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Abstract—Electro-mechanical actuators (EMA) are finding 
increasing use in aerospace applications, especially with the 
trend towards all all-electric aircraft and spacecraft designs. 
However, electro-mechanical actuators still lack the 
knowledge base accumulated for other fielded actuator 
types, particularly with regard to fault detection and 
characterization.  This paper presents a thorough analysis of 
some of the critical failure modes documented for EMAs 
and describes experiments conducted on detecting and 
isolating a subset of them. The list of failures has been 
prepared through an extensive Failure Modes and Criticality 
Analysis (FMECA) reference, literature review, and 
accessible industry experience. Methods for data acquisition 
and validation of algorithms on EMA test stands are 
described. A variety of condition indicators were developed 
that enabled detection, identification, and isolation among 
the various fault modes.  A diagnostic algorithm based on 
an artificial neural network is shown to operate successfully 
using these condition indicators and furthermore, robustness 
of these diagnostic routines to sensor faults is demonstrated 
by showing their ability to distinguish between them and 
component failures. The paper concludes with a roadmap 
leading from this effort towards developing successful 
prognostic algorithms for electromechanical actuators. 1 2 

TABLE OF CONTENTS 

1. INTRODUCTION.................................................................1 

2. EMA FAULTS ...................................................................2 

3. DATA ACQUISITION..........................................................5 

4. FEATURE EXTRACTION AND THE DIAGNOSTIC SYSTEM7 

5. RESULTS & DISCUSSION ..................................................9 

6. PLANS FOR FUTURE WORK .............................................9 

7. CONCLUSIONS ..................................................................9 

ACKNOWLEDGEMENTS ......................................................10 

REFERENCES ......................................................................10 

BIOGRAPHIES .....................................................................10 

1                                                           
1978-1-4244-2622-5/09/$25.00 ©2009 IEEE. 
2 IEEEAC paper #1345, Version 4, Updated February 13, 2009 

1. INTRODUCTION 

Electro-mechanical Actuators are used in a variety of 
aerospace applications, from civilian airliners to robotic 
spacecraft. Although EMAs are still relative newcomers to 
the aerospace field the concept of all-electric aircraft and 
spacecraft designs promises an even wider use of EMAs in 
the future at the expense of hydraulic actuators. Actuators 
are safety-critical components of an aerospace system and 
an undetected actuator failure can lead to serious 
consequences. Even though actuators have been studied 
extensively from a functional point of view - in order to help 
develop new and improved designs - feedback from the field 
is still needed for a better understanding of various fault 
modes of the often complex EMA assemblies. EMA fault 
diagnosis poses an interesting research problem as it is 
composed of electrical, electronic, and mechanical 
subsystems, which results in intricate failure modes and 
effects. Any fault in these sub-assemblies needs to be 
successfully and efficiently detected, identified, and isolated 
using a limited set of sensor signals available. Aerospace 
applications in particular have very strict constraints on 
weight and volume, where multiple redundant systems come 
with considerable cost and weight penalty. In order to fulfill 
the stringent reliability requirements, an actuator with no 
hardware redundancy must be equipped with a sophisticated 
diagnostic, prognostic, and recovery system.  Since the 
current generation of actuators is often under-instrumented, 
physics-based modeling of failure modes and mechanisms 
can help make the most of the available measurements. 
Furthermore, given the strict safety considerations of 
aerospace systems, a health management system must leave 
enough time for contingency management before a 
catastrophic event may take place. Early fault detection lays 
the foundation of successful prognostic and mitigation steps. 
The desire to obtain early fault detection, however, must be 
balanced against the need to keep false positive rates low.  
False negatives not only reduce the diagnostic confidence, 
but can also result in unnecessary, yet often costly and 
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disruptive, mitigation actions. Therefore, the quality of the 
health management system can have a direct impact on the 
performance of the client actuator. 

Of the various kinds of actuators, EMAs were chosen for 
this study because of their growing role in the aerospace 
field. They are relatively compact and can offer high power-
to-weight ratios and motion velocities.  We also decided to 
concentrate on actuators suitable for use with flight control 
surfaces, to build on the previous F-18 flight experiments at 
NASA Dryden Flight Research Center [1], which led us to 
the choice of linear, ballscrew type EMAs. 

In the next section we present a discussion on various EMA 
fault modes, including the most common sensor faults. A 
summary of fault modes has been presented based on our 
literature search and interactions with the industry. We then 
describe the experimental setup and the data acquisition, 
system, followed by a detailed discussion of the new 
diagnostic system. Results are presented next, followed by a 
discussion and plans for future work. 

2. EMA FAULTS 

Since EMAs, as mentioned earlier, are relatively new to the 
field of aerospace, they have not yet been deployed for a 
long enough time or in large enough numbers to accumulate 
reliable fault statistics.  Most of the commercial airliners in 
service still rely on hydraulic actuation for their primary 
flight surfaces, landing gear, and other major components.  
Small EMAs are sometimes used for secondary functions, 
such as trim tabs actuation and spoiler or speed break 
deployment.  The situation is similar in military 
applications, where most of the aircraft in the active 
inventory rely on hydraulic actuation, although there are 
efforts currently under way to deploy electro-mechanical 
actuators in utility roles (landing gear, aerial refueling 
doors, and weapons bay doors) in the future models of some 
of the new designs, such as the F-35 Joint Strike Fighter. 

Recently designed commercial aircraft, such as Boeing 787 
or Airbus 380, are also starting to use more EMAs in the 
roles traditionally reserved for hydraulic systems.  On the 
787, for example, EMAs, in addition to spoilers and trim 
actuation, operate landing gear breaks and are part of the 
environmental control system. 

Space vehicles currently use EMAs for functions such as 
positioning of antennas and movement of robotic arms, with 
some of the future rocket launcher designs intending to use 
EMAs for their thrust vector control.  The challenges with 
obtaining performance statistics in this domain are that only 
a small number of each vehicle type are usually built and 
that the onboard actuators are rarely used for more than a 
few hours total throughout the entire service life of a 
vehicle. 

The fault and failure information for EMAs (summarized in 
tables 1, 2, 3, and 4) came primarily from the following 

sources: Failure Modes, Effects, and Criticality Analysis 
(FMECA) information provided by Moog Corporation; 
published industrial information [2, 3]; information from the 
US military reports [4]; as well as from our general survey 
of publications related to actuator diagnostics [5, 6]. 

The faults in the tables 1, 2, 3, and 4 are loosely distributed 
among four general categories: sensor, mechanical or 
structural, motor, and power or electrical.  Some of the 
faults, such as return channel jam, are specific to linear, 
direct-drive ballscrew electromechanical actuators which are 
the primary focus of our research.  Others, such as motor or 
electrical faults, are applicable to a wider range of EMAs.  

Each of the fault modes is presented along with the failure 
mode it can lead to, if not diagnosed and remedied in time. 
The transition from fault to failure in EMAs and prediction 
of their remaining useful life is the subject of our ongoing 
research. The probability and criticality numbers refer to the 
fault modes and are presented in an abstracted form, on a 
scale from 1 to 10.  This was done both to protect 
proprietary information and to aggregate data collected from 
the various sources in a unified manner. 

We also included suggestions on the general approach for 
diagnosing and prognosing each fault type – model based, 
data-driven, or hybrid. This was mainly done for our own 
research planning purposes, although we hope that it may be 
of some value to the reader as well.  The prototype 
diagnostic system developed for this particular effort 
utilized data-driven methods only; we do, however, have 
physical models of varying degrees of fidelity currently 
under development as well. 

Mechanical/Structural Faults 

Mechanical and structural faults are likely to be the main 
source of concern for electro-mechanical actuators deployed 
in the demanding conditions of aerospace applications.  
Their main causes are excessive loads, environmental 
factors, lubrication issues, and manufacturing defects.  This 
class of faults has been the primary focus of our research for 
some time, as we feel that out of all the actuator 
components, these have the fewest number of effective 
diagnostic and prognostic methods developed for at present. 

One of the exceptions to the above observation, however, is 
bearing faults. They have been subjects of extensive studies 
over the course of the last few decades and, therefore, were 
not pursued as part of ours.  Interested reader can refer to [7, 
8], for instance, as a starting point on the subject. Faults 
germane to multi-channel EMAs (which utilize multiple 
motors via a transmission) or to geared actuators are not 
covered in this paper either.  They may be a subject of our 
future work. 

Motor Faults 

Motor faults are the next most important category of EMA 
faults.  Motors are often operated at high rotational rates, 
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leading to increased temperatures within their housing and 
significant mechanical stresses - thus making them prone to 
developing winding shorts, rotor shaft eccentricities, and 
other problems. 

There have been several thorough research efforts in the 
recent years on the subject of electrical motor faults [5, 6, 
9].  There is still, however, a need for further research, 
therefore this class of faults remain high on our interest list 
and will be incorporated in into our upcoming experiments.  

Electrical/Electronic Faults 

The characteristics of electrical and electronic faults in the 
power and control systems of EMAs do not differ 
significantly from the same type of faults in other aerospace 
systems.  The Diagnostics & Prognostics Group at NASA 
Ames has a team dedicated to conducting research in this 
domain.  Some of their accomplishments are described in 
[10, 11]. In this paper we list only the most likely or 
significant faults of this category, without going into too 
much detail. 

Sensor Faults 

A study to classify and diagnose sensor faults common to 
aerospace applications was conducted in parallel with the 
development of the EMA diagnostic system and represented 
a significant research effort in its own right.  It will be the 
subject of a separate paper; we will, however, describe 
modeling and diagnosis of sensor faults seeded along with 
the actuator system faults for this series of experiments.  

Table 1 below summarizes the general categories of sensor 
faults used in our work and provides estimates of the range 
and median values of their parameters, as identified during 
our literature review [12-16]  

Table 1 –Sensor Fault Categories. 

Fault Range Median Remarks 

Bias 
1.2% to 
60% 

20% 
% change over the 
nominal value 

0.3 to 
0.7 

0.45 Scale Factor 

Scaling 
2.5 to 
4.8 

3.28 Scale Factor 

Drift 
6% to 
75% 

29% 

% change over the 
nominal value, reported 
at the end of the drift 
(or data set) 

Noise 
2.5% -to 
250% 

20% 
% peak to peak values 
over the nominal value 

Intermittent 
Dropout 

2 to 10 
drops 

8 drops 

Over a range of 20% to 
29% of the reported 
data set, with median 
range of 23% 

 

Experiments described in this paper covered bias, scaling, 
and drift faults only.  Noisy sensors and intermittent 
dropouts will be incorporated in the near future.  Due to the 
current equipment limitations, as described in the later 
sections, the sensor faults were simulated in software.  

Subset of Fault Modes Selected for the Study 

Along with the sensor faults described in the previous 
section, two mechanical faults were selected as the injected 
faults in our experiments: 

Return channel jam: return channel is a component of a 
ballscrew actuator that transports balls in the circuits within 
the nut from the end of a circuit back to its beginning, as the 
nut travels along the rotating screw.  A jam in the return 
channel, caused, for example, by a piece of debris or a 
deformed ball, would stop that circulation and could lead to 
catastrophic consequences. Return channel jams are of a 
particular interest to us because they are a class of faults that 
cannot easily be addressed by design modifications. 

Spalling: spalling refers to the development of indentations 
in metal surfaces at high stress contact points. A severe case 
of a spall may result in metal flakes separating from the 
surface, creating potentially dangerous debris.  In the case of 
a ballscrew, where the contact surfaces of the nut and the 
screw (as well as the balls) may be subject to spalling, one 
of the consequences may be increased vibration, which can 
lead to damage of other actuator components.  The 
likelihood of an EMA developing a spall in one of its 
components over its lifetime is not insignificant. 
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Table 2 –Motor Fault Modes. 

Component Fault Failure 

Relative  

Probability 

(1-10, low to 

high) 

Relative 

Criticality (1-

10, low to 

high)) 

Suggested Model 

Type (Physics, 

Data/Trending, 

Hybrid) 

degraded operation (can manifest 
itself as increased resistance) 

disconnect 5 6 Data/Trending 
connectors  
(for stator coils, 
resolver, RTD, brake 
coil, and ground) intermittent contact disconnect 3 7 Data/Trending 

stator coil fails open (results in 
degraded EMA performance) 

same 4 4 Physics 

stator 
insulation deterioration / wire 
chafing (manifests itself via 
reduced or intermittent current 
through stator coil or intermittent 
shorts) 

short circuit 5 5 Data/Trending 

coil fails open (this and the other 
resolver faults can result in  
inaccurate position reports, EMA 
performance deterioration) 

same 4 10 Physics 

intermittent coil failures 
permanent coil 
failure 

5 7 Data/Trending 

resolver  

insulation deterioration / wire 
chafing 

short circuit 5 7 Data/Trending 

rotor-magnets chemical bond 
deterioration 

complete 
magnet 
separation, 
likely leading 
to motor failure 

2 10 Data/Trending 
rotor and magnets 

rotor eccentricity 
support bearing 
failure 

3 6 Physics 

Table 3 – Electrical/Electronic Faults. 

Component 
Fault Failure 

Relative  

Probability 

(1-10, low to 

high) 

Relative 

Criticality 

(1-10, low to 

high) 

Suggested Model Type 

(Physics, Data/Trending, 

Hybrid) 

short circuit same 5 10 Hybrid 

open circuit same 5 10 Hybrid 

intermittent 
performance 

short circuit or open 
circuit 

5 8 Data/Trending Power supply 

thermal runaway 
dielectric breakdown of 
components, leading to 
open or short circuits 

6 10 Hybrid 

Controller 
capacitors dielectric breakdown 

short circuit or open 
circuit 

4 8 Hybrid 

Controller 
transistors dielectric breakdown 

short circuit or open 
circuit 

4 8 Hybrid 

short circuit same 5 10 Hybrid 

open circuit same 5 10 Hybrid Wiring 
insulation deterioration 
/ wire chafing 

short circuit or open 
circuit 

5 8 Data/Trending 

Solder joints intermittent contact disconnect 5 8 Hybrid 
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 3. DATA ACQUISITION 

 

Figure 1 – Moog MaxForce 883-023 test actuator. 

A ballscrew electromechanical actuator was used as the test 
article in our experiments. The experiments were performed 
on a stand located at Moog Inc.  The test actuator,   Moog 
MaxForce 883-023 (Figure 1), was connected to the 
hydraulic load cylinder by a rotating horn as shown in 
Figure 2Figure 2.  

Control and data acquisition were performed by real-time 
software running on dSPACE platform.  Table 4 contains a 
list of all of the sensors used on the test platform, as well as 
their associated sampling frequencies. 

Vibration was measured at four points on the test actuator, 
as shown in Figure 3. All three axes of vibration were 
measured, with an additional measurement in the Z-
direction by the accelerometer mounted directly on the nut 
of the ball screw. Temperature measurements were provided 
by a T-type thermocouple on the nut and an RTD embedded 
in the stator of the motor, as shown in Figure 3. 

 

Figure 2 – EMA test stand at Moog Corp. 

Table 4 - List of Sensors. 

Measurement Sensor Type   Sample Rate 

Load 

Model 75  
Sensotec 
Load  
Cell 

Bonded foil 
strain gage 
compression 
and tension 

3 kHz 

Position  
Trans-Tek  
0219-0000  

LVDT 3 kHz 

Nut 
Temperature 

T-type 
Thermo-
couple 

Copper-
constantan 
thermocouple 

3 kHz 

Motor 
Temperature 

Integrated  
Stator RTD 

RTD 
(thermistor) 

3 kHz 

Torque 
Producing 
Current 

T200 Motor 
Drive 
Output 

Hall effect 
sensor 

3 kHz 

Motor Velocity 
T200 Motor 
Drive 
Output 

Resolver 3 kHz 

3-Phase 
Currents 

(3) LEM 
LA  
25-P 
Current  
Transducers 

Closed loop 
(compensated), 
works on 
Hall effect 

24 kHz 

X-Y-Z 
Accelerometers 

(3) PCB 
Model 
352A24 

Piezoelectric 
ceramic, shear 

24 kHz 

Nut 
Accelerometer 

PCB Model 
352A24 

Piezoelectric 
ceramic, shear 

24 kHz 

 
Load is sensed by a Model 75 Sensotek 50,000 lbf. load 
cell.  The position of the rod end of the test actuator was 
measured by a Trans-Tek 0219-0000 Linear Differential 
Voltage Transducer (LVDT). 

LEM LA 25-P current transducers were used on each motor 
phase to sense the phase currents.  For data acquisition, the 
Moog T200 motor drive output an analog signal 
representing the torque producing current, as well as the 
motor velocity.  
 

Y direction 

accelerometer 

motor  

thermal couple 

Z direction 

accelerometer 

Z direction accelerometer 
Nut housing thermal 
couple 

 

X direction 

accelerometer 

 

Figure 3 - Location of sensors on Moog MaxForce 883-

023 actuator. 
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Table 5 - Experiments performed with seeded 

mechanical faults. 

Experiment 

Set 
Description 

Baseline 
Data collected with a nominal actuator just 
before the first set of ball return jam tests. 

One Ball 
Return 
Jammed 

One of the return channels fully blocked.  
Simulates obstruction of the return channel 
by a detached piece of insulation or other 
debris. 

Repeatability 

Tests to determine whether disassembly 
and reassembly of actuators affects test 
results.  Five-back-to back runs were 
conducted. 

Backlash 
Tests with undersized balls to simulate 
backlash (freeplay) 

Spalling 

The purpose of this series of tests was to 
determine if a surface flaw (spall) can be 
detected using the actuator sensor suit. 
Three flaws have been electro-discharge 
machined into the screw of the actuator.  
The flaws were machined into the entire 
root of the screw forming a continuous 
flaw from crest to crest. 

 

Tests Performed 

Table 5 describes the types of mechanical component fault 
cases introduced during the tests. 

Sensor faults were injected a posteriori, as described in the 
next section.  Permutations of the conditions below were 
used to develop 8 scenarios for each of the mechanical 
component fault cases: 

- Motion profile: sinusoid or triangular wave 

- Load type: constant or spring 

- Load level: low (860 lbs spring force, 900 lbs constant 
force) or high (1725 lbs spring force, 1800 lbs constant 
force) 

For the purposes of training and testing a neural network 
based classifier, described in the subsequent sections, 
extended duration scenarios were created using the collected 
data.  These scenarios were designed to preserve the 
character of the collected data as much as possible, while 
extending the duration to 180 seconds.  They contain two 
segments each – nominal, to represent a healthy system 
before the fault occurred and a faulty segment (90 seconds 
each).  Since on the test stand the faults had to be seeded 
before the start of the tests (due to hardware limitations), 
nominal data was chosen from the experiments conducted 
under the same conditions.  The total number of scenarios 

produced was 48: 8 (conditions) x (2 components faults + 4 
sensor faults). 

Sensor Fault Simulations 

Bias: Here bias was specified as percentage of the average 
baseline temperature (80F), calculated over the set of 
nominal (no fault injected) scenarios. Bias was injected into 
temperature sensor data. Gaussian noise was then 
introduced into the actual amount of bias added, with the 
signal-to-noise ratio (SNR) of 5 (see Figure 4). 

Drift: this fault was also injected into the nut temperature 
data.  The fault was defined by specifying drift velocity 
(distance traveled in a certain period of time).  The length of 
constant drift velocity segments was randomized (max 1000 
data points) and Gaussian noise introduced into velocity 
value itself – so for each segment the velocity may be 
somewhat different from its neighbors.  The signal-to-noise 
ratio for the later was set to 5. 

Scaling: the signal is amplified by the scaling factor, also 
with Gaussian noise injected (SNR of 5). 

Loss of Signal: sensor data from the point of failure 
replaced by all zeros. 
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Figure 4 – Sensor fault simulations. 
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4. FEATURE EXTRACTION AND THE DIAGNOSTIC 

SYSTEM  

Given the complexity of the experimental data and the 
variety of failure modes (actuator and sensor failures), a 
diagnostic system based on Artificial Neural Networks 
(ANN) was designed. A comprehensive analysis of data was 
carried out to extract a set of uncorrelated features that 
would not only detect various fault modes but also 
disambiguate between sensor and system faults. Keeping the 
latter requirement, the confusion matrix (Table 8) was 
further partitioned into sections that helped to interpret the 
results. This section explains the implementation details and 
enumerates the key aspects of the classifier diagnostic 
system. 

Feature Extraction 

Appropriate feature extraction lays the foundation of a 
successful (accurate and reliable) diagnostic system. For a 
successful practical implementation it is desirable that 
features not only be computationally inexpensive but also be 
explainable in physical terms. Furthermore, they should be 
characterized by a) large between-class and small within-
class variance, b) should be fairly insensitive to external 
variables like noise, and c) should be uncorrelated with 
other features. Keeping these requirements in mind, we 
selected a set of seven sensor-feature pairs that were 
expected to detect and distinguish seven distinct modes of 
the system: a healthy system, two actuator fault modes, and 
four different sensor faults (see Table 6). Based on an 
extensive literature search (see Section 2), sensor faults 
were generated with parameters representative of the real 
world. Specifically, a bias of 20% value of peak-to-peak 
temperature signal magnitude, a temperature sensor drift 
with drift velocity of 0.02 °F/sec, a scaling factor of 1.5 
times the original signal peak-to-peak amplitude, and a zero 
output (dead sensor) case were simulated using the baseline 
data to include various sensor faults. 

Table 6 - Fault vs. Feature Matrix. 

In addition, since there were several different experimental 
conditions that considerably affect the sensor measurements, 
two additional features were designed that characterize these 
experimental conditions. These features are described below 
Table 7 gives an overview of all the features and their 
significance with respect to different system modes they 

identify. Features were calculated every half a second on a 
one second long sliding window. Thus for each 90 second 
long segment (under various conditions) 180 feature points 
were generated. 

Load Profile Indicator (LPI) 

Experiments were conducted under two different load 
profiles, namely sinusoidal and triangular, to cover two 
extremes of smooth and drastic movements around the point 
of direction reversal. However, in practice, it is expected 
that a real load profile would lie somewhere in between 
these two situations. Since a significant difference was 
observed in sensor measurements under different load 
profiles, a feature called Load Profile Indicator (LPI) was 
developed to numerically represent the roughness of motion. 
Each one second sampling window is further subdivided 
into smaller sub-segments of 0.002 seconds and a local 
slope is calculated for each sub-segment. A variance of 
absolute values of the slope from these segments is then 
computed as a feature for operational condition. Triangular 
profile results in a smaller (near zero) variance, where as a 
pure sinusoidal profile results in a higher variance due to 
smooth peaks. Any combination of triangular and sinusoid 
segments appropriately results in a representative variance 
as shown in Figure 5. 

0 5 10 15 20 25 30 32
-4

-2

0

2

4

6

Time (second)

 

 
Sinusoidal  Profile Region

Position Signal

Load Profile Indicator

 

Figure 5 - Load Profile Indicator (LPI). 

Force Indicator (FI) 

Loads were applied under two types of forces: opposing 
force and spring force.  In the case of opposing force 
motion, a constant force is experienced by the system, 
whereas for spring motion the force is proportional to the 
displacement from the neutral position. Computing FI for 
opposing force is trivial; however, for spring force motion 
force indicators were computed by assessing the value of 
spring-constant (k) at peak position displacements and using 
them to calculate corresponding forces at all other positions. 
Thus, in addition to the seven features derived from sensor 
(Table 6) these two condition features were input as part of 
a nine point vector to the classifier system (described next). 

Diagnostic Classifier 

A three layer Artificial Neural Network (ANN) was 
implemented as a multi-category classifier to distinguish 
between the seven states of the system health. The first layer 
consisted of nine nodes, with tansigmoid transfer functions, 

Features 
Faults 

TDNut TDMotor SDx SDy SDZ DIMotor DINut 

Return Channel 
Ball Jam 

X X X X X 
 

 

Spall 
  X X X   

Nut thermocouple 
Drift 

X     
 

X 

Nut thermocouple 
Bias 

X     
 

 

Z Accel. Scaling 
    X   

X Accel 
Complete Failure 

  X   
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one for each feature in the input feature vector. The hidden 
layer had five nodes with logsigmoid transfer function and 
the output layer had seven nodes with logsigmoid transfer 
functions, one for each of the seven classification 
categories. All input features were continuous, real-valued  
 and were standardized to have zero mean and unit variance 
[17]. Binary targets were assigned such that of the seven 
output bits only the correct category bit turned 1 and the rest 
stayed 0. Initial weights for the network were chosen based 
on standardized input ranges to ensure uniform learning 
[17]. Networks were trained using the resilient back-
propagation (RPROP) algorithm [18] 
 
Evaluation Procedure & Results 

 Data were divided into two sets for training and testing 
purposes, based on the experiment load levels. The network 
was trained on low load conditions (~900lbs) and was tested 
for high load (~1800lbs) conditions. In order to obtain a 
meaningful statistic, 30 ANNs were trained and tested for 
each experiment and the results averaged. Training was 
carried out for 200 epochs. Results were further aggregated 
in the form of a confusion matrix as shown below in Table 8 
to observe the False Positive rate (FP), False Negative rate 
(FN), Misclassification rate (MC), and Non-Identification 
rate (NI). The rows in the confusion matrix represent true 

state of the system and the columns represent estimated 
states. As shown, misclassification rate is observed as a 
measure of disambiguation between component faults and 
sensor faults and as non-identification rate for cases that are 
not identified as any of the predefined classes. Each 
category is computed as a percentage of the total number of 
observed instances in the respective classes. 

 

Table 8 - Confusion matrix for two component faults 

and four sensor faults. 

 NF CF1 CF2 SF1 SF2 SF3 SF4 

NF TP FP 

CF1 TP  

CF2  TP 
MC 

SF1 TP    

SF2  TP   

SF3   TP  

NI 

SF4 

FN 

MC 

   TP 

 

Table 7 –Diagnostic Classifier Features. 

Feature Sensors Definition Fault Modes Rationale 

Temperature 
Deviation 
(TD) 

Nut 
thermocouple, 
Motor 
thermocouple 

Absolute deviation from 
nominal temperature range 

Spall, jam, 
sensor bias 

Nut temperature rises due to increased 
friction from spalled nut. Motor 
temperature rises due to increased 
current levels to counter increased 
resistance 

Temperatures also change due to bias 

Drift Indicator 
(DI) 

Nut 
thermocouple, 
Motor 
thermocouple 

A binary feature that assumes 
the value one, if a finite rate of 
change of temperature is 
detected within the sampling 
window, and zero otherwise 

Sensor drift Monitoring over  some period of time 
can help identify sensor drift and 
distinguish it from bias, which is not 
expected to change continuously in 
shorter time-intervals 

Signal 
Standard 
Deviation 
(SD) 

Accelerometer
s: X, Y, Z on 
motor housing 
and one on the 
Nut 

Standard deviation of the signal 
within one sampling window 

Jam, dead 
sensor 

Jam reflects in increased vibrations of 
the accelerometers mounted on the 
motor. Dead sensor results in zero 
output 

Load Profile 
Indicator 

Position sensor 

Characterizes the smoothness of 
load profiles ranging between 
smooth sinusoids to rough 
triangular profiles 

All Nature of load the profile significantly 
changes the vibration signature of the 
system. This difference should be 
distinguished from failure signatures 

Force 
Indicator 

Position sensor 

Assesses the force on actuator. 
For opposing force motion the 
force remains constant, 
proportional to peak loads. For 
spring motion force varies with 
the position and is a fraction of 
the peak loads 

All 
Given combinations of two different 
load conditions and two load 
application methods, differences in 
corresponding sensor signatures should 
be distinguished from fault signatures 
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5. RESULTS & DISCUSSION 

 Based on the procedure described above, a total of 3.46% 
false positive rate, 1.21% false negative rate, and 0.29% 
misclassification rates were observed. About 3.8% cases 
were not identified under any of the defined categories. 
Upon careful observation, it was realized that the relatively 
high value for non-identification rate can be attributed to 
several factors.  First, the experiments were conducted 
under multiple conditions of load levels, load types, and 
load profiles. Each of these conditions affects the baseline 
measurements in their own ways, often overlapping with the 
affects produced by various components and sensor faults. 
For instance, nut temperature may be observed to increase 
due to ball jam, thermocouple bias, or thermocouple drift 
faults. However, high loads result in higher temperatures 
than low loads and spring motion load profile consistently 
results in higher temperatures. These changes in load 
characteristics result in difference in baseline conditions 
themselves and hence, if not appropriately trained, a 
classifier finds it difficult to point to any specific reason for 
such effects. Furthermore, no information regarding ambient 
temperatures was available from the experimental data. It 
must be noted that ambient temperatures can affect the 
baseline measurements as well. Since we partitioned the 
experimental data into high and low load sets, the classifier 
did not get a good chance to learn the effects of the load 
levels and, consequently, the ability to distinguish them 
from other effects that cause such overlapping variations (it 
also points to a more fundamental weakness of data-driven 
approaches). Similar effects are not only limited to 
temperature variations, but also to the vibration levels 
measured through accelerometers. 

6. PLANS FOR FUTURE WORK 

There are a number of different avenues for future work. 
Longer duration experiments will be conducted to better 
characterize the effects of external factors and obtain more 
consistent training and testing data. This will also provide 
steady state measurements to establish repeatable baselines 
as well as reveal dynamic effects of the seeded fault 
conditions. Experiments under controlled conditions will be 
conducted to characterize the effects of external 
environment, loading conditions, various fault modes, and 
severity of those faults. Other experiments will be 
conducted to develop techniques for detecting motor faults 
(e.g. rotor shaft eccentricity and winding insulation 
degradation) and mechanical faults requiring high precision, 
high resolution position sensing (e.g. backlash). To that end, 
plans are under way to carry out experiments on a new 
actuator test stand (Figure 6) at NASA Ames by seeding 
faults into the test actuator and the sensing system and 
observing their signatures while the system operates under a 
variety of load conditions. The new test stand incorporates a 
powerful electro-mechanical load actuator (Moog 886 
series), capable of generating up to five metric tons of force.  
The flexible design of the stand accommodates test 
actuators of various sizes and configurations and its control 

system allows creation of fully customizable load and 
motion profiles.  The sensor suite features a load cell, 
accelerometers, as well as high-precision position, current, 
and temperature sensors. 

Classifiers rely on features to allow optimal detection and 
disambiguation between system and sensor faults. While the 
features described herein are focused mostly on the time 
domain, other categories of features (e.g., frequency-based) 
should be considered. As more data becomes available, 
more sophisticated features will be explored for improving 
the diagnostic performance. Another direction for future 
work is the verification of dynamic models being developed 
for actuator systems. These models will then be employed in 
hybrid diagnostic and prognostic techniques. Sensor fault 
models validation and verification is yet another potential 
direction. Experiments with seeded sensor faults on real 
systems should be conducted to confirm that the models 
behave correctly. In practice, sensor fault detection should 
go hand-in-hand with accommodation strategies. The 
understanding of underlying mechanisms of sensor faults 
gained in the process will be tapped into when considering 
new techniques for sensor fault accommodation. 

 

Figure 6 – New EMA test stand at NASA Ames research 

center. 

7. CONCLUSIONS 

This paper describes efforts to identify and categorize fault 
modes for electro-mechanical actuators (direct-drive ball 
screw type in particular).  Four main classes of faults are 
presented: mechanical/structural, motor, 
electrical/electronic, and sensor.  A subset of faults (return 
channel jam, spalling, sensor bias, sensor drift, and sensor 
scaling) was then selected for a more detailed study and 
experiments on an electro-mechanical actuator test stand.  
The data obtained in these experiments were used for 
feature extraction and tests of the newly created neural-
network based diagnostics system.  In the process, 
feasibility of reliably detecting this type of faults was 
demonstrated.  Diagnostic test results show low false 
positive, false negative, and misclassification rates, as well 
as robustness against sensor faults 
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