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ABSTRACT
Complex engineered systems are often associated with risk

due to high failure consequences, high complexity, and large in-
vestments. As a result, it is desirable for complex engineered
systems to be resilient such that they can avoid or quickly re-
cover from faults. Ideally, this should be done at the early design
stage where designers are most able to explore a large space of
concepts. Previous work has shown that functional models can
be used to predict fault behavior and motivate design work, how-
ever little has been done to formally optimize a design based on
these predictions, partially because the effects of these models
have not been quantified into an objective function to optimize.
This work introduces a scoring function which integrates with a
fault scenario-based simulation to allow for the optimization of
functional model resilience. This scoring function enables the
designer to consider trade offs between the design costs, operat-

∗Address all correspondence to this author.

ing costs, and expected fault response of a given design, and may
be parameterized in terms of designer-specified design changes
to suit optimization. This framework is adapted and applied to
the optimization of controlling functions which recover flows in
a monopropellant orbiter. In this case study an evolutionary al-
gorithm is found to find the optimal logic for these functions,
showing an improvement over a typical a-priori guess by explor-
ing a large range of solutions, demonstrating the value of the
approach.

1 Introduction
Complex engineered systems such as nuclear power plants,

aerospace vehicles, and oil rigs are often associated with large
investments and significant failure consequences. High-profile
failures in these systems, such as the Chernobyl disaster, Chal-
lenger catastrophe, and Deepwater Horizon oil spill have caused
deaths, environmental damage, and billions of dollars of eco-
nomic loss. As a result, it is important to design the systems
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in such a way that minimizes risk and responds well to adverse
circumstances such that performance, cost, and safety are main-
tained or recovered.

This goal presents a significant challenge, due to the inher-
ent complexity of these systems. Indeed, complex engineered
systems comprise many components, each with many possible
interactions. Despite each component having relatively low fail-
ure probability, there is often only a poor understanding of com-
pound failure risk. For example, in the aftermath of the Chal-
lenger catastrophe it was found that engineers’ estimates of over-
all failure probability differed by orders of magnitude [1, see Ap-
pendix F]. While failures in complex systems are often attributed
to poor management and operations, they can often be traced to
design flaws.

To address this challenge, risk and failure approaches have
been introduced which help designers reason about failures and
their impact on the design [2], including failure modes and ef-
fects analysis [3], fault tree analysis [4], and model-based ap-
proaches [5] [6]. However, these approaches are generally not
suitable for early design–the focus of this work–since they re-
quire detailed knowledge of the system. As a result, a variety of
failure approaches have been formulated based on the functional
model of the system, since these are most available at the early
design stage.

1.1 Prior Work
Prior work introduced the function-failure design method

(FFDM) to predict likely failure modes due to the loss of func-
tions using past data to show which functions require more de-
sign attention [7]. This was extended in the risk in early de-
sign method (RED) using likelihood and consequence estimates
to better inform designers [8] [9]. The function failure identifica-
tion and propagation method (FFIP) in turn informed the analysis
by constructing a behavioral model to take into account the func-
tion interactions, dynamics, and joint fault scenarios [6] [10] [11]
[12]. Approaches have additionally been presented which asso-
ciate the functional model as a fault tree [13] [14]. Other methods
have been created to focus on the propagation of failures through
a functional model [15]. Inherent Behavior of Functional Mod-
els (IBFM), which is used in this paper, provided a method to
automate the creation of a state-based behavior model from the
functional model itself [16].

Attempts have in turn been made to show how to generate,
improve, or change the design based on these function-based fail-
ure frameworks. Initially in developing these frameworks, the re-
sulting information was just used to show designers where atten-
tion should be paid in making design choices [7]. However, con-
cepts have subsequently been presented to use graph grammars
to change the structure of the model, and/or use a cost-risk analy-
sis scoring function to compare between design alternatives [17].
Additionally, a concept has been presented for designing the op-
erational decision-making in the model to determine when to,

for example, route degraded flows to sacrificial subsystems [18].
While these approaches show many of the design changes that
can be made in the functional model, and can be used to compare
between design alternatives, no attempts have yet been made to
use this knowledge to formally optimize a given design based on
this knowledge.

1.2 Aims and Contributions
The ultimate aim of this research is to create a compre-

hensive optimization-based framework to approach resilient de-
sign in the early design stage. Resilience in general is accom-
plished through a variety of possible design changes and opera-
tional decision-making, including: redundancy and health man-
agement, changing the order of functions, using unused flows
as inputs, combining functions (as identified in [17]), changing
the operational decision-making of the functions in the model (as
identified in [18]), selecting functions which behave differently,
and generating totally different or novel functional model solu-
tion concepts. Towards that goal, this paper presents a scoring
function which integrates with set of fault-event simulations to
calculate the expected cost of a design considering every fault
scenario, and applies it to a case study.

The next sections present background in function modeling
and fault simulation, discuss context and definitions of resilience,
introduce the scoring function, and demonstrate the approach by
applying it to the optimization of a monopropellant orbiter.

2 Background
2.1 Functional Modeling

Functional modelling is a way of representing the concept
of purpose in system which has been described as a language
for conceptual design intention, a bridge between high-level
decision-making and implementation [19], and a “blueprint” for
the future system which is agnostic of any particular form [20].
While a variety of conventions have been presented, in general
function modelling represents a system as a set of functions
which act on flows to accomplish a given task [19]. This spe-
cific representation of functionality is one of many system rep-
resentations of products, but is uniquely useful for its lack of
ambiguity and ability to be reused and transformed to simulate
behavior [21]. It has subsequently been standardized as a part of
the systems design process [22] [23].

The representation used in this paper follows the conven-
tion described in [20]. Flows can represent any sort of material,
energy, or signal which passes through the system, while func-
tions represent any operations that happen to the flows on their
way through the system which are necessary for accomplishing
the overall purpose of the model, which are stated as verb-noun
pairs. A standard way to develop a functional model is to first
create what is called a black-box model of the system which
states the overall function with all of the known flows going in
and out of the black box. The designer then creates function
chains by “following the flow,” identifying and sequencing the
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operations that must be done to the input flow to transform the
input flow into the output flow. Finally, the function chains are
aggregated and connected as needed to create the overall func-
tional model.

2.1.1 IBFM simulation and model definition This pa-
per uses IBFM to simulate the fault behavior of a system given
its functional model. IBFM was developed for this purpose, with
a focus on simulating how the effects of a list of faults propagate
through a functional model [16]. This tool acts by constructing
a behavioral model of the system from the functional model by
associating behaviors with functions and states with flows. The
resulting behavioral model can be used to generate a list of failure
scenarios based on each individual or combination of fault events
which shows the end-state of the model given that event hap-
pens. IBFM can be run considering any number of joint-faults,
and runs quickly because it executes the behavioral model as a
state-machine, rather than a time-based dynamic model. Since
the framework presented in this paper is designed to integrate
with this tool and interfaces directly with several IBFM defini-
tions, important related terminology is listed below:

Fault scenario: A particular instance of the IBFM model
for one specific fault event. IBFM generates a list of fault
scenarios depending on the number of joint faults considered
in a run.
End-State: The result of a fault event being run to comple-
tion.
Mode: A state of a function which is associated with a par-
ticular behavior. Modes are either fault modes, implying
an undesired behavior, degradation, or loss of function, or
nominal modes, implying that the function is operating as
desired. In this paper, we differentiate two types of fault
modes: initiating fault modes, which are the initial faults
which generate a scenario, and conditional fault modes,
which happen as a result of other faults.
Condition: A rule that specifies a function’s change in mode
and resulting behavior as a function of incoming flow health
state.
Behavior: A property of the function mode which deter-
mines how an input health state of flows determines the out-
put health state of flows.
Health State: A property given to flow rate and effort vari-
ables that may take the value zero, low, nominal, high, or
highest. It represents the degradation in the quality of the
flow.
Rate Variable: A property given to flows to represent the
rate aspects of a flow analogous to throughput or velocity.
Effort Variable: A property given to flows to represent the
effort aspects of a flow analogous to force or pressure.

2.2 Resilience
A number of definitions of resilience have been introduced

across a variety of fields, including ecology [24] [25], psychol-

ogy [26], economics [27] [28], sociology [29], network science
[30] [31], and management [32] [33]. Resilience is broadly de-
fined as the ability of a system to prepare for, absorb, recover
from, and adapt to failure events, and resilience strategies typi-
cally focus on the temporal adaptation to failures, as opposed to
risk management, which is more focused on preventing the fail-
ure events [34]. However, definitions and metrics for measuring
resilience vary across and within fields, with both qualitative and
quantitative metrics [35]. Key dichotomies include:

Engineering resilience and ecological resilience: In engi-
neering resilience, the performance and stability of the sys-
tem state is recovered to the original system state while in
ecological resilience the function of the system is recovered
from a static failure state to a new dynamic state, potentially
as a result of a change in components (e.g. similar species
taking the role of a newly-extinct species) [25].
Deterministic and probabilistic measures: Probabilistic
measures consider the uncertainty of disruptions or failure
events while deterministic measures do not [35].
Dynamic and static measures: Dynamic measures take
into account time-dependent behavior while static measures
do not [35].

Of particular interest to this paper is how to use the concept
of resilience to motivate design decision-making in engineering
design. As with the broader fields of science, definitions and
metrics of engineering resilience vary, however the time-based
response to disruptive events is key [36]. While these metrics
capture resilience as a metric, they are incomplete as design met-
rics because they do not incorporate the trade-offs between re-
silience and other cost and performance considerations. As a re-
sult, previous work has created cost functions based on decision
theory which quantify the cost of reacting to failure events in
different ways [37] [17], allowing for informed design decision-
making and optimization considering resilience.

3 Method: Optimizing Resilience with a Scenario-
based Scoring Function
This paper introduces a framework for optimizing the re-

silience of functional models in the early design stage by inte-
grating a fault scenario-based simulation with a cost function.
This framework is shown in Figure 1: the designer defines an ini-
tial functional model and creates a behavioral model by associat-
ing conditions, behaviors, and modes with the various functions
as presented in [16] using IBFM. The designer then associates
costs and probabilities with the various modes, functions, and
flow states, and defines the changes to be explored to create a pa-
rameterized cost function. This cost function is then optimized
iteratively with an algorithm fitting to the problem by running
the fault simulation, scoring the design, and changing the param-
eters until an optimal design is found. This enables the designer
to explore a large space of design alternatives in a systematic,
automated way without a tedious investigation of every model
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FIGURE 1. Framework enabled by integrating cost-based scoring and
fault simulation. The designer sets up a parameterized design problem
which is then solved by an optimization algorithm.

variant.
To enable this framework, this paper introduces a scoring

function which incorporates the trade-offs between a system’s
design costs, operating costs, and failure behavior. Of particu-
lar interest is this function’s approach to model failure behavior,
which is built on IBFM’s conception of a fault scenario–a set of
faults which yield an end-state. The basic form of this function is
a sum of the design costs CD, operating costs CO, and fault event
costs CE as shown in the following equation:

C =CD +CO +CE (1)

This function is quite similar in form to that devised in [17]

in that it considers trade-offs between design and operation
costs, and the response of the system to various failure events.
However, the main difference is the incorporation of mitigating
factors–while the scoring function devised in [17] considered the
cost of mitigating factors which reduced the probability of end-
states, the function introduced here is generally applicable to all
sorts of mitigating actions and design changes, and shows more
precisely how to translate the results of IBFM simulations into
costs and probabilities, as will be shown in the following sec-
tions.

3.1 Design Cost
Design cost models may be different, depending on the de-

sign problem. This is because, in general, design costs come
from a variety of sources, including research and development,
required materials, manufacturing, and integration. This work
considers that the design costs of a given functional model can
be mapped back to the individual costs of the functions. As is
the approach with risk and failure modes [7], these costs can in
turn be estimated based on an organization’s past costs for those
functions. The resulting equation for design cost CD is then:

CD = ∑
n∈N

Cn (2)

where Cn is the cost of a given function n in the set of all function
instances in the model N.

3.2 Operation Cost
As with design costs, operating costs must be estimated

based on an expectation of the realized system which may result
from past performance or a designer-created parametric model
specific to the problem-situation. In general, while the operating
costs are difficult to capture without an understanding of the in-
dividual problem, it should be noted that, in general, they relate
to the individual flows going in and out of the black-box form of
the model. Flows going into the model can result in costs (such
as those having to do with raw materials and energy) and rev-
enues (such as those that take in waste material), as do flows go-
ing out of the model, with costs potentially resulting from waste
streams and revenues resulting from the useful goods created by
the model. In general, the operational cost CO then follows the
form:

CO = ∑
l∈L

Cl−Rl (3)

where Cl and Rl are the respective costs and revenues associated
with the flow l in the set of inflows L entering and leaving the
black box model. It should be noted that these Cl and Rl terms
do not need to stand for explicit costs and revenue in dollars gen-
erated, but can also stand for the utility gained and lost by the
organization. That is, if the organization has some purpose (e.g.
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FIGURE 2. Costs associated with a failure event in a resilient system.

generate science, etc) that does not explicitly lead to more or less
revenue, the utility gained or lost by the organization by pursuing
this purpose can be quantified the same way as revenue and cost
would.

3.3 Fault Scenario Cost
Key to representing resilience in a system is the time-based

response to a large number of disruptions or threat vectors [38].
This paper’s representation of these disruptions is based around
IBFM’s ability to simulate large numbers of fault events, which
are created by initiating a set of faults which propagate through
the model until an end-state is reached. These events have costs,
which are determined from the system’s response to the events,
and probabilities, which are determined by the probabilities of
the initiating faults. The cost incurred fault events is the expected
cost of those fault events–the cost of each event is weighted by
its probability. As a result, the fault event cost CE follows the
general form:

CE = ∑
e∈E

Pe ∗Ce (4)

where e and Ce are the respective probabilities and costs of fault
event e in the set of considered events E. The probability of
a given scenario is simply the product of the probability of the
specific combination of originating faults occurring multiplied
by the probability that the rest of the system remains nominal as
follows:

Pe = ∏
m∈e

Pm ∗∏
n 6∈e

(1− ∑
m∈n

Pm) (5)

where Pe is the probability of a given fault event e, Pm is the prob-
ability of a given initiating fault mode m in scenario s occurring,
and n is a function that does not have a fault in the scenario s.

To consider resilience in design, the system’s response to a
fault event is given three distinct costs which are associated with
different stages in the system’s failure and recovery, as shown in
2: the cost of the failure C f , the cost of mitigating the failure
C f→r, and the cost of deviations in the recovered performance
Cr. It should be noted that this definition lines up with common
representations of resilience, in which the system starts at a nom-
inal stable condition, enters an unstable state due to a disruption,
and then settles in a new recovered stable condition [39]. The
resulting fault event cost follows the form:

Ce =C f +C f→r +Cr (6)

These cost definitions are additionally connected to IBFM’s con-
ception of a fault scenario in that each of the costs are derived
from the end-states of IBFM running a simulation with specified
faults in that:

C f derives from the scenario end-state of the associated fault
event e,
Cr derives from the scenario end-state of a new fault event
simulation, with a certain set of modes repaired, and
C f→r derives from the cost of repairing the modes present in
the end-state of the associated fault event e not used as fault
modes in the recovered fault event simulation.

Calculating these individual costs is discussed in the following
sections.

3.3.1 Failure Cost Failures result in costs because they de-
grade the important flows leading in and out of the system, result-
ing in higher costs, less revenue, or less utility. As was discussed
in Section 3.2, these important flows must be identified by the
designer with costs included. To determine the costs of specific
failure events, specific costs must additionally be associated with
the flow states present in the end-state of the fault event. These
flow states are defined as the quality (zero, low, nominal, high,
or highest) of a flow’s rate and effort components. The general
form of a specific matrix c̄l for flow l is shown in Table 1. Note
that these, as specific costs, are the cost per unit time until the
failure is mitigated, as the total cost of a failure depends both on
the severity of the failure on the flow state and the amount of time
the flow is in the degraded state.

The cost of the failure part of the fault event can then be
calculated using the state of the flows going in and out of the
model and the time taken to mitigate the failure as follows:

C f = t f ∗∑
l∈L

c̄l [~s f ,l ] (8)

where C f is the cost of the failure scenario end-state f that is the
direct result of the simulation of fault event e, t f is the time taken
between the failure and the recovery, l is a given flow in the set
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C = ∑
n∈N

Cn +∑
l∈L

Cl−Rl + ∑
e∈E

(∏
m∈e

Pm ∗∏
l 6∈e

(1−∑
m∈e

Pm)∗ ( max
m∈ f∩6∈r

(tm)∗∑
l∈L

c̄l [~s f ,l ]+ ∑
m∈ f∩6∈r

Cm + tr ∗∑
l∈L

c̄l [~sr,l ])) (7)

TABLE 1. Cost rate of an individual flow state for flow l based on
combination of rate and effort health states.

Zero Low Nominal High Highest

Zero c̄l [00] c̄l [01] c̄l [02] c̄l [03] c̄l [04]

Low c̄l [10] c̄l [11] c̄l [12] c̄l [13] c̄l [14]

Nominal c̄l [20] c̄l [21] c̄l [22] c̄l [23] c̄l [24]

High c̄l [30] c̄l [31] c̄l [32] c̄l [33] c̄l [34]

Highest c̄l [40] c̄l [41] c̄l [42] c̄l [43] c̄l [44]

of ingoing and outgoing flows L, c̄l is the specific cost matrix
for that flow, and ~s f ,l is the end-state of that flow l in the given
scenario f .

This time taken to recover the failure is the time necessary
to repair the individual failure modes which are in the failure
scenario but not in the recovered scenario. Considering that the
repairs are done in parallel, this time can be calculated as the
maximum of the times tm needed to repair each failure mode m in
the failure scenario end-state f but not in the recovered scenario
r.

t f = max
m∈ f∩6∈r

(tm) (9)

3.3.2 Mitigation Cost The cost of mitigation is considered
a result of repairing the failure modes in the failed system sce-
nario that are not present in the recovered system. This cost C f→r
is calculated as the sum of the cost Cm of recovering each mode
m which is present in the failure scenario end-state f but not in
the recovered scenario r, per the following equation:

C f→r = ∑
m∈ f∩6∈r

Cm (10)

3.3.3 Recovered System Cost Finally, the of the recov-
ered system is the cost of the degraded flows still present in the
end-state recovered system due to unrepaired or unrecoverable
failure modes. This may be calculated similarly to the failure
cost, by running a new fault scenario using the failure modes in
the recovered state. This recovered cost Cr is a result of the time
left in the recovered state (i.e., for the remaining life of the sys-
tem) tr and the specific costs c̄l of the state ~sr,l in the recovered
end-state r of the flow l in the set of ingoing and outgoing flows
L. This is shown in the equation:

Cr,R = tr ∗∑
l∈L

~cl [s̄r,l ] (11)

These costs are calculated over the rest of the life of the system.
If the system is meant to operate for a long time, a discount fac-
tor should be applied based on the time value of money for the
organization.

3.4 Summary
The previous sub-sections discussed how to calculate the

costs of a system considering the design, operation costs, and
fault scenario costs using the IBFM simulator, with special con-
sideration of resilience–the ability to recover from failures.

Stated together, this cost function is shown in Equation 7,
where:

C is the total cost
Cn is the cost associated with the design of a function
n is a function
N is the set of function instances in the model
Cl is the cost associated with an ingoing or outgoing flow
Rl is the revenue or utility associated with an ingoing or out-
going flow
l is a flow
L is the set of ingoing or outgoing flows
e is a fault event, a combination of fault modes
E is the set of considered fault events
m is a fault mode
Pm is the probability of a fault mode
f is the resulting fault scenario end-state of the fault event e
tm is the time taken to repair a mode
r is the recovered scenario that is the result of repairing fault
modes in f
c̄l is the cost function of the flow based on its state
~s f ,l is the state of the flow l in the scenario end-state f
Cm is the cost associated with repairing a fault mode
tr is the time remaining between recovery and the end of life
of the system
~sr,l is the state of the flow in the recovered scenario

4 Case Study: Optimization of Monopropellant Sys-
tem Controlling Functions
The following section shows an application of this frame-

work to the Optimization of Controlling Functions in a Mono-
propellant orbiter, a system previously considered in [17]. Mono-
propellant propulsion systems are named as such because they do
not require a separate oxidizer, and are commonly used in space-
craft. The propulsion system generates thrust when it receives
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FIGURE 3. Functional Model of Monopropellant System with Controlling Functions

a command to do so. Then, heat is applied for a gas to expand,
and the gas is regulated for appropriate temperature and pressure.
The expanded gas then pushes and guides the monopropellant
over the catalyst. When the monopropellant reaches the catalyst,
thrust is generated. The functional model of this system is shown
in Figure 4.

Controlling functions refer to the functions in the model
which change the response of the system based on a signal in-
dicating a change in flow. In this study they represent the design
intent of the control systems of the regulating functions in case
of a degradation or failure in the upstream flows. That is, they
represent whether the system should be designed to recover a
flow (which would compensate for the failure but increase initial
design costs) or keep the flow state constant. In the model of
the monopropellant propulsion system, these functions are con-
trol gas rate, control gas pressure, control propellant temp/pres-
sure, and control propellant rate. In a realization of the system,
these might be logic gates, control circuitry, or any system which

takes actions based on an input. This is represented in IBFM
as changes in conditions which cause the system to enter modes
with different behavior.

FIGURE 4. Example controlling function conditions and modes.

To illustrate, in the function definition shown in Figure
4, the modes EqualControl, IncreaseControl, and
DecreaseControl each refer to behaviors in which the con-
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troller keeps the incoming flow state, increases the incom-
ing flow state, and decreases the incoming flow state, respec-
tively. Similarly, the conditions LowSignal, HighSignal,
NominalSignal refer to a lower-than-nominal, higher-than-
nominal, and nominal flow state, respectively. Finally, the
conditional logic specifies which mode to enter based on the
condition. For example, 1 3 to 2 means the function in-
creases the flowstate by entering mode 2 (IncreaseControl)
when it was previously in mode 1 (EqualControl) or 3
(DecreaseControl).

The trade-offs associated with this conditional logic is con-
sidered using the scoring function introduced in Section 3 by
appropriately increasing the design costs from the related func-
tions Cn when conditional logic is used for any mode except the
EqualControl mode, and then increasing operational costs in
each scenario in which that compensating mode is used.

4.1 Optimization Approach
The resulting optimization problem is an integer program-

ming problem with a space of 3 choices for each of 3 conditions
in 4 controllers considered, making 33∗4 = 531441 total possible
solutions. Due to the scope of these design changes and assump-
tions made in the case study, only a few components must be
considered in the cost function (design, operation, and scenario
costs), since they will be constant throughout the optimization.
Additionally, because of the context of system, which operates
in space, where there is no ability to repair or maintain the sys-
tem, the repair costs and future state costs are not included in this
function. Stated in negative null form, the resulting adaptation of
the resilient scoring function is:

min. ∑
n∈N

Cn(~x)+ ∑
e∈E

Pe ∗ tm ∗ (∑
l∈L

c̄l [~s f (~x),l ])

wrt. ~x

where x ∈ [1,2,3]

where the notation is consistent with that outlined in Section 3,
except Pe is the probability of an event (which does not change
with changes in condition), tm is an (assumed constant) mitiga-
tion time, E is the set of single fault (and no-fault scenarios).

This problem is readily encoded as an integer vector, and can
be solved using an evolutionary algorithm following the general
optimization process shown in Figure 1. Although many inte-
ger programming approaches are possible, the evolutionary al-
gorithm used in this paper works in the following way:

1. Initialization: A population of solutions is randomly gener-
ated and evaluated

2. Generation: A new population of the same size is created
from the population using two types of transitions:

(a) Randomizing one condition in the solution, and
(b) Randomizing one controller in the solution.

3. Evaluation: The new population is evaluated and given a
fitness based on the scoring function.

FIGURE 5. Cost optimization of the functional model using the evo-
lutionary algorithm over differing mission utilities, showing the ability
of our framework to increase mission value in a range of situations. Re-
silient features have more value when there is a higher mission utility.

4. Selection: Both populations are combined and the best half
of solutions are selected for use in the next generation.

5. Iteration: Steps 1-4 are repeated over a number of genera-
tions or until a satisfactory best fitness is reached.

Since a good solution is initially known, the initial popula-
tion is initially seeded with the solution of EqualControl for each
state of each condition in each function to speed the solution pro-
cess.

4.2 Results
To show the usefulness of this framework for exploring a

wide range of design solutions, this framework is applied to the
monopropellant system considering a range of different potential
utilities for the mission of the orbiter. This is done by scaling the
failure cost matrix by the utility of the mission, since the failure
costs for this system are simply the utility lost by not being able
to complete its mission. Applying this algorithm over 20 gener-
ations of population 20 gives the results shown in Figure 5. To
compare the relative increase in value of using this design frame-
work across mission utilities, the scoring function is scaled by
the relative amount of utility of the mission.

As can be seen in Figure 5, depending on the amount of util-
ity derived by the mission, the framework applied here with the
algorithm is able to better increase the overall value of the de-
sign. For missions with a relatively small amount of utility at
stake (100M or 500M), this increase is relatively small, because
the design costs of implementing resilient features does not out-
weigh the resulting decrease in the cost of failure. On the other
hand, for missions with a large amount of utility at stake (1B or
5B), there is more value gained by allowing the system to com-
pensate for failures using the changes defined here. This shows
how the framework presented here can be used both to explore a
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large space of design solutions and to aid decision-making as to
when to pursue resilient features.

5 Conclusions
This paper presents a framework for considering resiliency

in early design using a scoring function to trade-off between
the expected design, operational, and fault response costs. This
framework is constructed to integrate with a comprehensive
scenario-based fault simulation which determines the propaga-
tion of faults by mapping the costs of the failure event, its re-
covery, and the recovered states to flow states and failure modes
in each scenario. Possible approaches towards optimizing this
function are discussed, with a focus on the parameters avail-
able to optimize and related concerns. This framework is then
demonstrated using the optimization of controlling functions in
a Monopropellant system, using assumptions appropriate to the
scope of the system design. Results of this optimization show
an increase in overall mission scoring when pursuing resilient
strategies which increases for missions with large utilities and
resulting costs of failure. This case study demonstrates how this
framework can be used to simultaneously explore resilient de-
sign features and negotiate trade-offs between the resilience and
cost.

5.1 Future Work
A variety of possible directions present themselves for fu-

ture work. In the near term, more case studies which use other
types of design changes would be helpful towards understanding
how this framework can be applied in the general case. Of partic-
ular interest is the ability to apply this framework towards mak-
ing large structural changes in the functional model (e.g. adding
wholly new function and flow chains). Additionally, the scoring
function should be extended to accommodate the time-based sys-
tem degradation, a key component of resilience [38], to enable
consideration of health degradation (and increase in fault proba-
bilities) over time. From a design perspective, this would allow
the designer to trade off between maintenance, prevention, and
fixing faults after they occur. Finally, further development will
be spent towards automating the generation of this score function
by integrating as many conceptions presented here (e.g. associ-
ating costs with flow state) with the IBFM codebase. The over-
all goal for future development is a comprehensive framework
which may be used to optimize all available variables in a struc-
tured process that allows designers to automate the generation,
evaluation, and optimization of large spaces of model variants to
discover more resilient designs early in the design phase.
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