
Local L2-Thresholding Based Data Mining in Peer-to-Peer Systems

Ran Wolff∗ Kanishka Bhaduri† Hillol Kargupta‡

Abstract
In a large network of computers, wireless sensors, or mobile
devices, each of the components (hence, peers) has some
data about the global status of the system. Many of the
functions of the system, such as routing decisions, search
strategies, data cleansing, and the assignment of mutual
trust, depend on the global status. Therefore, it is essential
that the system be able to detect, and react to, changes in
its global status.

Computing global predicates in such systems is usually
very costly. Mainly because of their scale, and in some
cases (e.g., sensor networks) also because of the high cost
of communication. The cost further increases when the data
changes rapidly (due to state changes, node failure, etc.) and
computation has to follow these changes. In this paper we
describe a two step approach for dealing with these costs.
First, we describe a highly efficient local algorithm which
detect when the L2 norm of the average data surpasses a
threshold. Then, we use this algorithm as a feedback loop
for the monitoring of complex predicates on the data – such
as the data’s k-means clustering. The efficiency of the L2
algorithm guarantees that so long as the clustering results
represent the data (i.e., the data is stationary) few resources
are required. When the data undergoes an epoch change –
a change in the underlying distribution – and the model no
longer represents it, the feedback loop indicates this and the
model is rebuilt. Furthermore, the existence of a feedback
loop allows using approximate and “best-effort” methods
for constructing the model; if an ill-fit model is built the
feedback loop would indicate so, and the model would be
rebuilt.

1 Introduction

Sensor networks, peer-to-peer systems, and other large
distributed systems, produce, store and process huge
amounts of status data as a main part of their daily
operation. The purpose of collecting that status data is
often to build a model of the system, and then either
provide it to an operator or automatically act upon
the model. Examples for such use of global models
include facility location in sensor networks [12], trust
assignment in peer-to-peer file sharing [9], peer-to-peer
data mining [18, 11, 6, 1].

Since data in those systems (specifically status
data) is usually time varying it is important to keep the
model up-to-date. This can be done by periodically re-
computing the model, by using incremental algorithms,
or – as we suggest here – by monitoring the status and
recomputing the model only when it no longer repre-

∗CSEE Dept., UMBC, ranw@cs.umbc.edu
†CSEE Dept., UMBC, kanishk1@cs.umbc.edu
‡CSEE Dept., UMBC and Agnik LLC, hillol@cs.umbc.edu

sents the data. The latter approach can be far more
efficient than the first one because it is reactive. If the
data is usually stationary and if the cost of monitoring
is far lower than the cost of recomputing the model then
it pays to only invest resources in recomputation when
a monitoring mechanism indicates of a change. The
alternative, recomputing the model periodically, has to
trade between risking inaccuracy whenever the distribu-
tion of the data changes and consuming many resources
while the data remained stationary. The monitoring
approach is thus a valid alternative to incremental al-
gorithms which are in many cases absent or inefficient.

A variety of metrics can be used in order to deter-
mine the suitability of a model to data. These would
include statistical tests (e.g., chi-square χ2), informa-
tion theoretic methods (e.g., the Kullback-Leibler di-
vergence Dk||` [13]), and other methods. In this work
we focus on the L2 norm of the data. The L2 norm is
no more than the square root of the sum of distances
between the data and the model. Examples for the use
of the L2 norm are ample in the data mining field (e.g.,
in principle component analysis, in regression models,
and in clustering). The χ2 norm can also be presented
as the L2 norm of the data, after it has been normalized
according to the mean. This is significant because χ2

has been used for change detection – a main challenge
of data mining in time varying environments.

Two approaches which were previously suggested
for computation over peer-to-peer networks are gossip-
ing and computation with bounded error. With gossip-
ing [10, 7, 3] it has been shown that aggregates such as
the sum, average, etc. can be computed by a process in
which each peer repeatedly averages its data with other
peers it chooses at random. Beside its large commu-
nication overhead, no gossiping algorithm presented to
date for aggregate calculations with dynamically chang-
ing data or partial failure of the system during execu-
tion. The second approach, proposed by Bawa at el. [2],
is to compute sum and count queries subject to a model
of the network behavior and guaranteeing bounded er-
ror. However, as Bawa at el. explain, calculating sums
using their method can be very costly when the data
dynamically changes. Furthermore, the associated error
bounds are large (up to a factor of two). A similar ap-
proach which was taken by Bandyopadhyay at el. is to

sample the network and compute probabilistic bounds
on the error [1]. Still, this work does not address dy-
namically changing data.

A third approach which was proposed to computa-
tion in peer-to-peer is based on local algorithms. Per-
missively defined, local algorithms are ones whose re-
source consumption is sometimes independent of system
size. That is, an algorithm for a given problem is local
if there exists a constant c such that for any size of the
system N there are instances of the problem such that
the time, CPU, memory, and communication require-
ments per peer are smaller than c. Therefore, the most
appealing property of local algorithms is their unlim-
ited scalability. Local algorithms have been presented
in the context of graph algorithms [15, 14], and recently
for data mining in peer-to-peer networks [18, 12]. Local
algorithms guarantee eventual correctness – when the
computation terminates each peer computes the same
result it would have computed given the entire data.

Contributions: In this paper we present a method
for bounding the L2 norm of the average (or sum)
of input vectors. The algorithm we present greatly
generalize previous work on local majority votes which
is first described in [18]. It describes a local stopping
rule which can be applied to any convex set in any
domain. We further introduce an entirely new approach
for the use of local algorithm for the monitoring of
many complex functions (including ones which are not
convex). In this approach, the complex function is first
approximated. Then, a local algorithm is employed
to judge whether the quality of the approximation is
satisfactory. If that quality is not good enough then
the data is resampled and a new approximation is
computed. The closed control loop provided by the local
algorithm permits paying little attention to the quality
of sampling – if that is unsatisfactory, resampling would
occur.

We demonstrate this new approach by applying
it to two different problems: The first problem is
finding the mean vector of distributed data streams
when the data is piece-wise stationary – i.e., data which
transients abruptly between long periods in which it
constantly changes in a stationary way (hence, epochs).
The second one is the classic problem of k-means
clustering [16], applied for the same kind of piece-wise
stationary distributed data streams. Monitoring and
updating of models was suggested earlier, both in the
context of streams [8], and of incremental data mining
[5, 17]. However, to the best of our knowledge never in
distributed setting, let alone in peer-to-peer mining.

The following section presents notations, and some
prerequisite lemmas. Section 3 describes the algorithm
for local L2 Thresholding. Following, in Section 4 we

describe the application of our method to monitoring
of means, and in Section 5 the application for k-means
clustering. We outline the experiments we performed in
Section 6, and draw conclusions in Section 7.

2 Notations and Preliminaries

Let P1, . . . , PN be a set of peers connected to one
another via an underlying communication tree such
that the set of Pi’s neighbors, Ni, is known to Pi.
Additionally, Pi is given a stream of points from R

2,
a selection of which constitutes its local data Si,t =

{ ~xi,1, ~xi,2, . . .}. We use ~Si,t = 1

|Si,t|

∑

~x∈Si,t

~x to denote the

average vector of Si,t. Additionally, peers communicate
with one another by sending weighted vectors. We
denote the last vector sent by peer Pi to Pj

~Xi,j and the
weight assigned to this vector ωi,j . Assuming reliable
messaging, once the message is delivered both Pi and Pj

know both ~Xi,j , ~Xj,i, ωi,j , and ωj,i. We assume every
peer Pi is notified when its data Si,t changes, when a
message is received, and when the set of its immediate
neighbors, Ni, changes.

Our algorithm makes specific use of three additional
sets vectors and weights. The knowledge of Pi is denoted
~Xi, ωi where ωi = |Si,t|+

∑

Pj∈Ni

ωj,i and ~Xi =
|Si,t|

ωi

~Si,t +

∑

Pj∈Ni

ωj,i

ωi

~Xj,i. The agreement of Pi and a neighbor

Pj ∈ Ni is denoted ~Xi∩j , ωi∩j where ωi∩j = ωi,j + ωj,i

and ~Xi∩j =
ωi,j

ωi∩j

~Xi,j +
ωj,i

ωi∩j

~Xi,j . The kept knowledge

of Pi with respect to a neighbor Pj ∈ Ni is ~Xi\j , ωi\j

where ωi\j = ωi − ωi∩j and ~Xi\j = ωi

ωi\j

~Xi −
ωi∩j

ωi\j

~Xi∩j .

Last, we use ~XN to denote the true average of the data

over all peers ~XN =
∑

i=1...N

∑

~x∈Si,t

~x/
∑

i=1...N

|Si,t|.

Throughout this paper ~X · ~Y represents the dot

product of ~X and ~Y , and
∥

∥

∥

~X
∥

∥

∥
represents the L2 norm

of ~X . Let û1, . . . , ûd be evenly spaced unit vectors (for
the case of R

2, unit vectors such that the angle between
each two is 2π

d
). For some vector ~x and constant ε we

denote ûfi the first û in û1, . . . , ûd such that for at least
one neighbor – Pj – it holds that û · ~Xi∩j ≥ ε. I.e.,

ûfi = arg min
û∈{û1...ûd}

{

∃Pj ∈ Ni : û · ~Xi∩j ≥ ε
}

. If for

all û ∈ {û1 . . . ûd} and all Pj we have that û · ~Xi∩j < ε

then ûfi is set to nil.

2.1 Preliminaries We now describe several condi-
tions which apply to termination states of a distributed
algorithm. In a termination state, no more messages

traverse the network, and hence the state of the en-
tire network can be described in terms of just the vari-
ables each peer has. Local algorithms rely on condi-
tions which allow extending predicates on the states of
the different peers onto predicates on the global data
XN . Specifically, we will describe conditions on the dif-
ferent Xi, Xi∩j , and Xi\j , subject to whom it can be

determined that
∥

∥

∥

~XN

∥

∥

∥
≤ ε or that

∥

∥

∥

~XN

∥

∥

∥
> ε.

Lemma 2.1. Let G (V, E) be a graph. For each vi ∈ V

let ~Si,t a vector and |Si,t| be a weight associated with

it. For every (vi, vj) ∈ E, let ~Xi,j , ωi,j be a pair of

an arbitrary vector and an arbitrary weight. Let ~Xi be

the knowledge of Pi, ~Xi∩j be the agreement of Pi and

Pj , and ~Xi\j be the kept knowledge of Pi with respect

to Pj , all as described above. Let A be a convex region

in R
d. If for all vi ∈ V and every (vi, vj) ∈ E it holds

that ~Xi∩j ∈ A and either ~Xi\j ∈ A or ωi\j = 0, then

~XN ∈ A.

Proof. In Appendix A.

Specifically, since the d dimensional hyperball of radius
ε is a convex shape in R

d we have that if for every peer

Pi and each neighbor Pj of Pi it holds that both
∥

∥

∥

~Xi∩j

∥

∥

∥

and
∥

∥

∥

~Xi\j

∥

∥

∥
are below ε (i.e., in the d dimensional

hyperball of radius ε) then the norm of the average of

all vectors
∥

∥

∥

~XN

∥

∥

∥
is also below ε.

In [18], a local majority vote algorithm is described,
where the data of each peer is a point in R and the
decision needed to be made whether the average of
the data is greater or smaller than a threshold value
λ. The main Lemma described there, transferred to
the terminology of this paper, is that if for all Pi and
every neighbor Pj of Pi

~Xi ≥ ~Xi∩j ≥ λ then ~XN ≥ λ

and ~Xi ≤ ~Xi∩j < λ then ~XN < λ (~Xi and ~Xi∩j are
comparable with λ because in [18] they are vectors in
R

1). A closer look this lemma permits us to rewrite it
in the following generalized form:

Lemma 2.2. Let ~λ be an arbitrary vector in R
d,

and let λ+, λ− ⊂ R
d be the half-spaces such

that λ+ =
{

~x ∈ R
d : ~λ · ~x ≥ ~λ · ~λ

}

and λ− =
{

~x ∈ R
d : ~λ · ~x < ~λ · ~λ

}

. If for every Pi and each neigh-

bor Pj of Pi it holds that ~Xi∩j ∈ λ+ and either ~Xi\j ∈

λ+ or ~Xi = ~Xi∩j then ~XN ∈ λ+, and if it holds for

all Pi and each neighbor Pj of Pi that ~Xi∩j ∈ λ− and

either ~Xi\j ∈ λ− or ~Xi = ~Xi∩j then ~XN ∈ λ−.

Proof. In the special case of half-spaces, both λ+ and
λ− are convex. If ~Xi = ~Xi∩j then either ~Xi\j = ~Xi∩j

or ωi\j = 0. In either case, correctness follows from
Lemma 2.1.

Corollary 2.1. Given d unit vectors, û1 . . . ûd if for

a specific one of them û every peer Pi and each of its

neighbors Pj have û · ~Xi∩j ≥ ε and either û · ~Xi\j ≥ ε

or û · ~Xi = û · ~Xi∩j then

∥

∥

∥

~XN

∥

∥

∥
≥ ε.

Proof. Taking ~λ = εû, it follows from Lemma 2.2 that
û · ~XN ≥ ε. Since X̂N · ~XN ≥ û · ~XN for all û it follows

that
∥

∥

∥

~XN

∥

∥

∥
= X̂N · ~XN ≥ ε.

For evenly spaced unit vectors, the larger d is the

smaller the chances are that although
∥

∥

∥

~XN

∥

∥

∥
≥ ε all

û ∈ {û1 . . . ûd} have û· ~XN < ε. However, increasing the
number of unit vectors comes at a computational cost.
lemma 2.3 shows that even if d is large, it is enough for
each peer to focus on a single unit vector each time, the
first one that has for some neighbor û · ~Xi∩j ≥ ε – ûfi.

Lemma 2.3. Let û1, . . . , ûd be a set of unit vectors

agreed upon among all peers and let ûfi be the first such

vector for which Pi has for one of its neighbors Pj that

û · ~Xi∩j ≥ ε. If for every peer Pi the respective ûfi

provides that for each of its neighbors Pj the respective

ûfi provides that ûfi · ~Xi\j , ufi · ~Xi∩j ≥ ε then all of the

peers have the same ûfi.

Proof. In Appendix A.

It follows immediately from Lemma 2.3 and Lemma 2.2
that in this case ûfi · ~XN ≥ ε.

3 Local L2 Norm Thresholding

Relying on the lemmas described in the previous section,
we now describe an algorithm (Alg. 3.1) which decides

whether the L2 norm of the average input vector ~XN is
smaller than a given threshold value ε. The idea of the
algorithm can be demonstrated with Figure 1. Each
peer Pi checks if its ~Xi is inside a circle of radius ε ,
outside the polygon defined by d evenly spaced vectors
of length ε, or between the circle and the polygon. If
~Xi is inside a circle, the peer will bring itself to a state
which satisfies Lemma 2.1. If ~Xi is outside the polygon,
the peer will bring itself to a state that satisfies Lemma
2.2. If ~Xi is between the circle and the polygon then
the peer cannot bring its state to one that satisfies any
of those lemma, so it has to propagate any data it has
to its neighbors. Together, these three cases guarantee
that eventually either all peers satisfy Lemma 2.1, they
all satisfy Lemma 2.2, or – in the worst case – they all
have all of the data and thus compute ~XN precisely. In
any case, eventual correctness is guaranteed.

A

B

C

D

Figure 1: (A) the area inside an ε circle. (B) Seven
evenly spaced vectors - ~u1 . . . ~u7. (C) The borders of
the seven halfspaces ûi ·~x ≥ ε define a polygon in which
the circle is circumscribed. (D) The area between the
circle and the union of half-spaces.

Given that ~Xi is in the circle, there would always be
a way for Pi to move into a state that satisfies Lemma
2.1. All Pi has to do is to find any Pj ∈ Ni for whom

either ~Xi∩j or ~Xi\j is outside the circle. For any such

Pj it can then send a message ~Xi,j , ωi,j which changes
~Xi∩j and ~Xi\j . The values sent are computed such that

ωi,j is set to α (ωi − ωj,i) and that after the message

is sent ~Xi∩j = ~Xi\j = ~Xi, where α is chosen between
zero and one (see detailed exploration of the effect of
different α values in the Section 6). Consequently, the
conditions of Lemma 2.1 would now hold for Pi with
respect to this neighbor. Of course, the message alters
the vectors computed by Pj – ~Xj , ~Xj∩i, and ~Xj\i– and
thus, Pj may now be forced to send messages to either
Pi or to other neighbors Pj may have.

Similarly, if Pi finds ~Xi to be outside the polygon,
it acts to preserve the conditions of Lemma 2.2. It
computes ûfi – the first unit vector û ∈ {û1, . . . , ûd}
such that for some neighbor Pk ∈ Ni the dot product
û · ~Xi∩k is greater than or equal to ε. Then, if for any
neighbor Pj ∈ Ni ûfi · ~Xi\j < ε it sends a message to

Pj which would, similarly to the previous case, set ~Xi∩j

and ~Xi\j to ~Xi and ωi,j to α (ωi − ωj,i). Consequently,

the conditions of Lemma 2.2 would thus hold for ûfiand
Pj . Again, that message would change Pj ’s data and
may or may not trigger Pj to send additional messages.

Finally, there is a chance that ~Xi would neither be
in the circle nor outside the polygon. In this case, the
current state of Pi cannot a termination state according
to any of the two Lemmas. Thus, the only option
available to the algorithm is to flood the data. In this
case, α is set to one, and a message is sent whenever
~Xi 6= ~Xi∩j or ωi 6= ωi∩j . As a result, ωi\j is kept at

zero, and ~Xi\j is ill-defined (because of a devision by
zero) – but is not used.

It is left to specify what a peer does on the events
of receiving a message, a change in the local data, or
a change in Ni due to neighbors leaving or joining in.
Since ~Xi is defined as the weighted average of the vectors
of Pi and ωi as the sum of their weights, each such event
affects ~Xi and ωi: a received message changes ~Xj,i, ωi,j

for the neighbor Pj from whom it was received; a change

of the local data changes ~Si,t, |Si,t|; and a change in Ni

introduces a new component to the sum, or removes an
existing one. The peer thus does nothing more than
reevaluating its new state according to the described
above, and issuing messages if they are required.

Last, since this algorithm is intended for asyn-
chronous systems we include in it a leaky bucket mech-
anism. We restrict the frequency in which messages are
sent to once every L time units. When a message needs
to be sent, a peer first checks how long is it since the last
message was sent. If less then L time units have passed,
it waits the remaining time and then validate that the
message still needs to be sent. Without a leaky bucket
mechanism, and with messages arriving at totally ran-
dom times, the number of messages in an event-based
algorithm explodes.

Algorithm 3.1. Local L2 Thresholding

Input of peer Pi: ε, α, L, Si,t, the set of immediate
neighbors Ni

Output of peer Pi:
∥

∥

∥

~Xi

∥

∥

∥

Data structure for Pi: For each Pj ∈ Ni
~Xi,j , |Xi,j |,

~Xj,i, |Xi,j |, last message
Initialization:
Compute û1, . . . , ûd , last message← −∞
On receiving a message ~X, |X | from Pj :

Set ~Xj,i ← ~X, |Xj,i| ← |X |

On change in Si,t, Ni, ~Xi or |Xi|:

1. Let ûfi be the first of û1 . . . ûd such that for some
~Xi∩j it holds that ûi · ~Xi∩j ≥ ε, or nil if no such ~Xi∩j

exists
2. For each Pj ∈ Ni

– Case 1:
∥

∥

∥

~Xi

∥

∥

∥
< ε

– – If
∥

∥

∥

~Xi\j

∥

∥

∥
≥ ε or

∥

∥

∥

~Xi∩j

∥

∥

∥
≥ ε SendMessage(Pj , α)

– Case 2:
∥

∥

∥

~Xi

∥

∥

∥
≥ ε and ûfi is not nil

– – If ûfi · ~Xi∩j < ε or ûfi · ~Xi\j < ε SendMessage(Pi,
α)

– Case 3:
∥

∥

∥

~Xi

∥

∥

∥
≥ ε and ûfi is nil

– – If ~Xi 6= ~Xi∩j or ωi 6= ωi∩j SendMessage(Pj , 1)
SendMessage(Pj, β):
If time ()− last message < L then wait for
time ()− last message time units and then call
OnChange()
Set ωi,j = β (ωi − ωj,i)

Set ~Xi,j ←
(

ωi∩j
~Xi − ωj,i

~Xj,i

)

/ωi,j

Set last message← time ()

Send ~Xi,j , ωi,j to Pj

4 Mean Monitoring

Having presented an efficient algorithm for L2 thresh-
olding, we now turn to the different, but closely related
computational task of monitoring the mean of the data.
We describe an algorithm which computes, at every
given time, a vector ~µ which is guaranteed to track the
mean vector ~XN . I.e., as ~XN changes, ~µ is guaranteed

to quickly follow it until
∥

∥

∥
~µ− ~XN

∥

∥

∥
≤ ε. As Section 5

demonstrates, this has immediate applicability for clus-
tering over distributed non-stationary data streams.

4.1 Algorithm The outcome of the L2 thresholding
algorithm described in the previous section can be
viewed as an alert flag at each peer, which is set in

case
∥

∥

∥

~Xi

∥

∥

∥
≥ ε. The guarantee of the L2 thresholding

algorithm is that whenever the data stops changing, the
algorithm converges until the flags of all peers are set if

and only if
∥

∥

∥

~XN

∥

∥

∥
≥ ε. Assuming a guess ~µ of the mean

~XN is given to all peers, the same algorithm can be used

to check whether
∥

∥

∥

~XN − ~µ
∥

∥

∥
≥ ε by simply using the

difference between every input vector ~xi,j and ~µ instead
of the original ~xi,j .

If changes in the input are sparse enough for the
algorithm to converge between them, then, theoreti-
cally, every time the algorithm converges to an alert,
we could collect statistics of the data and approximate
~XN . Thus, a closed loop algorithm can be described

which does so, and then updates ~µ to the approxima-
tion of ~XN . By that, the peers would be monitoring the
means of the global data, i.e., they would maintain an
approximation of the means which is updated whenever
the approximation becomes inaccurate.

This simplistic algorithm is lacking in several impor-
tant aspects: First, a monitoring algorithm has better
work even when changes are not sparse. Specifically, we

would want it to work when stationary changes to the
data are frequent and changes to the underlying distri-
bution – epoch changes – are rare. Secondly, no algo-
rithm can rely on the convergence of the L2 threshold-
ing algorithm for anything but its eventual correctness.
This is because the L2 thresholding algorithm provides
the peers with no indication of termination.

Therefore, the Mean Monitoring algorithm (Alg.
4.1) slightly deviates from the simplistic one. Instead of
waiting for the algorithm to converge, each peer which
is alerted waits for a predefined measure of time, τ .
If during this time the alert has remained, then it is
considered a stable alert and is acted upon. Notably,
the L2 thresholding algorithm does provide that a false
alert would be removed eventually.

The rest of the algorithm is as follows: Each peer
participates in a convergecast algorithm – it waits until
it receives sufficient statistics (i.e., an average vector)
from all but one of its neighbors. When it gets those
statistics, and only if it observes a stable alert, it
combines its own data with the statistics and forwards
the result to the remaining neighbor. A peer that
received statistics from all of its neighbors becomes a
root. It combines the statistics it got from its neighbors
and those of its own data to compute the new ~µ and
then sends it to its neighbors. Note there could be at
most two roots, and that they collect the exact same
statistics and compute the exact same ~µ. A peer who
receives the new ~µ from a neighbor forwards it to its
other neighbors. It updates its data by subtracting the
new ~µ from its input and is now ready for an additional
round of convergecast, if one is needed.

Another point to notice is that if the statistics
collected in the convergecast are based on the same data
which was used to compute the alert then they might
be biased. Arguably, a peer with outlied data is more
probable to alert and thus outlied data is more probable
to be collected as statistics. To prevent that bias, every
new data point is randomly put into an alert buffer or
a statistics buffer. The points in the alert buffer are the
ones that are used by the L2 thresholding algorithm.
Those in the statistics buffer are the ones which are
used by the convergecast algorithm.

Algorithm 4.1. Mean Monitoring

Input of peer Pi:
ε, α, L, Si,t, the set of immediate neighbors Ni, an
initial vector ~µ0, an alert mitigation constant τ .
Output of peer Pi:
An approximated means vector ~µ such that
∥

∥

∥

~XN − ~µ
∥

∥

∥
< ε

Data structure of peer Pi:

Two sets of vectors Ri,t and Ti,t, a flag alert, a
timestamp last change, for each Pj ∈ Ni, a vector ~vj

and a counter cj

Initialization:
Set ~µ← ~µ0, alert← false
Split Si,t evenly between Ri,t and Ti,t

Initialize an L2 thresholding algorithm with the input
ε, α, L,{ ~xi,1 − ~µ, ~xi,2 − ~µ, . . . , ~xi,B − ~µ : ~xi,j ∈ Ri,t}, Ni

Set ~vj , cj to ~0, 0 for all Pj ∈ Ni

On addition of a new vector ~x to Si,t:
Randomly add ~x to either Ri,t or Ti,t and retire the
oldest point in the corresponding set.
If ~x was added to Ri,t, pass ~x− ~µ to the L2
thresholding algorithm.
On change in ~Xi of the L2 thresholding
algorithm:

Case 1:
∥

∥

∥

~Xi

∥

∥

∥
≥ ε

– If alert = false then set last change← time(),
alert← true
Case 2:

∥

∥

∥

~Xi

∥

∥

∥
< ε

– Set alert← false
On receiving ~v, c from Pj ∈ Ni:
Set ~vj ← ~v, cj ← c
If for all Pk ∈ Ni except for one ck 6= 0
– Wait while alert = false or time()− last change < τ
– If for all Pk ∈ Ni except for one (Pl)ck 6= 0
– – Let s = |Ti,t|+

∑

Pj∈Ni
cj ,

~s =
|Ti,t|

s
~Ti,t +

∑

Pj∈Ni

cj

s
~vj

– – Send s, ~s to Pl

– If for all Pk ∈ Ni ck 6= 0
– – Let s = |Ti,t|+

∑

Pj∈Ni
cj ,

~s =
|Ti,t|

s
~Ti,t +

∑

Pj∈Ni

cj

s
~vj

– – Set ~µ to all Pk ∈ Ni

– – For all ~x ∈ Ri,t, pass ~x− µ to the L2 Thresholding
algorithm
On receiving ~µ′ from Pj ∈ Ni:

Set ~µ← ~µ′

Send ~µ to all Pk 6= Pj ∈ Ni

For all ~x ∈ Ri,t, add ~x− µ to the Si,t of the L2
Thresholding algorithm

5 k-Means Clustering

The final algorithm we describe is a variant of the pop-
ular k-means clustering algorithm. To make k-means
suitable for peer-to-peer networks and for dynamically
changing data we make one slight change in the stopping
rule of k-means: Instead of stopping when each centroid
is exactly the mean of the points clustered to it, we de-
fine an admissible solution as one in which the distance
between the centroid and the mean of the points clus-
tered to it is less than a constant ε. The basic idea of

the algorithm is to randomly sample the data from the
network and cluster the sample rather than the entire
data. Then, use L2 Thresholding to make certain that
the distance between the centroids computed from the
sample and the means of all of the data points clus-
ters to these centroids is small. The local nature of the
L2 Thresholding algorithm allows computing this effi-
ciently. On the other hand, the feedback mechanism
implemented through L2 Thresholding allows collection
of very small samples. This is because if this sample fails
to properly represent the data then L2 Thresholding will
simply trigger another round of sample collection. Op-
tionally, the size of the sample can also be increased the
second time around.

5.1 Algorithm Just like centralized k-means cluster-
ing, the peer-to-peer k-means clustering algorithm (Alg.
5.1) begins with a guess of the location of the k cen-
troids. We denote the set of locations C = {~c1, . . . , ~ck},
and maintain that it is equal for all peers. Follow-
ing, every peer separates the points in its local data
Si,t to clusters S1

i,t, . . . S
k
i,t such that each point ~x ∈

Si,t is allocated to the centroid nearest to it Sj
i,t =

{

~x ∈ Si,t : ~cj = arg min
`=1...k

‖~x− ~c`‖

}

. Note that this al-

location can be computed by every single peer and that
given that the data is dynamic, points may be added
and removed at every time, and the Sj

i,t updated re-
spectively.

The algorithm proceeds by concurrently executing
an instance of L2 Thresholding per centroid. The data
of every such instance is the respective Sj

i,t, modified by
reducing the centroid ~cj from each of the points. In case
of a stable alert by any instance of the L2 Thresholding
algorithm, the peer which is alerted participates in
convergecast of a sample of the data points: It waits
for samples from all but one of its neighbors. Then,
it creates a new sample which blends its own data
with the samples of its neighbors, proportionally to the
number of peers represented in each sample received. It
then passes the new sample to the remaining neighbor.
A peer who receives samples from all of its neighbors
(hence, a root), again blends in its own data and
produces a uniform sample.

The root then uses this sample as the input for
unmodified, centralized k-means: It iteratively first
cluster the data points in the sample to their nearest
centroids (starting with the current ones as an initial
guess) and then moves the centroids to the means of the
data points allocated to them – until no further change

occurs. Finally, the root sends the computed centroids
to its neighbors. A peer who receives a new set of
centroids repartitions Si,t, according to these centroids

and respectively updates the inputs of the instances of
the L2 Thresholding algorithm to the new Sj

i,t, modified
according to the new location of ~cj .

Note that unlike the Mean-Monitoring algorithm,
no mechanism is employed here to avoid the bias in
the sample. This is due to the way we define the
problem – we wish the computed means to be a valid
(within ε) representation of the entire data – and
not just of a sample from it. This, however, only
hinders performance, not correctness, as a biased sample
which results in a less representative centroids would
automatically trigger resampling.

Algorithm 5.1. k-Means Clustering in Peer-to-Peer

Input of peer Pi:
ε, α, L, Si,t, the set of immediate neighbors Ni, an
initial guess for the centroids C0, a mitigation constant
τ , the sample size b.
Output of peer Pi:
k centroids such that the average of the points
assigned to every centroid is within ε of the centroid.
Data structure of peer Pi:
A partitioning of Si,t into k sets S1

i,t . . . Sk
i,t, a set of

centroids C = {~c1, . . . , ~ck}, for each centroid
j = 1, . . . , k, a flag alertj , a times tamp last changej ,
a buffer Bj and a counter bj

Initialization:
Set C ← C0, for j = 1 . . . k

Sj
i,t =

{

~x ∈ Si,t : ~cj = arg min
`=1...k

‖~x− ~c`‖

}

Initialize k instances of the L2 thresholding algorithm,
such that the jth instance has input ε, α, L,
{

~x− ~cj : ~x ∈ Sj
i,t

}

, Ni

For all Pj ∈ Ni, set bj ← 0, for all j = 1, . . . , k set
alertj ← false, last changej ← −∞
On addition of a new vector ~x to Si,t:
Find the cj closest to ~x and add ~x− ~cj to the jth L2
Thresholding instance.
On removal of a vector ~x from Si,t:
Find the cj closest to ~x and remove ~x− ~cj from the
jth L2 Thresholding instance.
On change in ~Xi of the jth instance of the L2
thresholding algorithm:

Case 1:
∥

∥

∥

~Xi

∥

∥

∥
≥ ε

– If alertj = false then set last changej ← time(),
alertj ← true

Case 2:
∥

∥

∥

~Xi

∥

∥

∥
< ε

– Set alertj ← false
On receiving B, b from Pj ∈ Ni:
Set Bj ← B, bj ← b
If for all Pk ∈ Ni except for one bk 6= 0

– Wait while for some ` = 1, . . . , k either
alert` = false or time()− last change` < τ
– If for all Pk ∈ Ni except for one (P`) bk > 0
– – Let A be a sample of size b from Si,t and B1

through B|Ni| such that every point in Bj is sampled
with repetitions at probability bj/ (1 +

∑

m=1... bm)
and points in Si,t are sampled with repetition at
probability 1/ (1 +

∑

m=1... bm)
– – Send A, 1 +

∑

m=1... bm to P`

– If for all Pk ∈ Ni bk 6= 0
– – Let A be a sample of size b from Si,t and B1

through B|Ni| such that every point in Bj is sampled
with repetitions at probability bj/ (1 +

∑

m=1... bm)
and points in Si,t are sampled with repetition at
probability 1/ (1 +

∑

m=1... bm)
– – Compute k-means clustering of A with the initial
centroids set at C.
– – Set C to the resulting centroids. For j = 1 . . . k

Sj
i,t =

{

~x ∈ Si,t : ~cj = arg min
`=1...k

‖~x− ~c`‖

}

– – Remove all points from the data of the L2
Thresholding algorithm instances, and for j = 1 . . . k

pass
{

~x− ~cj : ~x ∈ Sj
i,t

}

to the jth instance of the L2

Thresholding algorithm
– – Send C to all Pk ∈ Ni

On receiving C ′ from Pj ∈ Ni:
Set C ← C ′

For j = 1 . . . k

Sj
i,t =

{

~x ∈ Si,t : ~cj = arg min
`=1...k

‖~x− ~c`‖

}

Remove all points from the data of the L2
Thresholding algorithm instances, and for j = 1 . . . k

pass
{

~x− ~cj : ~x ∈ Sj
i,t

}

to the jth instance of the L2

Thresholding algorithm
Send C to all Pk 6= Pj ∈ Ni

6 Experimental Validation

To validate the performance of our algorithms we con-
ducted experiments on a simulated network of peers.
We used the accepted BRITE network generator [4] to
produce a realistic network topologies containing thou-
sands of peers and overlaid a communication tree on ev-
ery such topology. For each peer, we generated s stream
of random data points from a mixture of Gaussian in R

2

and added to the data 10% uniform random noise in the
range of µ ± 3σ. At each given time, each peer used a
fixed size suffix of its stream of points as the local data.
At varying intervals, we changed the means of the Gaus-
sians, creating by that an epoch change. A typical data
can be seen in Figure 2(a). The reason we chose to fo-
cus on synthetic data is the large number of factors (12)
which influence the behavior of an algorithm, and the

−30 −20 −10 0 10 20 30−30

−20

−10

0

10

20

30
Distribution 1
Distribution 2
White Noise

(a) Typical dataset

0 0.5 1 1.5 2
x 106

0

20

40

60

80

100

Time%
 p

ee
rs

 c
om

pu
tin

g
||

X N ||
 <

 ε

(b) Typical changes in the percent of peers

with
‚

‚

‚

~Xi

‚

‚

‚
≥ ε

0 0.5 1 1.5 2
x 106

0

0.05

0.1

0.15

0.2

0.25

Time

No
rm

al
ize

d
m

es
sa

ge
s

(c) Typical messaging throughout an ex-
periment

Figure 2: A typical experiment is run for 10 equal length epochs. The epochs have very similar means, and
very large variance. Quality and overall cost are measured across the entire experiment. The monitoring cost is
measured on the last 80% of every epoch, in order to ignore transitional effects.

desire to perform a tightly controlled experiment in a
complex algorithm which operates in an equally com-
plex environment.

We measured the cost of the algorithm according
to the frequency in which messages are sent by each
peer. We report both overall cost, which includes both
stationary and transitional phases of the experiment,
and the monitoring cost, which only refers to stationary
periods. The monitoring cost is the cost paid by the
algorithm even if the data remains stationary; hence,
it measures the “wasted effort” of the algorithm. We
also separate, where appropriate, messages pertaining
to the computation of the L2 Thresholding algorithm
from those used for sufficient statistics computation.

The quality of the algorithm is defined differ-
ently for the L2 Thresholding algorithm and for the
Mean Monitoring and k-Means algorithms. For the L2
Thresholding algorithms, quality is measured in terms
of the frequency of false positives – the percentage of

peers which alert when in fact
∥

∥

∥

~XN

∥

∥

∥
< ε – and false neg-

atives – the percentage of peers which do not alert when
∥

∥

∥

~XN

∥

∥

∥
≥ ε. For the mean-Monitoring algorithm, quality

is the average distance between ~XN and the computed
mean vector ~µ. Last, for the k-Means algorithm, qual-
ity is defined as the distance between the solution of
our algorithm and that computed by a centralized algo-
rithm, given the cumulation of the local data of all of
the peers. Same as we do for the cost, we measure both
overall quality, and quality during stationary periods.

6.1 Experiments with Local L2 Thresholding
Algorithm There are many factors which may influ-
ence the performance of the L2 Thresholding algorithm.
First, are those pertaining to the data: the covariance
σ, and the distance between the means of the Gaus-

sians of the different epochs (the algorithm is oblivious
to the actual value of the means), and the length of the
epochs T . Second, there are factors pertaining to the
system: the topology, the number of peers, and the size
of the local data. Last, there are control arguments of
the algorithm: most importantly ε – the desired alert
threshold, and then also α and L – the maximal fre-
quency of messages.

In our experiments, we selected the distance be-
tween the means so that the rates of false negatives and
false positives are about equal. We chose an Internet
topology as our topology. The rest of the parameters
we scanned for various values. For each selection of the
parameters we run the experiment for a long period of
simulated time, allowing 10 epochs to occur. Then we
measured the overall cost, and the cost of stationary pe-
riods, and the percentage of false alerts in those periods.
A typical experiment is described in Figure 2.

Following, in figures 3(a) through 3(h), we explore
the dependency of the average costs and quality on
the Frobenius norm of the covariance of the data σ
(‖A‖F =

∑

i=1...m

∑

j=1...n |ai,j |
2
), the size of the local

data |Si,t|, the alert threshold ε, and the size of the
leaky bucket L. All of these experiments were carried
out with a topology of one thousand peers, and α set
to 10%. In each figure, one argument is varied, and the
rest remain at their default values: |Si,t| = 50, ε = 2,
L = 500 (where the average edge delay is about 1100

time units), and σ of one epoch is

(

15 30
30 15

)

and of

the other

(

15 −30
−30 15

)

.

The first pair of figures, Fig. 3(a) and Fig 3(e),
outline the dependency of the quality and the cost
on the covariance of the data, for covariance ma-

0 2000 4000 6000 800080

85

90

95

100

||σ||F

%
 c

or
re

ct
 p

ee
rs

||XN||<ε

||XN||>ε

(a) Quality vs. ‖σ‖F

0 50 100 150 20050
60
70
80
90

100

Size of local buffer

%
 c

or
re

ct
 p

ee
rs

||XN||<ε

||XN||>ε

(b) Quality vs. |Si,t|

0 1 2 3 40
20
40
60
80

100

%
 c

or
re

ct
 p

ee
rs

ε

||XN||<ε

||XN||>ε

(c) Quality vs. ε

0 500 1000 150060

80

100

Size of Leaky Bucket

%
 c

or
re

ct
 p

ee
rs

||XN||<ε

||XN||>ε

(d) Quality vs. L

0 2000 4000 6000 80000

0.2

0.4

0.6
0.7

||σ||F

No
rm

al
ize

d
m

es
sa

ge
s

Stationary period
Overall

(e) Cost vs. ‖σ‖F

0 50 100 150 2000

0.2

0.4

0.6

0.8

Size of local buffer

No
rm

al
ize

d
m

es
sa

ge
s

Stationary period
Overall

(f) Cost vs. |Si,t|

0 1 2 3 40

0.2

0.4

0.6

ε

No
rm

al
ize

d
m

es
sa

ge
s

Stationary period
Overall

(g) Cost vs. ε

0 500 1000 15000
1
2
3
4
5

Size of Leaky Bucket

No
rm

al
ize

d
m

es
sa

ge
s

Stationary period
Overall

(h) Cost vs. L

Figure 3: Dependency of cost and quality of L2 Thresholding on ‖σ‖F , |Si,t|, ε, and L. Quality is defined by

the percentage of peers correctly computing an alert (separated for epochs with
∥

∥

∥

~XN

∥

∥

∥
less and more than ε).

Cost is defined as the portion of the leaky buckets intervals that are used. Both overall cost and cost of just the
stationary periods are reported.

trices

(

5 10
10 5

)

,

(

10 20
20 10

)

,

(

15 30
30 15

)

, and
(

25 50
50 25

)

(i.e., Frobenius norm of . For epochs with
∥

∥

∥

~XN

∥

∥

∥
< ε both the maximal quality the average, and

the worst of every experiment decrease linearly with the
variance (from around 98% on average to around 82%).

Epochs with
∥

∥

∥

~XN

∥

∥

∥
> ε, on the other hand, retained

very high quality, regardless of the level of variance.
As for the cost of the algorithm, this increases as the
square root of ‖σ‖F (i.e., linear to the variance), re-
gardless of whether transitional phases are taken into
account. Nevertheless, even with the highest variance,
the cost stayed far from the theoretical maximum of two
messages per peer per leaky bucket period (one for each
neighbor, on an average of two neighbors per peer). The
second pair of figures, Fig. 3(b) and Fig. 3(f), show that
the variance can easily be controlled by increasing the
local data. As |Si,t| increases, the quality increases, and

cost decreases, proportionally to
√

|Si,t|. The cause of
that is clearly the relation of the variance of an i.i.d.
sample to the sample size which is inverse of the square
root.

The third pair of figures, Fig. 3(c) and Fig.
3(g), investigate the effect of requiring and ever tighter

limitation on
∥

∥

∥

~XN

∥

∥

∥
by decreasing ε. As can be seen,

beyond a given point – around ε = 2 – the number
of false positives grows drastically. The number of

false negatives, on the other hand, remains constant
regardless of ε. The cost of the algorithm decreases
linearly as ε grows from 0.5 to 1.5, and reaches nearly
zero for ε = 3. Finally, Fig. 3(d) and Fig. 3(h) explore
the dependency of the quality and the cost on the size of
the leaky bucket L. Interestingly, the reduction in cost
here is far faster than the reduction in quality, with
the optimal point (assuming 1:1 relation between cost
and quality) somewhere between 100 time units and 500
time units. It should be noted that the average delay
BRITE assigned to and edge is around 1100 time units.
This shows that even a very permissive leaky bucket
mechanism is sufficient to greatly limit the number of
messages.

To conclude the analysis of the L2 Thresholding
algorithm we investigate its scalability with the number
of peers. As Figure 4 shows, the average quality and cost
of the algorithm converge to a constant as the number of
peers increases. This typifies local algorithms – because
computation is local, the total number of peers does
not affect it. Hence, there could be no deterioration in
performance with scale.

We conclude that the L2 Thresholding provides a
moderate rate of false positives even for noisy data and
an excellent rate of false negatives regardless of the
noise. It requires little communication overhead during
stationary periods. Furthermore, the algorithm is
infinitely scalable because performance does not depend
on the number of peers.

0 1000 2000 3000 4000 500060

70

80

90

100

Number of Peers

%
 o

f c
or

re
ct

 p
ee

rs

||XN||<ε

||XN||>ε

(a) Average quality vs. number of peers

0 1000 2000 3000 4000 50000.4

0.45

0.5

0.55

0.6

0.65

Number of Peers

No
rm

al
ize

d
m

es
sa

ge
s

Stationary period
Overall

(b) Average cost vs. number of peers

Figure 4: Typically to a local algorithm, the average quality and cost converge to a constant when the number of
peers is scaled up.

6.2 Experiments with Means-Monitoring Hav-
ing explored the effects of the different parameters on
the L2 Thresholding algorithm, we focus our experi-
ments with Mean-Monitoring on three parameters that
affects Mean-Monitoring behavior: τ – the alert miti-
gation period – and T – the length of an epoch, and
on ε. On the cost side we also include the number of
convergecast rounds which were performed.

Figure 5 summarizes the results of these experi-
ments. As can be seen the quality, measured by the
distance of the actual means vector ~XN from the com-
puted one ~µ is extremely good, regardless of τ or ε.
Figure 5(b), and observations from the experiments ex-
plain why: Once the effects of the transition are over,
the computed mean ~µ is extremely accurate. For longer
epochs those effects are amortized on a longer stationary
period and the the average error becomes smaller.

As for the cost of Mean-Monitoring, except for a
clear dependency on ε (5(f)), they show no clear trend.
Our hypothesis is that because the average costs are
so low, the main factor influencing them is the actual
value that is sampled for ~µ, which can vary slightly.
Note that these figures only report messages related
to the L2-Thresholding algorithm which is used for
monitoring the means. The actual collection of statistics
was carried out between once and twice per epoch
change and required two messages each times – which
is negligible comparing to the messages exchanged by
L2-Thresholding.

6.3 Experiments with k-Means In this set of ex-
periments we investigate the effects of varying the re-
maining parameter – the sample size. To this purpose,
we compare the results of our algorithm to those of a
centralized algorithm which is given the same data. We
compute the distance between each centroid computed

by the peer-to-peer algorithm and the closest centroid
computed by the centralized one. For comparison, we
look at the error, vis-a-vis the output of that central-
ized algorithm, of a centralized algorithm which, like the
distributed one, takes a sample from the entire data.

As can be seen in Fig. 6(a), the results of k-Means
on a sample from centralized data and of the distributed
version are equivalent. For very small samples, e.g.,
500 points, the result of both algorithms are outside
the prescribed ε threshold, which is set to 2 in this
experiment. This is because k-Means output is not
robust for such small samples. However, for larger
samples, the quality of the distributed algorithm is
within the required limit. It is interesting to note
that when looking at the the accuracy throughout the
execution (and not just in stationary periods) both the
distributed and the centralized algorithms present large
variance in the error. We conclude that this is due
not to the inherent delays in the distributed algorithm.
Rather, it is due to fluctuation of the output of 2-Means
when, during transitional periods, the data contains
a mixture from four different Gaussian (two for each
epoch).

The costs of k-means have to be separated to those
related to monitoring the current centroids and those
related to the collection of the sample. Fig. 6(b)
presents the costs of monitoring a single centroid. These
should be multiplied in k to arrive at the total costs.
These costs are negligible for those sample sizes that
provide an output which is sufficiently accurate. We do
not include here the comparative costs of centralizing
the data. However, it is clear that if every change in
the data is sent to the central post, these would be
impermissibly large.

0 1000 2000 3000 4000

2.5

3

3.5
x 10−3

Av
g

||
X N −

 µ
 ||

Alert mitigation period (τ)

(a) Quality vs. τ

0 1 2 3 4 5 6
x 105

1

1.5

2

2.5

3

3.5x 10−3

Av
g

||
X N −

 µ
 ||

Epoch Length (T)

(b) Quality vs. Epoch Length

0 1 2 3 40

0.05

0.1

0.15
0.18

Av
g

||
X N −

 µ
 ||

ε

(c) Quality vs. ε

0 1000 2000 3000 40000

0.02

0.04

0.06

0.08

0.1

No
rm

al
ize

d
m

es
sa

ge
s

Alert mitigation period (τ)

(d) Cost vs. τ

0 1 2 3 4 5 66
x 105

0

0.05

0.1

0.15

0.2

No
rm

al
ize

d
m

es
sa

ge
s

Epoch Length (T)
(e) Cost vs. Epoch Length

0 0.5 1 1.5 2 2.5 3 3.50

0.05

0.1

0.15

No
rm

al
ize

d
m

es
sa

ge
s

ε

(f) Cost vs. ε

Figure 5: Dependency of cost and quality of Mean-Monitoring on different arguments

0 1000 2000 3000 4000 50000

2
4
6
8

10
12

Sample Size

Di
st

an
ce

 to
 o

pt
im

al
 c

en
tro

id

Centralized (overall)
Distributed (overall)
Distributed (stationary)
Centralized (stationary)

(a) Average Quality vs. Sample Size

0 1000 2000 3000 4000 50000.06

0.08

0.1

0.12

0.14

Sample Size

No
rm

al
ize

d
m

es
sa

ge
s

(b) Average Monitoring Cost vs. Sample Size

Figure 6: The Quality and Cost of peer-to-peer k-
means.

7 Conclusions

We presented a local algorithm which efficiently com-
putes whether the L2 norm of the average of input vec-
tors is above or below a given threshold. The algorithm
is suitable for scenarios in which those vectors are dis-
tributed across a large peer-to-peer network, and seam-
lessly handles changes in the data and fail-stop failures
during its execution. We then described how this algo-
rithm can be used as the feedback loop for the control
of either simple statistics or complex data mining mod-
els. This is demonstrated by describing a k-means al-
gorithm which uses local L2 Thresholding as a feedback
loop. Experiments with the k-means algorithm have
shown that it can achieve extremely good accuracy with
costs that, on stationary periods, are negligible. During
transitional periods, the reliance on feedback allows the
algorithm to make do with small samples and with a
“best-effort” sampling method.

Beside the direct contributions of this work with re-
spect to the calculation of L2 norm and of k-means in
peer-to-peer networks, it also suggests an entirely new
way by which local algorithms can be used in data min-
ing. Previously, developing a local algorithm for the
direct computation of a data mining model has proved
difficult. However, a small number of those local algo-
rithms is arguably sufficient to provide tools for decid-
ing whether a data mining model correctly represents
the data. Models can therefore be computed by any
method (exact, approximate, or entirely random) and

then efficiently judged by the local algorithm. Further-
more, whatever those costs are for computing the model,
they can be amortized on periods where the data does
not change and only the local algorithm operates.

Acknowledgments

This work was supported by the United States National
Science Foundation Grant IIS-0093353.

References

[1] S. Banyopadhyay, C. Giannella, U. Maulik, H. Kar-
gupta, S. Datta, and K. Liu. Clustering distributed
data streams in peer-to-peer environments. Informa-

tion Science, in press.
[2] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Mot-

wani. The price of validity in dynamic networks. In
Proc. of SIGMOD, 2004.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip
algorithms: Design, analysis and applications. In Proc.

IEEE Infocom’05, 2005.
[4] BRITE: Boston university Representative Internet

Topology gEnerator. http://www.cs.bu.edu/brite/.
[5] D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance

of discovered association rules in large databases: An
incremental updating technique. In Proc. of ICDE,
1996.

[6] J. Clemente, X. Défago, and K. Satou. Asynchronous
peer-to-peer communication for failure resilient dis-
tributed genetic algorithms. In Proc. of PDCS, 2003.

[7] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulie. From epidemics to distributed comput-
ing. IEEE computer, 37(5):60–67, May 2004.

[8] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proc. of SIGKDD, 2001.

[9] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in p2p
networks. In Proc. of WWW, 2003.

[10] D. Kempe, A. Dobra, and J. Gehrke. Computing
aggregate information using gossip. In Proc. of FoCS,
2003.

[11] W. Kowalczyk, M. Jelasity, and A. Eiben. Towards
data mining in large and fully distributed peer-to-peer
overlay networks. In Proc. of BNAIC, 2003.

[12] D. Krivitski, A. Schuster, and R. Wolff. A local facility
location algorithm for sensor networks. In Proc. of

DCOSS, 2005.
[13] S. Kullback. Information theory and statistics. Dover,

New York, 1968.
[14] S. Kutten and D. Peleg. Fault-local distributed mend-

ing. In Proc. of PODC, 1995.
[15] N. Linial. Locality in distributed graph algorithms.

SIAM Journal of Computing, 21:193–201, 1992.
[16] J. MacQueen. Some methods for classification and

analysis of multivariate observations. In Proc. of

Berkeley Symposium on Mathematical Statistics and

Probability, volume 1, pages 281–297, 1967.

[17] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka.
An efficient algorithm for the incremental updation
of association rules in large databases. In Proc. of

SIGKDD, 1997.
[18] R. Wolff and A. Schuster. Association rule mining in

peer-to-peer systems. In Proc. of ICDM, 2003.

A Proof of Lemma

Proof of Lemma 2.1. By induction. For a given
graph, we remove a vertex v by choosing a neighbor
u and unifying them into a meta vertex w such that
Sw,t ← Su,t ∪ Sv,t and hence |Sw,t| = |Sv,t| + |Su,t|

and ~Sw,t =
|Sv,t|
|Sw,t|

~Sv,t +
|Su,t|
|Sw,t|

~Su,t. Then, we connect the

neighbors of both u and v to w such that Nw ← Nv ∪
Nu \ {u, v} and for every Pj 6= u ∈ Nv (Pi 6= v ∈ Nu)

~Xj,w ← ~Xj,v, ~Xw,j ← ~Xv,j , ωj,w ← ωj,v, and ωw,j ←

ωv,j (~Xj,w ← ~Xj,u, ~Xw,j ← ~Xu,j , ωj,w ← ωj,u, and
ωw,j ← ωu,j). Obviously, every neighbor u and v had,

other than each other, has ~Xw∩j , ωw∩j equal to the ones
it had with the previous neighbor (v or u) and hence

that ~Xw∩j is in A. It is left to show that ~Xw\j is also in

A. We look at a specific ~Xw\j which connects, w.l.g., a

prior neighbor of u to w. ~Xw\j =
ωu\j

ωw\j

~Xu\j +
ωv\u

ωw\j

~Xv\u.

Since ωw\j = ωu\j +ωv\u, ~Xw\j is the weighted average

of ~Xu\j and ~Xv\u. Since A is convex and (assuming

none of the weights is zero) both ~Xu\j and ~Xv\u are in
A their weighted average is in A as well. If one of the
weights is zero, then the weighted average only takes
into account the other vector. If both are zero then
ωw\j is zero as well. Hence, the resulting graph with w

also maintains that all ~Xi\j and ~Xi∩j are in A, or has

zero weights. Furthermore, since ~Xi is nothing more
that the weighted average of ~Xi\j and ~Xi∩j , it is also in
A.

Proof of Lemma 2.3. Assume not, and that the peers

have reached termination with
∥

∥

∥

~XN

∥

∥

∥
> ε. Then there

must be two neighbors Pi and Pj such that ûfi 6= ˆufj .

Assume, w.l.g., ûfi is prior to ˆufj . This means for Pi

ûfi · ~Xi∩j ≥ ε while for Pj ûfi · ~Xj∩i < ε – or it would

choose ûfi over ˆufj . However, if no more messages are
traveling from Pi to Pj or vice-versa, then they must

have ~Xi∩j = ~Xj∩i. Hence, on any termination state

with
∥

∥

∥

~XN

∥

∥

∥
> ε, and for all Pi and Pj ∈ Ni necessarily

ûfi = ˆufj .

