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This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capac-
itors. Electrolytic capacitors are critical components in electronics systems in aeronautics and other domains.
Degradations in capacitor and MOSFET components are often the cause of failures in DC-DC converters. For
example, prevalent fault effects, such as a ripple voltage surge at the power supply output, can damage inter-
connected critical subsystems leading to cascading fault propagation. Prognostics in general and in this case
electronics components in particular is concerned with the prediction of remaining useful life (RUL) of compo-
nents and systems. It performs a condition-based health assessment by estimating the current state of health.
Furthermore, it leverages the knowledge of the device physics and degradation physics to predict remaining
useful life as a function of current state of health and anticipated operational and environmental conditions.
Physics-based models capture degradation phenomena in terms of component geometry and energy based
principles that define the effect of stressors on the component behavior. This is in contrast to the traditional
approach for deriving degradation models from empirical data. Implementing the degradation modeling tech-
niques present a general methodology for estimating lifetimes due to specific failure mechanisms. The failure
rate models can be tuned to include parameters that relate to the present health of the device/system and the
expected conditions under which it will be operated. The models and algorithms are applied to data from
degradation experiments of several COTS capacitors. Results show the efficiency of the approach chosen.

Nomenclature

εR relative dielectric constant
εO permitivity of free space
As effective oxide surface area,
cb capacitance dependence breakdown factor.
Ve(t) dispersion volume at time t
Ve0 initial electrolyte volume
jeo evaporation rate (min−1 area−1)
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t aging time in hours
ρE electrolyte resistivity
PE correlation factor related to electrolyte spacer porosity and average electrolyte path.
we volume of ethyl glycol molecule
Vc total capacitor capsule volume
dA thickness of anode strip
dC thickness of cathode strip
C Capacitance

I. Introduction

Today almost all of the sub-systems in a comp[lex system include modules with embedded electronics to carry out
a variety of different tasks. However, it has been found that these modules are often the first elements in the system to
fail thus reducing overall system reliability.1, 2 These failures can often be attributed to adverse storage and operating
conditions, such as high temperatures, voltage surges and current spikes that the modules and their components may
be subjected to during operation. This motivates the need for developing and implementing Integrated Vehicle Health
Management (IVHM) technologies for systems with embedded electronics to enhance system reliability, assure system
performance, avoid catastrophic failures, and reduce maintenance costs over the life of the system.3, 4 In addition,
an understanding of the deterioration mechanisms helps to systematically track the changes in system behavior and
performance, develop the capability to anticipate failures, and predict the remaining useful life (RUL) of the electronic
systems long before the components actually fail.

The term “diagnostics” relates to the ability to detect and isolate faults or failures in a system. “Prognostics” on the
other hand is the process of predicting health condition and remaining useful life based on current state and previous,
current and future operating conditions. Prognostics and health management (PHM) methods combine sensing, data
collection, interpretation of environmental, operational, and performance related parameters to indicate systems health
as well as anticipate damage propagation due to degradation. PHM methodologies can be implemented through the
use of various techniques that study parameter variations, which indicate changes in performance degradation based
on usage duration and conditions.

In this paper, we develop an effective PHM methodology to enable early detection of failure precursors in a
specific type of electrolytic capacitor associated with DC-DC power supplies. Our approach combines physics-based
degradation modeling supported by empirical experimental analysis for parameterizing the physics models, and then
using these models to predict remaining useful life of electrolytic capacitors as well as their effects on overall system
performance. Our hypothesis is that early detection will lead to better tracking of the degradation process, thus
enabling better predictions and end of life estimates. As a result, this will result in better overall performance and
system reliability. The overall contribution of this paper is the development of a mixed physics-based and data-driven
methodology, and demonstration of how it applies to modeling the degradation process and RUL in one type of
capacitor. We believe that the methodology is general, and may be extended to structurally similar type of capacitors.
We hope to demonstrate that in future work.

A. Background

We study and analyze an example from the aerospace domain, where flight and ground staff need to acquire rele-
vant information that enables accurate estimation of the current health state for all subsystems. Avionics systems in
modern aircraft contain a large number of electronics components in the control, communications and navigation sys-
tems. Furthermore, with the introduction of fly-by-wire mechanisms, the number of electronic components in aircraft
systems are growing. This proliferation gives rise to the possibility of unknown fault modes, which will affect the
ability to detect and diagnose faults in a robust and computationally efficient ways. This increases the importance
of understanding how these components degrade, and to use this understanding to anticipate, track, isolate, identify,
and predict the remaining useful life of the electronic components.3, 5 This has motivated research projects that focus
on accurate detection and isolation of degradation and faults in the system, develop precursors to failure, and predict
remaining useful life of the critical avionics components and subsystems after degradation or onset of faults have been
detected.

Capacitors are an integral components of switched-mode power supplies that are used in a number of aircraft
systems because of their high efficiency and compact size. The buck-boost DC-DC converter steps voltage levels
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down/up based on the application requirements. Our particular application has an input of 28V DC from a battery
source, and the required output voltage of 5V. The electrolytic capacitors and metaloxide semiconductor field-effect
transistor (MOSFET) switches are known to have the highest degradation and failure rates among all of the compo-
nents.6 Degraded capacitors affect the performance and efficiency of the DC-DC converters in a significant manner
and also impose a risk on instantiating cascading failures on other connected subsystems.

Some earlier efforts in diagnostic health monitoring of electronic systems and subsystems involved the use of
a built-in test (BIT), defined as an on-board hardware-software diagnostic tests to identify and locate faults. Studies
conducted by7, 8 on the use of BITs for fault identification and diagnostics showed that they can be prone to false alarms
and may result in unnecessary costly replacement, re-qualification, delayed shipping, and loss of system availability.
The persistence of such issues over the years is perhaps because the use of BIT has been restricted to low-volume
systems. In general, BITs generally have not been designed to provide prognostics or remaining useful life due to
accumulated damage or progression of faults. Rather, it has served primarily as a diagnostic tool.

Prognostics failure predictions have to be accurate if they are used in taking decisions for reliability improvement
and repair. Detailed examinations of actual parameter variations and degradation process should also be compared
with those that are predicted by the physics-based failures models. Between similar components or electronic systems,
(made by different manufacturers) there may be wide variability in the parameters values and hence making effective
predictions based on specific data set.9 Hence implementing PHM methodology based on first principles of operation
is highly effective and efficient in making remaining useful life predictions under such circumstances.

B. Organization of Paper

This paper is organized as follows. Section II discusses the current work being done in the area of capacitor prognostics
and our research approach. Section III presents introduction to electrolytic capacitors and its basic structure, operation
and degradation mechanisms. Section IV discusses capacitor first principle models in detail. Section V describes the
electrical overstress aging experiments conducted for this work. Section VI and VII presents the prognostic framework
methodology and RUL results respectively. The paper ends with discussion and conclusion in section VIII.

II. Related Work in Capacitor Diagnosis and Prognosis

The high frequency of failure of the output filter capacitor in switched mode power supplies has a critical impact on
overall system performance and reliability.6, 10, 11 A PHM approach applied to power supplies used in avionics systems
is presented in,11 where aging of the system is attributed to output capacitor and power MOSFET degradation and
failures. However, the paper does not discuss the degradation processes or a methodology to derive RUL predictions
for the power supply. The work on switched mode power supplies by6, 10 discuss details of the power supply output
ripple voltage and leakage current as a function of capacitor degradation, but they do not discuss modeling of the
degradation mechanisms and RUL computations in any detail.

A health management approach for multilayer ceramic capacitors is presented in.12 This approach focuses on a
temperature-humidity bias accelerated test to replicate failures, and implements data trending algorithms in conjunc-
tion with multivariate data analysis. The Mahalanobis distance method is used to detect abnormalities in the data by
using classification methods that label behaviors into “normal” and “abnormal” groups. The abnormal data are then
further classified into levels of abnormality by severity based on which predictions are made. A data driven fault de-
tection and prediction algorithm for multilayer ceramic capacitors is presented in.13 The prediction approach used in
their study combines regression analysis, residual, detection, and prediction analysis. A method based on Mahalanobis
distance is used to detect abnormalities in the test data; prediction of RUL is not discussed in this paper.

The authors in14 discuss the failure probability in Barium Titanate used as a dielectric in MLCC’s. Dielectric ce-
ramics in multilayer capacitors are subjected to thermo-mechanical stresses, which, may cause mechanical failure and
lead to loss of electrical function. Probabilistic life design or failure probability analysis of ceramic components com-
bines the strength distribution of the monolithic ceramic material comprising the component, finite element analysis
of the component under the mechanical loading conditions of interest, and a multiaxial fracture criterion.

The work by15 looked at degradation in metalized polypropylene film capacitors, where a noninvasive technique
for capacitor diagnostics in boost converters has been discussed. This technique is based on estimations of the ESR
(equivalent series resistance) and the capacitance, improving the diagnostic reliability and allowing for predictive
maintenance using a low-cost digital signal processor.16 discuss a condition based monitoring with implementation of
fast fourier transform based prediction approach.

Most of the current work done for capacitor prognostics is based on data driven methodologies. As discussed
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earlier 12 implement a trending algorithm based on experimental data, similarly 13 implemented a data driven fault
detection and prediction algorithm. In this work we discuss implementation of an hybrid approach, combining data
driven and physics based degradation modeling approaches for prognostics.

A. Research Approach

The physics-based degradation modeling (PBDM) approach to prognosis, models failure mechanisms using a first
principles physics-based model of operation, as opposed to traditional approaches that employ data-driven empirical
models. These are dynamic models which evolve over time as the device/ system degrades due to usage conditions.
Physics-based degradation modeling techniques are effective for estimating the impact on lifetime due to specific
failure mechanisms.17 Failure predictions, i.e., the time to complete failure from the present time (RUL) and also the
evolution of degradation through this time interval, depend upon the current health state of the device/system and the
conditions under which it is operated. Therefore, to apply PBDM techniques accurately, one must take into account
environmental variables and operating conditions along with a device’s physical properties.

Typically, under normal operating conditions, where parameters are limited to manufacturer-specified threshold
limits, a device/ subsystem does not degrade rapidly. In such cases, an experiment may have to be conducted over
long periods of time (e.g., months and even years) to detect and study the underlying failure modes. Accelerated stress
tests (AST) have been recognized to be a valuable in getting much quicker estimates of the reliability and quality
of electronics components.17 Accelerated stress tests are often carried out under enhanced adverse environmental
conditions to accelerate the damage accumulation rate due to physical or environmental phenomena.18 In traditional
accelerated testing techniques, root-cause identification and analysis is not adequately emphasized. In the physics-
based degradation modeling (PBDM) approach it is very important to identify, understand, and model the underlying
failure mechanisms to derive general (as opposed to situation-specific) models of the aging phenomena.

As mentioned earlier, prognostics approaches are essential for improving system safety, reliability, and availability.
Prognostics deals with determining the health state of components, and projecting this state into the future to make end
of life (EOL) and RUL estimations. Model-based prognostics approaches perform these tasks employing first princi-
ples physics models that capture knowledge about the system, its components, and their degradation mechanisms.19

Faults and degradations appear as parameter value changes in the model, and this provides the mechanism for tracking
system behavior under degraded conditions.20
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Figure 1. Research Approach Methodology

We implement the prognostics modeling process illustrated in Figure 1. The core of this work focuses on develop-
ing physics-based degradation models of components that include descriptions of how fault parameters evolve in time,
governed by their operating conditions. As described in Figure 1, we combine experimental studies on the device
and the electrical and mechanical configuration information with physics based modeling of behavior phenomena.
Identifying the failure precursors and developing accurate models of degradation/ failure from an understanding of
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the physics-based model is an important challenge that we address in this research work. Early detection and analysis
may lead to more accurate estimation of parameter changes, and therefore, better prediction and end of life estimates
of the capacitor. Unknown and time varying parameters in the degradation model are estimated online. The derived
state space models are then implemented in a Bayesian framework for prognostics.

In the next section we first discuss in brief the basics of electrolytic capacitors, their detailed structure and the
different mechanisms under which the devices degrade.

III. Electrolytic Capacitors

Electrolytic capacitor performance is strongly affected by its operating conditions, such as voltage, current, fre-
quency, and ambient temperatures. A primary reason for wear out in aluminum electrolytic capacitors is due to
vaporization of electrolyte and degradation of electrolyte due to ion exchange during charging/discharging, which in
turn leads to a drift in the two main electrical parameters of the capacitor: (1) the equivalent series resistance (ESR),
and (2) the capacitance (C). The ESR of a capacitor is the sum of the resistance due to aluminum oxide, electrolyte,
spacer, and electrodes (foil, tabbing, leads, and ohmic contacts)21 and capacitance is the ability of a capacitor to store
charge in an electric field. The health of a capacitor is often measured by the values of these two parameters. There
are certain industry standard thresholds for these parameter values, if the measurements exceed these thresholds then
the component is considered unhealthy, i.e., the component has reached its end of life, and should be immediately
replaced before further operations.22, 23
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Figure 2. Capacitor Detail Structure

Fig. 2 shows a detailed view of the cross section of an electrolytic capacitor structure along with its equivalent
electrical circuit diagram. Further details of the structure of an capacitor are discussed in .21 To get higher capacitance
values for the same surface area of the anode and cathode foils, the foil is etched by a chemical process. After etching,
the plates are anodized by coating them with a thin aluminum oxide layer on the surface of the foil.

A. Degradation Mechanisms

There are several factors that cause degradation in electrolytic capacitors. Failures in a capacitor can be one of two
types: (1) catastrophic failures, where there is complete loss of functionality due to a short or open circuit, and (2)
degradation failures, where there is gradual deterioration of capacitor due to accumulated damages. Degradation in
the capacitor manifests an increase in the equivalent series resistance (ESR) and decrease in capacitance (C), due to
deterioration of electrolyte quality, decreases in electrolyte volume due to evaporation, weakening of the oxide layer,
over operating time.21, 24

The flow of current during the charge/ discharge cycle of the capacitor causes the internal temperature to rise.
The heat generated is transmitted from the core to the surface of the capacitor body, but not all the heat generated
can escape. The excess heat results in a rise in the internal temperature of the capacitors which causes the electrolyte
to evaporate, and gradually deplete. Similarly in situations where the capacitor is operating under high temperature
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conditions, the capacitor body is at a higher temperature than its core, the heat travels in the opposite directions
from the body surface to the core of the capacitor again increasing the internal temperature causing the electrolyte to
evaporate.21
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Figure 3. Fishbone diagram of failure mechanisms in aluminum electrolytic capacitors

Degradation in the oxide layer can be attributed to crystal defects that occur because of the periodic heating and
cooling during the capacitor’s duty cycle, as well as stress, cracks, and installation-related damage. High electrical
stress is known to accentuate the degradation of the oxide layer due to localized dielectric breakdowns on the ox-
ide layer.25 These breakdowns, which accelerate the degradation, have been attributed to the duty cycle, i.e., the
charge/discharge cycle during operation.21 Further another simultaneous phenomenon is the increase in the internal
pressure due to an increased rate of chemical reactions,21 which can again be attributed to the internal temperature
increase in the capacitor. This pressure increase can ultimately lead to the capacitor popping open at the top.

All the failure/degradation phenomenon mentioned may act simultaneously based on the operating conditions of
the capacitors. We first study the phenomenon qualitatively, and then discuss the steps to derive the first principles
analytic degradation models for the different operating condition. The fishbone diagram in Fig. 3 shows the most
common set of failure modes for electrolytic capacitors that have been reported in the literature.21 This diagram
identifies the relationship between root causes and failure modes observed in electrolytic capacitors. Our focus in
this work is on the electrical stressors that govern the capacitor degradation, specifically, we study the effect of high
operating voltage and their effects on the electrolytic capacitor degradation.

IV. Physics based Modeling of Capacitor Degradation

In this section we discuss about deriving the first principles based degradation models. We derive the capacitance
and ESR degradation models which are based on the first principles of operation based on the first principles of
operation and geometry.21

A. Electrolyte Decrease

The evaporation rate, jeo is directly linked with change in the core temperature.26 In this work the electrolyte under
study is ethylene glycol. When the surrounding temperature of the capacitor capsule is high, heat transfer from the
capsule to the capacitor core causes the internal temperature of the capacitor to increase, and as a result the electrolyte
evaporates at a faster rate. Under prolonged high temperate exposure the electrolyte evaporation accelerates, which in
turn decreases effective oxide surface area As, leading to decreases in capacitance, (C).26–28 The change in electrolyte
volume as a function of the evaporation rate and time elapsed is given by:

Ve(t) = Ve0 − (Asjeowe × t), (1)
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From Eqn.(1) we derive the effective oxide surface areas As in terms of the decrease in electrolyte volume over
time:

As =
Ve0 − Ve(t)
jeo t e

(2)

Details of the derivation of this equation can be found in.21, 26

B. Capacitance Degradation Model

Capacitance represents the ability of a body to store electrical charge. It can be calculated from knowledge of the
configuration and the geometry of the conductors and dielectric properties of the insulator between the conductors.
Based on the cylindrical geometry the total lumped capacitance for a foil type electrolytic capacitor29 along with
capacitance dependence factor cb, is given by:

C =
2εRε0Ascb

dC
(3)

Studies reported in the literature30 and our own experiments show that this parameter in the initial life aging cycle
of the device remains less dominant based on the operating conditions and is directly proportional to decrease in
electrolyte as discussed earlier. In Eq. (3) the parameters εR, ε0, and dC remain more or less constant through the
capacitance aging time.

C. ESR Degradation Model

The ESR dissipates some of the stored energy in the capacitor. An ideal capacitor would offer no resistance to the
flow of current at its leads. Based on the first principles parameters the equivalent series equivalent resistance, ESR
is computed as a function of the effective oxide surface area, As 29 and the resistance dependence factor eb can be
expressed as:

ESR =
1

2

(
ρEdCPEeb

As

)
(4)

Under normal circumstances when the capacitors are stored at room temperature or below rated temperatures,
no significant damage or decrease in the life expectancy is observed for long periods of time. But in cases where
the capacitors are stored under temperature conditions higher than their rated value, the capacitors show irreversible
degradation over time. For both the capacitance and degradation models, we employ derived relation between, oxide
surface area, As and electrolyte volume, Ve(t) to define temporal degradation in the C and ESR values when stress is
applied.

D. Time Dependent Degradation Models

Using the physics-based model of electrolyte evaporation, we derive the time dependent degradation models for ca-
pacitance (C) and ESR. Using Eq. (3) and Eq. (2) we derive the capacitance degradation model as:

D1 : C(t) =

(
2εRε0cb
dC

)(
Ve(t)

jeo t we

)
. (5)

Evaporation rate, jeo is a temperature dependent parameter, electrolyte volume changes with time and evaporation
rate and cb is the breakdown capacitance dependence factor directly dependent on the change in electrolyte volume.
Similarly increase in ESR, is computed from Eq. (4) as:

D2 : ESR(t) =
1

2
(ρE dC PE)

(
jeo t weeb
Ve(t)

)
(6)

In model, D2 the parameters which are temperature dependent are the rate of evaporation jeo and the correlation
factor, PE related to electrolyte spacer porosity and average liquid pathway and eb, breakdown resistance dependence
factor directly dependent on the change in electrolyte volume, operating conditions.
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V. Electrical Overstress Experiment

For this experiment six capacitors of 2200µF capacitance, with a maximum rated voltage of 10V , maximum
current rating of 1A and maximum operating temperature of 85◦C were used for the study. The ESR and capacitance
values were estimated from the capacitor impedance frequency response measured using the EIS instrument. Using
the lumped parameter model,M1 the ESR and capacitance (C) values given by Eqns. (5) and (6), were estimated at
each measurement. The average pristine condition ESR value was measured to be 0.121 Ω and average capacitance
of 2029 µF for the set of capacitors under test. The ambient temperature for the experiment was controlled and kept
at 25◦C. During each measurement the voltage source was shut down, the capacitors were discharged completely,
and then the characterization procedure was carried out. Figure 4 shows the experimental setup for the 15V EOS
experiment.
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Figure 4. Electrical Overstress experimental setup schematic

Figure 5 shows increase in the ESR value for all the six capacitors under test over the period of time. Similarly,
Figure 6 shows the decrease in the value of the capacitance as the capacitor degrades over the aging period. From
the plots in Figure 5 we observe that for the time for which the experiments were conducted the average ESR value
increased by 54% − 55% while over the same period of time, the average capacitance decreased by more than 20%
(threshold mark for a healthy capacitor). We used the collected data from the experiments to build dynamic degradation
models of capacitors.
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Figure 5. Degradation of capacitor performance, ESR increase as a function of aging time.

VI. Model-based Prognostics Framework

In our earlier work20, 31 an implementation of a model-based prognostics algorithm based on Kalman filter (KF)
and a physics inspired empirical degradation model has been presented. The physics inspired degradation model
was derived based on the capacitance degradation data from electrical overstress experiments. In21 we discussed
an extension of our work where a physics based degradation model was derived and implemented for making RUL
predictions for degradation under thermal overstress conditions. In this section we present our work extending it to
the electrical overstress conditions and with implementation of the Bayesian framework methodology for prognostics
19 using an Unscented Kalman Filter (UKF).32
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Figure 6. Degradation of capacitor performance, capacitance loss as a function of aging time.

A. Prognostics Problem Formulation

In prognostics studies, it is important know when the performance of the device or system is going to lie outside an
acceptable region of operation. When the capacitor parameters exceed specified thresholds, we consider the degrading
device or system to have failed. For the device/system to be within the bounds of acceptable performance, we express
a set of constraints, cn, C = {Ci}cni=1, where Ci is a function

Ci : Rnx × Rnθ → B

that maps a given point in the joint state-parameter space,(x(t), θ(t)), to the Boolean domain B = [0, 1], where
Ci(x(t),θ(t)) , 1 indicates the constraint is satisfied or 0 (failed) if the constrained is not satisfied. Each individual
constraint can be combined to form a single constraint output threshold function TEOL, where

TEOL : Rnx × Rnθ → B

which is defined as :

TEOL(x(t), θ(t)) =

{
1, 0 ∈ {Ci(x(t), θ(t))}ci=1

0, otherwise.
(7)

Indicating the healthy state of a device/system TEOL evaluates to 1, if any of the constraints are violated. At some
instance in the aging cycle at time, tp , the system is at (x(tP ); θ(tP )) and we are interested in predicting the time
point t at which this state will evolve to (x(t); θ(t)) such that TEOL(x(t), θ(t)) = 1. Using TEOL, we formally define
end of life (EOL) of a device/system as:

EOLtp , inf {t ∈ R : t ≥ tp ∧ TEOL(x(t), θ(t)) = 1} , (8)

i.e., EOL is the earliest instance in the aging cycle at which at which TEOL is valid for a healthy system. RUL is
expressed using EOL as

RUL(tp) , EOL(tp)− tp.

B. Capacitance Degradation Dynamic Model

From Eqn.(5) and other derivations derived earlier, we have the time dependent degradation model,D1 for capacitance
(C) given by :

D1 : C(t) =

(
2 εR ε0 cb

dC

)(
Ve0 − Ve(t)
jeo t we

)
,
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The degradation in capacitance is directly proportional to the damage variables V and cb, respectively. The resul-
tant decrease in the capacitance can be computed using Eq. (5). In addition to the decrease in electrolyte volume, the
oxide layer also degrades causing a breakdown in the oxide layer, which further leads to degradation in capacitance
(C) and ESR.

In model,D1 the parameters which are temperature dependent are the rate of evaporation jeo and oxide breakdown
factor, cb. Rate of evaporation, jeo and resistance dependence oxide breakdown factor, cb are the two parameters in
the model which are estimated online based on the state variable value, C.

Though the applied stress conditions are similar, there may be variation in each capacitor and hence each capacitor
may have slightly different evaporation rate. Hence the evaporation rate parameter, jeo is estimated based on the
first two reading in the experimental data for each capacitors when predictions are done. The exact formulation of
the parameter is incorporated as modeling error/process noise in form of a stochastic process. Since there could be
a variation in the temperature the corresponding evaporation rate value estimated had a mean and variance of the
variation values.

The complete discrete time dynamic model for capacitance degradation and state parameter, capacitance depen-
dence breakdown factor, cb can be expressed as:

D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t,

cb(k+1) = cb(k) − ξeξ.
(9)

The model D4, is implemented in a Bayesian estimation framework. In this work, we implement the dynamic
tracking function as an UKF since the degradation in capacitance (state) due to decrease in electrolyte is considered to
be a dynamic non-linear model since evaporation rate (jeo) and capacitance oxide breakdown factor (cb) are estimated
online based on the state values.

The following steps are implemented for model D4:

1. State Estimation: The current measured capacitance (C) is defined as the state variable to be estimated respec-
tively for each of the model and the degradation model is expressed as a discrete time dynamic model in order
to estimate current capacitance (C) due to decrease in electrolyte volume at the next available measurement.
Direct measurements of the capacitance (C) is assumed for the filter.

2. Health state forecasting: It is necessary to forecast the state variable once there are no more measurements
available at the end of step 1. This is done by evaluating the degradation model through time using the state
estimate at time tp as initial value.

3. Remaining useful life computation: RUL is computed as the time between time of prediction tp and the time at
which the forecasted state crosses a certain failure threshold value or EOL.

These steps are repeated for different aging time (tp) through the life of the capacitor device under test. In this
work we only consider the model noise and the noise variance as discussed earlier. But for the prediction step we
present the means for all the EOL/RUL predictions in our results since the focus of this work is more on deriving the
physics-based degradation, implementing it in a Bayesian framework and for prognostics predictions.

C. UKF for Capacitance State Estimation

The state variable xk (Capacitance) at time tk is defined as the current measured capacitance Ck. Since the system
measurements are capacitance (C) as well, the output equation is given by yk = Hk xk, where H is the identity
matrix. The following system structure is implemented for filtering and prediction using a UKF.

xk = Akxk−1 +Bku+ v,
yk = Hkxk + w.

(10)

where,

A = 1,

B = − (2εRε0weAsjeocb)

d2C
∆t,

H = 1,
u = jeo, cb.

(11)
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In this work and application of UKF, the time increment between measurements ∆t is not constant since measure-
ments were taken at nonuniform time intervals i.e., the capacitors were characterized at different time intervals. This
implies that some of the parameters of the model in Eqn. (14) will change as time progresses. Furthermore, v and
w are normal random variables with zero mean and Q and R variance respectively. The model noise (process noise)
variance Q was estimated from the model regression residuals and was used for the model noise in the Kalman filter
implementation. The measurement noise variance R, was computed from the direct measurements of the capacitance
with the EIS equipment, the observed variance is 4.99 × 10−7. A detailed description of the algorithm implemented
in this work can be found in 33 , a description of how the algorithm is used for forecasting can be found in 34 and an
example of its usage for prognostics can be found in .19

D. ESR Degradation Dynamic Model

The complete discrete time dynamic model for ESR from Eqn. (6) degradation can be summarized as :

D5 :
1

ESRk+1
=

1

ESRk
− 2weAsjeo
ρE PE d2C eb

∆t,

eb(k+1) = eb(k) − ξ.
(12)

In model D5 the rate of evaporation jeo and the correlation factor, PE related to electrolyte spacer porosity and
average liquid pathway are the two time-varying parameters. Rate of evaporation, jeo and resistance dependence oxide
breakdown factor, eb are the two parameters in the model which are estimated online based on the state variable value,
ESR. Similar steps as followed for model D5 as explained earlier for model D4.

E. UKF for ESR State Estimation

The state variable xk (ESR) at time tk is defined as the current measured capacitance ESRk. Since the system
measurements are ESR measured values as well, the output equation is given by yk = Pk xk, where P is the identity
matrix. The following system structure is implemented for filtering and prediction using a UKF.

xk = Akxk−1 +Bku+ v,
yk = Pkxk + w.

(13)

where,

A = 1,

B = − 2weAsjeo
ρE PE d2C eb

∆t,

P = 1,
u = jeo, eb.

(14)

VII. Prediction of Remaining Useful Life Results and Validation Tests

This section discusses the remaining useful life predictions and validation results using the Alpha-Lambda prog-
nostics metric for the derived degradation models D4, capacitance and D5, ESR respectively. These models were used
for making RUL predictions for two different experimental data sets using similar type of capacitors. The discussions
in the results and later complete one of our major goals to derive and validate generalized degradation models for
electrolytic capacitors.

RUL can be estimated based on the derived physics-based degradation model till the EOL threshold of the device
has reached. In the experiments conducted, all the capacitors under test did not reach EOL. The latest characterization
reading for degradation in capacitance and ESR parameters was considered as the EOL for calculating the relative
accuracy.

A. Results for capacitance degradation model (D4)

In this section we discuss the RUL prediction and Validation tests for the capacitance degradation model in the 15V
EOS experiment. State estimation and RUL prediction results are discussed for capacitor Cap # 2 out of a batch of 6
available capacitors under test.
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Figure 7 shows the result of the filter tracking for completed degradation in capacitance computed upto 200 hours
of aging time. The tolerance for the type of electrolytic capacitor under test is approx 15% and hence from the output
errors it can be observed that the tracking of the model with respect to the data is acceptable.
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Figure 7. Tracking filter output against measurement data for Cap # 2

1. RUL

Figure 8 presents results from the remaining useful life prediction algorithm at different aging times tp = 24, 47, 94,
149, 171 (hrs), at which the capacitors are characterized and their ESR value is calculated. The experiments were run
till almost 200 hours and hence the predictions are done till the end of experiments. End of life (EOL) is defined as the
time at which the forecasted capacitance value trajectory crosses the EOL threshold. Therefore, RUL is EOL minus
aging times calculated at tp = 24, 47, 47, 94, 149, 171 (hrs).
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Figure 8. Capacitance decrease prediction at different Aging Time for Cap # 2
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2. Validation tests
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Figure 9. Performance based on α - λ metric for Cap#2

An Alpha - Lambda prognostics performance metric35 is presented in Figure 9 for test case of Cap #2. Perfor-
mance metric identifies whether the algorithm performs within desired error margins (specified by the parameter α) of
the actual RUL at any given time instant (specified by the parameter λ) .35 The central dashed line represents ground
truth and the shaded region corresponds to a 30% (α = 0.3) error bound in the RUL prediction. From the metric plot
in Figure 9 we note that the relative accuracy remains high till the end of the RUL prediction period. As mentioned
earlier this can be attributed to the accuracy of the model, and the state-based tracking approach, where the state is
updated as new data points become available.

Table 1. Validation results based on RA for Capacitance degradation model D4 - 15V

Aging C1 C2 C3 C4 C5 C6 RAa

Time

24 98.85 98.27 98.85 97.67 98.27 96.47 98.06
47 98.68 98.00 98.68 97.32 98.00 95.92 97.76
71 98.43 97.62 98.43 96.80 97.62 95.12 97.34
94 98.08 97.09 98.08 96.08 97.09 94.00 96.73
116 97.56 96.30 97.56 95.00 96.30 92.31 95.84
139 96.61 94.83 96.61 92.98 94.83 89.09 94.16
149 95.92 93.75 95.92 91.49 93.75 86.67 92.92
161 94.59 91.67 94.59 88.57 91.67 81.82 90.49
171 92.59 88.46 92.59 84.00 88.46 73.91 86.67
RAb 96.81 95.11 96.81 93.32 95.11 89.48

RAa is the mean relative accuracy of all capacitors at each prediction time (tp)
RAb is the mean relative accuracy of each capacitor at all prediction times

B. Results for ESR degradation model (D5)

State estimation and RUL prediction results are discussed for capacitor Cap #2. Figure 10 shows the result of the
filter tracking for completed degradation in capacitance upto 200 hours of aging time. As can be observed from the
residuals the tracking of the model with respect to the data in acceptable.
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Figure 10. Tracking filter output against measurement data for Cap # 2

1. RUL

Figure 11 presents results from the remaining useful life prediction algorithm at different aging times tp = 24, 47, 94,
149, 171 (hrs), at which the capacitors are characterized and their ESR value is calculated. Model D5 is implemented
for predicting the increase in ESR while the measured values are the ESR measurements done at respective aging
time intervals. The experiments were run till almost 200 hours and hence the predictions are done till the end of
experiments. End of life (EOL) is defined as the time at which the forecasted capacitance value trajectory crosses the
EOL threshold at end of 200 hrs. Therefore, RUL is EOL minus aging times tp = 24, 47, 47, 94, 149, 171 (hrs).
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Figure 11. ESR prediction at different Aging Time for Cap # 2 by Model D5

2. Validation tests

An α-λ prognostics performance metric is presented in Figure 12 for test case of Cap #2. The central dashed line
represents ground truth and the shaded region is corresponding to a 30% (α = 0.3) error bound in the RUL prediction.
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From the α-λmetric plot in Figure 12 it can be observed that the relative accuracy is good till the end of the experiment
time and the accuracy is good enough under acceptable limits. As mentioned earlier this is due to inclusion of the
degradation parameters and estimating them as the ESR increases with degradation.
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Figure 12. Performance based on Alpha-Lambda metric for Cap#2

Table 2. Summary of validation results based on RA for ESR degradation model D5 - 15V

Aging C1 C2 C3 C4 C5 C6 RAa

Time

24 96.47 96.47 96.47 96.47 96.47 96.47 96.47
47 95.92 95.92 95.92 95.92 95.92 95.92 95.92
71 95.12 95.12 95.12 95.12 95.12 95.12 95.12
94 94.00 94.00 94.00 94.00 94.00 94.00 94.00
116 92.31 92.31 92.31 92.31 92.31 92.31 92.31
139 89.09 89.09 89.09 89.09 89.09 89.09 89.09
149 86.67 86.67 86.67 86.67 86.67 86.67 86.67
161 81.82 81.82 81.82 81.82 81.82 81.82 81.82
171 73.91 73.91 73.91 73.91 73.91 73.91 73.91
RAb 89.48 89.48 89.48 89.48 89.48 89.48

RAa is the mean relative accuracy of all capacitors at each prediction time (tp)
RAb is the mean relative accuracy of each capacitor at all prediction times

VIII. Conclusion and Discussion

The results presented here are based on accelerated aging experimental data and on the accelerated life timescale.
This paper presents a first principles based degradation electrolytic capacitor model and an parameter estimation
algorithm to validate the derived model, based on the experimental data. When comparing the results generated by
the capacitance empirical model20, 31 in our previous work, the physics-based degradation model in table 1, we note
that the accuracy of the two models are comparable initially, but the empirical model results degrade toward the end
of capacitor life. This is primarily because a simple linear first-order model with static parameter values is employed
for tracking the capacitor degradation.

Physics-based model D4 for capacitance more accurately represents the actual degradation phenomena because
it includes the first principles operation parameters like evaporation rate, break down rate, device geometry etc. The
use of the UKF allows for more accurate tracking as compared to an Kalman filter, especially when the behaviors
are nonlinear in the later stages of the aging cycle. The tuning and estimation of parameters in the empirical model
using UKF is relatively simpler and also computationally less expensive. On the other-hand, in UKF the parameters
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are tuned online as updated data is received and hence computationally expensive. Similarly the degradation model
D5 for ESR based on the first principles gives an indication of how a specific device degrades based on its structure,
material properties, operating conditions, etc. which results in better prediction accuracy for RUL.

Overall both models have their own advantages and disadvantages. The comparison of the two models and pre-
diction results can help us decide which models to implement based on the requirements. If the model needs to be
simpler and computationally less expensive then the empirical model can be implemented where the model prediction
accuracy will be compromised while if accuracy is more important then a complex model and computationally expen-
sive methodology can be implemented. Further research will focus on development of functional mappings that will
translate the accelerated life timescale into real usage conditions timescale, where the degradation process dynamics
will be slower, and subjected to varying stress conditions.
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