.84 whereas, the nearest value is 0.766 achieved by the same MetaLabeler

approach.

5.5. Performance On Limited Labeled Data. We have varied the amount of labeled data in
our data sets to find out how this aspect impacts the performance of our SISC-ML algorithm. Ex-
periments are done by considering 10%, 25%, 50%, 75% and 100% of the training data as labeled.
The labeled data points were chosen randomly in all of these experiments. As can be seen from
Figure 3(a), 3(b) and 3(c), even with significant changes in the amount of labeled data, the perfor-
mance of our algorithm remains considerably similar. The AUC values are summarized in Table 3.
From these results, we can conclude that our algorithm can perform well even when limited amount
of labeled data is available for training.
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Figure 3. ROC Curves For Different Percentages Of Labeled Data In (a) NASA
ASRS Data Set (b) Reuters Data Set (c) 20 Newsgroups Data Set.

6. Conclusions

In this paper, we have presented SISC-ML, a multi-label semi-supervised text classification ap-
proach based on fuzzy subspace clustering. SISC-ML identifies clusters in the subspace for high di-
mensional sparse data and uses them for classification using κ-NN approach. Also, our formulation
of this fuzzy clustering allows us to handle multi-labeled text data. SISC-ML, being semi-supervised,
uses both labeled and unlabeled data during clustering process and as can be seen from the empirical
evaluation, performs well even when limited amount of labeled data is available. The experimental
results on real world multi-labeled data sets like ASRS, Reuters and 20 Newsgroups, have shown
that SISC-ML outperforms κ-NN, K Means Entropy based method, SCAD2 and state-of-the-art
multi-label text classification approaches like MetaLabeler and Pruned Set in classifying text data.
There are still scopes for improvement as well as possibility of extending this new algorithm. In
future, we would like to incorporate label propagation in our classification approach for better clas-
sification model as well as train not only one but multiple classifiers in an ensemble model. We
would also like to extend our algorithm to classify streaming text data.
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