
Integrated System Health Management (ISHM)
Technology Demonstration Project

Final Report
NASA TM 2006-213482

Principal Investigators

 Ryan Mackey David Iverson
Jet Propulsion Laboratory NASA Ames Research Center

Team Leads

 Greg Pisanich Mike Toberman Ken Hicks
NASA Ames NASA Dryden Jet Propulsion Laboratory

Research Center Flight Research Center

December 15, 2005

2

PROJECT TEAM MEMBERS

ARC DFRC JPL

Scott Christa Bob Antoniewicz Edmund Baroth
Anthony Gross David Dowdell Len Day
David Iverson Gayle Patterson Martin Feather

David Lawrence Marlin Pickett Kenneth Hicks
Dougal Maclise James Stewart Mark James
Greg Pisanich Mike Toberman Ryan Mackey

 Ron Wilcox Raffi Tikidjian

OTHERS

Dan Itsara U.S. Air Force
David Wang MIT

3

TABLE OF CONTENTS

PROJECT TEAM MEMBERS... 2
TABLE OF CONTENTS.. 3
INTRODUCTION .. 5

Project Background... 5
Aircraft as Spacecraft Proxy ... 6
Test bed Advantages ... 7

OBJECTIVES AND SUCCESS CRITERIA.. 7
Goals and Objectives .. 7
Success Criteria... 7

TEAM COMPETENCIES .. 8
Dryden Flight Research Center (DFRC) – Aircraft and Hardware Support................... 8
Jet Propulsion Laboratory (JPL) – Beacon-based Exception Analysis for
 Multi-missions (BEAM) Systems Engineering Support... 8
Ames Research Center (ARC) – Inductive Monitoring System (IMS) and
 Systems Integration... 9
X-Works Team Concept ... 9
Team Organization.. 9
Project Communications... 10
Technical Approach .. 10
Project Budget and Schedule .. 12

TECHNICAL PROJECT COMPONENTS.. 13
Aircraft Subsystem Selection.. 13
Data Selection and Access .. 13
Data Processor Hardware.. 15
Software and Algorithm development .. 16
Dispatcher ... 16
Inductive Monitoring System (IMS)... 18

State Space Recognition ... 19
Alert Logic .. 19
Scaling of Database... 19
Control and Status Vectors ... 19
Statistical Weighting... 20
Engine State Matrix and Logic Partitioning ... 20

Beacon-based Exception Analysis for Multi-missions (BEAM).................................. 21
BEAM Data Coverage .. 23
Building the BEAM State Model.. 24
Building the BEAM Statistics Model ... 25
Software Configuration... 27

Simulation Testing.. 27
F/A-18 Flight Simulator.. 28
Ames 1553 Bus Analyzer ... 29

F/A-18 Flight Test Aircraft ... 29
Processor Environmental Testing ... 29

4

Processor-Aircraft Integration .. 30
PRE-FLIGHT PROCEDURES AND FLIGHT TESTING... 32

Hardware and Software Ground Tests.. 32
Flight Approval and Initial Test Flights.. 32
Data Download and Analysis.. 33

RESULTS AND CONCLUSIONS... 34
Success Criteria Exceeded .. 34
Probable Anomalies Detected... 34

Transient Effects ... 34
Repeated Intermittent.. 36
Unanticipated Operating Mode... 41
Seeded Faults .. 41

F/A-18 Technology Accelerator was a Successful Test Bed.. 43
Team Synergy ... 44
X-Works.. 44

LESSONS LEARNED.. 44
Allow extra time when integrating code into new hardware and operating systems.... 44
Recognize and address ITAR issues early in the project.. 45
Use existing hardware and software whenever possible... 45
Plan extra time for travel, even if the location is nearby .. 46

NEXT STEPS ... 46
Algorithm Development ... 47

Development Directions for IMS.. 47
ISHM Technologies .. 48
ISHM Operations .. 50
F/A-18 Technology Accelerator ... 50

SUMMARY.. 51
ACKNOWLEDGEMENTS.. 52
REFERENCES ... 52

5

INTRODUCTION

PROJECT BACKGROUND
Integrated System Health Management (ISHM) is an essential capability that will be
required to enable upcoming explorations mission systems such as the Crew Exploration
Vehicle (CEV) and Crew Launch Vehicle (CLV), as well as NASA aeronautics missions.
ISHM technologies will improve the reliability and availability of complex systems,
reduce the amount of manpower required to prepare vehicles for both aeronautical and
space flight, and reduce the number of induced failures caused by intrusive inspections.
NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) have
developed strong competencies in ISHM, particularly in the areas of data fusion, data
analysis, monitoring, and diagnosis; however, the lack of flight experience and available
test platforms have held back the infusion of these technologies into future space and
aeronautical missions.

To address this problem, a pioneer project was conceived to use a high-performance
aircraft as a low-cost proxy to develop, mature, and verify the effectiveness of candidate
ISHM technologies. Given the similarities between spacecraft and aircraft, an F/A-18
currently stationed at Dryden Flight Research Center (DFRC) was chosen as a suitable
host platform for the test bed. Given the availability of the aircraft, this test bed allows
ISHM technologies to be developed more economically and mature more quickly.

Figure 1. F/A-18 High-performance test aircraft at NASA Dryden

This report describes how the test bed was conceived, how the technologies were
integrated on to the aircraft, and how these technologies were matured during the project.
It also provides the reader with a description of the lessons learned during the project and
a forward path for the continuation of this important work.

6

AIRCRAFT AS SPACECRAFT PROXY
A high-performance aircraft provides many of the same relevant characteristics and
challenges as a spacecraft and could effectively be used as a surrogate for developing
new technologies for space flight. From a top-level prospective, a high-performance
aircraft provides similar subsystems, including propulsion, avionics, environmental
controls, and power distribution (see Figure 2). Software development requirements for
data collection, data filtering, and interpretation are comparable. In addition, issues
involved in modeling, integrating, and fielding ISHM systems are similar for both
platforms.

A high-performance-aircraft can also provide similar environmental and integration
challenges, including data bus, EMI, electrical noise, vibration, and thermal issues within
a defined flight envelope. There have been previous efforts between the aircraft and space
community to develop systems that were capable of supporting tests in both the
atmospheric and space environment, but these were primarily point designs that are not
relevant to today’s challenges. We would like to engage these groups in a dialog to define
general environmental operating envelopes for ground, aircraft, and sounding rocket tests
that would support spacecraft technology development.

 Propulsion
Subsystem

Avionics
Subsystem

Electrical Power
Distribution
Subsystem

Structure
Subsystem

Emergency
Subsystems

Flight Control
Subsystem

Hydraulics
Subsystem

Figure 2. Generic aircraft/spacecraft block diagram, subsystem level

Health management software for an F/A-18 cannot be expected to perform the same
functions for a CEV; however, the building blocks for creating such a health management
system could be conceived and significantly tested on the F/A-18. By using a high-
performance aircraft as a test bed, the technology can gain credibility, as ISHM in general
has demonstrated that it can reduce the number of maintenance hours required to service
a vehicle.

7

TEST BED ADVANTAGES
A high-performance aircraft also provides significant advantages to the ISHM technology
development process: lower cost, more flights, and deeper integration experience.
Spacecraft are currently few and expensive to operate in comparison to most aircraft. Test
aircraft, such as those at Dryden, can fly frequently with a relatively low per-fight cost.
Estimates for dedicated sounding rocket flights are $100K/flight, while flights of rockets
capable of being controlled in flight are $1M/flight. In comparison, flights of the F/A-18
at Dryden cost approximately $8K/flight and are reusable vehicles. If anomalies occur
during flight, they can be investigated on the aircraft’s return.

With the aircraft’s ability to fly often, software and systems can be developed faster.
Frequent flights provide more chances to load and test new versions of the algorithms and
software. An important aspect in the development of ISHM technologies—especially the
detection software used in this project—is the need for flight data. Aircraft that fly
frequently can provide more data sets, which can be used to better train and test the
models.

Finally, the test bed accelerates the process of development by providing ISHM
developers with valuable integration experience. The developers can move the software
out of the laboratory and expose it to a real-time, real-world environment. They also gain
experience with integration timelines, noisy data, and the “give and take” of
development. This process of hardening and enhancing software effectively raises the
Technical Readiness Level (TRL) of the technologies from 4 to 6. Flight demonstration
on a relevant test bed should provide verification to the space flight community that the
software is available as a candidate space technology.

OBJECTIVES AND SUCCESS CRITERIA

GOALS AND OBJECTIVES
The goals of the F/A-18 ISHM Test Bed Project were to achieve the following:

1. Establish a test bed facility for low-cost, high-return technology maturation using
ground and aircraft resources

2. Use the test bed to mature and demonstrate the effectiveness of two existing
ISHM technologies: Inductive Monitoring System (IMS) and Beacon-based
Exception Analysis for Multi-missions (BEAM)

3. Develop new relationships with other NASA centers to create new and improved
synergistic teams and partnerships

SUCCESS CRITERIA
The F/A-18 ISHM Test Bed Project had both minimum and complete success criteria.

Minimum success criteria:
• Validate BEAM and IMS correct function on spacecraft-like, ground-based hardware

8

• Achieve first test flight of algorithms by August 1, 2005
Complete success criteria:
• Verify that in-flight performance of BEAM and IMS matches performance

predictions from laboratory analogues
• Achieve a minimum of three, and preferably ten, test flights by September 2005

TEAM COMPETENCIES

Three NASA centers—Ames Research Center (ARC), the Jet Propulsion Laboratory
(JPL), and Dryden Flight Research Center (DFRC)—were involved in developing the
F/A-18 ISHM host test bed. This technology maturation project required the integration
of modeling, software development, hardware and avionics integration, aircraft systems,
flight test, and project development technologies. Each center brought special
competencies to this integrated team effort.

DRYDEN FLIGHT RESEARCH CENTER (DFRC) – AIRCRAFT AND
HARDWARE SUPPORT
NASA Dryden provided significant experience in the development and testing of flight
hardware. Dryden currently maintains several different flight platforms which are capable
of accepting processors and instruments that can be tested in flight, including the F/A-18
used in this project. Dryden has specific expertise in the development and integration of
small processors for flight testing and provided the PC/104 data processor for this project,
as well as expertise and facilities for environmental and flight qualification of hardware.

Dryden also provided archived flight data from specifications that could be used for
analysis or algorithm development. Dryden on-site engineers were familiar with the
various aircraft and systems and could advise on their operation and limitations. Dryden
maintains an F/A-18 flight simulator that was used to simulate flight conditions for
testing flight software and 1553 interface and hardware communication. Finally, Dryden
provided the flight test support, scheduling, and data download abilities crucial to the
project.

JET PROPULSION LABORATORY (JPL) – BEACON-BASED EXCEPTION
ANALYSIS FOR MULTI-MISSIONS (BEAM) SYSTEMS ENGINEERING SUPPORT
The Jet Propulsion Laboratory brought extensive expertise to the project in autonomous
sensing and control, vehicle health management, and systems integration. In particular,
JPL developed and integrated BEAM, a tool designed to detect and classify anomalies
and degradation in a wide variety of complex systems. The BEAM algorithm provides a
“front-end” system failure detector by establishing (learning) baseline system operations
and detecting off-nominal conditions when they occur.

In addition, JPL has extensive experience in the development of space systems that
incorporate new technologies in critical mission applications. Combined with DFRC’s
unique knowledge of aircraft flight test platforms, JPL adapted BEAM for demonstration
and validation using ISHM-relevant F/A-18 flight systems.

9

The overall system architecture, operating system, and algorithm integration
responsibility resided with the project System Engineer (SE) at JPL. The JPL SE had a
dual role as the Dryden Project Chief Engineer, and this position carried the traditional
burdens of responsibility for and authority over all aspects of system development and
end performance. The SE position was complimented by a system technical lead at
Dryden who was familiar with, and implemented, all of the safety, qualification, and
review procedures required for avionics integrated into manned NASA aircraft.

AMES RESEARCH CENTER (ARC) – INDUCTIVE MONITORING SYSTEM
(IMS) AND SYSTEMS INTEGRATION
NASA Ames Research Center brought expertise in the areas of model-based reasoning
methods and development experience of real-time ISHM systems with several successful
demonstrations and flight experiments.

ARC used its experience to develop the Dispatcher program that read applicable data
from the F/A-18 MIL-STD-1553 data bus and served this data to the ISHM algorithms
(IMS and BEAM) for processing. Ames also provided and enhanced the IMS detector
that monitored the data stream for anomalies based on data-derived models and data
fusion. IMS had been previously used in several engineering domains, including space
shuttle post-flight and helicopter real-time data analysis.

ARC also provided project management and organization expertise. Software
configuration management was performed at ARC using the free, open source Concurrent
Version System (CVS), which was accessed by the NASA centers to control the current
version of all software.

X-WORKS TEAM CONCEPT
Using the competencies and resources of three centers, the project organized along a new
program architecture that could potentially reduce project risk. Using industry as a model,
the X-works tenets include:

• Keep the team small to minimize communication delays; use experienced leads
and senior engineers wherever possible.

• Use the best facilities and people wherever they exist rather than forcing certain
work to a certain lab (or center).

• Leverage existing technologies and facilities wherever possible so that
development can focus on development needs (ISHM software, in this case).

The promise of X-works is to help address technology maturation and risk reduction
requirements for a wide variety of ongoing and future NASA projects.

TEAM ORGANIZATION
DFRC was the lead center for the project. The Dryden project manager was responsible
for the coordination of scheduled project activities with the other managers at both Ames
and JPL. Project management also included systems engineering led out of JPL, team
leads at Ames and JPL, and a JPL systems engineer.

10

Table 1 summarizes the facilities and expertise provided by each center, along with their
development responsibilities on the project.

Table 1. Facilities/Expertise and Project Responsibilities

Facilities and Expertise
DFRC JPL ARC

F/A-18 Aircraft Software integration
laboratories

Software and hardware
integration laboratories

Data Processor Hardware Hardware and operating
system expertise

Real-time ISHM system
development

F/A-18 Flight Simulator Systems Engineering 1553 simulation
Environmental Testing

Development Responsibilities
DFRC JPL ARC

Simulation and Engineering
Support

BEAM algorithm
development

Dispatcher data server
development

Archived data and data
reduction

Systems Engineering IMS algorithm development

Hardware Integration Test and integration Engineering, test, and
integration

Flight Operations

PROJECT COMMUNICATIONS
Given six-month duration and a very limited budget, the project did not follow a
traditional PDR, CDR format. Instead, a project plan was used to document technical
decisions, and technical milestones were used to drive the schedule and assess progress.
Weekly teleconferences were also used to monitor and focus development, and technical
breakout meetings were conducted to resolve issues.

Technical documents and data were provided on a NASA secure web access system
(PBMG). A CVS software configuration site was used to manage software and flight
data. A Flight Readiness Review and a One-Design Review were also required.

TECHNICAL APPROACH
A minimum number of initial meetings were required to develop a feasible project plan
that included a technical approach, work breakdown structure, resource allocations,
budgets, and a realistic schedule. The following is a high-level summary of our
development process.

• Use an existing Dryden F/A-18 as test vehicle: Our test aircraft was active on the
flight line and would require minimal work to integrate new ISHM hardware.

11

• Use an existing flight-certified hardware design: We used an existing PC/104 data
processor and a Linux OS that had been previously flight tested, rather than try to
integrate a new processor and operating system. We borrowed a processor from
another Dryden group while we purchased additional systems as flight and test units.

• Interface with a 1553 bus to collect data and serve it to IMS and BEAM: In

parallel with purchasing and integrating the flight hardware, we developed a reliable
data server that read data from the 1553 bus, stored the data to disk, and served the
data to the two ISHM algorithms. We used the 1553 bus because of its simple
interface and parallel space bus systems.

• System selection, model development, and data gathering: We chose to model and
monitor the two aircraft engines based on data available on the 1553 bus for those
systems and team expertise in engine systems. We also chose to gather system input
(e.g., throttle position) and state data that could be used to better understand engine
operation under differing flight conditions.

• Develop enhanced versions of BEAM and IMS: While the Dispatcher was being
developed, we used archived data to build initial versions of the IMS and BEAM
systems. As flight data became available, additional models and algorithm
modifications were made, leading to the versions that flew on the aircraft.

• Verify operation of the hardware and software using the DFRC F/A-18
simulator: We used the F/A-18 flight simulator in several modes. Initial tests of the
data processor and software were performed by interfacing to the simulator via the
1553 bus. We also used the simulator to further test the IMS and BEAM software by
exercising the simulator through several engine and control scenarios.

• Qualify, install, and test the data processor and software: Established Dryden
environmental and safety tests were performed on the data processor in parallel with
preparing the aircraft for hardware integration. Several ground tests were performed
to ensure the proper operation of the software.

• Repeat for a minimum of at least three data collection flights: We planned on a
minimum of three successful data collection flights to verify proper flight operation,
make changes to the software, and run a final version. We actually were able to
greatly exceed this number. The following processes were repeated for each flight.

• Install current software, fly and collect data: We froze the version of the

Dispatcher, BEAM, and IMS software the weekend before the available flight.
This version of the software was installed on the data processor and tested using
the flight simulator. The data processor was installed on the aircraft and the
software “rode along” to monitor the operation of the engines during the flight.
Flight data and IMS and BEAM data was recorded on a Flash disk.

• Download flight data: The recorded data was downloaded from the data
processor using a portable PC and made available to the developers.

12

• Enhance BEAM and IMS based on current data: The algorithms and system
models were enhanced, based on their operation as compared with the data that
was recorded. The operation of the Dispatcher was also modified as required.

PROJECT BUDGET AND SCHEDULE
The project budget was initially limited to $500K, with $200K, $150K, and $150K
allocated to Ames, JPL, and Dryden respectively. Another $200K was added during the
project to cover additional procurement and personnel, resulting in a final cost of $700K.

The project schedule is shown in Figure 3. The overall duration of the project was limited
to six months, from April of 2005 to October of 2005. In spite of the short duration, we
were able to meet our projected goal of a first flight of the software the first week of
August 2005, and all major project goals and objectives were achieved prior to October
2005.

 Figure 3. ISHM Technology Accelerator project schedule

Much of the credit for this achievement should be awarded to a highly talented and
efficient project team; the development of a realistic project scope; a sound and realistic
technical approach; and outstanding coordination, cooperation, and communication
within and among all centers involved.

13

TECHNICAL PROJECT COMPONENTS

In addition to the development of the software components, several technical decisions,
processes, and laboratories were required to realize the development process described
above. The following sections describe individual components of the development
process.

AIRCRAFT SUBSYSTEM SELECTION
The F/A-18’s engines were selected as the target subsystem for the project for several
reasons. The most important was the fact that a relatively large amount of data associated
with both the left and right engines, including engine state and engine control input
information, was accessible on the 1553 data bus. Experience with engine systems on
prior projects by the JPL and ARC PIs and the legacy of DFRC support in this area also
entered into the decision.

Another reason for selecting the engines for detection monitoring was related to the
significant amount engine data that DFRC has accumulated over the years supporting
F/A-18 aircraft. This data was invaluable in supporting early model development. In
particular, BEAM model development and IMS learning (to be described in later sections
of this report) were greatly accelerated, given the access to engine flight data early on in
the project. Without this preliminary data, several flights would have been dedicated
strictly to data collection and characterization.

Figure 4. F/A-18 engine in repair cradle

DATA SELECTION AND ACCESS
Given the selection of the engine subsystem, a large amount of associated data was
required to develop preliminary BEAM models and to train IMS. Initially, 45 parameters
were selected; however, not all of these parameters were included in the final
configuration.

14

Table 2 shows the variables used. The same variables were selected from the left and
right engine (15 state and 30 total engine variables). Most of the data parameters selected
fall in one of three categories: engine control input, aircraft status, and engine status. This
combination of parameters allows the ISHM algorithms to effectively determine if the
engine exhibits consistent behavior for a given input and aircraft state. The data
parameters used represented only a subset of all the parameters available on the engine
(and the 1553 bus itself). The data required supporting the initial BEAM model
development and the IMS learning processes originated from DFRC data archives. When
building the models, we expected that this data would differ from what we might expect
from the aircraft used for the flight. Note that X-band Center Freq. was later excluded, as
the signal was completely flat in simulator and flight.

Table 2. Data Parameters Selected for Monitoring

Left and Right Engine
Data Variables

Aircraft State
Data Variables

X BAND CENTER FREQ STATIC PRESSURE
ENG NARROW BAND VIBRATION LOCAL ANGLE OF ATTACK
ENGINE BROAD BAND
VIBRATION MACH NUMBER
EXHAUST GAS TEMPERATURE TRUE AIRSPEED

COMPRESSOR DISCHARGE
PRESSURE

BAROMETER CORRELATED
PRESSURE ALTIMETER

TURBINE DISCHARGE PRESS TRUE SIDESLIP
LOW PRESSURE ROTOR SPEED LOCAL SIDESLIP

HI PRESSURE ROTOR SPEED
DISCRETE AIRCRAFT
STATES

ENGINE INLET TEMP NORMAL ACCELERATION

ENGINE OIL PRESSURE
INDICATED STATIC
PRESSURE

ENG NOZZLE POSITION LONG STICK POSITION
MAIN FUEL FLOW LAT. STICK POSITION
FUEL INLET TEMP RUDDER PEDAL FORCE
TURBINE DISCHARGE
TEMPERATURE AMBIENT TEMPERATURE
POWER LEVER ANGLE VERTICAL VELOCITY

The format used for the data was comma-separated text values. The data was distributed
to JPL and ARC using approved International Traffic in Arms Regulations (ITAR)
procedures. For the most part, BEAM and IMS used the same set of parameters to
support their respective algorithms. Some of the data received from the data archives
required preprocessing to remove data records perceived to be corrupted or not indicative
of realistic system behavior. Much of this data could be found in the first few hundred
records of the files; however, a significant number of records within the archived files

15

contained discontinuities that had to be removed in order to realistically characterize
engine behavior. Because these files contained hundreds of thousands of records, they
could not be processed using standard tools such as Excel. Instead, specific filter routines
were produced in C++ to remove data discontinuities and data dropouts, or to remove
incomplete data records. We also expected to need the same filtering algorithms for flight
tests, under the assumption that the data discontinuities were a “real-world” property of
the F/A-18 aircraft.

Because of the way that the 1553 data bus operates, the data required to support the
engine Health Monitoring algorithms arrived from several different remote terminals.
These remote terminals communicated on the bus asynchronously, and as a consequence
the records received from the bus contained data from different times. If the delays are
significant, the state of the vehicle may be misrepresented in each of the records.
Additional filters were developed to discard those data vectors whose timestamps
differed by more than a specified amount. This routine ensured that no vectors were
processed that contained stale data. Timestamp information was available in both the
archived files used to train the original applications for flight and in real time during
flight from the 1553 bus. This filter was therefore useful in the post-processing
algorithms and in the final flight application.

DATA PROCESSOR HARDWARE
The data processor and configuration used for this project had been used previously by
DFRC for the C-17 program. This platform was adopted for this project because it
provided sufficient resources at a low cost, had already been certified for flight, and
DFRC had a previous track record on a prior project.

The data processor was composed of the following hardware components:

1. Power Supply
2. PC/104 Computer
3. RAM
4. Memtech AT1830-2048 2-GB Flash drive (mode PIO 4)
5. Condor Engineering Q104-1553 MIL-STD-1553A data bus interface card
6. Ethernet, Keyboard, SVGA, serial and parallel I/O ports.

DFRC provided four of the PC/104-based computer systems similar to that shown in
Figure 5 for use in this task. These included two systems for use as ground test beds at
Ames and JPL and two ruggedized and flight-qualified systems (flight and flight spare)
suitable for use on the F/A-18. All other equipment was identified by the team as existing
at their center, or was procured for use in the ISHM task.

In addition to the development systems, all handling fixtures, shock mounting hardware,
and 24 VDC power supply filtering was supplied by DFRC. DFRC also procured,
assembled, and qualified the hardware.

16

Figure 5. PC/104-based computer installed in project aircraft equipment bay

SOFTWARE AND ALGORITHM DEVELOPMENT
With the engine system selected, data available, and a data processor, the development
team was able to begin building models. The major software modules in the system were
the Dispatcher, BEAM, and IMS. This section will describe the functionality and
capabilities of these algorithms.

Figure 6 shows the high-level software architecture and hardware interface for the flight
processor. The system contained three software components: The Dispatcher (data
server) and two detection algorithms: BEAM and IMS. The Dispatcher gathered data
from the system by interfacing to the 1553 through an interface card and driver. The
Dispatcher recorded the raw data to disk, converted the data to engineering units, and
then served the data to the IMS and BEAM components. While processing the data, those
components each saved their results to disk.

DISPATCHER
The Dispatcher was created as a standalone application to read raw data from the 1553
bus and to serve (dispatch) this data to IMS and BEAM. This approach has the advantage
of avoiding duplication of code and minimizes code changes required to the BEAM and
IMS. The Dispatcher was capable of reading from a file or from the MIL-STD-1553A
bus. A command-line argument controlled selection of file playback or reading from the
bus. This multiple role of the Dispatcher enabled both post-processing and real-time
processing. Data could be received from another source as a file and then read in with the
Dispatcher. IMS and BEAM would train and test themselves on this data before being
deployed on the aircraft with real-time data.

17

Figure 6. High-level component architecture

Each of the four flight hardware boxes was configured with a Debian Linux 2.4.25
operating system at DFRC. Ames received the first hardware box and configured it to
allow developers from ARC and JPL to connect to it over the Internet using PuTTY and
WinSCP. These applications allow users to log into the box via a remote terminal from
either a UNIX or Windows operating system environment.

The manufacturer of the MIL-STD-1553A/B bus card, Condor Engineering, provided
much of the software needed to configure the card to communicate on the 1553 bus and
store raw 1553 data to disk. The code received from Condor was modified and integrated
into the Dispatcher. Linux message queues were used for Inter Process Communication
(IPC), as opposed to Pipes. If Pipes were used, the Dispatcher would potentially have to
wait for IMS and BEAM to process data from the message queue before the Dispatcher
could read additional data from the bus. As a consequence, data from the MIL-STD-
1553A bus could be missed if the BEAM or IMS processes delayed the Dispatcher too
long. Our use of message queues eliminated this problem because the Dispatcher could
either wait for the other application to process data in its queue or continue on without
waiting.

The Dispatcher receives real-time 1553 data from several remote terminals on the bus.
These terminals communicate on the bus asynchronously as requested by the other
aircraft data processors (not related to the ISHM PC/104 box). The Dispatcher
timestamps the 1553 data as it is received from the remote terminals, based on the clock
from the PC/104 CPU. The Dispatcher then converts the data into engineering units and
stores the data in data packets as it is received from the remote terminals. Engine, control,
and state data were transmitted over the MIL-STD-1553A bus as 16-bit signed integers.
This raw data needed to be scaled by some factor to be converted into engineering units
(e.g., altitude in feet, aircraft velocity as a Mach number, engine temp in Fahrenheit, etc.).

18

This saved time because only one conversion of raw data to engineering units was
performed for both health monitoring applications.

The data contained in the data packets are listed in Table 2. All or part of each data
packet could then be used by the health management applications. Regardless of the
amount of data or the timing of data received from the terminals, the Dispatcher put a
new data packet in two message queues every 20 milliseconds to be consumed by IMS
and BEAM. If data is not received from any given terminal within a 50-millisecond
interval, data from the last sample is used to fill the packet. (This data is referred to as
“stale data”; BEAM and IMS applications have been configured to discard data packets
containing timestamps that differ more than a specified amount.)

The Dispatcher also was programmed to store raw 1553 data to disk. Storing data to disk
provided insurance that results from any given flight would not be lost in the event that
the IMS or BEAM code should fail during flight: the data stored to disk could be played
back on the ground using the Dispatcher’s playback feature. The second reason behind
storing the raw data was to further enhance the testing and debugging of the applications
on the ground post flight. As more and more flights were conducted, the pool of available
data was used to improve the fidelity of the BEAM models and to further train IMS. Each
of the algorithms was responsible for writing its respective output data to file.

Engineers from JPL wrote the startup scripts that started the Dispatcher, IMS, and BEAM
applications during boot-up. If an application died or quit, the start scripts would launch
the application again automatically. This process was automated so that no human
intervention was required to launch the software when the hardware box was powered up
on the aircraft. It also provided insurance against software resets or failure to execute if
there were any unexpected brownout conditions on the power bus—a possible occurrence
during aircraft start.

INDUCTIVE MONITORING SYSTEM (IMS)
IMS was developed to provide a means to monitor the health of a complex system
without the aid of a manually developed model. IMS is essentially composed of two
parts: a learning algorithm and a monitoring algorithm. The learning algorithm
characterizes typical system behavior by extracting general classes of nominal data
relationships from archived data sets to build a knowledge base. The monitoring
algorithm compares real-time operational data with the classes of nominal data contained
in the knowledge base to detect anomalous behavior. This system, of course, is applicable
for only those ranges of operation captured in the knowledge base. A more detailed
description of IMS can be found in [Iverson, 2004].

A number of modifications were made to enhance the performance of IMS under this
project. These modifications involved separating the knowledge base into operating state-
based databases, adding statistical weighting to the control and status deviations, adding
alert logic to help better identify system anomalies, and scaling the knowledge base. This
section will briefly describe these modifications.

19

State Space Recognition
State space recognition was implemented to increase the speed and precision of IMS. It
provided focused monitoring and decision thresholds for specific operating conditions.
The Learn algorithm was modified to develop clusters for each aircraft operating state. In
the case of the F/A-18, engines states were grouped according to throttle control settings,
Mach number, and turbine fan speed as shown in Figure 3.

Alert Logic
IMS outputs for unusual events often consist of a series of peaks in the status distance
over a short time period rather than a continuous high reading. This alert logic looks for
time periods with several instances where the status distance is significantly higher than
the controls distance. If this pattern occurs, we suspect there’s something unusual in the
data that is more significant than just a data spike and may indicate a developing system
fault. This event can be recorded for later investigation or used to alert the pilot of the
situation.

Scaling of Database
IMS needed to work within the capabilities of the on-board processor and keep up with
the data in real time. IMS is capable of processing data for each engine at 20 Hz
(effectively 40 Hz real-time monitoring). Most of the IMS processing is used to search
the knowledge bases for the best match with the current data vector. Larger knowledge
bases usually take longer to search. The IMS process was limited to 20%–30% of the
CPU or less to be sure the other processes had sufficient CPU processing time and no
process fell behind.

The method used to ensure IMS didn’t spend too much time searching the knowledge
bases was to reduce their size. This was done by increasing the maximum cluster size
during the learning process so each cluster encompassed more of the training data,
resulting in fewer clusters in the knowledge base. The trade-off is somewhat looser
monitoring tolerance, but the results with the smaller knowledge bases didn’t seem to be
substantially different than with larger, more precise knowledge bases.

Control and Status Vectors
The data vector was partitioned into a control vector and a status vector. The Control
partition included parameters that could be considered inputs to the engine, including
environmental parameters (temperature, altitude, etc.) and pilot input (power lever angle,
side slip). Some of these parameters were selected based on Iron Bird simulation
information. The status partition included parameters that were indicative of engine state
and engine performance. The control partition was used to relate current system state to
system states covered in the nominal training data. If there was a low deviation on the
control parameters, then IMS had good training data for that condition and consequently
the IMS results could be regarded with a higher degree of confidence. On the other hand,
if the control deviation was high, then any results from IMS could not be regarded with
as high a degree of confidence. So a low control deviation combined with a high status
deviation is a strong indication that the observed system performance is not nominal,
while a high control deviation indicates that IMS lacks sufficient training data in that

20

respective region of operation and any associated high-status deviation in that same
region of operation is not indicative of a system anomaly with a high degree of
confidence.

Statistical Weighting
Statistical weighting on the control and status vectors provided a measure of how much
deviation from nominal training data is to be expected in the control or status parameters.
IMS was trained on most of the nominal data, with the remainder of the nominal data run
through the monitoring routine for validating and statistical characterization. The
deviation distances for the control and for the status parameters were collected, and a
standard deviation calculated for each. These standard deviations were used to weight the
IMS deviation distances during monitoring to determine how many standard deviations
the monitored data was from the training data. A distance of 2 or 3 standard deviations
indicated unusual behavior. If the status distances were several standard deviations above
the controls distances, then something of interest was probably occurring.

Engine State Matrix and Logic Partitioning
Both IMS and BEAM used engine state information to focus their analysis on specific
operating modes. Table 3 shows a derived state matrix that was independently applied by
each algorithm. The operating modes of interest were originally determined by the
BEAM engineers and implemented in SHINE. The IMS engineers rehosted this code,
using engine state to determine which specialized knowledge base to query.

Table 3. Engine State Matrix

 Engine State Throttle RPM RPM Transient Mach Number

0 Off Low N/A No N/A

1 Startup Med Low No < 0.8

2 Non After-burn /

Subsonic

Med High No < 0.8

3 After Burning /

Subsonic

High High No < 0.8

4 Non After burn / Transonic Med High No > 0.8

5 After Burn / Transonic High High No > 0.8

6 Non After-burn /

Subsonic / Transient

Med High Yes < 0.8

7 After Burning /

Subsonic / Transient

High High Yes < 0.8

8 Non after burning /
Transonic / Transient

Med High Yes > 0.8

9 After Burning / Transonic /
Transient

High High Yes > 0.8

21

BEACON-BASED EXCEPTION ANALYSIS FOR MULTI-MISSIONS (BEAM)
BEAM is a software technology that analyzes system data to detect anomalies, classify
faults, and track degradation in physical systems. BEAM consists of multiple components
and requires the input of system experts and example datasets in order to develop models
of nominal and/or faulty behavior. BEAM was originally designed to provide a generic
system analysis capability for deep space probes and other highly automated systems.
Such systems are typified by complex and unique architectures, high volumes of data
collection, limited bandwidth, and a critical need for flexible and timely decision
abilities. Since its original inception, BEAM has been matured and proven on many
separate applications, both on-board and off-board. In this experiment, we began
validation of BEAM in a flight-like environment, including modeling and testing issues.

The complete BEAM architecture is described in [James et. al, 2001], and contains
several components that can be summarized approximately into three categories. The first
category explicitly treats discrete information, comparing telemetry to a simplified state
model to estimate system mode and detect obvious faults, such as mismatches between
state indicators and out-of-range parameters. The second category, sometimes referred to
as “detectors,” examines quantitative sensor data for unexpected behavior, such as
transients, unexpected features, or unknown interactions between sensors. Finally, the
third category interprets and fuses results from the other components into a single
actionable interpretation. Not all components are present in all BEAM deployments,
providing some flexibility to meet different system requirements.

During this experiment, we begin with a minimal initial BEAM build, planning to
gradually include additional components in follow-on efforts. The initial build described
in these results contains three components, described below in additional detail. This
configuration of BEAM is the minimum required to cover its intended functions.

Symbolic Data Model: The leading component of BEAM accepts raw data and applies a
state model of the target system expressed in the form of rules. In this particular case, the
state model examined throttle, aircraft speed, and engine RPM to establish the state of the
engines. The Symbolic Data Model also, in this case, applied maximum rate-of-change
filters to the incoming data in order to remove erroneous sensor spikes, discovered in
early testing and thought to be due to aircraft power interruptions. Both of these functions
are handled through an inference engine, namely SHINE (Spacecraft Health INference
Engine), developed previously at JPL. In a complete build of BEAM, spike removal and
other data correction is usually migrated to a different component that includes a partial
physics model. We may have the opportunity to include this component in the future.

Coherence-based Anomaly Detector: Corrected sensor data and system mode pass into
this detector, which examines the numerical data for anomalous features. The detector
functions by computing cross-signal statistical moments for every signal pair in real time,
constructing an evolving estimate of the transfer functions present in the physical system.
This NxN matrix is compared to a library of nominal matrices computed from training
data. The choice of nominal matrix is driven by the system mode, as provided by the
Symbolic Data Model. Each nominal matrix is also associated with a companion

22

weighting matrix, reflecting the repeatability of individual signal pair relations. The
comparison reveals departures from expected physical relationships in the system,
indicating the presence, strength, and propagation of anomalies. This detector is
described in additional detail in [Mackey, 2001].

Interpretation Layer: The final component is a combination of data summarization and
data logging. In a fully developed system, the interpretation components combine results
from multiple detectors and compare anomalous signal reports from the detectors to
anomalies predicted by discrete indicators. The components then collect signal groups
into distinct episodes and suspected sources versus secondary effects. For our
experiment, we have only a single detector and no summarization is necessary—indeed,
we want to access the full range of internal results to verify correct execution. In this
experiment, we output the complete set of BEAM conclusions, updated on every signal
sample as a rectangular matrix. This list includes sensed mode, global anomaly flag
(yes/no), anomaly indicators for each individual signal, and normalized distance from
ideal for each individual signal, as well as timing information to permit precise
synchronization with the captured input data and reconstruction of results post-flight.

At the start of this experiment, the most mature software build of BEAM was configured
for post-flight or ground controller analysis, with major focus on user interface rather
than speed and real-time operation. Most software components existed in C# to enable
rapid GUI development; however, the core algorithms were all designed to be easily
portable, and we produced a C++ build, suitable for real-time operation and interfacing
with the Dispatcher software, in a matter of days.

Associated with the run-time software are the associated tools required to configure
BEAM. This validation experiment is as much a validation of these tools as it is the
algorithms operating in flight, as all elements of the process were exercised. In this
experiment, we constructed two separate models—one in the Symbolic Data Model, the
other in the Coherence-based Anomaly Detector—required for operation. These models
are also interdependent. The first model was coded and tested using support software
developed for SHINE, in a process similar to entering individual program statements in
other computer languages. The second model was generated in a nearly automatic
process, wherein a set of numerical training data is passed through an algorithm similar to
the Coherence-based Anomaly Detector, but with the raw library of matrices as its output
rather than a differential. During the course of this experiment, both models were updated
and loaded into the BEAM software without other software changes, and in all cases the
software performed as expected after receiving the new models.

The rules that make up the Symbolic Data Model are somewhat ad hoc, as is the notion of
a system state. For purposes of this discussion, we define a system state as a range of
behavior that is distinguishable from others, but make no further requirements.
Boundaries between states are open to some interpretation, but in general, choices of
different modes should be as easily separable as possible on the basis of sensor data. We
also desire as small a number of states as possible that provides the required level of
performance. Too many states increases the complexity of state models and memory

23

requirements, but more importantly also increases the amount of training data required.
Too few states may mean lumping together of dissimilar behaviors, leading to less
determinism within a state and higher thresholds of detection.

BEAM Data Coverage
In this experiment, BEAM processed a slightly different set of data than IMS. The list of
signals is given below in Table 4. As described in the following section, BEAM used
only a small subset of aircraft state information to establish engine mode. Conversely,
BEAM was applied to every available sensor parameter from the engines themselves.

The choice of sensors monitored is governed in part by performance limitations of
computing hardware and timing requirements. As system complexity increases, the
dominant factor in BEAM computation time scales as the square of the number of
continuous parameters—for example, if applied to only one engine and its 13 signals as
opposed to both engines and 26 signals, BEAM would execute roughly four times as fast.
There is no significant limitation on discrete signals, since the discrete reasoning engines
are inexpensive compared to the numerical algorithms. For relatively small numbers of
signals, such as the 26 signals used here, algorithm time is comparable to data acquisition
and reporting load. In the flight experiment, BEAM computational strain was measured
to be comparable to that of the Dispatcher, affirming that I/O operations rather than
algorithm complexity were driving resource usage.

Table 4. Data Parameters Monitored by BEAM

Left and Right Engine
Data Variables

Aircraft State
Data Variables

ENG NARROW BAND VIBRATION POWER LEVER ANGLE,
LEFT

ENGINE BB VIBRATION POWER LEVER ANGLE,
RIGHT

EXHAUST GAS TEMPERATURE MACH NUMBER

COMPRESSOR DISCHARGE
PRESSURE
TURBINE DISCHARGE PRESS
LOW PR ROTOR SPEED
HI PR ROTOR SPEED
ENGINE INLET TEMP
ENGINE OIL PRESSURE
ENG NOZZLE POS
MAIN FUEL FLOW
FUEL INLET TEMP
TURBINE DISCHARGE
TEMPERATURE

24

Building the BEAM State Model
We began our experiments with a preliminary state model, following with a refinement
after a few flights’ worth of data was collected and analyzed. Following the guidelines
above, we wanted a state model that was a simple and as easily separable as possible. Our
insight into engine state was guided by perusal of the F/A-18 Flight Operations Manual
as well as previous experience with aircraft propulsion systems.

There are numerous environmental parameters that contribute to engine performance.
The most important of these is the throttle, or Power Lever Angle, as it defines thrust
request from the pilot. Additional parameters include ambient pressure, temperature, and
humidity; oiling and fueling system state; altitude and airspeed. A thorough physics
modeling of the engine is a complex undertaking.

At the opposite limit of perspective, an aircraft engine exhibits only a few distinct classes
of operation, roughly summarized as “Off,” “Startup,” and “Running.” The first two
classes require no further elaboration, but the third incorporates a relatively wide range of
behavior. We originally divided the “Running” category according to two other factors:
whether the engine was afterburning or not, as afterburning uses an additional set of fuel
injectors and is a fairly large change; and whether the aircraft was subsonic or in the
transonic flight regime (Mach number = 0.8 was chosen as the boundary), as the fluid
behavior at the engine inlet changes substantially.

We were then left with six possible modes for each engine. In the interest of simplicity,
we simply determined each mode independently, for 36 possible system modes,
understanding that some modes (e.g., left engine subsonic, right engine transonic) would
be unreachable. Since the mode could be determined instantaneously from raw telemetry,
we did not need to consider transitions between modes.

In practice, the four “Running” modes were still found to contain too much variety in
signal behavior. In other words, the associated statistics model built for the anomaly
detector (see below) included large margins of error as it attempted to encapsulate
different behavior into a single mode. Study of the input data revealed that the engine
behavior should be divided once again, into “transient” and “steady-state” behavior. This
need was anticipated due to our previous work on aircraft propulsion. As a result, our
second state model included this additional classification criterion, requiring several
additional rules acting on the Power Lever Angle and Low-Pressure Fan RPM signals. In
brief, a significant change in thrust request (equal to 1 degree or more) signals the start of
transient operation, which ends once the RPM signal stabilizes, signified in this case by
five seconds of continuous readings within a 500-RPM dead band. The low-pressure
rotor signal was selected because of its lower noise characteristics; however, this signal is
not available from the aircraft during startup, for reasons unknown to us.

After incorporating this new discriminant, we were left with 10 modes for each engine, or
a possible 100 states for the propulsion system. As before, numerous states are
unreachable, and in nearly all nominal flight the two engines are nearly in sync, or else
started up according to a reliable sequence, resulting in 10 “common” modes and a few

25

dozen “rare” modes. Fortunately, virtually every flight contains the full range of
behavior, meaning training data is readily available from actual flight in addition to
simulation capabilities. Also, the number of modes impacts on-board memory
requirements (in this case, approximately 5.4 kilobytes per mode), but does not adversely
affect computation speed.

After updating the state model, all previous flight data sets were reevaluated on the
ground to test the model’s impact on BEAM performance. The remainder of flights used
this change, as no further modification was deemed necessary. While this mode mapping
is not considered a unique separation of engine state, it proved to be sufficient. In general,
we advise beginning with system models and architecture to construct preliminary state
models, making only the bare minimum adjustments necessary to meet performance
needs.

Building the BEAM Statistics Model
BEAM’s anomaly detectors contain statistical models of the system, best described as
lookup tables of expected statistical moments indexed by mode. Because these models
depend on mode as defined by the Statistical Data Model, and on upstream signal
treatment, including filtering through physics models when available, the statistical
models must be created last. The statistics models must also be recalculated after a
change in either of the upstream models. Fortunately, we have automated this process to a
considerable degree.

The BEAM statistics models are generated from training data. It is important to capture
training data that resembles actual flight data as closely as possible (an analogue to the
concept of “fly like you test, test like you fly”). To build a model, training data contained
in one or more data files is submitted to a modified set of anomaly detectors, along with
the mode signal as it would appear in flight. These modified detectors, typically run
offline in the laboratory environment, perform most of the computations of the flight
anomaly detectors, differing only in output. Instead of comparing computed statistics to a
pre-existing model, they store the raw computed statistics for the training files, and then
re-run the calculation to test the training files against themselves. The output model
contains “nominal” (i.e., trained) statistical parameters, along with confidence
measurements, as well as configuration parameters associated with those models. The
configuration parameters include user-selectable sensitivity measurements and “tests for
zero” that can be adjusted to improve performance, or to bias the detector towards higher
sensitivity at the expense of false alarms, or vice-versa, if so desired.

If there is a need for frequent modifications to the statistics models, the process can be
kept automatic so long as one retains a standard pool of training data. An adjustment to
the Symbolic Data Model, for instance, that changes the anticipated mode signal—
possibly adding or subtracting modes—requires a re-examination of the training data
based on the new mode boundaries; however, since only the mode signal has changed
from the statistics modeling perspective, the process of statistical model building is
exactly the same.

26

In this experiment, we developed three separate statistics models for the Coherence-based
Anomaly Detector. The first model, prior to first flight, used training data from the F/A-
18 Simulator and the preliminary mode rules described above. We anticipated important
differences between the simulator and the actual aircraft, which proved to be accurate.
The first-flight performance was marked with several persistent anomaly detections, as
the detector flagged signal dynamics that are simply not part of the simulation. In
essence, BEAM was reporting that it was definitely not operating on simulated data!

Once we captured the first flight data set, we immediately calculated a new statistical
model using the entire first flight as a training set, again according to the preliminary
state model. This statistical model eliminated the “false alarms,” but was deemed to be
too insensitive. As recounted above, the state model combined too many variations in
engine behavior into a single mode until we distinguished between transient and steady
power requests.

The reason for this distinction is linked to the detector algorithms. Our detector functions
by computing signal dependencies as a way to estimate physical relationships between
parameters. While in steady-state operation, most sensor signals lie within a “dead band”
where any sensed variation is dominated by sensor noise. The engine tolerates what little
real variation there is, and so cross-signal behavior is extremely low. In contrast, when
the engine is being spooled up or down, sensor signals are dominated by large structural
changes and physical relationships, and cross-signal behavior is strong. As a result, we
achieve much greater accuracy by considering these two types of operation
independently.

The dichotomy between transient and steady operation is common to many mechanical
systems. We addressed this through mode separation in this case. In other applications,
there are several additional factors that help treat this problem correctly:

• Sensor Performance: In the limit of “noiseless” sensors, the concept of a steady-
state case diminishes or disappears. This is rarely useful for mechanical systems
but often applies to virtual systems, e.g., simulations and flight control or
navigation computers.

• Physics Modeling: If the large-scale behavior of the system can be predicted, even
in an approximate fashion, the transient case can be renormalized to bring it closer
to the steady-state case. A full build of BEAM includes incorporation of physics
models to perform this step. The F/A-18 engine simulation can be adapted to this
purpose.

• Multiple Detectors: Depending on their underlying algorithms, different anomaly
detectors may perform better in one or the other mode. The Coherence-based
Anomaly Detector relies upon statistical moments computed over long time
periods, and therefore is most sensitive in steady-state cases (unless the engine
can be held in transient for a long period of time, which is rare but not
impossible). The other detector frequently used in BEAM has opposite properties,
susceptible to long-term drift but highly sensitive to transient behavior; however,
it should be noted that detectors cannot be combined haphazardly through voting

27

schemes or other contrivances, as the overall sensitivity or false-alarm rate will
suffer. BEAM integrates multiple detectors through a reasoning path involving
the Symbolic Data Model.

The third statistical model reused the same training data, viz. the entire first flight, but
relied upon the improved Symbolic Data Model and therefore contained many new
modes. Performance with the third model was markedly improved, visible in the results
as well as the statistical model itself. A researcher can examine the model directly to
check for inaccuracy, much as an experimenter may inspect autoregressive results for a
“bad fit” to data.

Software Configuration
A base software load consisting of the Linux 2.4.25 kernel and the Debian distribution
was installed on all units. This kernel is not a real-time Linux variant but is rather a
vanilla Linux distribution. In the early stages of the project, it was determined that a true
Real-Time Operating System would not be required for this effort. In fact, budgetary and
schedule constraints played a significant part of this decision, given the time and expense
required to obtain and configure the real-time OS and make the necessary changes to port
over the IMS and BEAM applications. The Debian software load was generated and
delivered by JPL; the integration of the real-time OS has been left for future effort.

Throughout the project, the following workflow was used for project-specific software:

• The applications would be modified / tested by the developers.
• When working to the satisfaction of the developers, the code would be placed

under configuration management (CVS) and tagged for release.
• The release would be installed on the JPL test bed and taken to Dryden for testing

with the F/A-18 simulator.
• When working satisfactorily, the release would be installed on the flight box

under QA supervision.
• Flights would be performed and data collected.
• The data would be distributed to the PIs for analysis.

This was done on a weekly cycle, with changes resulting from data analysis being
integrated and flown the following week.

The configuration management repository is resident on a system at Ames that is also
available to JPL personnel. In addition to code storage, the repository is also used for
archiving flight data, both for safety from accidental deletion and so that it is available to
all those who need it. The PBMA (Process Based Mission Assurance) Secure Working
Groups system is used for documents and information exchange.

SIMULATION TESTING
Simulation was an important component to the development of this project. Simulators
used included an F/A-18 simulator at NASA Dryden and a 1553 Bus analyzer at NASA
Ames.

28

F/A-18 Flight Simulator
The F/A-18 flight simulator at NASA Dryden uses six-degree-of-freedom equations of
motion with an oblate spheroid earth model and non-linear aerodynamics. The simulation
dynamics are computed at 160 Hz. The control laws alternate between longitudinal and
lateral-directional, resulting in an 80-Hz frame rate. The simulator is capable of multiple
modes of operation (batch, real-time, Hardware-in-the-Loop (HIL), and Ironbird modes).

Figure 7. NASA Dryden F/A-18 flight simulator laboratory and cockpit

For this project the simulation was run in real time (HIL) on a multiprocessor computer
in the F/A-18 simulation laboratory (Figure 7). This simulation is connected to a fixed-
based cockpit with a control stick, rudder pedals, throttles, multiple analog gauges,
switches, and lights. In addition, the cockpit contains an aircraft Multipurpose Display
System, including two Digital Display Indicators (DDIs) and the Up-Front Control
(UFC). Aircraft Mission Computers are also integrated into the cockpit and serve as the
MIL-STD-1553 bus controller. The actuators, a single channel of the flight control
system, and other systems are modeled in software.

While in HIL mode, the F/A-18 simulation executes in real time and integrates data from
aircraft Flight Control computers located in a test bench in the Test Bay next to the
simulation laboratory. The actuators are modeled by hardware in the test bench which can
enable testing of failure modes and redundancy management.

The ISHM flight software was tested by connecting the flight PC/104 box directly to the
simulator’s 1553 bus. The simulation was enhanced using test scripts and the autotest
function to modify bus parameter values. Modifications to the simulator software for this
project included adding engine exhaust temperature (T5) through an autotest script. Noise
was also added to several parameters to more closely simulate the flight environment.

The F/A-18 simulator was used to support the project in several stages of development.
For initial testing of the flight processor 1553 interface, the simulator was used to provide
realistic data to the computer. Once the interface and the Dispatcher software were
capable of reading the 1553 data, the simulator was used to test IMS and BEAM
software, including the generation of several test scenarios (for example, shutting down

29

one engine or pulling back power on both). The simulator was also used for acceptance
testing of the software builds prior to installation on the data processor.

Ames 1553 Bus Analyzer
The team also made use of a 1553 bus analyzer at NASA Ames in the initial development
and debug of the Dispatcher Software. The bus analyzer was easily configured to provide
the same data interface as would have been expected at Dryden. The analyzer has the
capability to generate bus traffic as well as the capability to replay bus traffic. The latter
capability was used to replay data that was collected on the simulator as needed to
resolve issues at Ames. The Rotorcraft Branch at Ames made the analyzer available to
the team. The use of the analyzer saved at least a week of schedule time and at least one
trip to Dryden.

F/A-18 FLIGHT TEST AIRCRAFT
The test aircraft used for this project was an F/A-18 tail number 852 (Figure 8). This
aircraft serves multiple uses, which include chase, proficiency, and experimental flights.
The aircraft provided us with multiple chances to collect data.

Figure 8. Dryden F/A-18 Tail Number 852 used in study

The 1553 data bus on the aircraft allowed easy integration with the flight processor and
software. One challenge to the project was that the aircraft does not have the controls to
create or simulate minor engine faults (other than engine shut downs) while in flight.
Because DFRC does an outstanding job maintaining its aircraft, we also did not
experience any faults that would have been written up in maintenance. We used the flight
simulator to explore faults of this nature.

PROCESSOR ENVIRONMENTAL TESTING
The PC/104 flight research computer was subjected to environmental acceptance test
procedures based on requirements specified in DCP-O-018, the Dryden Centerwide
Procedure (DCP) entitled “Environmental Acceptance Testing of Electronic and
Electromechanical Equipment.” This document provides the basic environmental test
specifications for acceptance of electronic, electrical, optical, and electromechanical
equipment for use in DFRC aircraft and flight vehicles. DCP-O-018 specifies that
equipment to be installed on an F/A-18 support aircraft falls into environmental

30

acceptance test category II, which is applicable to all turbojet-powered vehicles.
According to DCP-O-018, the basic category II test requirements are as follows:

• Altitude: Subject the unit under test to an altitude environment from ground level to

75Kft for pressurized compartments, or ground level to 100Kft for non-pressurized
compartments, unless evidence for waiver of these requirements is shown. In the case
of F/A-18/852, with the pilot not wearing a pressure suit, an altitude limit of 50Kft is
enforced. For this reason, an environmental waiver was submitted and approved
allowing the altitude environmental acceptance test requirement to be relaxed to
ground level to 75Kft for a non-pressurized equipment bay.

• Temperature: Subject the unit under test to a cold-soak temperature of 0 Deg F and

a hot-soak temperature of +160 Deg F, if installed in a temperature-controlled
compartment. If the unit under test is to be installed in a non-temperature-controlled
equipment bay, the Flight Systems and Operations Engineering groups shall
determine the appropriate temperature test after considering other installation factors
such as: proximity to cryogenic fluids, effects of aerodynamic heating, protective
devices (heaters, insulators, etc.), proximity to heat-generating devices within the
vehicle, temperature extremes encountered in prolonged ramp or hangar operations,
and the extreme cold encountered at high altitude. DCP-O-018 states that in no case
shall the cold soak temperature test be less severe than -65 Deg F and the hot soak
test be less severe than +160 Deg F. In the case of F/A-18/852, other DFRC support
F/A-18s with temperature instruments installed in equipment bays revealed that the
operational temperature range of the PC/104 equipment bay was measured to be more
in line with zero to +160 Deg F. For this reason, an environmental waiver was
submitted and approved allowing the temperature environmental acceptance test
requirement to be relaxed to 0 to +160 Deg F.

• Vibration: Subject the unit under test to vibration levels determined by the specifics

of the installation. The vibration shall be applied in separate tests to each of three
mutually perpendicular axes of the test unit. The unit shall be monitored throughout
the vibration tests and performance shall be recorded. If the test unit is to be mounted
on vibration isolators, it shall be so mounted for the vibration test when possible.
Vibration shall be random, and shall be for a minimum of twenty minutes in each of
its mutually perpendicular axes. In the case of F/A-18/852, the random vibration was
per DCP-O-018, Curve B, which is a random vibration level of 12.2 G–RMS, over a
frequency range up to 2000 Hertz.

PROCESSOR-AIRCRAFT INTEGRATION
For F/A-18 PC/104 installation, the box was installed into equipment bay 14L (left side
of the fuselage). This is a non-pressurized and non-temperature-controlled equipment
bay, forward of the engine inlets. The configuration changes to the F/A-18 aircraft
required the approval of the NASA DFRC support aircraft Configuration Control Board
(CCB).

31

The integration of the PC/104 flight research computer into the 852 support aircraft
involved the mechanical installation of the shock-mounted base plate and PC/104 box
into an available fuselage equipment bay, and supplying both electrical power and signal
interfaces from the aircraft 1553 data bus. Aircraft power from the 28-volt DC non-
essential power bus was provided via circuit breaker protection, and was integrated in
such a way that PC/104 power was relay coupled to the existing RQIDS (Research Quick
Instrumentation Data System) equipment. The RQIDS equipment was an existing flight
data system also installed in equipment bay 14L, with power controlled via a switch at
the pilot station. This relay coupling to the RQIDS system power gave the pilot control of
the PC/104 in the event that the PC/104 was suspected of causing problems on the data
bus.

The 1553 data bus interface was accomplished by via transformer coupling. The use of
transformer coupling protects the aircraft bus from interference from additional bus
loading and from any potential electrical malfunction such as shorted wires downstream
of the transformer coupling. The existing RQIDS data system’s single-stub 1553 data bus
couplers were replaced with dual-stub 1553 data bus couplers, so that the identical 1553
data bus signal was paralleled out to both the RQIDS data system and the PC/104 flight
research computer. The PC/104 flight research computer was configured strictly as a
passive bus monitor, which would not transmit any data out on to the aircraft 1553 data
bus.

All hardware and software modifications to the aircraft and to the flight box had to be
performed without causing significant interference to the basic role of the aircraft as a
research mission support aircraft. That meant that the aircraft could not be taken out of
service for PC/104-related configuration changes unless other scheduled maintenance
was required. The flight box placed very little burden on the flight operations. The pilot
powered up the data processor before flight (so that data on engine startup could be
collected) and shut down the data processor at the end of the flight, using a switch located
in the cockpit. Because the system handled all boot-up and configuration setup internally,
the ground crew was able to handle all other operations.

Other challenges pertained to post-integration PC/104 flight software configuration
changes. The software changes originated at both Ames and JPL, but the software had to
be loaded and tested at the NASA DFRC F/A-18 simulation lab prior to being integrated
into the F/A-18 for subsequent flight operations. All software configuration changes had
to be approved by the NASA DFRC support aircraft CCB, and then installed via NASA
DFRC work orders. It was challenging to work through all of the associated paperwork,
approvals, and associated testing to accomplish the nearly weekly software configuration
changes dictated by the program.

32

PRE-FLIGHT PROCEDURES AND FLIGHT TESTING

HARDWARE AND SOFTWARE GROUND TESTS
Ground tests were performed to test the operation of the hardware and software prior to
the initial flight. The first ground test involved exercising the flight controls while the
flight box was powered using APU power (no engines running). This test enabled a
limited checkout of the Dispatcher software to ensure that the Dispatcher was able to
receive at least a portion of the 1553 data. This test also improved confidence that the
software configured on the simulator would work with the flight vehicle. The second
ground test involved powering up the engines for static test. The results of this test
showed that all of the 1553 aircraft data expected was received correctly by the
Dispatcher.

Pre-flight procedures were also developed to verify that the PC/104 flight research
computer and software were configured correctly and ready for each flight. This was
accomplished by interfacing the flight processor to the F/A-18 simulator using the current
software load. The preflight tests procedures verified that the appropriate software
modules were installed by checking for appropriate checksum values for each of the
software modules. The pre-flight process also eliminated data files generated by previous
computer activity, whether it was ground or flight test related, in order to allow maximum
data storage capacity for the next test activity.

FLIGHT APPROVAL AND INITIAL TEST FLIGHTS
Our flight experiment had the advantage of being able to piggy-back on other existing
programs at DFRC and as a consequence was spared the cost associated with directly
requested flights. During the project, aircraft 852’s flights included: proficiency flights
(flights that the pilots use to brush up on skills or stay familiar with flights), test flight
duty (including sonic boom creation flights), and as a chase/photo plane (among our
monitoring flights, the aircraft was used to provide chase for the departure of Discovery
on the 747). In addition to reducing our cost per flight, having our hardware installed on
an aircraft out on the flight line provided us a variety of flight regimes.

Three flights were initially approved based on the successful Dryden Flight Readiness
Review (FRR). These flights were completed within the first two weeks of August 2005.
Details on the ground tests and early flight tests meeting the success criteria are shown in
Table 4. Additional flights were approved at two follow-up FRRs. In total, the ISHM
hardware and software was flown on 25 flights, with 23 of them successful in collecting
data throughout the entire flight. These flights have produced a significant amount of data
that can be used to further enable continued software development on the ground and
should fuel further interest in its capabilities in the air. The wide variation of flight data
that was recorded turned out to contain many more cases of interest than could have been
achieved (or imagined) in just 2–3 test flights.

33

Table 4. Details of flights meeting initial project success criteria

ISHM Engine run test, Test Day 8/1/05 (Monday) – PC/104 software version 1.0.
Normal engine start without ground power, so RH engine was started first, then PC/104 power
was turned ON with 2 minutes allowed for computer boot-up, then LH engine was started.
Includes various individual and dual throttle (PLA) steady state points, then individual engine
shutdown.
ISHM Engine run test 2, Test Day 8/1/05 (Monday) – PC/104 software version 1.0.
Normal engine start with ground power, expect engine start data for both engines. Includes
various two throttle (PLA) steady state points. Both engines shutdown simultaneously.
ISHM FLT 001, Flight day 8/2/05 (Tuesday) – PC/104 software version 1.0.
Nominal proficiency flight. Non ground power engine start, so RH engine was started first, then
PC/104 power was turned ON with 2 minutes allowed for computer boot-up, then LH engine was
started. Includes supersonic flight conditions.
ISHM FLT 002, Flight day 8/3/05 (Wednesday) – PC/104 software version 1.0.
Proficiency flight. Ground power start was planned, so should include engine start data for both
engines. Individual engine shut-downs planned. Each engine to be shut down individually. Expect
data for both LH and RH engine shut downs and restarts
ISHM FLT 003, Flight day 8/4/05 (Thursday)) – PC/104 software version 1.0.
F/A-18/852 chase flight for another F/A-18 research aircraft (845). No special test points planned
for ISHM. Ground power start was planned, so includes engine start data for both engines.
ISHM FLT 004, Flight day 8/10/05 (Wednesday) – PC/104 software version 1.1.
Sonic boom flight, no special ISHM test points will be performed. The flight plans include a
steady accel-decel from mach 0.8 to 1.4 to 0.8 at 38Kft pressure altitude. This will be followed by
49K pressure altitude with 180 degree roll to inverted entry into supersonic dives with 180 degree
roll back to upright attitude with pullouts at approx. 38Kft pressure altitude. This maneuver will
be repeated as many times as fuel permits.

The project benefited greatly from being on the flight line, given the wide range of
operational conditions observed. Since the project did not fund the F/A-18 program
directly, all flights were flown under the understanding that they could not be dedicated
to ISHM research. Some of the maneuvers that were requested (such as an engine shut
down) to support ISHM development were not part of normal operations, therefore these
maneuvers had to be approved prior to the flight; however, after discussing our research
with the pilots, some of these non-standard maneuvers “found their way” into the
proficiency flights.

DATA DOWNLOAD AND ANALYSIS
Our post-flight procedures consisted of basic status checks of the processor and
downloading the flight data files, which had been written to the PC/104 Flash drive
module. The download was accomplished using Windows laptop computer, an SSH
network connectivity protocol application (PuTTY.exe), and a secure FTP program called
Sftp.exe. The secure FTP application was then used to copy all flight-generated data files
from the IMS, BEAM, and Dispatcher modules to the laptop hard drive. After
downloading was complete, the associated data files were compressed and uploaded to a
secure data server that was approved for ITAR-controlled data. Both the JPL and NASA
Ames program participants then redeployed the data to a secure server.

34

 RESULTS AND CONCLUSIONS

SUCCESS CRITERIA EXCEEDED
The minimum success criteria set for the project required that IMS and BEAM be tested
on the ground simulator and on three flights by the end of August 2005. By mid July, the
software had been tested in the simulator and the first flight was conducted in the first
week of August. By the end of August, IMS and BEAM tests were conducted
successfully on ten flights. Table 5 lists the milestones and their dates of achievement.

Table 5. ISHM Technology Accelerator Milestones

Project Milestone Date Achieved
Dispatcher tested on 1553 simulator at Ames 5/20
Dispatcher demonstrated on Iron Bird Simulator at Dryden 5/26
IMS and BEAM prototypes using archived data 6/07
IMS and BEAM prototype on Processor 6/22
IMS and BEAM prototype on F/A-18 Flight Simulator Min Success 7/22
Dispatcher run on Flight processor during environmental testing 7/15
IMS and BEAM Ground Test 8/1
IMS and BEAM Flight Test 8/2
Data Flight #5 Success Criterion Met. 8/12
Data Flight #10 8/30
Data Flight #25 11/01

PROBABLE ANOMALIES DETECTED
Fifteen flights were conducted at DFRC between August and September of 2005. Most of
the off-nominal behavior reported by the monitoring programs during these flights was
due to incomplete training data sets and unrefined aircraft mode characterizations;
however, the algorithms detected four classes of anomalies: Transient Effects, Repeating
Intermittent, Unanticipated Operating Mode, and Seeded Faults.

Transient Effects
During the August 10, 2005 flight, a low oil pressure reading was detected with respect to
the right engine. The graph shown in Figure 9 begins about 62 minutes 38 seconds after
right engine start. The chart shows a deviation of oil pressure from what was expected by
IMS. The yellow line in the chart shows recorded real-time oil pressure data. The band
of expected oil pressure values for the operating conditions was determined by IMS
based on analysis of previous flight data. The blue and pink curves show the degree of
deviation from expected values relative to other monitored parameters as calculated by
IMS. Essentially, the blue line indicates how well the control and environment inputs
collected in real time match the conditions contained in the training data. The pink line
represents the IMS monitored system status parameters and is an indication of how well
the real time system data matches the system behavior represented in the training data.

35

Higher values indicate a larger deviation. Theoretically, off-nominal system performance
is indicated during time periods where the magnitude of system behavior deviation
significantly exceeds control input deviation.

Figure 9. IMS plot of oil pressure anomaly

The low-pressure reading lasted approximately five seconds. Note that this particular
low-pressure reading probably would have been detected by the pilot if it had exceeded
the red line. In this case, the pressure drop was seen by IMS in context with 18 other
parameters, not on absolute pressure values. IMS effectively established a red line for the
current system state.

After further review of the flight data, it was found that the aircraft dove rapidly from
approximately 49 Kft to about 3.2 Kft; and then executed a loop starting at about 3.2 Kft,
peaking at about 10Kft, and ending at about 3.2 Kft. The aircraft then performed a near
level (starts at 3.2 Kft, peaks at about 3.4 Kft, and ends at 3.1 Kft) 360-degree roll. The
aircraft also was inverted during the low-pressure observation.

In view of the maneuvers performed, the low oil pressure was most likely a normal
consequence. Aircraft ground personnel provided charts that showed engine oil pressure
versus engine core RPM (N2) and oil type. These charts indicate that oil pressures below
the minimums are allowed during to certain types of maneuvers, including climbs, dives,
turns, rolls, or negative G’s.

 Given that the low pressure observed during the maneuvers described above is normal,
the fact that IMS identified this condition as a potential fault is not a failure with respect
to IMS. In fact, it’s encouraging because IMS demonstrated it is capable of identifying

36

conditions not previously observed. In the future, training data should be incorporated
into the knowledge base that represents these types of maneuvers or IMS must be
configured to differentiate these extreme operating states from more typical aircraft
maneuvers. Both of these features were incorporated into subsequent IMS builds.

Repeated Intermittent
As described earlier in the document, the BEAM output includes the following results:

• Global anomaly flag: This is an unambiguous on/off measurement that indicates
whether current data is significantly outside the prescribed nominal envelope.
This flag does not latch, but is recalculated at each sample. The flag is fault-
positive; i.e., if insufficient data exists to confirm or deny an anomaly, the flag
defaults to “off.”

• Channel-specific flags: Similar to the global flag, the channel-specific flags
indicate the presence of an anomaly on each individual sensor channel. Since we
considered 26 sensor signals, we reported 26 flags at every sample. A global
anomaly result implies a channel-specific anomaly on one or more signals.

• Channel Distance: In addition to the flag, each signal also reported its distance
from the nominal ideal. Small distances do not trigger anomaly flags, while large
distances do. “Small” and “Large” refer to statistical significance, which is a
function of the amount of data considered and our confidence in the original
nominal estimate.

All of the anomalies seen in actual flight to date were of a relatively mild nature, which is
consistent with the observation that at no time were any existing F/A-18 alarms activated,
nor did the test pilots themselves indicate any sign of faulty behavior. The global and
channel-specific anomaly flags output by BEAM occasionally alarm, but usually at the
peaks of anomalous behavior, whereas consideration of channel distance typically reveals
a much longer episode lurking in the gray areas between nominal and faulty. For this
reason, it is most useful to consider the Channel Distance results in our discussion.

Channel Distance, as described above, is output as a 26xN rectangular matrix of values
normalized from 0 to 1. The dimension of 26 reflects that we are considering 26 sensor
quantities. The other matrix dimension represents Time, in units of samples, with each
column representing results at a particular instance of time, in this case sampled at 10 Hz.
The distance magnitude represents the absolute value of the unweighted discrepancy
between signal moments and the nominal case, which for the Coherence-based Anomaly
Detector is averaged over all signal pairs involving a specific signal. To put meaning to
the numbers, a channel distance of zero means that the cross-correlation of that signal
with all other signals is precisely equal to the expected result, whereas a distance of one
means the cross-correlation with all other signals is maximally different from nominal. In
practice, values of zero are rare as there is usually some variation somewhere in the
system, whereas values of one are never practically attainable. As a rule of thumb,
distance values above 0.3 are significantly unusual, and values above 0.5 indicate a
strong anomaly.

37

Figure 10. BEAM channel distance output, Flight 1 results

Figure 10 demonstrates an example of Channel Distance for a completely nominal run.
The x-axis represents time in units of individual samples, taken from engine startup at left
to shutdown at right, and spans approximately 36 minutes of operation. The y-axis
indicates different signals, arranged in order of appearance in the data dictionary. The
input data is the first flight itself, which was also used for training purposes; therefore,
this output represents the minimum case.

Notice in Figure 10 how the deviations fluctuate from time to time, but always stay
within bounds, and always return to zero, signifying convergence with the statistical
model. These fluctuations are normal and represent sensor noise, environmental
variation, interaction with other aircraft systems, and aircraft usage that moves within but
does not cross mode boundaries.

While we were not able to inject a proper series of fault cases in flight for cost and
schedule reasons (not to mention the potential to imperil the aircraft), we observed a
number of unusual effects in the data. One of these effects is seen in Figure 11, from
Flight 17.

38

Figure 11. BEAM channel distance output, Flight 17 results

There are two distinct features present in this result. The first is the two brief episodes in
channels 4, 5, 11, and 12, one at about 9000 samples, the other at approximately 37000
samples. This effect will be discussed below. The other noticeable effect is the series of
four high readings on channel 10 in the middle of the figure.

Channel 10 is the Right Engine Exhaust Gas Temperature (EGT). All four of these blips
occur in periods of engine transient after operation at high power. These blips can be
traced back to features in the raw data for this signal, where high and unusually sudden
jumps in EGT can be found. To date, this effect has been seen in one and only one other
flight, namely Flight 19 as shown in Figure 12.

39

Figure 12. BEAM channel distance output, Flight 19 results

As before, the feature only affects the right engine EGT. It does not seem to affect the left
EGT, nor is it correlated to any other signal except possibly channel 4, which is the left
engine high-pressure rotor RPM (see below). It is also relevant to note that the effect has
only been seen on two non-consecutive flights.

Regarding the other period of relatively high discrepancy, affecting signals 4, 5, 11, and
12, this anomaly reflects a feature discovered in approximately half of the F/A-18 flights.
The signals are the high-pressure rotor RPM and low-pressure RPM for the left engine
(signals 4 and 5) and the right engine (signals 11 and 12) respectively. This effect
typically persists for long periods of a flight, and is most clearly seen in engine transients.
A good example of this behavior is seen in Figure 13.

40

Figure 13. BEAM channel distance output, Flight 6 results

We should remark that our statistical model was trained with a relatively short duration of
transient operation, resulting in lower accuracy compared to steady state; however, this
effect is seen in some but not all flights. It also does not always persist from start to
finish—as it did here—but sometimes emerges towards the end of a flight, as it does in a
very limited sense on flights 17 and 19 above. It’s also worth noting that IMS also
detected these conditions, corroborating the BEAM detection.

Even though the effect is repeatable and strongly localized to these four signals, it is
difficult to see what is causing the effect, even through hand examination of the raw data.
We have, however, established that the effect is due at least in part to an increase in delay
between each pair of RPM measurements, and also reflects a delay increase relative to
the thrust request. This delay is probably not significant from the standpoint of aircraft
safety, but does merit further investigation. Possible mechanisms responsible for this
change include oil quality, fuel delivery, bearing health, or significant changes in the
atmosphere or engine itself that could affect combustion efficiency. One key point in
pursuit of this anomaly is that it is not persistent from one flight to the next. This seems
to rule out the possibility of wear or gradual damage such as bearing problems, while
emphasizing day-to-day variables such as fuel, oil, or interactions with other (unsensed)
systems that could be intermittent. It is also relevant that the effect is usually stronger at
the end of flights than at the beginning, suggesting a shift in behavior due to heating,
contamination, or perhaps simple expenditure of consumables.

41

Unanticipated Operating Mode
A third class of anomaly, sensed strongly on Flight 8 and weakly elsewhere, also
implicates the fuel system, but does not have the persistent character needed to explain
the results above. This anomaly is illustrated in Figure 14. Note that in this graph, the
vertical (color) scale has been magnified by 2.5 times for additional clarity.

Figure 14. BEAM channel distance output, Flight 8 (vertical scale magnified)

This output also shows the RPM anomaly in the latter half of flight, as well as a brief
episode at startup. More unusual are the coincident anomalies in signals 17 and 24 near
sample 37000. These two signals are the fuel flow measurements for the left engine
(channel 17) and the right engine (channel 24).

The combination of RPM and fuel anomalies was the strongest anomaly seen on any
flight to date. This detection appears to overlap the result from IMS on this flight, and we
will defer to the previous section for a discussion of anomaly implications.

Seeded Faults
Finally, we also simulated two faults early in the experiment, by shutting down the left
and right engines at different times while in flight. Results are shown in Figure 15.

42

Figure 15. BEAM channel distance output, Flight 2 (vertical scale magnified)

Besides the now familiar RPM anomalies, seen most strongly at right, there is no obvious
detection, with all other channel distances remaining below 0.2. Where are the engine
shutdowns? This can be seen in the accompanying mode output in Figure 16, below.

The engine shutdowns are represented by the two “dips” before and after sample 30000.
By aligning the time axis of this graph with Figure 15, one can see that there is no
meaningful detection.

This result is actually correct. BEAM did not consider either engine shutdown to be an
anomaly simply because its state model told it to expect an engine shutdown. In the case
of the left engine shutdown, BEAM applied a model garnered from the training file,
where the right engine was running but the left engine had not yet been started, and found
it to be consistent. Neither engine was malfunctioning, the only difference was that the
training file reflected data taken on the ground while this data was in flight, and both
engines were behaving similarly in both regimes. In contrast, when the right engine was
shut down, BEAM had no accompanying model, since the training file contained no
example data for left-engine-only operation. In response, BEAM flagged the time period
as novel, but did not compute a channel distance, reporting zeroes instead. It should be
noted that IMS flagged the engine shutdowns as an anomaly because it considered static
pressure and altitude in its calculation and therefore knew that aircraft was not on the
ground (shutting down the engine was not appropriate). BEAM did not include these
parameters.

43

Figure 16. BEAM sensed mode, Flight 2 results

We plan to re-run the engine shutdowns using a false mode signal that instead informs
BEAM not to expect the mode change. This test should indeed result in a sensed
anomaly, specifically a mismatch between expected and detected mode. This and
numerous other fault injection cases can also be tested using the F/A-18 simulator in the
future.

F/A-18 TECHNOLOGY ACCELERATOR WAS A SUCCESSFUL TEST BED
The Dryden F/A-18 technology accelerator was an extremely valuable tool for
developing new ISHM technologies. This includes not only the aircraft and the data
processor, but also the larger system that includes the people, process, and data required
to perform research. The Dryden team provided access to systems and shared knowledge
about the aircraft. The F/A-18 1553 Bus provided convenient interface to the data and
was easy to work with. The prior flights of the aircraft provided large samples of data for
model development. The DFRC flight-rated PC/104 processor worked well for
development and testing, as well as for the integration into the aircraft and flight testing.
The F/A-18 flight simulator became a very valuable part of the process. Our procedures
for testing the software prior to loading on the aircraft worked well, and the data
download process instituted by DFRC helped continued refinement of the models and
algorithms.

44

TEAM SYNERGY
The three-center collaboration worked well on this project. Given a fixed budget and a
short timeline, the team made great progress while employing only a small group of part-
time senior engineers (Specialists) and two experienced principal investigators. The
Specialists were able to support this project as well as their own primary responsibilities
at their respective centers with minimum schedule impact. This sharing of resources was
beneficial to the project because it saved both time and money. Overall, fewer resources
were required to support the project activities at each of the centers. Further, problems
encountered at each center could be overcome quickly by using experts located at the
other centers.

X-WORKS
The X-Works Program Concept holds great promise for the development and maturation
of future ISM technologies. As more NASA centers and industrial firms join this effort,
more expertise and resources can be dedicated towards creating technologies that are
geared to improving safety, reducing operations costs, and increasing system availability.
Once more ISHM technologies are proven in the field, they can then be made available as
building blocks for future space transportation designs. This process will undoubtedly
feed on itself in a progressive upward spiral, potentially creating additional opportunity
both for those creating the technologies and those applying the technologies.

LESSONS LEARNED

Many technical and organizational lessons were learned during this project. This section
attempts to briefly describe potential problem areas and how they may be anticipated and
avoided in future projects.

ALLOW EXTRA TIME WHEN INTEGRATING CODE INTO NEW HARDWARE AND
OPERATING SYSTEMS
The Dispatcher used a Flash drive to store real-time data. The Flash drive did not use
DMA, so the CPU was used to transfer the data to the drive. The large number of writes
to the Flash drive caused the Q104-1553 software driver to hang. This problem was
encountered fairly late in the integration process during testing on the F/A-18 flight
simulator.

Our investigation strongly indicated that the software hang was due to a subtle
compatibility issue involving the CPU, Flash memory, and 1553 card. This resulted in
1553 hardware queue overruns. By the time that the problem was narrowed down, it was
too late in the project to procure and replace the hardware before the start of the data
flights. The problem was mitigated using a software watchdog that could detect the
problem and restart the 1553 driver if the system was to hang, resulting in at most a few
seconds of data loss. In 2 of the 25 data collection flights, we encountered a hardware
fault that was not caught by the software watchdog and resulted in a partial loss of data.
Although further ground tests using a different operating system, updated 1553 firmware,

45

and drivers did not resolve the problem, we feel that moving to an ATA-2 (fast ATA or
EIDE) Flash drive with DMA should result in proper operation.

The lesson learned is that even proven systems employing similar combinations of
hardware and software may not perform as expected in new applications. In the future,
similar issues may be avoided if more time is spent up front exercising and thoroughly
testing the platform earlier in the integration process.

RECOGNIZE AND ADDRESS ITAR ISSUES EARLY IN THE PROJECT
ITAR restrictions are applicable to all sensitive information. ITAR restrictions were
underestimated early on in the project and resulted in significant delays. Each center has
different requirements and a different team of people that may have to be consulted
before sensitive data can be transferred. In addition, the process of releasing data is not a
common task and is often misunderstood.

We found that many systems that have been developed at NASA (such as simulators,
prior projects) have the process documented; however, finding the documentation or the
set of people responsible be releasing data can be difficult. To avoid delays in the future,
all data needs should be requested in writing well in advance so any issues can be worked
out before the data is actually needed. The process of understanding applicable ITAR
requirements can be streamlined if the data requirements are documented and all
personnel who need to handle the data are identified early on in the project planning
stages.

USE EXISTING HARDWARE AND SOFTWARE WHENEVER POSSIBLE
Initially the Ames and JPL teams elected to procure and configure a Power PC running
VxWorks because it was perceived that this type of platform would more closely match a
system found in a state-of-the-art space transportation system design. After some
discussion, DFRC helped the rest of the team understand that this was not the best
approach, given the amount of time and effort required to certify a new system for flight.
Instead the team agreed to pursue a PC/104-based system running a Linux OS, based on
its previous flight and acceptance experience at Dryden. Although not truly a real-time
system, a similar PC/104 system would only require minimum testing to pass flight
certification.

To give the project a jump start, DFRC provided ARC and JPL with a spare PC/104 that
had been used on another project. This spare unit gave ARC and JPL the ability to begin
software development as soon as possible, further helping to reduce overall cost and
speed up the schedule. Purchasing the replacement for the borrowed hardware as well as
flight spares took more time than was originally anticipated because of the long lead
times; however, the amount of time spent performing this task was small compared to the
amount of effort that would have been required to start up a new system from scratch.

46

PLAN EXTRA TIME FOR TRAVEL, EVEN IF THE LOCATION IS NEARBY
Given the multi-center collaborative effort, the project recognized the need to get people
together to ensure that everyone remained focused on the same page. Good planning,
communications, and the use of electronic and telecommunication technology helped
minimize the number of meetings required; however, some meetings were still necessary
to transfer hardware and to resolve issues. Given that DFRC was the focal point of the
project, most of the initial face-to-face meetings were conducted at DFRC.

Much of the effort required to travel to DFRC, however, was underestimated. The time to
drive from JPL and ARC to DFRC is approximately three and six hours respectively.
Commercial airports are not located close enough to DFRC to make flying on
commercial airlines worthwhile and landing private aircraft at DFRC is not trivial to
arrange. As an alternative, ARC utilized NASA-7 (a NASA twin prop plane routinely
flown as a shuttle between the three centers); however, this form of transportation was
not always reliable, given there was a minimum number of passengers required to initiate
a flight. As a result the flights were often delayed or canceled for several days at a time.

As a second alternative, the project enjoyed the use of a team member’s private aircraft
for transportation to nearby airports. The project was fortunate to be able to test the
hardware initially at Ames because only 2–3 follow up trips to DFRC were necessary
after the major integrations. In addition, given JPL’s proximity to DFRC and their
willingness to travel, JPL was able to perform many of the details associated with short-
term integration and testing. A lesson learned is to plan for travel funding and travel
delays, even if the project is short-term in nature.

NEXT STEPS

The ISHM Test Bed Project demonstrated that aircraft can be used economically and
effectively as a test bed to develop and mature ISHM technologies. The project also
demonstrated how resources from three centers can be combined into a synergistic team
that can effectively overcome technical and programmatic challenges and meet common
goals. It is important that this work be continued and expanded to support the
development of ISHM. With improved ISHM technologies, the space community would
be better able to improve the overall reliability and effectiveness of newly designed space
transportation systems.

This section provides an overview of follow-on work that is recommended to further
expand the capability and usefulness of the two ISHM algorithms (IMS and BEAM) and
ISHM technology in general. It discusses ways that the “technology accelerator” itself
can be expanded to fulfill ISHM and other roles.

47

ALGORITHM DEVELOPMENT
Great strides were made in testing and advancing the readiness level of the IMS and
BEAM algorithms using the flight test bed. The success generated many natural
development directions for these algorithms that should be explored.

Development Directions for IMS
To date, IMS has been shown to be an effective tool for detecting anomalies in system
performance. Given a sufficient amount of training data, IMS can determine if a systems
behavior has changed, which may be indicative of a system fault.

Better Fault Detection and Isolation: To identify potential faults, the IMS output files
must be scanned for consecutive records with large distances. A knowledgeable system
engineer or service technician could then further investigate the validity and or nature of
the fault by viewing the system state, vector elements, and timestamp information.

Future versions of the software could be augmented to automatically determine the nature
of the fault without the need to manually scan IMS data files. These methods were
demonstrated in the lab to identify the specific parameters in the data vector that are out
of tolerance with respect to other elements. Additional routines could also be employed to
match the system behavior anomalies against known fault signatures. If specific failure
modes can be uniquely identified, then methods can be produced to isolate the fault to the
line replaceable unit (LRU) level. These methods could be implemented either by
developing additional knowledge data sets based on known fault data or by incorporating
other diagnostic tools (such as TeamsRT) to perform fault isolation to the LRU level once
a failure mode has been identified.

As a first step towards maturing IMS, additional data must be analyzed to develop a
higher degree of confidence in the fault detection algorithms. Ideally, sufficient amounts
of data should be collected over time (possibly using a simulator) to allow IMS the
opportunity to identify a significant number of faults. Once the databases have been
matured to adequately characterize the engine system behavior, IMS should be able to
detect faults correctly with a high degree of confidence. One possible approach for
improving the knowledge database would be to work with DFRC ground personnel to
understand the overall engine performance envelope and to make sure that all possible
engine states have been characterized.

Once the engines are characterized with sufficient data under all operation conditions,
IMS engine monitoring can be optimized. Specifically, the minimum number of
parameters can be identified and the size of cluster files can be reduced as much as
possible to make the algorithms run at an optimal speed. The next step would be to
develop a Man Machine Interface to allow ground personnel to review in-flight faults or
anomalies. Ground personnel could then develop confidence that the system works and is
able to make ground operations more efficient. After proving the ground system
performance, a next goal could be to develop an interface in the aircraft that could be
viewed by the pilot.

48

Monitoring Additional Subsystems: IMS is a scaleable technology and as such is suitable
to be used to monitor faults across more than one subsystem. Additional IMS components
could be configured to monitor other subsystems independently of the engines; examples
include the avionics subsystem, structural mechanisms, and power distribution. Once
IMS routines have been proven at the subsystem level across all subsystems, supervisory
IMS routines could then be developed to detect faults at the system level. Such a
capability would prove to be an invaluable source of information that would allow the
integrated fault detection system the ability to confirm or dismiss potential failure reports
using alternative and redundant information that is obtained from independent and
multiple sources.

ISHM TECHNOLOGIES
There are several development steps for extending this study and to address some of the
fundamental ISHM issues that will need to be resolved for CEV and CLV development.

• Continue to record data on this aircraft.
• Demonstrate the integration of IMS and BEAM.
• Use simulation to demonstrate fault detection coverage of IMS and BEAM.
• Expand BEAM and IMS to demonstrate their ability to individually monitor

multiple subsystems.
• Integrate a diagnostic system and demonstrate that it can use the detection

information that would be provided by BEAM and IMS.

Continue to record data on this aircraft and engine system: ISHM developers and
researchers have made good progress recording flight data on an aircraft. So far, data has
been successfully collected from 25 flights and the software has demonstrated the ability
to identify system behavior that is not consistent with past behavior or behavior that has
not yet been incorporated into system models and training data. Additional data is needed
from the F/A-18 engines to further refine the engine models and to ensure that all areas of
operation have been characterized in the training data. Furthermore, the software must be
given the opportunity to prove over time (perhaps through several maintenance cycles)
that it can correctly identify anomalous system behavior. Collecting data before and after
major maintenance periods will help demonstrate the software’s ability to effectively
recognize any changes in engine performance or ability to correctly detect any faults in
the system.

Demonstrate the integration of IMS and BEAM: BEAM and IMS are examples of failure
detection systems that are configured to work independently. Currently, these
applications each monitor a different set of input variables using different methods. Post
evaluation of the output has shown that in many cases, IMS and BEAM are able to
recognize common differences in engine performance; however, this does not occur in
every case and the detected anomaly may not be synchronized in time.

As a solution, a next logical step would be to integrate the output of IMS and BEAM
either through an interface in BEAM or through a higher-level monitor program that can,
at a minimum, monitor the output of both systems and report whether an anomaly is

49

suggested by both systems. Such a system does not currently exist, and will be a crucial
component of future monitoring systems that employ multiple detectors, including both
hardware and software detectors. This could be a very good means for performing
dissimilar redundant detection.

Use simulation to demonstrate fault detection coverage of IMS and BEAM:
IMS and BEAM are currently capable of detecting minor (subtle change in system
performance) and major (engine shut down) problems; however, not enough data has
been collected to ensure a high reliability for detecting the likely range of faults.

This next step proposes to use the simulator to collect a data set rich in faults. Fault-rich
data can be obtained by simulating failure modes in the software. This data set can then
be used to show that the algorithms can identify faults accurately or can be used to make
further enhancements to the fault detection algorithms.

Expand BEAM and IMS to demonstrate their ability to individually monitor multiple
subsystems: In this study, both BEAM and IMS have been configured to monitor the two
engines on the aircraft; however, IMS and BEAM have not been configured to identify
faults beyond the engine system.

To continue this work, IMS and BEAM should be extended to monitor multiple
subsystems on the aircraft. Other subsystems could include the Navigation and Guidance,
Hydraulics, Structures, or Power Distribution. Expanding monitoring to additional
subsystems is a research area in ISHM that could not only provide the detectors with the
capability to recognize additional faults from other subsystems, but would also provide
additional data that may allow the detectors to understand and exclude faults across
systems such as the engine subsystem.

Integrate a diagnostic system and demonstrate that it can use the detection information
that would be provided by BEAM and IMS: An important challenge in future ISHM
systems will involve the integration of other fault isolation algorithms. A diagnostic
system could be integrated with BEAM and IMS to isolate faults to the LRU level.

This next step proposes to integrate a state-of-the-art diagnostic system in the flight box
and use the output from IMS and BEAM as the input to that system. Examples of such
diagnostic systems could include a commercial system such as TEAMS or a NASA-
developed system such as Livingstone. In software development, this will require the
development of interfaces between the detectors and the diagnostic system and also will
require development of models to support the diagnostic systems. To accommodate these
significant changes to the flight box, a new operating system may be required in concert
with a processor upgrade and an increased memory capacity.

50

ISHM OPERATIONS
In addition to evaluating how the ISHM technology interfaces with the aircraft, it’s also
important to evaluate how ISHM will interface with the human operators and systems
that will react to their output.

Display IMS and BEAM results to maintenance crews: This next step proposes to provide
a platform and environment that displays IMS and BEAM results to the ground and
maintenance personnel. These results could be used to show the status and state of the
aircraft after every flight and could be used to demonstrate that IMS and BEAM would
be of value to the maintenance processes. Although there have been some side questions
and discussions, the observations and proposed results of the IMS and BEAM algorithms
have not been shared with the flight and ground maintenance personnel. A future
operational ISHM system should provide feedback to the pilots, monitors, and
maintenance personnel.

Develop and integrate ISHM Cockpit Display capability: NASA Dryden has significant
experience in the introduction of interfaces into the cockpit. A proposed next step would
be to develop a display output that will provide an interface to the cockpit (and/or cockpit
simulator) that would be capable of alerting the pilot to any ISHM issues. If done
properly, this same interface could be used throughout the development process: in the
lab, ground test facilities, F/A-18 simulator, and F/A-18 test aircraft.

F/A-18 TECHNOLOGY ACCELERATOR
There are also several other steps that should be pursued for extending capability and
interfaces of the tech accelerator:

• Integrate a space-rated processor and operating system.
• Expand the capability of the F/A-18 flight Simulator.
• Provide access to other systems on the aircraft beyond the 1553 interface.
• Install multiple ISHM data processors.

Integrate a space-rated flight hardware and operating system: Provide the capability to
allow additional hardware (as well as software) to be tested on board the F/A-18. The
PC/104 processor has been sufficient for the current work; however, further work (such
as that proposed in the section above) will most certainly exceed the performance and
memory capacity of the current system.

This next step proposes to upgrade the hardware and software to a real-time system that
can be rated for space flight, such as a Power PC and VxWorks platform. Testing the
software on a space-rated system will provide project planners with more assurance that
the software has evolved to a higher maturity level, will provides the researchers and
developers hands-on experience using the advanced processor, and will save the space
community development costs through the use of common hardware and software at all
levels of development.

51

Expand the capability of the F/A-18 flight simulator: The F/A-18 flight simulator was an
essential element in the development and testing of the 1553 interface, flight hardware,
and software. This next step proposes to continue this use and extend the capabilities of
the simulator by developing and integrating expanded F/A-18 system models that would
provide enhanced realism to the simulation and would allow more tests to be performed.
We could also introduce additional systems to the simulator that would represent
prototype systems that might be on a space vehicle. This would allow both the models
and the reaction of the system to be tested and developed. These models could also be
used for the development of diagnostic systems that would interface with IMS or BEAM
systems.

Provide access to other subsystems on the aircraft beyond the 1553 interface: The 1553
interface provides some but not all the data and information associated with the F/A-18’s
subsystems. Dryden has installed an RQUID (Research, Quick Interface to Data) data
recorder that provides information from additional systems on the aircraft. This next step
proposes to expand the data interface available to our researchers to include the RQUID
interface along with other data systems that could be economically interfaced with the
data processor. A further step would be to research the state of the art in space-based
interface busses and develop a simulation of that bus that could be implemented on the
F/A-18 aircraft, as well as the F/A-18 simulator and the ISHM ground test facility.

Install multiple ISHM data processors: Install additional hardware (as well as software)
on board the F/A-18. ISHM processor hardware required for this study occupies only a
small part of the equipment bay of the F/A-18 research aircraft at Dryden. There also is
space available in a forward gun bay, along with external racks that could be used to
carry hardware to altitude for testing.

In addition to testing ISHM software interaction with the aircraft, the existing data
processor used to monitor the engines could also interface with other hardware (for
example, other avionics, systems, electronics) that may be used in space. This approach
would enable integrated system development testing of ISHM in a cost-effective manner.

SUMMARY

Achieving NASA’s exploration vision will require high-performance flight test platforms
that can be used to advance and access the technology readiness level of ISHM hardware
and software technologies for use in space projects. In this successful technology
accelerator project, a cross-center team composed of NASA JPL, Dryden, and Ames
engineers developed such a flight test platform based on available F/A-18 test aircraft,
flight simulator, bus, processor, and software technologies.

Developed over a span of five months with minimal funding, this platform was used to
enhance, integrate, and test existing IMS and BEAM detection algorithms over 23 multi-
purpose flights. BEAM and IMS individually monitored the performance of both engines
throughout the aircraft’s flight regime. In addition to demonstrating the ability to detect

52

overt anomalies such as engine shut down, both algorithms detected subtle differences in
engine system performance between training and actual flight data.

The team utilized X-Works development and management methods to accelerate this
project, which integrated well with Dryden’s pre-flight hardware and software test
requirements. In addition to advancing technology, the project also fostered the
development of a new sense of partnership and synergy between these three NASA
centers. This high-performance aircraft platform, along with the development hardware
and processes, is currently available to advance ISHM and other cutting-edge
technologies.

ACKNOWLEDGEMENTS

We would like to thank Joe Totah and Serdar Uckun at the NASA Ames Research
Center, Jack Levine and David McBride at the NASA Dryden Research Center, and
Stephen Prusha and Art Murphy at the NASA Jet Propulsion Laboratory for working to
make this project a reality.

REFERENCES

Iverson, D. Inductive System Health Monitoring, in Proceedings of The 2004
International Conference on Artificial Intelligence (IC-AI’04), CSREA Press, Las Vegas,
NV, June 2004.

James, M., Mackey, R., Park, H., & Zak, M. BEAM: Technology for Autonomous Self-
Analysis, IEEE Aerospace Conference, March 2001.

Norlin, K.A. Flight Simulation Software at NASA Dryden Flight Research Center,
NASA Technical Memorandum 104315, NASA Dryden Flight Research Center, October
1995.

Mackey, R., Some, R., & Aljabri, A. Readiness Levels for Spacecraft Information
Technologies, IEEE Aerospace Conference, March 2003.

Park, H. G., Mackey, R., James, M., Zak, M., Kynard, M., Greene, W., & Sebghati, J.
Analysis of Space Shuttle Main Engine Data Using Beacon-based Exception Analysis for
Multimissions, IEEE Aerospace Conference, March 2002.

