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5.1  Introduction
We define prognostics here strictly as the predicting of remaining use-
ful life (RUL) of a component or system. The prediction is typically per-
formed only after the “health” of the component or system deteriorates 
beyond a certain threshold. Often times, that threshold is tripped because 
a fault occurs. A fault is a state of a component or system that deviates 
from the normal state such that the integrity of the component is outside 
of its required specification. A fault does not necessarily imply that the 
overall system does not operate anymore; however, the damage that char-
acterizes the fault often grows under the influence of operations to a fail-
ure. The latter is the state at which the component or system does not meet 
its desired function anymore. It is the task of prognostics to estimate the 
time that it takes from the current time to the failed state, conditional on 
anticipated future usage. This would give operators access to information 
that has significant implications on system safety or cost of operations. 
Where safety is impacted, the ability to predict failure allows operators 
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to take action that preserves the assets either through rescue operation 
or through remedial action that avert failure altogether. Where minimiz-
ing cost of operations is the primary objective, predictive information 
allows operators to avert secondary damage or to perform maintenance 
in the most cost-effective fashion. Often times, there is a mix of objec-
tives that need to be optimized together, sometimes weighted by different 
preferences.

Predicting remaining component or system life can be accomplished 
in several ways. Where sufficient historical run-to-failure trajectories are 
available, data mining techniques can be employed to perform the predic-
tions. Traditionally, reliability-based predictions have been used widely 
in the manufacturing industry to schedule preventive maintenance. In 
contract, the focus of this chapter is mainly on condition-based prognos-
tic systems for a particular monitored unit under test (UUT). Instead of 
considering the entire population for a statistical life estimates, one can 
employ physics-based models to perform the predictions or a combination 
of models and history data. In either case, predictions are conditional on 
future conditions and are subject to significant amounts of uncertainty. 
Methods for prognostics ideally express their confidence of their own pre-
diction based on an assessment of the various uncertainty sources. Besides 
uncertainty of future usage, uncertainty also comes from the current state 
assessment, the models used, measurement noise, etc.

Metrics can be understood as a standardized language by which technol-
ogy developers and users communicate their findings and compare results. 
This aids in allowing the proper expression of requirements as well as the dis-
semination of scientific information. Two surveys on methods for prognos-
tics, one on data-driven methods [1] and one on artificial-intelligence–based 
methods [2] reveal a lack of standardized methodologies for performance 
evaluation or a lack of performance methods altogether. The most recent 
ISO standard by the International Organization for Standards [3] for 
prognostics in condition monitoring and diagnostics of machines does 
not even provide a firm definition of any such method. Nonetheless, there 
has been recently a significant push towards crafting suitable metrics to 
evaluate prognostic performance [4,5]. These metrics address primarily 
evaluation of algorithmic performance for prognostics applications. They 
are mostly focused on tackling offline performance evaluation methods 
for applications where run-to-failure data are available and true end-of-
life (EoL) is known a priori. They are therefore particularly useful for 
the algorithm development phase where feedback from the metrics can 
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be used to fine-tune prognostic algorithms. It needs to be appreciated 
that these metrics are continuously evolving. Efforts are also underway 
towards designing on-line performance metrics although they have not 
reached a significant level of maturity.

This chapter presents a discussion on prognostics metrics. After a 
review of performance assessment for prediction/forecasting applications 
a categorization of prognostic metrics into several classes is performed. 
This categorization suggests that there can be various different objectives 
that drive improvements in prognostic performance and correspondingly 
different set of metrics may be used to obtain performance feedback.

5.2  Background
As more diverse research communities and practitioners start adopt-
ing prognostics and health management (PHM) techniques, it becomes 
imperative to use standardized prognostic methodologies [6] as well as 
to use metrics to measure performances. However, since prognostics is a 
developing field, the challenges in developing standards and metrics are 
numerous [7,8]. We start out by providing an overview of prognostic con-
cepts that are used in a variety of domains.

5.2.1  Prediction Categorization

Prior to delineating the methods to assess prognostic performance it may 
be useful to provide a brief discussion about different types of applications 
in which predictions are employed. Based on an analysis of aerospace, 
medicine, nuclear energy, finance, weather, and automotive domains, 
it was found that one can distinguish roughly between forecasting and 
prognostics.

5.2.1.1  Forecasting
Forecasting is found in applications where predictions are made to 
describe expected future behavior without predicting a fixed target. That 
is, there is no notion of EoL, and consequently, there is no concept of RUL. 
Example application areas are weather or finance domains. The prediction 
format can be either quantitative (e.g., prediction of exact numbers) or 
qualitative (e.g., high or low demands) in nature. Furthermore, the data 
trends are generally nonmonotonic in such applications. Predictions may 
be discrete (e.g., forecasting market demand for a particular month) or 
continuous (e.g., variation of temperature over the period of next week). 
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Details and more references to such applications in various domains can 
be found in [29].

5.2.1.2  Prognostics
The other class of applications makes use of critical thresholds such that 
if the system under test crosses this threshold it is declared to have failed 
or lost its functional capability. This class of applications—e.g., medicine, 
nuclear, mechanical, and electrical industrial systems—involves predic-
tions of RUL and involves decay or fault propagation models to capture 
the behavior of the system.

Predictions can be made in two forms: (1) an event prediction where 
the time for EoL is estimated and (2) a decay prediction where the com-
plete future trajectory is predicted until EoL is reached. It must be noted, 
however, that EoL criteria need not always be a complete loss or failure. 
In safety critical applications, EoL is often a degraded state where perfor-
mance level has deteriorated to cross a predetermined safety margin even 
though the component may still retain partial functionality. For example, 
in the electronics domain, EoL of a switching device (such as a MOSFET) 
is not necessarily the complete loss of the switching functionality. Instead, 
it could be a decrease in the switching frequency below a certain threshold 
level.

There are two main types of applications where predictions for system 
health are made: These include predicting wear of a system or predicting 
failure in the event of a fault.

Failure predictions: An otherwise healthy system may encounter a fault 
that grows due to continued usage (or exposure to adverse conditions) that 
may result into a failure. In such cases, it is critical to detect the presence 
of a fault (ideally shortly after it happens), the particular fault mode, its 
severity, and its rate of growth so that appropriate decisions may be taken 
to avoid undesired, possibly catastrophic, events. Here, the task of prog-
nosis is to estimate expected EoL, i.e., determine when the system will no 
longer operate under specifications. In some cases, it is not only important 
to know when the system will break but also how it will approach the 
failure. In those cases, instead of predicting just the event of EoL, a com-
plete trajectory may be predicted, where the end point of the trajectory 
also determines the EoL. Examples of such applications include structural 
faults such as cracks in metallic structures or die-attach degradation in 
power semiconductor devices.
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Wear predictions: There are many situations where systems undergo 
expected normal wear and need to be maintained or replaced when-
ever the wear levels impact functionality. In these cases, the system does 
not experience a fault condition even under the degraded performance. 
Therefore, the health of the system is tracked from the very beginning of 
system deployment and detection and diagnosis are not predecessors for 
prognostics. As stated earlier, the end point of these trajectories can be 
used to determine the EoL point so appropriate decisions may be taken. 
Examples of such applications include battery capacity degradation and 
valve leakage due to wear.

5.2.2  Prediction Methods

There are several ways to carry out prognostics. In some cases, a detailed 
physical model of the unit under observation can be used. The model cap-
tures the unit’s behavior under operational and environmental conditions 
and provides an expected response that describes the current and (given 
the proper input) future states. Alternative to a physics-based model, his-
torical data can be utilized to estimate expected time to failure. The key is 
to either have access to a sufficient amount of existing historical data (e.g., 
medicine) or to be able to experimentally generate run-to-failure trajecto-
ries (e.g., for some mechanical systems). Then, a variety of data-driven or 
statistical techniques can be applied.

The availability of run-to-failure data allows the straightforward evalu-
ation of prediction performance by comparing the predicted EoL to the 
actual EoL. However, there are many applications where run-to-failure 
experiments cannot be afforded or where very little failure history data 
are available (e.g., aerospace). It becomes somewhat more difficult to assess 
the performance in such cases due to the absence of knowledge about the 
future outcomes. Methods are tested on experimental or simulated data 
and, when fielded, are expected to perform similarly on real systems. 
However, algorithm functionality does rarely translate without loss of per-
formance from simulation environment or laboratory to the field. Indeed, 
validation and verification of prognostic methods remain a thorny issue.

5.2.3  Performance Evaluation Methods

Techniques employed for prediction or forecasting in the application areas 
enumerated above use metrics that are based on accuracy and precision 
with several slight variations [9]. Mostly, they are customized to better 
serve a particular domain. In medicine and finance, for example, several 
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statistical measures are used to benefit from the availability of large data 
sets. In contrast, predictions in medicine are commonly evaluated based 
on hypothesis testing methodologies. In the finance domain, errors are 
calculated based on reference prediction models. The precision and accu-
racy metrics include, for example, mean squared error (MSE), standard 
deviation (SD), mean absolute deviation (MAD), median absolute devia-
tion (MdAD), mean absolute percentage error (MAPE), and similar vari-
ants. Other domains, such as aerospace, electronics, and nuclear are less 
mature with respect to fielded prognostics applications. There, metrics 
from other system health techniques, such as diagnostics, have been used 
with the goal to capture the characteristics of prognostics (with varied 
success). Metrics used include false-positives (FP), false-negatives (FN), 
and receiver operator characteristics (ROC) curves [10]. Other metrics 
include those from the reliability domain such as mean time between fail-
ures (MTBF) or the ratio mean time between unit replacements (MTBF/
MTBUR). Adaptations include, for example, the augmentation with busi-
ness metrics such as return on investment (ROI) [11], technical value (TV) 
[12], net present value (NPV) [13], and life cycle cost (LCC) [14].

It becomes apparent that there are several types of metrics for prog-
nostics based on the purpose of prognostics and the end user. A catego-
rization with these objectives in mind allows a more targeted choice of 
appropriate metrics. Coble and Hines [15] categorized prognostic algo-
rithms into three categories based on type of models/information used 
for predictions. Wheeler et al. [16] categorized end users from a health 
management stakeholder’s point of view. The top-level user groups were 
operations, regulatory, and engineering. We combine and expand on 
these notions and categorize prognostic metrics based both on their goal 
as well as end users (see Table 5.1).

A favorable cost-benefit case is the hinge pin of a successfully fielded 
prognostic solution and cost-benefit metrics allow a quantification of 
the degree of fulfillment. Similarly, verifiability and certification metrics 
determine the degree to which a prognostic solution conforms with safety 
assurance and certification requirements. Both these top-level metrics cat-
egories require prognostic estimates to satisfy stringent performance met-
rics, which are often derived from reliability analysis or condition-based 
prognostic methods. Computational performance metrics are important 
for implementation and figure in the trade space of cost-benefit analysis 
and algorithmic performance. Often, most of the metrics mentioned are 
connected through a requirement specification process.
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5.3  Metrics for Prognostic Applications
In this section, the various prognostic metrics are presented by categories 
in more detail. Particular emphasis is given to performance metrics.

5.3.1  Certification Metrics

Regulatory bodies (such as the FAA) are concerned with whether a fielded 
system might negatively impact (directly or indirectly) overall system 
safety. Associated metrics can be expressed as the logical conjunction of 
an exhaustive set of safety-related use cases.

5.3.2  Cost-Benefit Metrics

Establishing cost-benefits of prognostics is an important step in integrat-
ing the health management practices into fielded applications. Thus, met-
rics that measure economic viability of prognostics have started gaining in 
importance. Some of the most common cost-benefit metrics include

5.3.2.1  MTBF-to-MTBR Ratio
This reliability statistics-based expresses the efficiency of a maintenance 
operation by measuring the ratio between the lengths of time a compo-
nent is expected to last and the length of time for which it was used before 
it was replaced [17].

5.3.2.2  Life Cycle Cost
LCC is fundamentally the sum of acquisition cost and cost of operations. 
To assess the value of prognostics, LCC is compared with and without 
prognostics [18].

5.3.2.3  Return on Investment
In an ROI calculation, the difference between return and investment (the 
gain) is divided by the investment. It is one of the most commonly used 
metrics (not just in the context of prognostics) that assesses the benefits of 
deploying a PHM system.

5.3.2.4  Technical Value
The benefits achieved through accurate detection, fault isolation, and pre-
diction of critical failure modes are weighed against the costs associated 
with false alarms, inaccurate diagnoses/prognoses, and resource require-
ments of implementing and operating specific techniques [19,20].

Statistics-based 
what?
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5.3.2.5  Total Value
Given the coverage a PHM system provides for multiple fault modes in 
a system, total value quantifies the usefulness of a PHM technology in a 
particular application. Total value is defined as the summation of the ben-
efits prognostics provides over all the failure modes that it can diagnose 
or give a prognosis, minus the implementation cost, operation and main-
tenance cost, and consequential cost of incorrect assessments. This metric 
connects the algorithm performance in a PHM system to the management 
and operational performance.

5.3.3  Metrics for Computational Performance

Computational performance is one of the most closely related factors to 
actual implementation of a system. It provides a mechanism to negotiate 
between computational and time resources that are demanded and the 
required fidelity and accuracy of the PHM system. Most of the metrics that 
can be used to quantify computational performance come from theoreti-
cal computer science and computer engineering. These are not specific to 
prognostics and are just mentioned here for completeness. Computational 
performance metrics include computational complexity, CPU time, mem-
ory size, and data rate. Depending on the length of the prediction horizon 
in a prognostic application, data processing capabilities are of greater sig-
nificance from the design and implementation point of view. All the above 
metrics help specify the hardware requirements or otherwise specify con-
straints within which a software must work and still satisfy algorithmic 
performance requirements.

5.3.4  Metrics for Reliability Analysis

Referring again to Table 5.1, reliability analysis metrics are chiefly used by 
operators, designers, and policy makers. Reliability analysis stems from 
statistical evidences aggregated from historical data. Failure rates and dis-
tributions are extracted from history data or experimental data, which 
are then used to make failure predictions for a system under test. While 
prognostics is the science of prediction based on condition and usage of 
the monitored UUT, the reliability analysis predicts failures based on 
expected outcome from the observed statistic over a population of the 
UUT. It has been the traditional way to use these metrics to assess the 
costs and the risks of using a system. Used correctly, reliability metrics are 
connected to system improvement due to prognostic performance.
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Broadly classifying there are two types of reliability metrics as described 
below [21]:

5.3.4.1  Constant Rate Reliability Metrics
These are the most popular reliability metrics in the electronics industry 
as they represent a good approximation of the flat region of the reliabil-
ity bathtub curve. Mean life metrics usually assume an exponential dis-
tribution, which makes them equivalent to constant rate metrics. These 
rates are typically measured from field data and are simple and intui-
tive to explain. Some common examples of these metrics are mean time 
between failure (MTBF), mean time to failure (MTTF), part return/repair 
rate, part replacement rate, mean time between service call (MTBSC), and 
mean time between maintenance action (MTBMA).

5.3.4.2  Probability of Success Metrics
When systems do not show constant failure rates, specifying mean times 
does not suffice. In such cases a better way is to specify probability of 
success or, in other words, the probability that a system performs a 
required function under stated condition for a stated period. Another 
way to specify probability of success is to measure the percentage of 
population that survives a specific duration. Therefore, these metrics are 
usually time dependent, i.e., the probability of success will depend on 
the length of the mission. These may be specified as the percentiles of the 
distributions. A common example used in mechanical systems domain 
is Lx Life, which specifies the number of hours after which at least x% 
of the population would have failed. Other metrics commonly used are 
failure free operating time, maintenance free operating time, mean mis-
sion duration, etc. More discussion on reliability-based metrics may be 
found in [22].

5.3.5  Metrics for Prognostics Algorithm Performance

Before using performance metrics, an a priori analysis should be con-
ducted to identify the relevant factors in a given application and address 
them appropriately. A good set of metrics should accommodate all or most 
of these factors. In this context, the challenges surrounding prognostics 
(as compared with, say, diagnostics) should be discussed. It should also be 
noted that the metrics detailed in this chapter are continuously evolving 
as the field matures further.
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5.3.5.1  Challenges
Prognostics requires special consideration in a number of areas. These 
include the acausality phenomenon, need for run-to-failure data, online 
performance evaluation, and expression of estimation uncertainty.

Acausality: An acausal system is defined as a system with outputs and 
internal states that depend on future input values. Prognostics has acausal 
properties. It requires input from future events (for instance knowledge 
about operational conditions and load profiles) to make accurate predic-
tions. To accurately assess the performance (both accuracy or precision), 
one must also know the true EoL to compare with the predicted EoL esti-
mates. In some cases, future operating conditions are well known. This is 
the case for example for stationary applications with constant operating 
conditions. However, in nonstationary applications and where knowledge 
about future events is not available, estimates may be derived based on 
past usage history, the expected mission profile, and predictions for future 
operating and environmental conditions that are not controllable (e.g., 
weather conditions). This however, adds uncertainty to the overall process 
and complicates prognostic performance evaluation.

Run-to-failure data from real applications: Assessing the correctness 
of prognostics benefits greatly from allowing the system to fail such that 
the prediction can be confirmed. For many systems, this is not feasible 
because it may be too expensive or because it negatively impacts system 
safety. However, if a corrective action (such as maintenance or repair) is 
taken, one has just removed the ability to assess how early the prediction 
was. This is sometimes referred to as the “paradox of prognostics.”

Online performance evaluation: The aforementioned considerations 
lead to an argument in favor of controlled run-to-failure (RtF) experi-
ments for the algorithm development phase. While this may allow offline 
performance evaluation, some issues remain: First, it is difficult to extend 
the results of offline conditions to a real-time scenario; second, an RtF 
experiment needs often times frequent disassemblies to gather ground 
truth data. This assembly-disassembly process creates variations in the 
system performance, and the EoL point shifts from what it may have been 
in the beginning of the experiment. Since actual EoL is observed only at 
the end there is no guarantee that a prediction made based on initial part 
of data will be very accurate. Whereas, this does not necessarily mean 
that prognostic algorithm is poorly trained, it is difficult to prove other-
wise. Therefore, one must be careful while interpreting the performance 
assessment results. Third, even controlled subscale RtF experiments can 
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be very expensive and time-consuming, in particular, if one seeks to con-
duct statistically significant number of experiments for an exhaustive set 
of components and fault modes.

Uncertainty in prognostics: The quantification of prediction confidence 
is indispensable in prognostics. Consider a remaining life estimate of, say, 
5 hours. If one knew that the confidence bounds for a given risk acceptance 
level are also 5 hours, then reactive action has to be taken immediately. If, 
however, the confidence bounds are at ±1 hour, then a completely differ-
ent set of action can be taken. Without such information any prognostic 
estimate is of limited use and cannot be incorporated in mission critical 
applications [6]. Uncertainties arise from various sources in a PHM sys-
tem [23–25]. Some of these sources include

•	 Model uncertainties (errors in the representation and parameters of 
both the system model and fault propagation model),

•	 Measurement uncertainties (these arise from sensor noise, ability 
of sensor to detect and disambiguate between various fault modes, 
loss of information due to data preprocessing, approximations, and 
simplifications),

•	 Operating environment uncertainties,

•	 Future load profile uncertainties (arising from unforeseen future 
and variability in usage history data),

•	 Input data uncertainties (estimate of initial state of the system, vari-
ability in material properties, manufacturing variability), etc.

Assessing the levels and characteristics of uncertainties arising from each 
of these sources is often times not a trivial task. It is even more difficult to 
determine how these uncertainties combine at different stages of the prog-
nostic process and propagate through the possibly complex and nonlinear 
system. On top of that, statistical properties may not follow any known 
parametric distributions, thus complicating analytical solutions.

Owing to all of these challenges, uncertainty representation and 
management has become an active area of research in the field of PHM 
[25–29]. Methods for prognostic performance evaluation must then be 
able to incorporate various expressions of uncertainties.

Performance metrics for prognostics can be classified into accuracy, 
precision, and robustness. We use the working definition for accuracy as 
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those that assess the degree of closeness of predictions to the actual failure 
time. Precision is defined as the spread of predictions performed at the 
same time. Robustness is defined as the sensitivity of the predictions with 
changes of algorithm parameter variations or external disturbances. There 
are a large number of prognostic performance metrics that have been used. 
However, as discussed earlier, most of these metrics do not take into con-
sideration the particular challenges of prognostics. Hence, we feature here 
only a subset of general metrics especially suitable for prognostics. For a 
comprehensive list of performance metrics, the reader is referred to [9].

5.3.6 E rror-Based Metrics

Many metrics are based on the assessment of the error, i.e., the deviation 
of the actual output from the target. One example of such an error met-
ric is the average scale independent error. This metric provides an expo-
nential weight of the errors in RUL predictions and averages over several 
UUTs [20,30]:
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( ) exp
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= −
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∑1

01

∆

	
(5.1)

where Δ is the error and D0 is a normalizing constant whose value depends 
on the magnitudes in the application. The range of A(i) varies between 0 
and 1, where 1 represents perfect score. Other error-based metrics include 
root mean squared error (RMSPE) and mean absolute percentage error 
(MAPE).

5.3.6.1  FP, FN, and ROC
FP and FN are at heart also error-based metrics, but they deserve special 
consideration. A common way to assess performance is to treat predic-
tions as dichotomous forecasts by means of categorizing them into false-
positives (FP), false-negatives (FN), true-positives (TP), and true-negatives 
(TN) [10]. FP assesses unacceptable early predictions and FN assesses 
unacceptable late predictions at specified time instances. User must set 
acceptable ranges (tFN and tFP) for prediction. Early predictions result in 
excessive lead time, which may lead to unnecessary corrections. Also note 
that, a prediction that is late more than a critical threshold time units (tc) is 
equivalent to not making any prediction and having the failure occurring. 
Mathematically, FP is defined as
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where tFP is the user-defined acceptable early prediction and FN is defined 
as
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(5.3)

where tFN is the user-defined acceptable late prediction.
FP and FN both can vary between values is 0 and 1, where 1 repre-

sents perfect score. FP and FN can then be compiled into ROC curve. The 
ROC allows to assess the tradeoff between FP and FN [31,32] in a com-
prehensive fashion by plotting (1 – FNs) over the FPs (see Figure 5.1). The 
ideal curve would have zero FPs and zero FNs, but such a curve cannot 
realistically be achieved for real-world problems. Use of time-dependent 
ROC has been suggested that depicts ROC obtained for forecasts made 
for different time horizons. Also, each point on the ROC curve may be 
associated with a point wise fixed width confidence bounds to indicate 
confidence in predictions. Tuning the prognostic algorithm such that a 
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FIGURE 5.1  ROC curve.
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ROC can be generated may prove difficult in practice (e.g., due to lack of 
data or lack of tuning “parameters”).

5.3.6.2  Spread-Based Metrics
Spread-based metrics measure the dispersion/spread of the error. The 
most basic spread-based metric is the sample deviation, which considers 
the error dispersion with respect to the error sample mean [20,33].

	
S i
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l

l
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=

∑ ∆
2

1

1 	
(5.4)

where M is the sample mean of the error. This metric is restricted to the 
assumption of normal distribution of the error. It is, therefore, recom-
mended to carry out a visual inspection of the error plots. SD can vary 
between 0 and ∞, where the perfect score is 0. Other spread-based metrics 
include MAD and MdAD from the sample median.

5.3.6.3  Anomaly Correlation Coefficient
This metric is used to measure correspondence or phase difference between 
prediction and observations, subtracting out the historical mean at each 
point and is frequently used to verify output from numerical prediction 
models [7]. Anomaly correlation coefficient (ACC) is not sensitive to error 
or bias, so a good anomaly correlation does not guarantee accurate pre-
dictions. In the PHM context, ACC computed over a few time-steps after 
tP can be used to modify long-term predictions. However, the method 
requires computing a baseline from history data, which may be difficult 
to come by.

Mathematically, ACC can be represented as follows:
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(5.5)

where z*(i) is a prediction variable (e.g., f in
l

* ( )  or h il
*( )) and z#(i) is the cor-

responding history data value. ACC can vary between –1 and 1, where 1 
represents perfect score.
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Thus, ACC averages the absolute percentage errors in the predictions 
of multiple UUTs at the same prediction horizon. The percentage is com-
puted based on the mean value of the prediction and ground truth. This 
prevents the percentage error from being too large for the cases where the 
ground truth is close to 0. This metric is computed at a particular time and 
does not capture performance variation with time.

5.3.6.4  Prognostic Horizon
The prognostic horizon (PH) can be formally defined as the difference 
between the time index i when the predictions first meet the specified 
performance criteria (based on data accumulated until time index i) and 
the time index for EoL. PH can be considered as a robustness metric. The 
basic notion behind the metric is that a longer PH implies more time to act 
based on a prediction that has some credibility. The performance require-
ment is specified in terms of an allowable error bound (α) around the true 
EoL where the choice of α depends on the estimate of time required to 
take a corrective action. PHs are typically determined offline during the 
validation phase for an algorithm-application pairing. PH performance is 
then used as a guideline for algorithm deployment where actual EoL is not 
known in advance.

	 PH = EoL – i	 (5.6)

where i j j l r r j rl= ∈( ) ∧ − ≤ ≤ + ⋅( ){ }min | ( . ) ( ) ( )* *α αEoL EoL .
PH output is a score that is characterized by both the length of remain-

ing life of a system and the time scales in the problem at hand. As shown 
in Figure 5.2, the desired level of accuracy with respect to the EoL ground 
truth is specified as ±α-bounds. A remaining life estimate within those 
bounds has sufficient utility to a user (it is not too far off from the target to 
be actionable). The PH for an algorithm is declared as soon the correspond-
ing predictions enter the α-bounds. RUL values can be superimposed for 
various algorithms, thus providing an easy aid in their comparison. As 
evident from Figure 5.2, algorithm A1 has a longer PH than algorithm A2.

5.3.6.5  α-λ Performance
α-λ metric quantifies the prediction quality by determining whether the 
prediction falls within specified limits at particular times with respect to 
a performance measure. The evaluation times may be specified either as 
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a ratio to the total remaining life from the point the first prediction is 
made or it may be specified as a given absolute time interval before EoL 
is reached. α-λ Performance could be expressed as α-λ accuracy, α-λ pre-
cision, or α-λ robustness metric. In the discussion below, we delineate 
α-λ performance without loss of generality as an accuracy performance 
measure.

Here we define α-λ accuracy as the prediction accuracy to be within 
α % of the actual RUL at specific time instance expressed as a fraction 
of time between the point when an algorithm starts predicting and the 
actual failure (Figure 5.3). Consider an example case where this metric 
determines whether a prediction falls within 20% accuracy (i.e., α = 0.2) 
halfway to failure from the time the first prediction is made, (i.e., λ = 0.5). 
The α-λ accuracy metric is defines as

	

α λ
α αλ-

if
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−( )⋅ ( ) ≤ ( ) ≤ +( )⋅ ( )1 1 1

0

r i r i r il

ttherwise
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

 	

(5.7)

where α is the accuracy modifier and λ is the time window modifier such 
that tλ = tP + λ(tEoL – tP).

For illustrating the usage of this performance measure, several predic-
tion algorithms employed in [34–37] are compared in Figure 5.4. Here 
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FIGURE 5.2  Prognostic horizon.
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this metric evaluates whether predictions made by various algorithms lie 
within 10% error when evaluated at halfway to the EoL.

5.3.6.6  Relative Accuracy
Relative accuracy (RA) is defined as a measure of error in RUL prediction 
relative to the actual RUL.
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FIGURE 5.3  α-λ Performance.
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where λ is the time window modifier such that tλ = tP + λ(tEoL – tP), l is the 
index for lth UUT, r*(iλ) is the ground truth RUL at time index iλ, and 
〈r(iλ)〉 is an appropriate point estimate of the predicted RUL distribution 
at time index iλ.

5.3.6.7  Cumulative Relative Accuracy
RA conveys information at a specific time. To estimate the general behav-
ior of the algorithm, RA can be evaluated at multiple time instances to 
provide an aggregate accuracy level or the cumulative relative accuracy 
(CRA).

	

CRA RAλ
λ

λ

λ

= ( )
∈

∑1




w r i
i

( )

	

(5.9)

where w(r(i)) is a weight factor as a function of RUL at all time indices and 
lλ is the set of all time indexes when a prediction was made.

It may be desirable to give more weight to RA evaluated at times closer 
to EoL since good performance close to EoL is important for condition-
based decision making. Therefore, one would expect that λ is chosen in a 
meaningful fashion, e.g., the time required to apply a corrective action. 
RA evaluated at λ = 0.5 indicates the time when a system is expected to 
have consumed half of its remaining life. Alternatively, RA could be eval-
uated at time instances where the damage magnitude has reached 50% 
of the failure threshold. This metric is also useful in comparing different 
algorithms for a given λ to get an idea on how well a particular algorithm 
does at significant times.

5.3.6.8  Convergence
Convergence expresses the rate at which any metric (M), such as accuracy 
or precision, improves with time. The error of different algorithm metric 
evaluation is connected into a curve. Convergence is then defined as the 
distance between the origin and the centroid of the area under the curve 
for a given metric.
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	 C x t yM c P c= − +( )2 2 , 	 (5.10)

where CM is the Euclidean distance between the center of mass (xc, yc) and 
(tP, 0), M(i) is a nonnegative prediction accuracy or precision metric with a 
time varying value, (xc, yc) is the center of mass of the area under the curve 
M(i) between tP and tEoUP, defined as following
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where EoUP (end of useful predictions) is the time index for last use-
ful prediction made. Alternatively, one may use EoP, but EoUP makes 
sure that performance is evaluated only based on those predictions that 
are useful from a practical view point since any prediction made after 
EoUP does not leave enough time to carry out any corrective measure 
[36,37].

As stated earlier, convergence banks on the implicit assumption that 
algorithm performance should improve with time. For illustration of the 
concept, consider three cases that converge at different rates in Figure 5.5. 
Lower distance implies a faster convergence.

5.3.6.9  Robustness
A robustness metric has the task of quantifying the sensitivity of an algo-
rithm with respect to its parameters, such as those found in expressing 
prior distribution, initial conditions, and training data size. Confidence 
bounds of a robust algorithm are not expected to change much with varia-
tions of algorithm parameters. Mathematically, the robustness metric Rb 
can be defined as
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where x is the investigated algorithm parameter and f(x) is the confidence 
bound variation function with respect to x.

The assessment of algorithm robustness is of high value in particular 
since most of the time an accurate prior is difficult to obtain with limited 
data source and extensive experiments on the actual engineering system 
are often prohibitive due to time and cost constraints [38].

5.3.6.10  RUL Online Precision Index
This index quantifies the length of 95% confidence bounds relative to the 
predicted RUL at any given time instant [39]. The index is normalized 
between 0 and 1. It can be used as an online performance metric to ensure 
if I1 remains close to 1 as system deteriorates, i.e., EoL approaches

	 I i e
CI i CI i

r i
1 ( ) =

− −





sup{ ( )} inf{ ( )}
( )

	 (5.13)

where 0 < I1 ≤ 1, ∀i ∈ [1, 〈EoL〉], i ∈ I+
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5.3.7  Incorporating Uncertainty Estimates

Prognostics algorithms typically involve estimating the probability distri-
bution function (PDF) of the EoL and RUL, rather than single point pre-
dictions, which enables them to handle uncertainties arising from various 
sources such as noise, loading conditions, and so on. They also allow for 
propagation of uncertainties for subsequent predictions [40]. Thus, it is 
necessary to ensure that prognostic performance metrics include these 
factors. The most common form of assessing a PDF output is through esti-
mates of mean and variance of the distribution owing to their simplicity 
and easy interpretation [34]. However, in reality, these distributions are 
rarely smooth or symmetric and hence mean and variance are not robust 
enough to evaluate the performance. A combination of mean as the mea-
sure of location and quartiles or interquartile range (IQR) as a measure of 
spread can provide better estimates of the distribution [33].

The metrics shown in the previous sections do not explicitly accommo-
date for uncertainty estimating capability of the prognostic algorithms. 
However, a fairly straightforward way to do so is to specify an allowable 
error bound for a given metric. This error bound could be asymmetric as 
shown in Figure 5.6. In case of prognostics, typically, a wider error margin 
to the “left” of the prediction (that is, an early prediction) may be preferred 
because early predictions have lower cost and safety consequences than 
late ones.

These concepts can be analytically incorporated into the metrics by cal-
culating the probability mass of a prediction falling within the specified 
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Predicted
EoL distribution

EoL point
estimate

EoL ground
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Total probability
of EoL within
α-bounds 
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α-bounds
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FIGURE 5.6  Concepts for incorporating uncertainties [4,5] (CC 3.0).
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α-bounds. As an illustrative example, consider again the α-λ accuracy. The 
α-bounds are expressed as a percentage of actual RUL r(iλ) at tλ.
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where r(iλ) is the predicted RUL at time index iλ, π λ α

α
r i( )  −

+

 is the prob-
ability mass of the prediction PDF within the α-bounds that are given by 
α α α αλ λ λ λ
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With α = 0.1 and λ = 0.5, the criteria for matching the metric require-
ment is determined by assessing the intersection of the uncertainty with 
the α-cone as shown in Figure 5.7. Note that there may be no prediction 
assessed at time tλ for a given λ and the corresponding iλ ∉ p because the 
set of time indexes (p) where a prediction is made is determined by the 
frequency of prediction step in a prognostic algorithm. In such cases, one 
can make choose λ′ closest to λ such that iλ′ ∈ p. To illustrate the applica-
tion of α-λ accuracy further, refer to Figure 5.8, where the performance of 
a Recurrent Neural Network algorithm is plotted for every time instant 
when a prediction was made. Figure 5.8 indicates at any point with either 
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“true” or “false” (written above the upper quartiles) whether α-λ accuracy 
metric is satisfied or not based on β-criterion.

5.3.8  Guidelines for Applying Prognostics Metrics

Given the structure of the prognostics metrics described in this chapter, 
one can observe a progression in the manner how these metrics charac-
terize the algorithm performance. The first metric, PH, identifies whether 
an algorithm predicts within a specified error limits around the actual 
EoL and, if it does, how much time it allows for any corrective action. 
Therefore, if an algorithm does not allow a sufficient PH it may not be 
meaningful to continue on computing other metrics. On the other hand, 
if an algorithm passes the PH test, the next metric, α-λ performance, iden-
tifies whether the algorithm performs within desired error margins of the 
actual RUL at any given time instant that may be of interest to in a par-
ticular application. This is a more stringent requirement of staying within 
a converging cone of the error margins as a system nears EoL. If this crite-
rion is also met, the next step is to quantify the accuracy levels relative to 
the actual RUL. This is accomplished by the metrics RA and CRA. These 
metrics assume that prognostic performance improves as more informa-
tion becomes available with time, and hence, by design, an algorithm will 
satisfy these metrics criteria if it converges to true RULs. Therefore, the 
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fourth metric, convergence, quantifies how fast the algorithm converges 
if it does satisfy all previous metrics. These metrics can be considered as a 
hierarchical test that provides several levels of comparison among differ-
ent algorithms in addition to the specific information these metrics indi-
vidually provide regarding algorithm performance. Of course, the use of 
other metrics such as robustness stands by itself to assess sensitivity of any 
of these or even other metrics with respect to a key system parameter.

5.3.8.1  Guidelines on Choosing Performance Parameters
Time critical nature of prognostic application resulted in metrics for 
which the performance evolves with time and needs to be tracked. This 
required several special parameters that must be specified to define time 
criticality (λ), confidence level (β), or acceptable error bounds (α). The 
choice of α depends on the estimate of time required to take a correc-
tive action. Depending on the situation this corrective action may cor-
respond to performing maintenance (manufacturing plants) or bringing 
the system to a safe operating mode (operations in a combat zone). 
Adjustments to these parameters may translate into significant changes 
in the cost-benefit-risk equation in a process. Therefore, it is suggested 
that these parameters be chosen carefully to clearly specify prognostic 
requirements [4,5]. Requirements engineering is a discipline that pro-
vides guidelines to obtain these requirements in a systematic manner. 
For instance, in a safety critical military application, first, a failure 
modes affects and criticality analysis (FMECA) or hazard and operabil-
ity analysis (HAZOP) must be conducted to identify most critical fail-
ures. Then, based on available sensors, measurement quality, noise levels, 
etc. desired confidence levels must be derived. For safety critical systems, 
a more conservative failure threshold may be chosen, while for commer-
cial applications a less conservative but more cost effective threshold is 
preferred. It must be noted that the choice of metrics and performance 
specifications is an iterative process that negotiates between user require-
ments and constraints originating from performance needs, available 
resources, established maturity level of PHM, and time criticality for 
that application.

5.3.8.2  Guidelines for Dealing with Uncertainties
A prognostic system models a stochastic process, and hence, the behav-
ior observed from a particular run (single realization of the stochas-
tic process) does not represent the complete behavior of the predicted 
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trajectories. Assuming that all measures practically possible for uncer-
tainty reduction have been taken during the algorithm development 
phase, such observations should be treated only as isolated realization of 
the process. A level of confidence or probability of occurrence should be 
attached to such predictions. Otherwise, multiple trajectories should be 
aggregated from several runs to achieve statistical significance and more 
sophisticated stochastic analyses may be carried out. Another aspect deal-
ing with uncertainties is related to prognostic algorithm output. Different 
algorithms represent uncertainties in different ways. Some specify para-
metric distribution and other as nonparametric ones. Furthermore, some 
result in a closed form analytical equation for these distributions and 
other only result in discretized histograms. It is very important to care-
fully treat these distributions and not lose critical information by approx-
imating these by known simpler forms such as normal distribution or by 
computing their statistical moments [4,5,36,37]. A common practice has 
been to compute mean and variance for all types of distributions whereas 
they may not be very meaningful for nonnormal distributions. Use of 
more robust estimators such as median, L-estimator, or M-estimator for 
expressing central tendency and IQR, MAD, or MdAD for expressing the 
spread is suggested [41].

5.3.8.3  Guidelines to Resolve Ambiguities
In practice, there can be several situations where the definitions discussed 
above result in ambiguity. Some of such situations are very briefly dis-
cussed here with suggested resolutions.

While applying the PH metric, a common situation encountered is 
when the RUL trajectory jumps out of the ±α accuracy bounds temporar-
ily. Situations like this result in multiple time indexes where RUL trajec-
tory enters the accuracy zone to satisfy the metric criteria. A simple and 
conservative approach to deal with this situation is to declare a PH at the 
latest time instant the predictions enter accuracy zone and never comes 
out thereafter. Another option is to use the original PH definition and 
further evaluate other metrics to determine whether the algorithm satis-
fies all other requirements. As discussed by Saxena et al. [36,37], situations 
such as these can occur due to a variety of reasons.

Inadequate system model: Real systems often exhibit inherent transients 
at different stages during their life cycles. These transients get reflected as 
deviations in computed RUL estimates from the true value if the underly-
ing model assumed for the system does not account for these behaviors. In 
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such cases, one must step back and refine the respective models to incor-
porate such dynamics.

Operational transients: Another source of such behaviors can be due to 
sudden changes in operational profiles under which a system is operating. 
Prognostic algorithms may show a time lag in adapting to such changes 
and hence resulting in temporary deviation from the real values. Therefore, 
whenever inconsistent behavior of PH metric is observed, one must iden-
tify the root cause of it and accordingly interpret the results. The situations 
discussed here are more common typically towards the end when a system 
nears EoL. This is because in most cases the fault evolution dynamics are 
too fast and complex to model or learn from data as the system nears EoL. 
Therefore, RUL curve deviates from the error band near tEoL. To determine 
whether such deviations are critical for postprognostic decision making, the 
concept of tEoUP or EoUP is introduced. This index represents the minimum 
allowable PH that is required to take a corrective measure. Any predictions 
made beyond EoUP are of little or no use from a practical viewpoint.

5.4  Summary
This chapter presents several performance metrics for offline evaluation of 
prognostics algorithms. A brief overview of different methods employed 
for performance evaluation is also included. Because metrics developed 
in the context of forecasting differ from prognostics in the systems health 
management context and to account for the additional considerations, 
metrics specialized for prognostics (but not necessarily for the applica-
tion) are needed. These metrics were introduced, and their use was illus-
trated with recommendations.
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