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Abstract—This paper describes the results of a sig-
nificant research and development effort conducted at
NASA Ames Research Center to develop new text min-
ing algorithms to discover anomalies in free-text reports
regarding system health and safety of two aerospace sys-
tems. We discuss two problems of significant import in
the aviation industry. The first problem is that of auto-
matic anomaly discovery concerning an aerospace sys-
tem through the analysis of tens of thousands of free-text
problem reports that are written about the system. The
second problem that we address is that of automatic dis-
covery of recurring anomalies, i.e., anomalies that may
be described in different ways by different authors, at
varying times and under varying conditions, but that are
truly about the same part of the system. The intent of
recurring anomaly identification is to determine project
or system weakness or high-risk issues. The discovery
of recurring anomalies is a key goal in building safe, re-
liable, and cost-effective aerospace systems.

We address the anomaly discovery problem on thousands
of free-text reports using two strategies: (1) as an unsu-
pervised learning problem where an algorithm takes free-
text reports as input and automatically groups them into
different bins, where each bin corresponds to a differ-
ent unknown anomaly category; and (2) as a supervised
learning problem where the algorithm classifies the free-
text reports into one of a number of known anomaly cate-
gories. We then discuss the application of these methods
to the problem of discovering recurring anomalies. In
fact, because recurring anomalies tend to have very small
cluster sizes, we explore new methods and measures to
enhance the original approach for anomaly detection.

We present our results on the identification of recurring
anomalies in problem reports concerning two aerospace

systems as well as benchmark data sets that are widely
used in the field of text mining. The first system is
the Aviation Safety Reporting System (ASRS) database,
which contains several hundred-thousand free text re-
ports filed by commercial pilots concerning safety issues
on commercial airlines. The second aerospace system
we analyze is the NASA Space Shuttle problem reports
as represented in the CARS data set, which consists of
7440 NASA Shuttle problem reports. We show signifi-
cant classification accuracies on both of these systems as
well as compare our results with reports classified into
anomaly categories by field experts.1
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1. INTRODUCTION

There is an enormous amount of information regarding
aerospace systems in the form of structured and unstruc-
tured text documents, much of it specifically relating
to reports of anomalous behavior of craft, craft subsys-
tem(s), and/or crew. Mining these text databases can re-
sult in the discovery of valuable information regarding
the health of the overall system as well as specific indi-
cators of the health of particular elements in the system.

There are at least two possible approaches to identify-
ing anomalies in textual documents. The first approach,
based on supervised learning, uses a mathematical model
to ’learn’ the relationship between a set of documents
and some known target field. This target field, for ex-
ample, could be a particular set of anomaly codes that
have been assigned by human experts. This process can
be described as a learning problem where the objective is
to learn a functionΦ that takes documents from a corpus
X and maps them into an anomaly classy, Φ(x) 7→ y.
We optimize this function (also called a classifier) so that
the number of errors that it makes is as small as possible
given the training dataX .

The second approach is one where we do not have a pre-
defined set of anomaly categories. In this situation, we
need to develop another functionΨ that takes the docu-
ment corpusX and divides it into a number of different
categories automatically. This is an example of unsu-
pervised learning, because the target is not predefined.
This process has an infinite number of solutions, so the
problem that we face is choosing one of those solutions
that best matches the specific problem. We use clustering
techniques, which have different statistical assumptions
built into them, to learn a good mapping operatorΨ.

Clustering and classification techniques can be applied
to group this large amount of data into known categories.
In this direction, content based clustering of these re-
ports helps detect recurring anomalies and relations in
problem reports that indicate larger systemic problems.
Clustering and classification methods and results will be
presented using the Aviation Safety Reporting System
(ASRS) database. The clustering results for two standard
publicly available data sets will also be shown to allow
method comparison to be performed by others.

The second problem addressed in this paper is to then au-
tonomously identify recurring anomalies. The initial in-
roads for this work are described in detail in [2]. This ap-
proach will be presented and results shown for the CARS

data set.

2. DATASETS USED

We have experimented with several standard data sets
used for text classification. A brief description of each
follows.

The 20 News Groups data set: This benchmark data set
is a collection of 19997 documents belonging to 20 dif-
ferent news groups. Since the documents in this data set
are primarily email messages, headers, such as from, to,
subject, organization, etc. were removed in the prepro-
cessing step. We were interested only in the body of the
messages to keep it a free text classification exercise. We
had an extensive stop word list, which was also removed
from the documents. We tried to eliminate as many spe-
cial characters as possible in order not to skew the results
of the clustering algorithm.

TheDiff3 and Sim3 data setswere created from the 20
News Groups data set to verify the performance of the
algorithm in data sets that have closely related categories
and dissimilar categories respectively.

The Reuters data set: This data set is the most widely
used in text categorization research. It is a collection of
21578 documents each belonging to multiple classes.

Along with these standard data sets, we also tested our
algorithms on real-world data sets regarding aerospace
systems.

The CARS Data set: This data set is a collection of
problem reports generated by engineers in different fields
for the problems related to the NASA Space Shuttle. It
contains a total of 7440 reports. Most of the reports are
one or two short paragraphs. This data set was used for
both text clustering and recurring anomaly algorithm de-
velopment. Subject matter experts categorized 1553 of
the 7440 reports into 366 recurring anomaly categories,
providing a standard against which to measure the per-
formance of the recurring anomaly algorithm. Conse-
quently, there are 7440−1553 = 5887 single document
clusters, which make this problem suitable for cluster-
ing. Many of the 366 categories contained only two doc-
uments. None of the reports were clustered into more
than one category.

The ASRS data set: After each commercial flight in the
United States, a report is written for that flight describing
how the flight went and whether any anomalous events
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occurred. This data set is a collection of 20,696 of those
reports categorized into 62 different anomalies. Between
zero and twelve different anomalies were assigned to
each report. The anomalies are labeled anomaly 413
through 474. Table 1 lists a subset of the 62 anomalies
which were used for much of the analysis described in
this paper.

Table 1. Table of Anomaly Labels and Anomaly
Descriptions

Anomaly
Label

Anomaly Description

413 Aircraft Equipment Problem - Critical
417 Other Spatial Deviation - Track or Head-

ing Deviation
419 Airspace Violation - Entry
421 Altitude Deviation - Overshoot
430 Incursion - Runway
447 Inflight Encounter - Turbulence
450 Inflight Encounter - Weather
451 Inflight Encounter - VFR in IMC
453 Maintenance Problem - Improper Main-

tenance
462 Non Adherence - Clearance
466 Non Adherence - Required Legal Sepa-

ration
468 Other Anomaly - Loss of Aircraft Con-

trol

3. REPRESENTINGTEXT DOCUMENTS IN A
VECTORSPACE

The vector space model is a classic way of represent-
ing text documents. A database of text documents can
be represented in the form of a Bag Of Words (BOW)
matrix. Each row of the BOW matrix represents a doc-
ument and each column represents a word from one or
more documents. Therefore, the columns of the BOW
matrix are the union of all of the words in all of the
documents. Each word is associated with a Term Fre-
quency (TF), which is given by the total number of times
a word occurs in the document. Document Frequency is
defined as the total number of documents in which the
word wi occurs. The(i, j)th cell of the BOW matrix
corresponds to the TFIDF, which is the Term Frequency
Inverse Document Frequency of thejth word in the doc-
ument. The TFIDF is defined as:TFIDF = TF.IDF,
whereIDF (wi) = log(n/DF (wi)), wheren is the to-
tal number of documents in the document database. Thus
each text document is represented as a point in a high di-

mensional vector space. Since the number of terms in
the union of all documents is likely to be very large, the
BOW matrix is high dimensional. In some applications
that we have studied, the dimension can be over 30,000.
A variety of techniques like Principle Component Anal-
ysis (PCA), Singular Value Decomposition (SVD) and
Information Theoretic approaches have been used to re-
duce the dimensionality of the vector space. [2]

4. A BRIEF LOOK AT CLUSTERING
METHODS

A wide variety of methods in the field of machine learn-
ing have been used to cluster text documents. In [3],
Joachims claims that most text categorization problems
are linearly separable, making them ideal candidates for
Support Vector Machines (SVMs). In [4], he makes
an attempt to bring out the statistical similarity between
the parametric and non-parametric approaches for clus-
tering.

The non-parametric methods in the classification of text
documents are generally algorithms like K-means and
Nearest Neighbor classification. Consider a set of data
points distributed in ad dimensional space. K-means
chooses a set of initial points as the seeds. In step one,
each document in the data set is associated with that seed
document to which it has the minimum Euclidean dis-
tance. This results in the classification of documents into
k clusters. In step two, the seed associated with each
cluster is updated to the mean of all document vectors in
that particular cluster. With the updated seeds, step one
is repeated again and the process continues iteratively.
Some of the documents get assigned to different clusters
and the seeds are repeatedly updated. The algorithm con-
verges when either the update on the seeds is ignorable
or the documents are no longer assigned to different clus-
ters during each iteration. In the following paragraphs we
will describe this algorithm in the context of the Gaussian
Mixture Model.

Mixture models can loosely be classified as a group of
methods that involve parameter estimation. Consider a
mixture of distributions from the exponential family. The
underlying random variable could be generated from any
one of the distributions in the mixture model with a prob-
ability equal to the prior probability associated with that
particular distribution.

The Gaussian Mixture Model assumes that the text docu-
ments were generated using a mixture ofk gaussian dis-
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tributions, each with its own parametersθi

k∑

i=1

αif(x|θi) (1)

such that
∑

i αi = 1, whereαi is the prior probability
of the ith distribution in the mixture model. Each prob-
ability distribution function is representative of a partic-
ular category of documents. If there arek categories in
a document database, then this situation can be typically
modeled using a mixture model ofk distributions.

Expectation Maximization Algorithm and its Application
to Text Classification

We will explain the Expectation Maximization (EM) al-
gorithm in the framework of the mixture model. [5] It is
an iterative approach to calculate the parameters of the
mixture model mentioned in the previous section. It con-
sists of two steps: The Expectation step or E-step and the
Maximization step or the M-step. In the E-step, the like-
lihood that the documents were generated using a given
distribution in the mixture model is estimated. Each doc-
ument is assigned to that cluster whose representative
probability density function has the highest likelihood
for generating the document. This results in the classifi-
cation of documents into one of then classes, each repre-
sented by a particular probability density function. In the
M-step, the maximum likelihood estimates of the param-
eters of each distribution is calculated. This step uses the
classification results of the E-step, where each class is as-
signed a set of documents. We will attempt to explain the
E-step and M-step in the context of the Gaussian Mixture
Model. Let us assume that we have M data points that we
want to model using a mixture of K univariate Gaussian
distributions with identical and known variance. The un-
knowns here are the parameters of the K gaussian distri-
butions. Also the information on which data point was
generated using which of the distributions in the mixture
is unknown. Each data pointYm is associated withK
hidden variables{wm,1, wm,2, wm,3, . . . , wm,k} where
wm,k = 1, if Ym was generated using distribution k,
otherwisewm,k = 0. The maximum likelihood (ML)
estimate of the meanµk of the kth distribution is given
by,

µk =
1

Mk

M∑
m=1

wm,kYm (2)

whereMk =
∑K

m=1 wm,k

The problem is that we know neither the value ofµk nor
the hidden variableswm,k.

E step: The expected values of thewm,k are calculated
based on the current estimates of the Gaussian parame-
tersµk.

E(wm,k) = p(k|Ym)

=
p(Ym|k)p(k)

p(Ym)

=
p(Ym, k)
p(Ym)

=
exp −(Ym−µk)2

2σ2∑K
j=1 exp −(Ym−µj)2

2σ2

(3)

This corresponds to clustering data points by minimizing
the Euclidean distances in the k-means algorithm.

M step: Using the expected values ofwm,k the ML es-
timates ofµk are calculated. This corresponds to updat-
ing the seeds of clusters centers at every iteration of the
k-means algorithm. Or, in other words, the M step cor-
responds to recalculating the seeds of the k-means algo-
rithm. The center of the cluster corresponds to the mean
of all the documents or data points in the corresponding
cluster.

Thus the k-means algorithm could be explained as a so-
lution to estimating the parameters of the Gaussian Mix-
ture Model. The parameters are determined by maxi-
mizing the expected value of the log likelihood function.
However in the context of text clustering, the high di-
mensional document vectors used to represent text doc-
uments are very sparse and the algorithm, does not work
on sparsely located data points in a high dimensional
space. Hence we will explore mixture models that can
provide more effective representation and analysis of text
documents.

5. DIRECTIONAL STATISTICS

Directional statistics is a field of statistics that analyzes
the statistical properties of directional random variables.
For example, a random variable,θ, representing the posi-
tion of a roulette wheel can be said to exhibit directional
statistics.

The preprocessing step before applying the clustering al-
gorithms to text data involves normalization. The TFIDF
document vectors areL2 normalized to make them unit
norm. Here the assumption is that the direction of doc-
uments is sufficient to get good classification and hence
by normalization, the effect of the length of the docu-
ments is nullified. For example, two documents - one
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short, one long - on the same topic will have the same
direction and hence will be put into the same cluster. If
the dimension of the vector space before normalization
is Rd, the unit normalized data lives on a sphere in an
Rd−1 dimensional space. Hence, it is more appropriate
to use directional distributions to model this data.

The von Mises Fisher Distribution

The Von Mises Fisher (VMF) distribution is one of the
directional distributions. It was developed by von Mises
to study the deviations of measured atomic weights from
integer values. Its importance in statistical inference on a
circle is almost the same as that of the normal distribution
on a line.

A circular random variable,θ, is said to follow a von
Mises distribution if its prior distribution function (pdf)
is given by:

g(θ; µo, κ) =
I

2πIo(κ)
exp κ cos(θ − µo),

0 ≤ θ ≤ 2π, κ > 0, 0 ≤ µo ≤ 2π,(4)

whereIo(κ) is the modified Bessel function of the first
kind and order zero. The parameterµo is the mean direc-
tion while the parameterκ is described as the concentra-
tion parameter. A unit random vectorx is said to haved
variate von Mises-Fisher distribution if its pdf is:

cd(κ)eκ µT xdSd−1, x ∈ Sd−1 ⊆ <d (5)

where‖ µ ‖ andκ ≥ 0. The closed form expression for
κ is given by:

Cp(κ) =
κd/2−1

(2π)d/2
I d

2−1κ
(6)

The Choice of VMF among all other Spherical Distribu-
tions

This section analyzes the appropriateness of using the
von Mises distribution for text classification among all
other spherical distributions. Is there a Central Limit
Theorem (CLT) for directional data? Does it correspond
to the CLT for non-directional data? For data on a line,
the CLT says that the normal distribution is the limiting
distribution. Whereas for directional data, the limiting
distribution of the sum of n independent random vari-
ables is given by the uniform distribution. In spite of this,
the uniform distribution is not a contender for modeling
directional data [6].

Relation to bivariate normal distribution: The VMF
shows several analogies to the properties of the nor-
mal distribution. Due to space limitations, we will dis-
cuss briefly a few such analogies. Maximum Likelihood
Characterization: Consider the distribution of a random
variable on the real line. Letf(x− µ) represent the dis-
tribution whereµ is the mean. The maximum likelihood
estimate forµ is given by the sample mean if and only
if the distribution is Gaussian. Similarly, for a random
variableθ on a circle, let the directional distribution be
given byg(θ − µo). The Maximum Likelihood estimate
for the meanµo is given by the sample meanxo, if and
only if the directional distribution is the VMF distribu-
tion. Maximum Entropy Characterization: Given a fixed
mean and variance for a random variablex, the Gaussian
is the distribution that maximizes the entropy. Likewise
for a circular random variable,θ, given a fixed mean di-
rectionµo and circular variance, the VMF distribution
maximizes the entropy.

Unfortunately there is no distribution for directional data
which has all properties analogous to the normal distri-
bution. The VMF has some but not all of the desirable
properties. The wrapped normal distribution is a strong
competitor to VMF. But the VMF provides simpler ML
estimates. Also the VMF is more tractable while doing
hypothesis testing. Hence the use of VMF over other di-
rectional distributions appears well warranted.

6. THE VMF A LGORITHM FOR
CLUSTERING

In this section we discuss the theory behind modeling the
text documents using a mixture model of VMF distribu-
tions. Consider a mixture model consisting ofK VMF
distributions similar to Equation 1. Each distribution is
attributed a prior probability ofαk with

∑k
k=1 αk = 1

andαk ≥ 0. It is given by:

f(x|Θ) =
K∑

k=1

αkfk(x|θk) (7)

Here Θ = {α1, α2, . . . , αk, θ1, θ2, . . . , θk}. θk =
(µ, κ). Let Z = {z1, ....zN} be the hidden variables as-
sociated with the document vectorsX{x1,x2, . . . ,xN}.
zi = k, if the document vectorxi was generated from the
kth VMF distribution. Assuming that the distribution of
the hidden variablesp(k|x,Θ) = p(zi = k|x = xi,Θ)
is known, the complete log likelihood of the data, with
expectation taken over the distribution p, is given by:
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Ep[ln P (X,Z|Θ)]

=
K∑

k=1

N∑

i=1

ln αkp(xi|Θ)

+
K∑

k=1

N∑

i=1

(ln fk(xi|θk))p(k|xi,Θ).

(8)

The Maximization Step: In the maximization step, we
estimateΘ by maximizing (8). By taking partial deriva-
tives of (8) w.r.t the parameters, the ML estimates are
given by:

α̂k =
1
N

N∑

i=1

p(k|xi,Θ) (9)

µ̂k =
∑N

i=1 xip(k|X,Θ)

‖∑N
i=1 xip(k|X,Θ)‖

(10)

The ML update forκ, obtained after approximations is
given by:

κ̂k =
r̄kd− r̄3

k

1− r̄2
k

(11)

whererk = Id/2(κ)

Id/2−1(κ)

The Expectation Step:Assuming that the ML updates
calculated from the above step are right, the expectation
step updates the distribution of the hidden variablesZ.
There are two ways of assigning the documents to clus-
ters: the soft and hard assignments. The distribution of
the hidden variables as considered in the soft assignment
scheme:

p(k|xi,Θ) =
αkfk(xi|Θ)∑K

k=1 αkfk(xi|Θ)
(12)

Under the hard assignment scheme, the update equations
are given by:

q(k|xi,Θ) = 1 if k = argmaxk′q(k′|xi,Θ)
0, otherwise (13)

So according to (13), the documents either belong to a
cluster or they do not. There is no notion of the doc-
uments belonging to several clusters. There is noone

to manymapping between the document and cluster do-
mains. In practice this may be disadvantageous because
some data sets like the Reuters data set have multi-
labeled documents. A few of the most popular classes
in the Reuters data set are ACQ, CORN, WHEAT and
EARN. In this case, there are documents that belong to
ACQ, EARN and WHEAT. It would be impossible to
get this kind of categorization using the hard assignment
scheme.

Although the update equations for the VMF algorithm
derived in the previous section have closed form expres-
sions, when the dimensionality of the vector space ex-
pands, the computations increase. Typical bag of words
(BOW) matrices are of the order of104 × 104. Since
the dimension of the document vectors is of the order of
104, the update equations forκ in (11), require the cal-
culation of very high order Bessel functions. Owing to
this, the computational time of the algorithm increases
and this also resulted in precision problems while track-
ing the variables through the iterations. To overcome this
problem, mathematical approximations were used in the
update equations. For a modified Bessel function of the
first kind and ordern, for largex, fixedn andx >> n,
the approximation is given as follows:

In(x) ∼ ex

√
2πx

(14)

When tested over several data sets, imputing this approx-
imation gave better or equally good performance, com-
pared to using the exact expression for Bessel functions.

7. SIMULATION RESULTS

We present the results of our unsupervised clustering
methods on two benchmark data sets. Although these
data sets are not related to the aerospace industry, they
allow us to test our algorithms. Subsequently, we test
our algorithms on the Aviation Safety Reporting System
(ASRS) data set which is a well-known textual data set
for aviation safety. Mutual Information is used as the
criteria for comparing the performance of the different
methods on the various data sets. Mutual Information is
generally used in statistics to measure the degree of in-
formation that be obtained about one random variable by
knowing the value of another random variable. Consider
two random variablesx andy. Let p(x) andp(y) be the
marginal distributions ofx andy and let the joint dis-
tribution bep(x, y). The Mutual Information betweenx
andy is defined as:

I(X; Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(15)
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We used the Mutual Information between the vector of
class labels produced by the algorithms and the actual
class labels of the documents as the criterion to compare
the performance of the different algorithms. We compare
the performance of the VMF algorithm against spherical
K-means (spk-means) algorithms. spk-means is a modi-
fied version of k-means. The cosine of the angle between
two data vectors points is used the measure of similarity
in spk-means in contrast to the Euclidean distance used
in the case of k-means.

20 Newsgroups Data Set Results

Figure 1 shows the performance of VMF versus spher-
ical K-means on the 20 News Groups diff3 data set. It
can be seen that the performance of the VMF algorithm
is significantly better for this data set. In Figure 2, the
performance curves for the VMF and spk-means algo-
rithms on the sim3 data set are shown. These results were
originally discussed in [1].
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spkmeans
VMF − hard

Figure 1. This figure shows a comparison between the
performance of the VMF and spherical K-means algo-
rithms for the diff3 Data Set, which is a data set where
the categories have very little overlap. The x-axis shows
the number of clusters and the y-axis shows the mutual
information averaged over 20 runs. Notice that the mu-
tual information is as much as 30% higher for the VMF
algorithm when compared to spherical k-means.

Reuters Data Set Results

The fact that the top frequency words in a cluster are rep-
resentative of the subject of the cluster is depicted in Fig-
ure 3. This figure represents the top frequency words
from two clusters CRUDE OIL and GRAIN from the
Reuters data set. The first row represents the distribution
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Figure 2. Comparing the Performance of VMF and
spherical K-means algorithms for the 20 News Groups
Sim3 data set. This data set contains documents that
have a high degree of similarity between them, thus
complicating the clustering task. The VMF algorithm
slightly outperforms the spherical k-means algorithm on
this benchmark data set.

of the first four most frequently occurring words in clus-
ter one. It compares the distribution of each word across
the whole dataset to the distribution across cluster one.
It can be seen these words occur with a higher probabil-
ity in the documents of cluster one. Thus the words oil,
price, and barrel indicate that cluster one contains docu-
ments belonging to category,crude oil. Similarly, clus-
ter two contains documents belonging to categorygrain.
The word, mln, is probably an abbreviation that occurs
in most documents belonging to both clusters one and
two. If it could be identified as a stopword and removed
from the dataset, the performance of the algorithm would
improve.

8. RECURRINGANOMALY DETECTION

We shift our attention to the problem of detecting recur-
ring anomalies in text documents. Recurring anomaly
detection is also an unsupervised learning problem. The
task of recurring anomaly detection has not been ad-
dressed by prior work, because of the unique structure of
the problem. The research most closely related to recur-
ring anomaly detection is perhaps the Novelty and Re-
dundancy Detection in Adaptive Filtering.[13] Novelty
and redundancy detection distinguishes among relevant
documents that contain new (novel) information and rel-
evant documents that do not. The definition of recur-
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Figure 3. Word distribution plots of the Reuters Data set
for cluster 1 and cluster 2. Note the cluster 1 terms re-
late to CRUDE, and the cluster 2 terms relate to GRAIN.
These plots show that the frequency of occurrence of key
words significantly affects the clustering results.

ring anomaly in our problem matches the definition of
redundancy. The difference between them lies in two as-
pects: 1. Novelty and Redundancy Detection processes
the documents in sequence, and recurring anomaly de-
tection does not. 2. Recurring anomaly detection groups
recurring anomalies into clusters, and Novelty Detec-
tion does not. Another research field related to recur-
ring anomaly detection is the retrospective event detec-
tion task in Topic Detection and Tracking [14] [15]. The
retrospective event detection task is defined to be the task
of identifying all of the events in a corpus. Recurring
anomaly detection task differs from their task in having
many single document clusters. However, the similarity
of the tasks is worth exploring, and several methods we
investigated are motivated by their work. The core part
of our work concerns similarity measures between sta-
tistical distributions. A complete study on distributional
similarity measures is presented by [16].

Language Models and Similarity Measures

There are two general approaches to measure the sim-
ilarity between documents: non-statistical methods and
statistical methods. One of the typical non-statistical
methods is cosine distance, which is a symmetric mea-
sure related to the angle between two vectors. It is
essentially the inner product of the normalized docu-
ment vectors. If we present documentd as a vector
d = (w1(d), w2(d), . . . , wn(d))T , wherewi(d) is the
number of occurrence of wordi in documentd, then the
similarity between two documentsdt anddj can be rep-
resented by:

cos(dt, dj) =
∑n

k=1 wk(dt)wk(dj)
‖dt‖ ‖dj‖ (16)

The statistical language model used in most previous
work is the unigram model. This is the multinomial
model which assigns the probability of the occurrence
of each word in the document

P (d) =
∏
wi

p(wi, d)tf(wi,d) (17)

wherep(wi, d) is the probability that word i occurred
in documentd, andtf(wi, d) indicates how many times
word i occurred in the documents.

We assume each document is generated by a distinct
multinomial distribution, and we discover and cluster re-
curring anomalies based on the distance between differ-
ent distributions. In contrast, in the mixture model we
used in the previous section, each distribution generates a
cluster of documents. In the recurring anomaly detection
problem described here, there are many single document
clusters. In a statistical sense single document cluster is
a single sample generated by the underlying distribution.
The reason that we do not use von Mises Fisher distri-
bution, which we used in the previous section, is that we
can not estimate the mean and the variance unless we
have a enough data points (documents). If we attempt to
use a VMF distribution to model a set of clusters, where
many clusters contain a single document, we run into the
following difficulty: each single document cluster gives
us zero variance and mean value which corresponds to
that of the single document vector itself; this is not very
meaningful in our context.

The problem is reduced to a multinomial distribution pa-
rameter estimation problem. The maximum likelihood
estimation of the probability of a word occurring in the
document is shown below as :

p(wi|d) =
tf(wi, d)∑
wj

tf(wj , d)
(18)

Furthermore, we use an algorithm based on generative
model of document creation. This new mixture word
model measure is based on a novel view of how rel-
evant documents are generated. We assume each re-
curring anomaly document is generated by the mixture
of three language models: a general English language
model, a topic model, and a document-specific infor-
mation model. For instance, in a short document ”the
airplane engine has some electric problems,” the words
”the,” ”has” and ”some” probably come from the gen-
eral English model, words such as ”airplane” and ”prob-
lem” are likely generated from the topic model, and the
words ”engine” and ”electric” are generated from the
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document-specific information model. Because all the
documents are anomaly reports on airplanes, documents
are likely to contain words like ”airplane” and ”prob-
lem.” The information contained in the document spe-
cific model is useful to detect recurring anomalies caused
by different problems. So measuring the similarity only
between the document specific models makes the recur-
ring anomaly detection more accurate. Each word is gen-
erated by each of the three language modelsθE , θT and
θdcore with probabilityλE , λT andλdcore respectively:

P (wi|θE , θT , θdcore, λE , λT , λdcore) =
λEP (wi|θE) + λT P (wi|θT ) + λdcoreP (wi|θdcore) (19)

where λE , λT and λdcore are the probabilities of a
word generated by general english language model, topic
model and document specific model, respectively, and
λE +λT +λdcore = 1. If we fix λE ,λT andλdcore, then
there exists a unique optimal value for the parameters of
document core model that maximizes the likelihood of
the document. We employ a quick algorithm based on
Lagrange multiplier method to find the exact optimal so-
lution, given fixed mixture weightsλE , λT andλdcore

[17].

Kullback-Leibler divergence, a distributional similarity
measure, is one way to measure the distance between two
multinomial distributions.

KL(θdt , θdj ) =
∑
wi

p(wi)|θdt log(
p(wi|θdt)
p(wi|θdj )

) (20)

whereθdt and θdj are the parameters of two multino-
mial distributions, which can be estimated either using
general maximum liklihood estimation (18) or mixture
word model (19). The problem with KL divergence is
that if a word,wi never occurs in a document, it will
get a zero probabilityp(wi|d) = 0 . Thus a word not
in dt but in dj will causeKL(θdt , θdj ) = ∞. To avoid
the singularity of KL divergence, we resort to other mea-
surements: Jensen-Shannon divergence, Jaccard’s Coef-
ficient and skew divergence. Jensen-Shannon divergence
[16] has proven to be a useful symmetric measure of the
distance between distributions

JS(θdt , θdj )

=
1
2
[KL(θdt , avgdt,dj )

+ KL(θdj , avgdt,dj )] (21)

whereavgdt,dj = 1/2(θdt + θdj ).

We also use skew divergence [16] to measure the similar-
ity between two discrete distributions. Skew divergence

is an asymmetric generalization of the KL divergence,

Sk(θdt
, θdj

) = KL(θdt
, (1−α)θdt

+αθdi
) , 0 ≤ α ≤ 1

(22)

Note that atα = 1, the skew divergence is exactly the KL
divergence, and atα = 0.5 , the skew divergence is twice
one of the summands of Jensen-Shannon divergence. In
our experiment, we chooseα = 0.99 to approximate the
KL divergence and avoid singularity.

Jaccard’s coefficient differs from all the other measures,
being essentially based only on the sizes of the supports
of the document specific distribution rather than the ac-
tual value of the distribution

Jac(θdt , θdi) =

{
v : θdt(v) > 0 andθdj (v) > 0

}
{
v : θdt

(v) > 0 or θdj
(v) > 0

} .

(23)
Based on the similarity measurement between anomaly
documents, we apply an agglomerative hierarchical clus-
tering method to partition the documents. The agglom-
erative hierarchical algorithm produces a binary tree of
clusters in a bottom-up fashion: the leaf nodes tree are
single document clusters; the middle-level node is the
centroid of the two most proximate lower level clusters;
and the root node of the tree is the universal cluster which
contains all the documents. The agglomerative hierar-
chical clustering method we apply is single linkage clus-
tering. For single linkage clustering, the linkage func-
tion specifying the distance between two clusters is com-
puted as the minimal object-to-object distance. In other
words, the distance between two clusters is computed as
the distance between the two closest objects in the two
clusters. In order to cluster the data points, we specify
a threshold on the similarity and if the distance between
two data points is less than the threshold, we cluster these
two documents together.

New Performance Measures for Recurring Anomalies

The recurring anomaly detection problem can be decom-
posed into two parts: discovering recurring anomalies
and clustering recurring anomalies, so there is a need for
different performance measures. Now we present a sim-
ple example to indicate the need for the new performance
measure.

Suppose we only have 10 anomaly documents. In the
column “Algorithm” in Table 2, we see that our algo-
rithm groups the documents into 5 clusters; the col-
umn “Expert” shows the expert clustering results. The
bold numbers in each column correspond to the recur-
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ring anomalies detected by the algorithm and recurring
anomalies labeled by the expert, respectively.

Table 2. Simple clustering example for illustrating new
performance measure

Algorithm Expert

Cluster 1 1,2,5,6 1,2,3,4

Cluster 2 3,4,7 5,8

Cluster 3 9 9,10

Cluster 4 10 6

Cluster 5 8 7

In this example the algorithm has made the following
errors: it missed recurring anomaly 8 in expert clus-
ter 2; incorrectly categorized anomaly documents 6 and
7 as recurring anomalies; incorrectly separated expert
anomaly cluster 1, which contains anomaly documents
1, 2, 3 and 4, into two clusters; incorrectly separated ex-
pert anomaly cluster 3, which contains anomaly docu-
ments 9 and 10, into two single clusters; and incorrectly
combined recurring anomaly documents 1, 2, 5 and non-
recurring anomaly document 6 into one cluster. So we
summarize the errors into four categories: 1. miss a re-
curring anomaly, 2. incorrectly indicate a non-recurring
anomaly, 3. incorrectly separate same category of re-
curring anomalies into different clusters, 4. incorrectly
combine different kinds of recurring anomalies into one
cluster. We useR+, R−, N+, andN− to denote the
number of documents that fall into the following cate-
gories (Table 3) We apply the standard precision ( purity

Table 3. Precision and recall categories

Labeled by
Expert as
recurring
anomaly

Not labeled
by Expert
as recurring
anomaly

Detected as
recurring
anomaly

R+ N+

Not detected
as recurring
anomaly

R− N−

of recurring anomaly detection ) and recall ( complete-
ness of recurring anomaly detection) measure to charac-

terize the first two errors as we described above.

Precision =
R+

R+ + N+
(24)

Recall =
R+

R+ + R−
(25)

Table 4. Same simple clustering example for
illustrating the new performance measure (i.e., keep

anomalies which are both detected by algorithm and and
labeled by expert)

Algorithm Expert

Cluster1 1,2,5 1,2,3,4

Cluster2 3,4 5

In the given example, the number of recurring anomaly
clusters which are both detected by the algorithm and la-
beled by the expert is 5; the total number of recurring
anomaly documents detected by the algorithm is 7; the
total number of recurring anomaly documents labeled by
the expert is 8. Therefore, the precision is5/7 and the
recall is5/8. Precision and recall here measure the ac-
curacy of detecting recurring anomalies, but do not char-
acterize the accuracy of clustering anomalies. Because
only the recurring anomaly documents which have been
both detected by the algorithm and labeled by the expert
affect the accuracy of the clustering, we use these anoma-
lies to calculate the miscombination and misseparation
score. The remaining anomalies are shown in Table 4.

To measure the errors caused by incorrectly separating
recurring anomalies, which are in the same expert clus-
ter, into different clusters, we add up the reciprocal of
the number of separated clusters corresponding to each
expert cluster and normalize it by the total number of
clusters in the expert result. If the algorithm result ex-
actly matches the expert result, the score for that expert
result is1. The score decreases as the number of sep-
arated clusters increases. The counterpart of missepa-
ration by the algorithm is miscombination of the expert
categories, so we use the same scheme but based on the
algorithm result to calculate the miscombination score.
To express the misseparation score and miscombination
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score metric, we use the following notation.

NSAi = number of algorithm clusters which

incorrectly separate the anomalies in the

ith expert cluster

NSEi = number of expert clusters which are

incorrectly combined into the

ith algorithm cluster

NE = total number of clusters in expert result

NA = total number of clusters in algorithm result

Therefore the misseparation and miscombination scores
are defined as following,

Misseparation =

∑NE
i=1

1
NSAi

NE
(26)

Miscombination =

∑NA
i=1

1
NSEi

NA
(27)

To better understand the measure scheme, we will ex-
plain it with the same simple example, Table 2. The
algorithm separated anomaly 1, 2, 3 and 4 which are
in expert cluster 1, into two clusters, so the missepa-
ration score for this cluster is 1/2; for expert cluster 2,
since there is only one anomaly, the misseparation score
is 1. The overall normalized score for misseparation is
1/2+1

2 = 0.75. The miscombination score can be calcu-
lated with the same approach.

Experimental Results and Conclusions

The aerospace system we analyzed is the NASA Space
Shuttle problem reports as represented in the CARS data
set, which consists of 7440 NASA Shuttle problem re-
ports. We conducted experiments on the CARS data set
to compare the performance of different similarity mea-
sure schemes.

To testify to the effectiveness of the mixture language
model, we compared the performance of the skew diver-
gence measure based on mixture language model (19)
and the skew divergence measure based on general lan-
guage model, which use maximum likelihood estimation
(18). The results are shown in Figure 4 and Figure 5.
From Figure 4, we see that the mixture model result is
consistently more accurate than the general model. Fig-
ure 5 shows that the mixture language model and general
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Figure 4. Precision and Recall Comparison between
Skew Divergence based on Mixture language Model and
Skew Divergence based on General Language Model
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Figure 5. Misseparation and Miscombination Compar-
ison between Skew Divergence based on Mixture lan-
guage Model and Skew Divergence based on General
Language Model

model are comparable. The experiments on verifying the
mixture language model are also performed on the other
statistical similarity measures, and results consistently
show that the mixture language model outperforms the
general language model.

We also compared the performance of four similarity
measures: cosine distance, skew divergence based on
mixture language model, Jenson-Shannon divergence
based on mixture word model, and Jaccard’s coefficient
based on mixture word model. Here we compared the
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Figure 6. Precision and Recall comparison of Skew
Divergence based on mixture language model, Jenson-
Shannon Divergence based on mixture language model,
Jaccard’s Coefficient based on mixture language model
and Cosine distance

statistical similarity measures based on the mixture lan-
guage model with the non-statistical similarity measure,
cosine distance, because previous experiments have al-
ready shown that the mixture language model is more
effective than general language model.

Figure 6 and Figure 7 present two types of comparison
measures for each method. Figure 6 shows that the skew
divergence method based on the mixture language model
and the cosine distance method are very effective. In gen-
eral, they outperform the other two methods. The Jac-
card’s coefficient measure is the least accurate. There
was value in doing this comparison because it showed
that the traditional cosine similarity metric is very effec-
tive, even though cosine similarity is less well-justified
statistically compared with language modeling approach.
However, cosine similarity has been demonstrated many
times and over many tasks to be a robust similarity met-
ric. Our results add recurring anomaly detection to the
long list for which it is effective. In the region, where the
recall ranges from 0.55 to 0.85, the skew divergence is
the most accurate. This region satisfies the user require-
ments: relatively high recall and low precision.
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Figure 7. Misseparation and Miscombination com-
parison of Skew Divergence based on mixture language
model, Jenson-Shannon Divergence based on mixture
language model, Jaccard’s Coefficient based on mixture
language model and Cosine distance

9. TEXT CLASSIFICATION OF AVIATION
SAFETY REPORTS INTOANOMALY

CATEGORIES

There are a number of predefined anomalies which can
occur in the aircraft during a flight. The goal of text clas-
sification is to develop a system that based on the se-
mantic meaning of a report infers which, if any, anoma-
lies have occurred during a flight for which a report has
been written. The work at the semantic level has already
been done and we are given the resulting BOW matrix
where the words are extracted by natural language pro-
cessing (NLP) methods. As mentioned in a previous sec-
tion, there are a total of 20,696 reports, a total of 28,138
distinct terms, and a total of 62 different anomalies. A
report can have between 0 and 12 anomalies. Whether
a particular anomaly has occurred or not is labeled by 1
and 0 respectively in the training data set. Most reports
(over 90% of them) contain more than 1 anomaly, with
the most common group of reports containing exactly 2
anomalies (5,048 reports). The most frequent anomaly
occurs in almost half of the reports.

System Overview

By running association rules on the anomaly labels,
it was determined that the correlation among different
anomalies is not strong. Therefore each anomaly can be
treated individually. Thus the multi-label classification
problem is treated as a binary classification problem for
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every anomaly. For this reason, and others, the VMF al-
gorithm limitations prevent it from being the appropriate
algorithm for analysis of the full data set. As an initial
step, 12 of the 62 anomalies were selected with the goal
of trying to find a classifier that will perform best for each
of them.

This approach can be summarized in three main phases.
In the first phase the data is loaded into a database, statis-
tics are collected on it for the purposes of studying the
data, then the terms with very low frequency are re-
moved. In the second phase, common feature selection
algorithms are run to reduce the feature space by pick-
ing the best terms for each anomaly. In the final phase,
experiments were run with several commonly used text
classification algorithms, such as Support Vector Ma-
chines (SVM), Naive Bayes, AdaBoost, Linear Discrimi-
nant Analysis (LDA), Logistic Regression, implemented
in the open-source packages WEKA [7], SVM-light [8]
and R. We show convincingly that SVM, with an Radial
Basis Function (RBF) kernel in particular, performs best
for this particular text classification problem. Figure 8
summarizes our architecture.

Database

  Queries

Collection of Statistics

New Bag of Words,

rare terms removed

Perl Scripts

WEKA input

       files

WEKA Feature 

    Selection

Assoc. rules

Bag of Words

         file

Anomalies file

Perl Scripts Normalization SVM Light files

Classification

Figure 8. This block diagram shows the architecture
for the text classification system that we built to clas-
sify Aviation Safety Reports. Data were loaded into a
MySQL database and open-source data mining software
was used for the analysis and classification of the data.

All terms which appear in exactly one report, regardless
of their frequencies, are removed. The intuition behind
this is that those terms are not frequent enough to be used
for training and will most likely not be seen in the test
data. Also, since even the low frequent anomalies occur
in at least hundreds of reports, we do not expect much
contribution of the rare terms to the classification prob-
lem. After the removal of those rare terms, the total num-
ber of terms left is 17,142.

In this phase we perform feature reduction by selecting
the most informative terms for every anomaly [11][12].
The Information Gain (IG) criterion is used to rank the
terms according to how informative they are for a specific
anomaly:

IG(class, term) = H(class)−H(class|term) (28)

where H(class) denotes the entropy of a specific
anomaly, andH(class|term) denotes the conditional
entropy of an anomaly given a particular term. For ev-
ery anomaly, we experimentally find out which is the
optimal number of terms. This is an iterative process
and includes picking different numbers of best terms for
each anomaly and then running several different classi-
fiers and analyzing the performance results. For some
anomalies, it is best to keep the top 1000 ranked terms
out of 17,142 and for some others this number is 500 or
1500. For efficiency purposes we set 1500 as an upper
threshold of the number of terms we would work with.
Working with just the best 500, 1000, or 1500 terms for
each anomaly helps speed up the classification process
and at the same time increases the classification accu-
racy. It was observed that infrequent anomalies are clas-
sified more accurately with fewer terms. Figure 9 shows
a comparison of the F-Measure results of the class of re-
ports having an anomaly, when a different number of best
terms is picked for each anomaly. The F-Measure is de-
fined as the harmonic mean between precision and re-
call: F -Measure(class) = 2/(1/precision(class) +
1/recall(class)). The classifier used for this compari-
son is SVM with a linear kernel and default parameters.

F-Measure Accuracy Comparison using 50, 500, 1000, 1500, & 

2500 Words 
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Figure 9. This chart shows the accuracy obtained by
using the top 50, 500, 1000, 1500, and 2500 words as
measured by information gain in a text classifier for 12
different anomaly codes. Notice that for most anoma-
lies, the accuracy does not significantly increase by using
more words.
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Experimenting with Different Classifiers

After selecting the optimal number of terms for each
anomaly, we tested different classification methods to de-
termine which method would give the best classification
accuracy across all anomalies. We experimented with
Naive Bayes, Adaboost, SVM, LDA, and Logistic Re-
gression. We use the implementation of SVM in both
Weka and SVM-light, and the Weka implementations
of Naive Bayes and AdaBoost with base learner Naive
Bayes. Figure 10 shows the comparison on the overall
precision (both classes) for those methods:

Overall Precision
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SVM WEKA linear SVM light linear

Figure 10. This figure shows a comparison between four
different classifiers on 12 anomaly codes. The Support
Vector Machine models tend to have the highest preci-
sion, with an ensemble method known as AdaBoost close
behind.

SVM with a linear kernel performed best overall. Further
experiments are mainly performed with the SVM classi-
fier, although we do make comparisons with two other
common classification methods - LDA and Logistic Re-
gression. Experimentation with various SVM kernels oc-
curs after normalizing the frequencies of terms remain-
ing after the feature reduction. Unit length normalization
did not obtain desirable results. Instead, we normalized
by lettingfij be the frequency of termti in documentdj .
The new frequencyf ′ij of every term is:

f ′ij = fij/
∑

i

fij (29)

with
∑

i

(f ′ij) = 1 (30)

Our normalization differs from the unit length normal-
ization, which we also tried but did not obtain desirable
results. The SVM training and classification are very fast

in the SVM-light package. Training and 2-fold cross val-
idation on 20,696 reports takes about 2 minutes on av-
erage on a 2 Ghz Pentium III Windows machine with
512MB of RAM.

Support Vector Machines for Text Classification

Support Vector Machines are based on the structural risk
minimization principle from statistical learning theory
[9]. In their basic form, SVMs learn linear decision rules
h(x) = sign{~w~x} described by a weight vector~w and
a thresholdb. Input is a sample onn training examples
Sn = (( ~x1, ~y1), ..., ( ~xn, ~yn)), ~xi ∈ Rn,~yi ∈ {−1,+1}.
For a linearly separableSn, the SVM finds the hyper-
plane with maximum Euclidean distanceδ to the closest
training examples. For non-separable training sets, the
amount of training error is measured using slack vari-
ablesξi. Computing the hyperplane is equivalent to solv-
ing an optimization problem:

minimize : V (~w, b, ~ξ) = 1/2~w~w + C

n∑

i=1

ξi (31)

subject to : ∀n
i=1 : yi[~w~x + b] ≥ 1− ξi (32)

and : ∀n
i=1 : ξi > 0 (33)

The two constraints in Equations (18) and (20) require
that all training examples are classified correctly up to
some slackξi. If a training example lies on the wrong
side of the hyperplane, the correspondingξi is greater or
equal to 1. Therefore,

∑n
i=1 ξi is an upper bound on the

number of training errors. The parameter C in eqn (17)
allows trading off training error and model complexity.

SVMs work well in text classification [10] for a number
of reasons:

1. Text normally has high dimensional input space.
SVMs can handle large feature spaces.
2. Document vectors are sparse and SVMs are well
suited for problems with sparse instances.
3. Most text classification problems are linearly separa-
ble. SVMs easily find linear (and for that matter polyno-
mial, RBF, etc.) separators.

SVMs can be implemented with different kernels and for
the task of text classification, the most popular are the
linear, polynomial and RBF kernels. We experiment with
the kernels that we mentioned above and results of the
anomalous class F-Measure are shown in Figure 11. As
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one can observe, the RBF kernel works best for almost
all anomalies. In Figure 12 we show the recall-precision
graph for one of the anomalies (anomaly 413). It is ev-
ident from the graph that for a relatively low recall we
can achieve very high precision.
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Figure 11. This chart shows the precision for three Sup-
port Vector Machine kernels. The RBF kernel tends to
have the highest accuracy, although by a small margin.
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Figure 12. Precision-Recall graph for anomaly 413.
This figure shows the classification trade-off between
precision and recall. High precision is possible at the
expense of a low recall rate.

In order to compare methods, one can compare the break-
even point, where precision = recall. If one method has
a greater break-even point than another method, then it
has higher precision and higher recall. Since we are in-
terested in both high precision and high recall, we will
use the break-even point to measure the classification ac-
curacy of multiple classification methods. Results of the
break-even point for all anomalies using one method are
presented in Figure 13. From those results, we can con-
clude that for some anomalies we get lower quality pre-
dictions than for others. In other words, some anoma-
lies are much harder to classify than others. The problem
with the harder to classify anomalies can be related to the

initial ”bag of words” where the terms picked for those
anomalies are apparently not descriptive enough.

Break-Even Point (Precision=Recall)
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Figure 13. Break-even point for the anomalous class
of 12 anomalies for the Support Vector Machine. The
frequencies of each anomaly class are shown in paren-
theses.

Our emphasis is to predict accurately especially on the
class that contains a specific anomaly. In other words,
we want to be particularly accurate when we predict that
an anomaly is present in a report. We call that the anoma-
lous class. Since the frequency of anomalies across re-
ports varies from about 50% to less than 1%, we want
to get both high precision and high recall on the anoma-
lous class. That is why we deem using the break-even
point of the anomalous class as an evaluation metric to
be the most meaningful method of evaluating our results.
In Figure 14 we show the break-even comparison of the
SVM (RBF kernel) results on the 12 anomalies shown
above (Figure 13) with the break-even results obtained
from commonly used by statisticians LDA and Logistic
Regression classifiers.
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Figure 14. Break-even point for the anomalous class of
12 anomalies, comparison among SVM (blue bars), LDA
(red bars), Logistic Regression (yellow bars). The SVM
significantly outperforms standard methods.
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The results obtained with SVM with an RBF kernel are
very good with average anomalous break-even point for
all anomalies of 63% and highest of 78%. The non-
anomalous average break-point is at the 90%+ level. The
break-even results using LDA and Logistic Regression
have weighted average anomalous break -even points of
57.26% and 49.78% respectively. Moreover, using Lo-
gistic Regression, for 4 of the 12 anomalies, a break-
even point could not be produced, the same problem oc-
curred using LDA for 1 of the 12 anomalies. The robust
SVM classifier easily produced break-even points for all
anomalies. On average, for each of the 12 anomalies it
outperforms LDA and Logistic Regression by 5-7% and
by 10-15%, respectively.

10. CONCLUSIONS AND FUTURE WORK

We presented an experimental comparison of the state
of the art techniques for text classification applied to the
problem of classifying flight reports to predefined cate-
gories of occurring anomalies. Starting from the BOW
matrix, applying feature reduction techniques and us-
ing an SVM classifier, we obtain very good results for
some anomalies in terms of both precision and recall.
However, for some other anomalies this model does not
produce such high levels of desired accuracy. As men-
tioned above, the problem with the harder to classify
anomalies can be related to the initial BOW matrix where
the terms picked for those anomalies by the natural lan-
guage processing methods are not descriptive enough.
We plan to investigate the initial reports contents and find
NLP methods particularly suited to do better on the cur-
rently difficult to classify anomalies. This also points to
the importance of well-written reports, particularly when
the report describes anomalies which have shown them-
selves to be difficult to classify.

For recurring anomaly detection on aviation safety re-
ports, finding the semantic relationships between docu-
ments is important. For instance, our data sets have quite
a few documents with phrases like, ”this problem is sim-
ilar to another problem.” Approximately 15% of the doc-
uments in the CARS data set had similar phrases. Any
statistical language model based on the standard ”bag of
word” matrix does not embody such semantic informa-
tion. We call phrases, such as ”similar to” or ”refer to,”
trigger phrases. If we could detect the documents which
contain trigger phrases and also identify a direct connec-
tion to another document, we expect to have a tremen-
dous improvement on the performance of our system.
Our results indicate that a large amount of the recurring
anomalies which have not been detected by the algorithm

are the documents that have trigger phrases. However,
the algorithm also found recurring anomalies that the ex-
perts had not identified.

To detect the documents which contain trigger phrases
and also indicate a connection to other documents, we
need to extract the information around the trigger phrase.
Information extraction is a well defined research area,
and there are many techniques to apply to this problem.
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