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ABSTRACT

We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models
based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measure-
ments for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid
assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an avi-
ation problem where the identification of anomalous sequences is essential for safety reasons. The data in this
application are discrete and continuous sensor measurements and can be dealt with seamlessly using the meth-
ods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous
features in the time series that may be hidden from the sensor suite and compare those methods to standard
envelope detection methods on test data designed to accentuate the differences between the two methods. Iden-
tification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also
discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series
of sensor measurements that would be found in an ISHM system. We conclude with recommendations that
describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM appli-
cations.

INTRODUCTION

Modern ISHM systems contain hundreds or thousands of sensors producing both discrete and continuous
measurements. The union of all the sensor signals at a given time ¢ can be considered the observed state of
the system. The entire record of the sensor measurements represents the evolution of the system through time.
In this paper we focus on the situation where the sensor measurements are producing discrete and continuous
signals. Discovering anomalies in continuous systems has been extensively treated in the data mining and
statistics literature [5, 6]. We assume that the observed system evolution can be functionally described by the
following equations:

hy = @(h; ;) 1)
x¢ = V(x;_y,hi_jw) @)

We assume that the function ¢ determining the evolution of the system state h; is unknown. The hid-
den system state h; is assumed to be unobservable through the sensor measurements in x,;We also discuss
two situations, one where the state h; is observable, and one where it is assumed to be hidden. The vector x
is an NV dimensional observed binary state vector, and xj_; is the entire history of the observed state vector:
X;_; = [Xo0,X1,...,X¢—1]. The quantity u, is the observed input to the system. Because we assume that we do
not know the function ¥, we cannot rely on it to help us determine whether or not the observed vector x; is
anomalous.

The problem that we address in this paper is to develop a method to discover whether or not the current
observed state x; is anomalous or not based on the observed history of the system, as well as replicates of the
system behavior. Thus, let X be a T' x N matrix whose tth row X (¢, :) contains the values of the N binary sensors
at time ¢ during a single run of the system. Likewise, the nth column X (:, n) contains the time series representing
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the time-ordered sequence of states of the nth sensor. Different replicates of the system are indexed by [ and are
represented by different X;, fori =1...L.

We make two assumptions regarding the sensor measurements in order to develop the ideas in this paper:

e the times in each X; have all been normalized so that ¢ = 0 (i.e. the first row of X;) corresponds to the start
of the system.

e all replicates of the system / under consideration correspond to the the system evolving under similar
operating conditions.

In order to ground this example to a real system, we consider the situation where there are N ~ 1000 dif-
ferent binary switches in an aircraft cockpit 2. We assume that we have a recording of length 7' ~ 1000 of
the switch settings, sampled at uniform intervals. Note, however, that each flight may have a different value
of T, since different flights have different durations, etc. As the pilot maneuvers the airplane through its vari-
ous phases of flight, the pilot flips these switches. We assume that we have L =~ 10, 000 different flights recorded.

Clearly, the vast majority of the flights in both civilian and military aircraft are such that the pilot flips the
appropriate switches at the appropriate times in the appropriate order. Due to standard operating procedures
(SOPs) and extensive training, one would expect the deviation between different flights to be small for switches
that govern the operation of major systems in the aircraft.

This paper addresses the problem of identifying anomalies in the sequences of states of the switches that are
observed. The anomaly is only defined with respect to the sample of L different flights, or replicates, since we
do not have an explicit model of how the system evolves through time, i.e., we do not, and cannot know ¢ or ¥
in Equations 1 and 2.

Note that the data sets involved in this simple example are extremely large. For the values given above, the
data set D = {X;y, -+ ,X} is on the order of 1.25 gigabytes in size. In the event that the data set D is refreshed
daily, we have an incredible escalation in data set size and associated storage and maintenance costs. The meth-
ods that we develop need to be able to scale to the massive data sets without requiring supercomputing power
and significant storage media. With these assumptions we would like to build a model P(X) from a data set
D = {Xy,---,X1}. The data X, arise from different airlines flying the same route using the same airplane.
Given that we are going to have a large volume of data any model for P(X) must be able to learned and probed
quickly. 3

TWO MODELS OF THE DATA GENERATING PROCESS

We next describe two models of the data generating process that obey Equations 1 and 2, but that have
very different statistical characteristics, and therefore very different implications on the ISHM problem. The first
model assumes that the data are generated by a process where each observation is probabilistically independent
of each other observation, and that the state h; is fully observed. Since the state vector is fully observed, we can
assume that it is part of the observation vector x; without loss of generality. The independence can be expressed
as the following expression, for all ¢, ', n, n':

P(xi(n),x¢ (")) = P(x¢(n)) P(xy (n')) ®)

This data set represents a simple ‘benchmark’ or ‘baseline” model which we can use to evaluate the perfor-
mance of the algorithms that we describe in this paper. In order to generate data that matches this assumption,
we create a T' x N data set where (T = 1000, N = 500) using binomial random variables with parameters
(n = 1,p = 0.3). We will refer to this data set as the baseline data set. A key aspect of this data set is that we

2Note that switches with m multiple settings can always be converted to m binary signals.
3 As the data will be accumulated daily it might also be important that the model can easily be updated incrementally.



assume that the sensor measurements are a full representation of the state of the system. Thus, methods that
are successful in finding faults in this data set would be those that do some sort of envelope detection either on
the sensor measurements themselves or a transformed representation of the measurements. This data set will
illustrate the properties of envelope detection algorithms that are commonplace in the ISHM literature.

The second model of the data generating process is much more complex, but it allows for unobserved system
anomalies and dynamically evolving states and observable vectors. We will refer to this data set as the dynamic
data set. The model is based on the Hidden Markov Model, which is widely used in speech recognition [7] and
has also been discussed in the IVHM /ISHM literature [1, 3]. We next briefly describe the Hidden Markov Model
and its applications to IVHM.

The HMM is a dynamic model consisting of H hidden states that are assumed to be not directly observable,
with S observation symbols associated with each state. The model has an initial probability distribution 7 which
isan S x 1 vector where m; is the probability that the system begins in state i. The HMM starts in an initial state
according to the distribution 7 and then the hidden state h; moves to the next state based on a Markov transition
matrix A. The matrix A;; = P(hi+1 = j|lht = i) which gives the probability distribution of the next hidden state
given the current state. While the system is in state i it is assumed to emit an observation vector x; according to
the distribution B, = P(x: = k|h: = j).

Notice that the HMM assumes a discrete state space for the hidden variable h;, and that it is assumed that
the observation vector x; is also discrete. In our case, the number of symbols S ~ 2N where N = 500. Thus, we
need to perform a preprocessing step to identify a small number of representative states. This step is as much
art as science, and is usually performed through the use of a clustering algorithm. Banerjee et. al. [2] have given
an excellent formulation to the problem of clustering high dimensional data based on the von Mises Fischer
distribution. We use their algorithm along with standard clustering methods such as the k-means algorithm for
grouping observations into symbols. In the event that the state vector x contains both discrete and continuous
parameters, the same clustering methodologies can be applied to generate the small number of representative
states.

The implications of the HMM formulation for ISHM problems in interesting. The HMM allows for modeling
situations where we assume that the system state is evolving according to an unobserved set of dynamics de-
fined by the Markov transition matrix. As the system evolves, the state may go into one or more ‘failure modes’
that not directly observable at the sensors. However, based on the distribution of observed sensor measure-
ments, it may be possible to determine a failed state. This is the avenue which we explore in this paper. In the
simulations for this paper, we chose H = 6, S = 6, and the probability matrices A and B such that the system
can fall into a failure mode (state 6) with probability 0.05. When the HMM construct is applied to real data, these
values of H and S will generally be much larger, and the transition probabilities to the failed state will be much
smaller.

As noted above, the data set size is potentially very large. For the systems described in this paper, the data
is provided as the set of matrices D = {Xy,--- , X }. The first observation that can be made is that the matrices
X can be converted to all highly sparse matrices, meaning that most of the data is all not changing at any given
time. Thus, we can convert the data into a very compact representation as follows:

1. Record the initial values for all binary variables x,. This vector represents the initial state of the system at
time 0.

2. Record only those variables that transition from the initial state to the next state. Since the variables are all
binary, this can be recorded simply as the index number of the switch that changed.

3. If needed, record the time at which the transition occurred.

This representation of the data reduces the data set size significantly. Our experiments indicate that for real data
sets from approximately 10, 000 flights, the data set size drops to approximately 1% of the original size without
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Figure 1: This figure depicts the state model of state transitions from normal operation (clear circles) to the failed
state (solid circle in the center of the diagram). Notice that the model allows for the system to move from a
failed state back to normal operation. This models intermittent problems which can arise in complex systems.
For generality, we have included bi-directional arrows and a fully connected graph. In many cases, systems can
only move into a failed state but not back to normal operation. Prior system information such as the fact that
states i and j cannot be connected can be included in the model.

any loss of information. However, this data representation imposes certain constraints on the underlying algo-
rithms. We will discuss this tradeoff in the next sections.

MODELING APPROACH

At opposite extremes there are two potential simplifications to make regarding this problem. We could fo-
cus either on the temporal aspects of the problem (non-stationary behavior across rows), or on the correlation
aspects between the sensors (stationary behavior across columns). The most general kind of model, where we
look at correlations (or higher order analogues) between X (¢,n) and X (¢, n"), we discard as being too complex
as a starting point. To obtain initial insight quickly we focus on a simple model for the time dependence and
a simple model for the stationary behavior. However, our proposed approach can be extended to relax these
simplifying assumptions.

In the simplest approximation we completely ignore the time dependence, and build a model for the likeli-
hood of any particular row x of X. Different rows (i.e. different times) are assumed to be independent so that
P(X) =[], P(x¢) where t ranges over the rows of X and x; = X(t,:). Thus, we simplify things to the point of
only having to build a model for P(x) (i.e., for a single row).

INDEPENDENT SENSORS INDEPENDENT OF TIME

The most naive model for an observation x assumes independence between columns (sensors), i.e.,

P(x) =[] Px(n) 4)

where z(n) is the nth component of x. For binary data a Bernoulli assumption can be used to model the value
of the bit z(n) so that
P(x(n)) = p =" (1 = pa)*™ ®)

where p,, is the probability that the nth bit is zero. The maximum likelihood estimates for the parameters p,, are
obtained simply from frequency counts down the columns X;(:, n) for all [ in the data set D, and dividing by the
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Figure 2: We computed the likelihood of each observation for both the benchmark data set and the dynamic
data set as a function of time. A failure mode in the benchmark data set is apparent in the drop in the likelihood
of the points around time step 500. These are shown in the top panel of plots for both data sets respectively.
Notice that most of the data lies within the 3 sigma confidence interval of the mean likelihood as indicated
in the lower panel. The unimodal characteristic of the benchmark data set is clear in the lower left hand plot.

The multimodal characteristic of the observation sequence is also apparent in the lower right hand plot. The
observations are not indicative of a failure state.

total number of rows in D.

We constructed this model based on the data and have plotted key statistics in Figure 2. The plot indicates
the negative log-likelihood of the data given the Bernoulli model in Equation 5. The negative log-likelihood is
computed by taking the negative log of Equation 4.

We introduced a ’failure” into the benchmark data set at time step 500 in the left-hand side of Figure 2 in
order to determine the way the model would show the likelihood of the failure. The failure was introduced by
inserting vectors with a higher mean value than that specified in the overall model. Those points are caught
by the likelihood model, and have lower likelihood values compared to the rest of the time series. Thus, an
envelope detector would easily catch this type of system failure.

The right-hand side of Figure 2 shows the likelihood of the observations given the Bernoulli model above
for the dynamic system. In this example, notice that the likelihood function has at least three modes (lower
right-hand side of the figure). The system stays well within the 30 envelope that we implemented. Thus, this

envelope detector does not capture the fact that the system is actually in a failure mode a significant fraction of
the total observation time.

This plot is similar to those found in the change-point detection or the process control literature, in that it
shows the likelihood of observations as a function of time. Observations that fall outside of the “expected”
bounds can be tagged for further observation. As noted before, this model completely ignores the potential
relationship between the binary sensors or switches, as indicated in the in Equation 4.

DEPENDENT SENSORS INDEPENDENT OF TIME

Another approach that is often taken to analyze such data is based on the singular value decomposition
(SVD) of the data set X [4]. This method works by factoring the matrix X; into three matrices as follows:

X; =Uxv?T (6)

The matrix Uisa T x N orthogonal matrix, ¥ is an N x N diagonal matrix, and V is an N x T" orthogonal
matrix. SVD (which is closely related to principal components analysis) identifies the directions of maximum



01 0.15

Principal Axis 2, arbitrary units
®
Principal Axis 2, arbitrary units

o1l

-0.15[

—0.15 . . . . . . 02 . . . . . .
=02 -0.15 -0.1 -0.05 0 0.05 01 0.15 ~0.08 ~0.06 -0.04 -0.02 0 0.02 0.04 0.06
Principal Axis 1, arbitrary units Principal Axis 1, arbitrary units

Figure 3: Using the same data sets as in Figure 1, we plot the two dimensional representation of the data points
as projected onto the first two principal components. The data points corresponding to the ‘highly unlikely’
values above fall outside the modal region in this plot. These points are indicated by diamonds. The benchmark
data set (left) clearly shows the failure modes. However, this transformation does not show any signs of failure
for the dynamic data set.

variation in the group of points defined by the rows of the data matrix. These directions can be shown to be the
eigenvectors of the associated covariance matrix. Once the top m eigenvectors are identified (these correspond
to those with the largest m eigenvalues), the observation vectors are left-multiplied with the eigenvectors. This
results in an m dimensional representation of the observation vectors, where m < N. The parameter m is cho-
sen in order to explain the maximum amount of variation in the data with the minimum number of eigenvectors.

It has been shown that plotting the first two columns of the unitary matrix U can give diagnostic information
about the individual data points in the original data matrix [8]. We next demonstrate the effect of analyzing
these binary streams using SVD. Figure 3 shows the distribution of points in X for the two benchmark and the
dynamic data sets. The outlying points in the left hand side of the figure correspond to the relatively unlikely
events that occur near time step 500 in the likelihood time series.

These methods, while useful for analyzing high dimensional time series, do not capture the important dy-
namic aspects of the system. Instead, they treats each row in the time series matrix as an independent observa-
tion. More over, they amount to building an envelope detector in either the original space of the time series or a
transformed space, as in the case of the SVD. The right-hand side of Figure 3 shows the SVD results for the data
generated by the dynamic system. Again, as in the case of the previous method, the system captures at least
three modes of operation based on the observed signal. However, it is unable to identify any failures, because
they are hidden in the dynamics based on Equations 1 and 2. Through these two examples, we have motivated
the need for dynamic statistical models to help detect potential hidden failure modes.

DYNAMIC MODELS

In our approach regardless of how P(x) is modeled time dependence is addressed by building a model for
P(X) = P(x1,Xa, - - - ) for all rows (times). One reasonable modeling possibility here relies upon the Markov as-
sumption where we assume that x, is conditionally independent of all previous rows x, (with ¢ < t) except for
x¢—1. In this case this simplification would give P(X) = P(x1) [ [, P(x¢|x¢—1). A naive Hidden Markov Model
(HMM) is inappropriate to learn this model as any given row vector can assume 2V possible values. Thus, we
would first have to reduce the number of features (perhaps by clustering with a mixture model) describing P(x)
and then build an HMM over these features.

We briefly describe a method to cluster high-dimensional data sets like those described in this paper into a set
of categories that represent a smaller class of discrete observations. There are several approaches to clustering,



including Gaussian Mixture Modeling (GMM) and the k-means clustering algorithm. Both of these algorithms
make Gaussian assumptions about the underlying distribution of the data. The data generating process for the
ISHM observation signals described in this paper are far from Gaussian. They are high-dimensional, sparse,
discrete signals.

Empirical studies have shown that for high dimensional sparse data sets, the cosine measure of similarity
between two vectors is a better measure of similarity than the Euclidean distance. A recent paper [2] developed
the mathematics to perform clustering using the cosine measure of similarity. The cosine distance implies that
the data are generated according to the von Mises Fisher distribution. We follow the formulation in [2] closely:

C

P(x[0©) =Y P(c)P(x0.) )

c=1

In this case, we assume that the vectors x have been normalized to unit length and C is the total number of
clusters in the model. For p dimensional data vectors, we have the von Mises Fisher (vMF) distribution:

P(x|p, k) = cp(k) exp(kp’x) 8

where p is a unit vector corresponding to the mean of the distribution and x > 0 is the measure of dispersion.

The constant ¢, (k) is given by:
o (p/2)-1

cp(k) = ( )
where [(,y(rx) represents the modified Bessel function of the first kind of order . With the vMF distribution
as defined above, Banerjee et. al. (2003) derive the Expectation Maximization algorithm to optimize a mixture
of vMF distributions [2]. Preliminary results indicate that this algorithm has superior performance on high
dimensional clustering problems compared to the k-means algorithm, showing substantial improvements over
existing algorithms.

We cluster each vector x; into one of C clusters, choosing the most likely cluster (based on the values of
P(x0.)). Thus, the dimensionality of the problem is drastically reduced, from a search space of size 2 down
to a relatively small number C. These cluster memberships are used as input into the HMM training algorithm *.

The HMM is trained using the Baum-Welch maximum likelihood parameter estimation algorithm [7]. This
algorithm has been discussed in detail and is commercially available and will not be discussed here. The algo-
rithm accepts the sequence of symbols (corresponding to the C' cluster memberships), along with initial guesses
of the transition probability matrix and the symbol emission matrix, and produces an estimate of the true tran-
sition and emission probability matrices. The sizes of these matrices also encode the number of hidden states in
the model as well as the number of distinct symbols.

In the process of building the dynamical model, there are two key parts of the model where model informa-
tion can be inserted into the system to guide the discovery of the underlying states. The first part is the state
transition matrix, which gives the distribution of the next hidden state given knowledge of the current state.
This distribution can be modified to encode system information. For example, knowledge that a system mode
sequence is unidirectional (state ¢ can go to state j but not to state k) can easily be encoded in the transition
matrix. Modifications to the algorithm can be made to enforce such constraints over the transition matrices. The
second part is the symbol emission matrix, which can be modified using similar principles as the state transition
matrix.

4The training and testing algorithms used in this paper are available in Matlab. In order to demonstrate the properties of the dynamic
model alone, we have used the true state information in these demonstrations.



Just as the envelope detection methods outlined earlier in the paper had drawbacks in being insensitive to
dynamical anomalies, the dynamical model has drawbacks as well. These include:

e The HMM is a complex model with a large number of free parameters. The parameter estimation problem
is complex and requires a significant amount of data to ensure a good quality estimate.

e The step of converting high-dimensional time series into a small set of symbols injects noise into the process
that may complicate discovering the hidden state. If this process is done through a clustering algorithm,
as described in this paper, the clusters memberships can have significant run-to-run variability.

e The hidden states may not be directly interpretable, and may not fully capture a hidden fault in the system.

The results of the algorithm are presented in Figure 4. The upper panel of the diagram shows the transition
of the system from other states (labeled as '0") to the failed state (labeled as '1’). This data set is designed to have
an intermittent failure mode that is undetectable at the observation level (see Figures 2-3 for discussion). The
lower panel shows the hidden state estimated by the Hidden Markov Model. This model has a 69% true-positive
rate and a 71% true-negative rate.
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Figure 4: The top panel shows the transition of the system from a normal state into the failed state (labeled as
"1"). The lower panel shows the detection of the hidden state as it transitions into the failed state. The algorithm
has a true-positive rate of 71%.

5The true-positive rate is defined as the percentage of times the model correctly predicts the hidden state as being in the failed mode. The
true-negative rate is defined similarly.



DISCOVERY WORKBENCH FOR ISHM

In order to provide a framework for testing both the static time independent models based on envelope de-
tection, as well as the dynamic modeling capabilities of HMMs and visualization methods, we are building a
prototype system called the Discovery Workbench for ISHM that comprises methods to animate and visualize as
well as analyze signals from large discrete and continuous sensor suites. An essential component of the system
is for visualization of complex signals. However, for high-dimensional sensor signals, it is impossible to view
the complex relationships between the signals.

Thus an important preprocessing capability for this system, or any system that handles and visualizes high-
dimensional data, is to have methods to either reduce the dimensionality of the problem or to automatically
filter "interesting” from "noninteresting” information. Currently, the SVD method of dimensionality reduction
is available in the system, as well as methods to cluster high dimensional data to generate symbol sequences.
More work needs to be performed to develop adequate filtering mechanisms that isolate sensor readings that
are of interest that may be co-varying in time. Sensors embedded within complex system generate voluminous
datasets whose analysis typically includes exploration, feature selection, feature detection and dimensionality
reduction, model construction, and classification. To analyze time series and discover useful patterns, analysts
must select a suitable method, and must fine-tune method parameters to obtain optimal results for a given
application. We designed the discovery workbench to help analysts explore and fine-tune potential methods
easily and rapidly. In order to ensure the scalability of the working system, we plan to build the system in Java
with interfaces to traditional monitoring systems through standard interfaces.
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Figure 5: The Discovery Workbench for ISHM is a prototype that includes three functionality categories: univari-
ate animation for examining individual series as they progress with time; analysis, for executing data mining and
pattern recognition algorithms; and visualization, for examining multivariate time series and visualizing analysis
results. The workbench is flexible in that users can add analysis and visualization methods easily by adhering to
a simple interface specification. The workbench allows users to detach intermediate visualizations for viewing
with subsequent results. The workbench is implemented in Matlab and runs on multiple platforms.

CONCLUSIONS

We have described the statistical properties of envelope detection methods as well as dynamic hidden Markov
Models for applications in Integrated Systems Health Management. The envelope detection methods are statis-
tically simpler than the dynamic models, but they assume that the failure mode is observable in the sensor suite.
The dynamic models can allow for rapid discovery of failures that are not directly observable in the sensor suite.
However, they suffer from being large and potentially very complex models. We motivated our work by dis-
cussing a large scale anomaly detection problem in the aviation domain and described a prototype workbench
for the analysis, synthesis, and visualization of high-dimensional sensor signals.
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