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Modern space propulsion and exploration system designs are becoming 
increasingly sophisticated and complex. Determining the health state of these 
systems using traditional methods is becoming more difficult as the number of 
sensors and component interactions grows. Data-driven monitoring techniques have 
been developed to address these issues by analyzing system operations data to 
automatically characterize normal system behavior. The Inductive Monitoring 
System (IMS) is a data-driven system health monitoring software tool that has been 
successfully applied to several aerospace applications. IMS uses a data mining 
technique called clustering to analyze archived system data and characterize normal 
interactions between parameters. This characterization, or model, of nominal 
operation is stored in a knowledge base that can be used for real-time system 
monitoring or for analysis of archived events. Ongoing and developing IMS space 
operations applications include International Space Station flight control, satellite 
vehicle system health management, launch vehicle ground operations, and fleet 
supportability. As a common thread of discussion this paper will employ the 
evolution of the IMS data-driven technique as related to several Integrated Systems 
Health Management (ISHM) elements. Thematically, the projects listed will be used 
as case studies. The maturation of IMS via projects where it has been deployed, or is 
currently being integrated to aid in fault detection will be described. The paper will 
also explain how IMS can be used to complement a suite of other ISHM tools, 
providing initial fault detection support for diagnosis and recovery. 

I. Introduction 
S modern space propulsion and exploration systems improve in capability and efficiency, their designs 
are becoming increasingly sophisticated and complex. Determining the health state of these systems 

using traditional parameter limit checking, model-based, or rule-based methods is becoming more difficult 
as the number of sensors and component interactions grows. Data-driven monitoring techniques have been 
developed to address these issues by analyzing system operations data to automatically characterize normal 
system behavior. System health can be monitored by comparing real-time operating data with these 
nominal characterizations, providing detection of anomalous data signatures indicative of system faults or 
failures.  
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Data-driven techniques have a number of advantages over other methods for monitoring complex space 
vehicles. Unlike model-based systems, the developer does not need to understand or encode the internal 
operation of the system. The knowledge required to monitor the system is automatically derived from 
archived data collected during system operation. Unlike rule-based systems, data-driven systems do not 
require system analysts to define nominal relationships among sensors. Analysts can and often do 
determine these relationships for systems with few sensors; it is more difficult to analytically determine the 
nominal relationship among a large number of sensors. Data-driven techniques are not limited to low-
dimensional spaces and can work as effectively with dozens of parameters as they do with a few. 
Knowledge bases formed by data-driven techniques are also easy to update. As the operating envelope of 
the monitored system is expanded, data-driven techniques can be quickly retrained to incorporate the new 
behavior into the knowledge base. The expertise and time-consuming process of updating a model or rule 
base to maintain consistency with the new operation is not required. Furthermore, as the training data set is 
updated with additional operations data, the resulting nominal behavior models tend toward improved 
system characterization. 

Several data driven software tools have been successfully applied to aerospace operations for both real-
time system monitoring and archived data analysis1. One such tool, Inductive Monitoring System2 (IMS), 
uses a data mining technique called clustering to analyze archived system data and characterize nominal 
interactions between selected parameters. This characterization, or model, of normal operation is stored in a 
knowledge base that can be used for real-time system monitoring or analysis of archived events. In 
monitoring, system data is periodically compared with the nominal IMS model to produce a measure of 
how well current system behavior matches normal behavior defined by the training data used to construct 
the knowledge base. The degree of deviation from expected nominal system behavior is summarized with a 
single scalar “distance from nominal” value for each tested data sample. Significant deviations from the 
nominal system model can provide alerts to call attention to potential system malfunctions or precursors of 
significant failures. IMS also provides information pertaining to the relative amount of contribution from 
each monitored parameter to any detected deviations. This can be helpful in isolating the cause of the 
anomaly. 

This paper discusses the use of the IMS data-driven technique as related to several Integrated System 
Health Management (ISHM) projects. The scope of IMS-based monitoring applications continues to 
expand with current development activities. Successful IMS deployment in the International Space Station 
(ISS) flight control room has led to generalization and applications in other ISS flight control disciplines. It 
has also generated interest in data-driven monitoring capability for Constellation, NASA’s program to 
replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the 
Moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS 
technology and complementary tools for use in the Constellation program. These include a vehicle system 
management experiment for the Air Force TacSat-3 satellite, ground systems monitoring for NASA’s Ares 
I-X and Ares I launch vehicles, and fleet supportability applications. This paper describes the maturation of 
IMS via these projects and also explains how IMS can be used to complement a suite of other ISHM tools, 
providing initial fault detection support for diagnosis and recovery.  

 

II. Data Mining for Space Operations 
Many space operations organizations maintain extensive archives of operational data from both 

spacecraft and ground support systems. Data mining methods can be used to analyze the data found in these 
archives and extract information about typical parameter behavior and parameter interactions. In particular, 
data driven anomaly detection techniques can process the data to find unusual events, or outliers, in data for 
a given subsystem. These anomaly detection techniques can also automatically analyze archived nominal 
system data to characterize normal system performance. Comparing incoming real-time data to a nominal 
model can inform the user when current system behavior differs from previous system performance. 

A. Distance-Based Anomaly Detection 
One powerful feature of many data driven anomaly detection techniques is the ability to simultaneously 

analyze multiple parameters. This feature allows them to discover and model interactions between related 
parameters that might be difficult to notice when monitoring the parameters individually. A basic data 
structure used for distance-based analysis is a vector of parameter values (Fig. 1). Vectors containing N 



values are treated as points in an N-dimensional vector space. An appropriate distance metric is used to 
calculate the distance between these points. The familiar Euclidean distance metric has proven effective in 
many applications, though other metrics may also be useful. The underlying premise of distance-based 
anomaly detection is that anomalous data points will fall a significant distance away from typical, nominal 
data points. 

For system health monitoring applications, vector parameters are typically instantiated with concurrent 
sensor values collected from a time slice of the data stream. Additional computed (derived) values or 
parameter values from previous data samples can be included in the vector as well. For instance, increased 
system insight can often be obtained by incorporating values in the vector such as the rate of change of a 
pressure, the difference between two related temperature sensors, or the difference between commanded 
and actual values for a set point or actuator position. Also, augmenting the vector with values collected 
during previous time slices can implicitly capture short term system operation patterns and trends. Flight 
controllers and engineers familiar with the monitored system can often suggest useful telemetry and 
derived parameters to use in the health monitoring vectors. Before processing, these vector values are 
typically normalized by applying z-score normalization or a similar method to each of the parameters. 

In some cases, it may be advantageous to increase or decrease the significance (weight) given to certain 
vector parameters. For instance, if maintaining a specific operating pressure is critical to a system, the 
weight of that pressure value could be increased so a small deviation in the pressure would manifest as a 
larger change in the associated vector parameter, increasing monitoring sensitivity to variations in that 
parameter. Conversely, if the monitored system is not particularly sensitive to a certain parameter, such as 
ambient temperature, the weight of the ambient temperature value could be decreased to reduce the chance 
of unnecessary alarms when that parameter value changes by an insignificant amount. 

Each monitored system will present unique characteristics. Techniques are currently under development 
to assist with parameter selection and weighting based on automated data analysis. However, normalization 
and parameter weighting schemes may sometimes benefit from manual tuning to suit the situation or meet 
particular monitoring goals.  

Pressure 
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2857.2 86.4% 1218.4 96.2% 1104.1 49.8 37.6 
Figure 1. Sample Data Vector 

B. IMS: Inductive Monitoring System 
The Inductive Monitoring System (IMS) is a distance-based anomaly detection tool that uses a data 

driven technique called clustering to extract models of normal system operation from archived data.2 IMS 
works with vectors of data values as described in the previous section. During the learning process, IMS 
analyzes data collected during periods of normal system operation to build a system model. It characterizes 
how the parameters relate to one another during normal operation by finding areas in the vector space 
where nominal data tends to fall. These areas are called nominal operating regions and correspond to 
clusters of nearby, similar points found by the IMS clustering algorithm. IMS represents these nominal 
operating regions as hyper-boxes in the vector space, providing a minimum and maximum value limit for 
each parameter of a vector contained in a particular hyper-box. These hyper-box cluster specifications are 
stored in a knowledge base that IMS uses for real-time telemetry monitoring or archived data analysis. 
Figure 2 shows an overview of the IMS method. 

 
1. IMS Learning Process 

In general, the number and extent of nominal operating regions created during the IMS learning process 
is determined by three learning parameters: the “maximum cluster radius” can be used to adjust the size and 
number of clusters derived from a fixed number of training data points, the “initial cluster size” is used to 
adjust the tolerance of newly created nominal operating regions, and the “cluster growth percent” is used to 
adjust the percent increase in size of a nominal operating region when incorporating new training data 
vectors. More specifically, the learning algorithm builds a knowledge base of clusters from successively 
processed vectors of training data. As such, the clustering approach is incremental in nature, which 
distinguishes it from well-known methods such as k-means clustering where the resulting clusters are 
independent of the ordering of the vectors. With the processing of each new training data vector, the 
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Figure 2. Inductive Monitoring System (IMS) overview 
istance from this new vector to the centroid of the nearest cluster in the knowledge base is computed. If 
is distance is below a pre-specified value, the “maximum cluster radius”, the new vector is summarily 
corporated into that cluster. The upper or lower limits for each affected dimension of the cluster are 

xpanded respectively according to the “cluster growth percent” parameter to reflect the inclusion of the 
ew vector. This incremental, inductive process gives IMS an advantage over other clustering methods 
ch as k-means, since it tends to group temporally related points during the learning process. The grouping 

f temporally related points may also aid in discovering distinct system operations, which makes IMS more 
menable to the specific goal of monitoring time series data for system operations.  

The “cluster growth percent” parameter is used to adjust the learning rate. It establishes a fixed 
growth” percentage difference for expansion of each dimension when updating previously formed 
lusters. This “cluster growth percent” learning parameter is therefore clearly proportional to the learning 
te, due to the increased number of training data points that will be assigned to each new cluster per 
eration for higher values of the “cluster growth percent” parameter. Naturally, the number of clusters in 
e knowledge base for a given training data set will increase as the “maximum cluster radius” and “cluster 

rowth percent” values are decreased. Therefore, an inverse relationship between the maximum cluster 
dius and the number of clusters in the knowledge base exists. This dependence can be exploited to 
gulate the final size of the knowledge base in order to accommodate resource limitations in the computers 
nning IMS. 

If the distance between a newly processed vector and the centroid of the nearest cluster in the 
nowledge base is above the pre-specified “maximum cluster radius” value, a new cluster is created. The 
rmation of a new cluster is accomplished by creating a hyper-box whose dimensions are based upon 
rming a window around each element of the new training data vector. The window is defined by 
troducing the “initial cluster size” parameter which is used to adjust the learning tolerance. This “initial 

luster size” learning parameter represents a fixed percentage of the value for each dimension of the new 
aining vector. As such, it relates directly to the size of newly established clusters, otherwise known as the 
learning tolerance.” The “initial cluster size” and “cluster growth percent” learning parameters also act as 
uffers which enable a provisional allowance for manufacturing sensor tolerances and for sensors that may 
ave suffered from deterioration due to wear. Furthermore, these learning parameters provide increased 
overage to compensate for training data that may not fully characterize the nominal performance envelope. 

 
. IMS Monitoring Process 

During the monitoring operation, IMS reads and normalizes real-time or archived data values, formats 
em into the predefined vector structure, and searches the knowledge base of nominal operating regions to 
e how well the new data vector fits the nominal system characterization. After each search, IMS returns 



the distance from the new vector to the nearest nominal operating region, called the composite distance. 
Data that matches the normal training data well will have a composite distance of zero. If one or more of 
the data parameters is slightly outside of expected values, a small non-zero result is returned. As incoming 
data deviates further from the normal system data, indicating a possible malfunction, IMS will return a 
higher composite distance value to alert users to the anomaly. IMS also calculates the contribution of each 
individual parameter to the composite deviation, which can help identify and isolate the cause of the 
anomaly. 

 
3. IMS Development Environment 

An IMS development environment is under construction to facilitate production of IMS monitoring 
applications. It centers on a graphical user interface (GUI) that consolidates common IMS monitoring 
application development tasks (Fig. 3). These tasks include selecting useful data parameters and parameter 
weights, extracting and validating data from archive files, detecting and removing spurious and off-nominal 
data points from the archives, and building IMS knowledge bases. This development environment is 
intended to enable IMS end users, such as flight controllers or mission engineers, to conveniently develop 
their own IMS monitoring applications without consulting data mining specialists. 

 

 

 
Figure 3. IMS development environment GUI showing composite results review and data editing tool 

 

III. Space Operations Applications 
The IMS software tool has been deployed in NASA mission control to support real-time telemetry 

monitoring and has generated interest in data-driven monitoring capability for other NASA programs. 
Several projects are currently underway to evaluate and mature the IMS technology and complementary 
tools for use in NASA’s Constellation program. These include a vehicle system management experiment 
for the Air Force TacSat-3 satellite and pre-launch ground diagnostics for NASA’s Ares I-X development 
flight test. Additionally, IMS is under evaluation for ongoing Ares I ground support equipment health 
monitoring and Constellation fleet supportability tasks. 

A. International Space Station Mission Control 
Thus far, IMS has been deployed in NASA’s International Space Station (ISS) flight control room in 

support of two flight control disciplines: Attitude Control and Thermal Operations. The ISS Control 
Moment Gyroscope (CMG) attitude control system consists of four large gyroscopes, each mounted in a 



gimbal system that can rotate the CMG about the two axes 
perpendicular to the gyroscope spin axis (Fig. 4). The 
CMGs operate as non-propulsive attitude control devices 
that exchange momentum with the ISS through induced 
gyroscopic torques.  

As they have aged, some of the CMGs have degraded 
enough to malfunction and require replacement. Given 
their history, the ISS Attitude Determination and Control 
Officer (ADCO) flight controllers are interested in 
detecting early symptoms of degradation in the CMGs. A 
deployment of data-driven system health monitoring 
applications in the ISS flight control room is assisting with 
that task. 

Working with ADCO flight controllers, 9 telemetered 
and 4 derived CMG parameters were selected for real-time 
monitoring. Seven to ten months of archived data was 
analyzed for each of the four CMGs. The data was sampled 
at a 1 Hz rate, formed into vectors of 13 values, and four IMS monitoring knowledge bases were 
constructed from the collected data. Each CMG was analyzed individually to capture its unique 
characteristics. 

The IMS monitoring application was integrated with the NASA Mission Control data server software to 
access real-time telemetry in the ISS flight control room. Four IMS processes, one per CMG, run on the 
ADCO flight control console to provide continuous real-time monitoring. Once per second, each process 
compares incoming telemetry data with the appropriate CMG knowledge base and returns the amount of 
overall deviation, if any, from the nominal training data. It also returns the contribution of each individual 
parameter to any deviation to aid in isolating the source of the deviation. These IMS results are published 
back to the Mission Control data server for access and monitoring by other Mission Control software 
applications. IMS composite distances are plotted on ADCO console displays and automated alerts issued if 
significant deviations occur. 

Successful deployment and certification of the IMS CMG monitoring system led to further development 
of real-time data-driven monitoring for ISS subsystems. The IMS CMG application was generalized to 
accept an arbitrary number of user-selected input parameters and to run on any controller console in the ISS 
flight control room. The resulting tool, called AMISS for Anomaly Monitoring Inductive Software System, 
has been applied to the thermal operations (THOR) domain, monitoring subsystems of the ISS External 
Thermal Control System (ETCS).  

The ETCS is used to dissipate heat 
onboard ISS. Excess thermal energy 
from inside the ISS is transferred to 
liquid ammonia cooling loops in the 
ETCS. The heated ammonia is then 
circulated to radiators and cooled as 
thermal energy is released into space 
(Fig. 5). ETCS systems are separated 
into two independent loops with three 
major subsystems each: the Pump 
Module (PM), the Ammonia and 
Nitrogen Tank Assemblies 
(ATA/NTA), and the Radiators 
(RAD). The PM circulates coolant 
through the ETCS, the ATA/NTA 
stores reserve ammonia coolant and 
maintains pressure within the ETCS 
systems, and the RAD system controls 
the flow of coolant to each of three 
thermal radiators.3

 
Figure 4. ISS Control Moment Gyroscopes 

 
Figure 5. ISS external view showing ETCS radiators at 

lower left and lower right. 



AMISS knowledge bases were constructed from a year of archived ETCS operational data, one 
knowledge base for each major ETCS subsystem, and two knowledge bases covering all pertinent 
parameters in each ETCS loop. The subsystem modules monitor for anomalies that occur within each 
subsystem while the full loop modules also watch for anomalies that are only apparent in subsystem 
interactions. The ETCS AMISS applications ran on the THOR ISS flight control consoles during recent ISS 
build activities to provide real-time system health information. Full operational certification of these 
applications is expected in 2009. 

C. TacSat-3 
The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to demonstrate 

fault and anomaly detection algorithms and diagnosis tools integrated with executive and adaptive planning 
functions in a spaceflight context. The demonstration is based upon flight software and test data from the 
Air Force Research Laboratory’s upcoming TacSat-3 satellite. The TVSM software package has the ability 
to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It analyzes 
data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to 
threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and 
effectiveness of ISHM technologies by combining a data-driven anomaly detection algorithm (IMS) with a 
model-based diagnosis tool (Qualtech Systems Inc. TEAMS-RT) and rule-based data analysis and recovery 
recommendations (implemented with Jet Propulsion Laboratory’s (JPL) SHINE tool). The TVSM software 
has the ability to run both open and closed loop, the latter demonstrating feedback to reactive capabilities 
by the flight software. Following the completed demonstration on flight-like hardware, the TVSM software 
package will be proposed for a follow-on flight experiment on TacSat-3 itself. 

D. Ares I-X 
As previously mentioned, the Constellation program is developing vehicles to replace the Space Shuttle 

after its retirement, scheduled for 2010. The first vehicle will consist of the Ares I crew launch vehicle and 
the Orion crew exploration vehicle. The Ares V cargo launch vehicle and the Altair lunar lander will 
follow. Ares I-X, scheduled to launch in the summer of 2009, will be the first uncrewed test flight of the 
Ares I crew launch vehicle. The Ares I-X test vehicle will be powered by a single, four-segment reusable 
solid rocket booster (SRB), like those used on the Space Shuttle, modified to include a fifth inactive 
segment to simulate the Ares I five-segment booster. The Ares I-X vehicle will also include mock-ups of 
the upper stage, the Orion crew module, and the launch abort system to simulate the integrated spacecraft. 
It will be assembled in the Vehicle Assembly Building (VAB), launch from pad 39B, and will be controlled 
and monitored from Hangar AE, all at NASA Kennedy Space Center (KSC). 

The Ares I-X Ground Diagnostic Prototype is currently under development6 to detect and diagnose 
faults in the Ares I-X first-stage thrust-vector control (TVC) and the associated ground hydraulics while the 
vehicle is in the VAB and while it is on the launch pad. It will combine three tools that use three different 
approaches. The first tool is TEAMS, which is a model-based tool from Qualtech Systems Inc. The second 
tool is SHINE (Spacecraft Health Inference Engine), which is a rule-based expert system from the Jet 
Propulsion Laboratory (JPL). The third tool is IMS. SHINE rules will be used to determine the system 
mode. IMS will have a separate knowledge base for each mode, and will dynamically load the appropriate 
knowledge base each time SHINE reports a mode change. TEAMS will be used to help operators diagnose 
and isolate the cause of detected system anomalies. The three tools will be deployed to Hangar AE, where 
they will be interfaced with live data from the Ares I-X vehicle and from the ground hydraulics. The 
outputs of the tools will be displayed on a screen in Hangar AE. 

Because it is a new vehicle there is no historic Ares I-X sensor data available. However, the first stage 
of Ares I-X is derived from the Space Shuttle SRB and the Ares I-X first-stage TVC will be very similar to 
the Shuttle SRB TVC. Also, the ground hydraulics currently used with the Space Shuttle will also be used 
with Ares I-X. Therefore, historical Shuttle SRB data will be used to train and test IMS. In addition, simple 
scripts have been developed to simulate faults by replacing some of the historical data with simulated fault 
data. During development, these simulated faults will be used to test IMS's ability to detect the faults. It is 
expected that the Ares I-X TVC and ground hydraulics data will be similar to the historical SRB data used 
for training IMS. 

The output of IMS will be the “distance from nominal” scores mentioned earlier – a composite score for 
the set of parameters as a whole and a separate score for each individual parameter. Additionally, to 
facilitate out of bounds conditions, IMS will output an alarm when scores exceed a specified threshold. 



There are a number of methods to determine the threshold. Theoretically, if there were a comprehensive 
training data set available, IMS could learn the high and low thresholds of each individual parameter under 
every operating condition, so any deviation from the IMS model would warrant an alert. However, as a 
practical measure, the simplest and most often used method in previous deployments has been for the user 
to specify a threshold value based heuristically upon the statistics of available validation data. For example, 
twice the standard deviation of the composite score applied to validation data may serve as an alert level, or 
higher multiples of this value, depending on the skewness and kurtosis of the underlying distribution of the 
composite score. However, due to the fact that the distribution will invariably change as a function of the 
data provided, the alert thresholds may vary drastically from one dataset to another. As such, an alternative 
method can be used which has gained traction and is quickly becoming the standard for assessing 
performance of classification algorithms within the machine learning community and more recently the 
aerospace ISHM domain. This method involves the use of ROC (Receiver Operating Characteristic) curve 
analysis, and the area under the ROC curve (AUC). As such, one of the tasks of the Ares I-X Ground Based 
Diagnostics (GBD) project is to employ this method for threshold selection. 

The ROC curve essentially plots the true positive rate against the false alarm rate for all possible 
threshold values. It therefore can be used as a design tool in order to select an alert threshold according to 
pre-established requirements for minimum missed detection and/or false alarm rates. However, in order to 
compute true positive and false alarm rates, it is necessary to obtain a “ground truth” representation for 
each monitored example. In this case, an “example” can represent an individual validation flight, or a single 
time slice. Furthermore, in order to compute true positive and false alarm rates with a reasonable level of 
accuracy, there is a need to obtain a statistically significant number of labeled examples, both nominal and 
anomalous. However, the availability of nominally classified examples often surpasses the availability of 
anomalously classified examples, with the latter often considered to be a rare commodity. In fact, as 
mentioned previously, it was necessary to write scripts in order to simulate faults in part to make up for the 
deficit of available anomalously classified examples. These simulations involve the injection of specific 
system faults or degraded modes of operation. As such, in order to artificially boost the number of 
anomalously classified examples, classified time points are used as examples in lieu of individual 
validation flights for construction of the ROC curve, even with the availability of simulated fault data. 

The selection of an alert threshold by using the ROC curve is therefore in part based upon an implicit 
requirement for the availability of a statistically significant number of anomalous examples. As such, this 
requirement may be recognized as a distinct disadvantage, since it does not exist for the heuristic method 
described earlier. However, one advantage of using ROC curve analysis is in its inherent robustness against 
the use of skewed distributions. The distribution here, however, is not the distribution of the IMS score 
mentioned previously, but the distribution representing the population of nominally and anomalously 
categorized examples. Furthermore, unlike other alert threshold selection techniques, use of the ROC curve 
may also be used for optimized selection of IMS parameters (i.e. the number of clusters in a knowledge 
base). This can be performed by using the area under the ROC curve, which represents overall 
classification discriminability. Therefore, by maximizing the AUC with respect to the IMS parameters that 
control the number of clusters, we can ensure that the knowledge base used by IMS in order to perform 
threshold or alert selection has the best anomaly detection capability possible. 

E. Ares I Ground Support Equipment 
The IMS tool is under evaluation for continued use after the Ares I-X test flight to monitor vehicle and 

ground systems for the Constellation program. Initially, prototype IMS applications will be developed to 
monitor the liquid hydrogen (LH2) ground support equipment (GSE) required to fuel the Ares I launch 
vehicle. Although the Ares I LH2 GSE will be similar to the Shuttle LH2 GSE, the operating characteristics 
will differ (for example, tank capacity and fill rates will differ). Still, much of the development can be done 
in advance based on the Shuttle LH2 GSE, including selecting and weighting parameters as well as 
integrating with the data and application architecture. Some IMS training can also be done in advance using 
simulated data. The Constellation Ground Operations program is developing a GSE simulator for Ares I 
and Orion testing and integration, for Launch Control Center software development, and for operator 
training. The simulator may not be of high-enough fidelity to capture subtle operational characteristics of 
the LH2 GSE. Nevertheless, the simulator may be useful for generating nominal data for IMS training and 
generating fault data for IMS testing. 

Higher fidelity training data will become available before the initial flight of Ares I. Prior to the first 
flight, the vehicle will be repeatedly fueled and de-fueled so that the operators can learn the actual 



operational characteristics of the interacting hardware. IMS will be trained on these fueling tests. Thus, 
even before the first launch, high fidelity training data should be available to enable production of a 
prototype IMS monitoring application for the LH2 GSE as early as the first launch. It is expected that the 
operational data from that launch and perhaps the subsequent three to four following launches will provide 
enough data to capture expected nominal operations well, especially considering that the LH2 GSE has 
historically been static, that is, it has not had many changes after initial development.  

In addition to proving feasibility, one goal of the LH2 GSE prototyping effort is to perform a trade 
study to determine what types of systems lend themselves well to a data-driven approach. Another goal is 
to document the effort (time and cost) required for building an IMS application. Because the Constellation 
vehicles and much of the supporting ground equipment are still under development, archived data is not 
currently available. Working with existing equipment to determine the characteristics of suitable systems 
and the effort required to build monitoring applications will allow effective planning for future 
deployments of IMS and similar data-driven systems. Lessons learned from IMS application to Ares I-X 
systems will also provide valuable insight for determining effective uses of data-driven techniques in the 
Constellation program. 

F. Ares I Fleet Supportability 
The data-driven approach can be applied to fleet supportability tasks. Fleet supportability encompasses 

the comprehensive performance monitoring and analysis conducted to assure that the Ares I fleet retains its 
intended design performance, reliability, and safety throughout the program lifecycle. It includes all non-
real-time analyses of recorded data, including data generated during manufacturing, transport, mission 
preparation and prelaunch operations, in-flight, and post mission. It establishes a system that can determine 
the health condition of reusable components, the expected need for imminent replacement, the need for 
redesign of reusable or expendable components, or the need for procedure/process redesign.  

Fleet supportability is typically associated with large fleets of similar equipment, for example, a fleet of 
F/A-18 aircraft. The operating characteristics of the fleet are used to develop a failure distribution. This 
profile can then be used to predict the failure of an individual component on similar instances of the fleet 
type. Thus, we can infer that a fuel pump may fail in as few as 500 hours or as many as 2000 hours but the 
majority of pumps fail at 1000 hours. This failure rate curve can be used to extend (or shorten) replacement 
periods to maintain a desired in-service failure rate. The replacement threshold can be set very low to 
account for early failures. This can result in increased costs due to much unnecessary replacement or 
maintenance. Alternatively, the replacement threshold can be set high to mitigate such costs. This can result 
in some components failing in service – not an acceptable solution for critical components on Ares I. 

Another factor against relying on the life usage model described above for Ares I is that it will be 
difficult to collect enough performance data for statistical significance and accurate inference. The reusable 
components (the first stage of Ares I; limited iterations) will be in service for approximately two minutes 
per launch and the expendable components (upper stage and upper stage engine; new components for each 
launch) will be in service for less than ten minutes. Additionally, the fleet size of the Constellation program 
will be much smaller than the typical aircraft fleet, with a handful of launches per year. 

With the limits imposed by number and duration of operational cycles, alternative approaches for fleet 
supportability are under evaluation. Ares I will not have the benefit of evaluating the performance of 
components in thousands of instances. Instead, a data-driven approach like IMS will be applied to look for 
subtle differences in performance that may indicate impending failure.  

Performance-degrading conditions can occur throughout a component’s lifetime, from design through 
launch and reentry to refurbishment. Numerous pre-launch tests verify compliance with expected 
performance. If a subsystem fails a test, a diagnostic system can isolate the fault to an LRU (line 
replaceable unit) or perhaps even to a component. An analysis is then performed to determine why that 
component failed – whether it was due to changes in manufacturing, materials, or quality control, 
environment during transport, or effects from previous launches, reentry, recovery, and refurbishment. The 
results of that analysis can then inform required maintenance planning, guide part restocking decisions, or 
identify needed manufacturing improvements.  

Subtle differences in performance may not be noticed if the pre-launch tests pass. Current monitoring 
techniques – primarily visual comparison of graphs – focus on identifying differences in a single parameter. 
Because IMS analyzes the interaction between all the parameters simultaneously, it can complement these 
tests by detecting that the performance on a test is still within limits but is different than on previous tests 
either on this system or on previous systems of the same type. This may lead to early identification of 



under-performing components prior to in-flight failures on subsequent flights. It may also identify the need 
for revised limits for prelaunch tests. Further, it could assist with both the post-failure analysis as well as 
degraded-performance analyses by identifying conditions that degrade performance or reduce a 
component’s lifetime. Alternatively, if components are performing well even in the presence of unusual 
conditions, it may indicate that environmental constraints could be relaxed. Finally, IMS output may be 
useful as an input to prognostics algorithms if a correlation with future performance can be determined. 

IV. Summary and Future Work  
Through practical application, it has been demonstrated that data-driven system health monitoring can 

be useful in a variety of space mission operations settings. Furthermore, data-driven methods can 
complement other data analysis and diagnosis tools, together providing integrated system health 
management and fault recovery recommendations. A number of NASA projects incorporating data-driven 
anomaly detection have been deployed or are under development. The emergent projects will provide proof 
of concept demonstrations by combining data-driven techniques with model-based and rule-based software 
tools for fault management. They will also produce recommendations on which types of systems would 
most benefit from data-driven and integrated data-driven, rule-based, and model-based approaches for fault 
detection and health management. This information will help guide NASA as it builds operations and 
support systems for Constellation. Finally, these data-driven concepts also show promise for fleet 
supportability applications and will be evaluated for that task as the Constellation support plans grow and 
mature. 

For future work, near term plans call for continued development of tools that allow operations 
personnel to build and maintain their own data-driven monitoring applications without direct support from 
data mining specialists. This includes utilities to help select and appropriately weight useful system 
monitoring parameters. These will be combined with tools to detect and remove spurious data from 
archived data sets used to build monitoring applications. All of these tools will be incorporated into the 
graphical integrated development environment, allowing users to conveniently proceed from raw archived 
data to a deployable monitoring knowledge base. 

Longer-term activities will address capabilities required for wider application of data-driven and 
complementary technologies to Constellation and similar programs. One important task to enable the use of 
data-driven approaches with newly developed hardware systems will be determining how to obtain 
adequate system characterizations with limited operations data. This will likely involve augmentation with 
simulation data or synthetic data extrapolated and generalized from available operations data. A related 
endeavor will address generalizing and normalizing training data collected during operations performed 
under varying conditions, such as launches in differing weather conditions (e.g., hot, humid summer 
launches vs. cooler winter or night time launches), and determining how much influence the disparate 
conditions have on the monitored system characteristics.  

The study of combining data-driven technology with other ISHM techniques is still in its infancy and 
holds promise of further utility, including more sophisticated diagnostic tests and prognostic capabilities. 
There are also many applications of data-driven approaches yet to be explored for fleet supportability tasks. 
For instance, multivariate data-driven approaches are naturally complementary to traditional fleet 
supportability statistical analysis, and may be more effective when limited instances of supported 
equipment are available. It can also be a valuable technique for sorting through massive amounts of data to 
focus attention on key pieces of information, both from extended operations and from test and assembly of 
a new vehicle or system. Additionally, using these techniques to pick out the most divergent data points in 
operations data can either be used to drive risk-based testing and verification, or in a more traditional sense 
to simply hand the most interesting periods to design analysts. It may also be possible to classify current 
excursions from data-derived models to analogous historical operating periods by the degree and pattern of 
divergence. This could be used to drive procedural and recovery decisions. 
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