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Abstract-NASA researchers recently demonstrated 
successful real-time fault detection and isolation of a virtual 
reusable launch vehicle main propulsion system. Using a 
detailed simulation of a vehicle propulsion system to 
produce synthesized sensor readings, the NASA team 
demonstrated that advanced diagnostic algorithms, running 
on flight-like computers, can, in real time, successfully 
diagnose the presence and cause of faults. This 
demonstration was conducted as part of the NASA 
Propulsion IVHM Technology Experiment, or P E X .  

INTRODUCTION 
The Propulsion IVHM Technology Experiment (PITEX) is 
a NASA effort being conducted cooperatively by NASA’s 
Glenn Research Center, Ames Research Center and 
Kennedy Space Center. It is a key element of a Space 
Launch Initiative (SLI) Risk Reduction Task being 
performed by the Northrop Grumman Corporation in El 
Segundo, California. PITEX has several main objectives. 
First is the continued maturation of diagnostic technologies 
that are relevant to 2nd Generation Reusable Launch Vehicle 
(RLV) subsystems. Second is an assessment of the real- 
time performance of the PlTEX diagnostic solution. Third 
is the migration and evaluation of the PITEX diagnostic 
solution in Northrop Grumman’s Integrated Vehicle Health 
Management (IVHM) Virtual Test Bed (IVTB). In the 
IVTB, a broad range of vehicle subsystem health managers, 
in addition to propulsion, will be considered, and the 
benefits of coordinating the subsystem health managers 
through area and system-level health managers will be 
demonstrated. PITEX is laying the groundwork for future 
subsystems. 

The current PITEX effort has considerable legacy in the 
NASA IVHM Technology Experiment for X-vehicles 
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(NITEX), selected to fly on the X-34 sub-scale RLV that 
was being developed by Orbital Sciences Corporation. 
NITEX, funded through the Future-X Program Ofice, was 
to advance the technology readiness level of selected IVHM 
technologies within a flight environment, and to begin the 
transition of these technologies &om experimental status 
into RLV baseline designs. The experiment was to perform 
real-time fault detection and isolation and suggest potential 
recovery actions for the X-34 Main Propulsion System 
( M P S )  during all mission phases using a combination of 
system-level analysis and detailed diagnostic algorithms. In 
addition, the experiment was to demonstrate the use of an 
advanced, user-friendly ground station that combines 
information provided by the on-board IVHM software with 
information obtained while the vehicle was on the ground. 

This paper describes the original architecture that was 
designed to meet the NITEX objectives. The particular 
portions of this architecture that were implemented and 
subsequently demonstrated under PITEX are discussed in 
detail. The X-34 M P S  and associated simulated failure 
scenarios are described. Finally, the metrics that were 
collected during the testing of the PITEX diagnostic system 
on flight-like hardware are discussed and results are 
presented. 

NITEX ARCHITECTURE 
The NITEX architecture shown in Figure 1 was designed to 
support fault detection and isolation of the X-34 M P S  
throughout all mission phases. The experiment was to act 
as an advisory system for detecting both functional failures 
that can impact the current mission as well as degraded 
component performance that may impact future missions. 
In order to accommodate the various mission phases 
(primarily propellant loading and ground checkout, captive 
carry on the L10 1 1 and powered flight), the architecture had 
both on-board and ground-based components. The 
experiment was to receive MPS sensor and command data 
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Operations Data 

CAU Conversion and Archive Unit 
FC Flight Computer 
GPU Ground Processing Unit 
GUI Graphical User Interface 
L2 Livingstone Inference Engine 
ME Master Encoder 
PFDA Post Flight Data Analysis 
RFU Real-time Flight Unit 
RGU Real-time Ground Unit 
ROS Results Output System 
TIS Telemetry Input System 
TOS Telemetry Output System 

Figure 1 - NITEX Architecture 

PITEX DEMONSTRATION ARCHITECTURE 
in order to track the state of the components, detect off- 
nominal conditions, isolate failures to individual 
components, and, when appropriate, recommend a recovery 
response. 

These tasks were to be performed on a NASA-provided 
avionics box located on the vehicle (Real-time Flight Unit 
or RFU) or a ground-based commercial grade version of the 
avionics box (Real-time Ground Unit or RGU) and a 
ground-based health monitoring station (Ground Processing 
Unit or GPU). The RGU and RFU hosted identical 
diagnostic sohare .  The RGU was intended to support, in 
real-time, those missions on which the RFU was not 
manifested on the X-34 vehicle and to support mission 
playback. The GPU was responsible for performing all 
monitoring while the vehicle was on the ground. During 
flight, high-level status information was to be telemetered to 
the ground processing unit from the avionics box. The 
ground station was to provide both high-level status 
information as well as more detailed analyses. These more 
detailed analyses included mission-to-mission trending. 

Since the cancellation of the X-34 program, the software 
items in Figure 1 that are enclosed in bold yellow (on the 
RFU, RGU and GPU) have been implemented and 
demonstrated on relevant hardware. These software 
components are addressed in more detail in the next section. 

The overall PITEX demonstration system architecture is 
shown in Figure 2. The demonstration system is designed 
to test a subset of software components from the NITEX 
flight experiment architecture. The demonstration system 
features simulated propulsion system data being processed 
by diagnostic software on an RGU and display s o h a r e  
hosted on a GPU. 

Hardware 

The PITEX diagnostic software resides on a Radstone 
PPC4A-750 VME single Board Computer. The card is 
housed in a chassis with a VME backplane and SCSI hard 
drive. YO ports provide both serial and ethernet 
accessibility to the card. The PITEX diagnostic software is 
compiled in the Tornado II VxWorks (release 5.4) 
environment using the compiler supplied with Tornado. 
The VxWorks kernel is based on the Radstone board 
support package release 1.211. 

The GPU hardware is a personal computer with a Pentium 
III 550 MHz processor, 256 MB of RAM, and 30 GB of 
hard disk storage. The GPU uses the L h x  Operating 
System Redhat version 6.2 and communicates to the RGU 
through a TCP/IP Ethernet connection. 
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Graphical User Interface on 
Ground Processing Unit 

Figure 2 - PlTEX Demonstration Architecture 

Software 
101 1. During this phase of operation, the X-34 is carried to 
the required launch altitude of 38,000 feet while it is 
attached to the underside of an L-1011 aircraft. The engine 

are in a quasi-static state, except for the liquid oxidizer 
(LOX) and Rp- 1 (fuel) subsystems. 

The key components Of the ‘Inx demonstration is not firing, and most of the subsystems of the M p S  system include the Virtual Propulsion System, the 
Telemetry Input System (TIS), the Monitors, the Real-Time 
Interface (RTI), Livingstone, the Results Output System 
(Res) and the user Interface (GUI)’ The Throughout fie first half-hour of captive carry, fie M p S  is 

RT19 Livhgstone2 and propu1sion locked-up. After this lock-up phase, the vendrelief system 
System data sets reside on the RGU. The GUT resides on 
the GPU. is activated to provide Lox conditioning. For two hours, 

this mocess maintains. within me-defined thresholds, the 

Virtual Propulsion System-This support component 
provides simulated data of the physical system for 
evaluation of the X-34 M P S  feed system and for verification 
and validation of the diagnostic software. No system-level 
testing of the X-34 M P S  was performed, making these 
simulated data the only data available. 

nom&al temperature i d  press&e in the LOX tanks. Once 
this is completed, the pressurization system is enabled 
Subsequently, RP-1 bleed is performed for three minutes. 
During this process, fuel flow to the engine is maintained at 
a small rate, which is much less than that required for 
nominal operation of the engine. Next, LOX chilldown and 
bleed are Derformed to cool the warm feed line from the 
M P S  to the engine, and to prepare the engine for powered 

minutes, and occur at the end of captive carry. 
The specific Of x-34 subsystem and flight. Nominally, LOX chilldown and bleed span six 
component will not be addressed in this paper; a history of 
the vehicle and an overview of its main propulsion system 

be found in the literature [l> 21’ The ne virtual propulsion System component includes both a 
Rocket Engine Transient Simulator (ROCETS) model and 
MATLA€3 routines that predict the behavior of various 

Reference Mission for the X-34 MI’S was the captive carry 
mission phase. The captive carry mission phase was 
selected due to crew safety considerations of the piloted L- 
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Figure 3 - X 3 4  Main Propulsion System Schematic 

portions of the physical system during different modes of 
operation (i.e., propellant conditioning and bleed). The 
ROCETS program was selected because of its proven ability 
to reliably simulate large rocket propulsion systems. The 
physical scope of the model extends from the helium 
bottles, through the propellant tanks, to the ullage venting 
system and LOX and RP-1 feedline and dump-systems; all 
of these elements are shown in the X-34 M P S  schematic 
displayed in Figure 3. The ROCETS model does not 
include the purge, reaction control, or pneumatic systems. 
The ROCETS M P S  model was initially developed to 
simulate delivery of propellants to a LOXRP engine during 
powered flight. It is not well-suited for simulating LOX 
conditioning since the dynamic behavior of the LOX tanks 
during this period is substantially different than during 
steady-state powered flight. Therefore, a MATLAB code 
was used to simulate LOX conditioning. The 
ROCETSMA'TLAB models produce output files with time 
histories of selected parameters. 

The virtual M P S  provides the capability to study both 
nominal and off-nominal behavior of the X-34 M P S  feed 
system. Several off-nominal scenarios have been simulated. 
These include valves sticking closed or open, valves 
spontaneously closing or opening, regulator failures, and 
sensor and microswitch failures. The virtual h4PS can also 
generate parameter traces indicative of more subtle 

degradations such as the clogging of a filter, a small 
obstruction in an orifice, or degradation in valve actuation. 

The accuracy of the data sets generated by the virtual h4PS 
is dependent upon the approximations made when defining 
the components and the physical processes. Because of this, 
there is some amount of modeling error present in the 
results. These types of errors can be substantially reduced 
by obtaining accurate component and system-level data and 
anchoring the simulations with these test data. Although 
this step in the diagnostic system development process was 
not possible in the case of the X-34, the data generated by 
these simulation models permit appropriate initial testing of 
the diagnostic software. 

Included in the V i a l  Propulsion System component is a 
utility which combines the various output files into one 
flight-like data set. This utility adjusts the output data &om 
the simulations to correspond to sensor locations, applies 
random noise to the data and inserts the discrete signals (i.e. 
commands and switch indicators). It also adjusts the 
sampling rates output by the models to correspond to the 
expected telemetry rates. The entire data set generation 
process is summarized in Figure 4. The final data set is in a 
standardized binary format, containing header information 
that declares the file's content and creation date. 
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Figure 4 - Scenario data set generation process 

Telemetry Input System-The demonstration TIS provides 
the interface between the flight-like data set and the 
Monitors and has three basic functions. First, the TIS 
provides an accurate 80 millisecond timer to simulate the 
hardware interrupt that would occur when a fiame of 
telemetry becomes available. Second, when the simulated 
interrupt occurs, the TIS reads the next frame worth of data 
and stores it within an internal data buffer. The buffer 
currently holds ten seconds worth of data, but the capacity 
can be changed based upon specific memory limitations. 
Finally, data buffer access is provided to the diagnostic 
system by a TIS library routine. Access of a specific frame 
of data can commence after the TIS sends a notification to 
the Monitors that data are available. The TIS is designed to 
guarantee that the simulated telemetry data are available to 
the diagnostic system in real time. 

Monitors-The Monitors are a collection of software 
fimctions that receive incoming propulsion system data, 
perform specific processing on these data, and then provide 
the resulting observations to the Real-Time Interface (RTI) 
component in the form of inter-process messages. Various 
types of system data are processed including the discrete 
command and switch indicator signals and the raw digitized 
performance sensor signals. 

For every sensor signal, the Monitors consider a predefined 
number of bands that span the sensor’s performance range. 
During operation, the Monitors examine each sensor data 
stream and continuously qualib the values with respect to 
these discrete bands. A sensor is determined to reside in a 
particular band when it satisfies a persistence criterion, that 
is, when a certain number of recent values have fallen 
within the bounds of that band. This qualitative assignment 
is then passed on to the RTI as a discrete event for use in 
subsequent system diagnosis. 

In many failure scenarios, the ratsof-change for certain 
sensor data are key elements to be considered. As a result, 
the Monitors continuously calculate these rates and then 
qualitatively identify them in a manner similar to that 
described in the previous paragraph for sensor range checks. 
Figure 5 illustrates this sequence of operations. First the 
signal is processed to obtain the rate-of-change time history; 
this is followed by the qualitative identification. The rate-of- 

change calculation is performed by line-fitting a user- 
defined window of averaged data points over the 
corresponding time interval. This computation is repeated 
for successive windows of data resulting in a stream of rate 
values. During periods of rapid transition in the sensor data, 
the Monitors shift into a “fast rate mode” to more 
effectively capture these transients. In this mode, successive 
data points, rather than larger windows of points, are used to 
compute the slope. 
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Figure 5 - Illustration of the ratesf-change 
monitor processing pressure data into 

qualitative rate information 

To ensure robustness against signal noise, the Monitors 
implement a smoothing operation on the raw sensor data. 
Prior to the aforementioned sensor processing and rate 
calculations, the incoming data are first smoothed to 
attenuate noise that is present in the signals. The smoothing 
method involves the calculation of the average value of the 
incoming data stream over a predefined number of data 
points. For each successive calculation, the window of data 
points is moved incrementally forward in time by a pre- 
defined time-step. As each average value is calculated, it is 
time-stamped with the time associated with the end point of 
the averaging window. 
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Additionally, the Monitors include a Redundant Channel 
Comparison Module (RCCM) which provides qualitative 
information about the difference between two redundant 
sensors. This module was implemented to address failure 
scenarios involving redundant control loop sensors. The 
RCCM derives absolute difference values between two 
given sensor values; these resulting “deltas” are then 
qualitatively identified as well. 

One final Monitor function is to provide timing information 
in response to timer request messages from the RTI. These 
requests are processed, and expiration notifications are 
returned when all Monitor processing is complete for the 
telemetry frame in which the timer expires. This ensures the 
timeliness of all reported observations required by 
Livingstone when making diagnoses. 

Real-7ime Inte~ace-Tke purpose of the Real-Time 
Interface is to transmit discrete events from the Monitors to 
the Livingstone inference engine. To do this, the RTI 
handles four basic tasks. First, it translates the Monitor data 
into a format that is understood by the Livingstone model. 
Second, it uses timing information associated with events to 
package the information into discrete Livingstone time 
steps. Third, it decides when to request a diagnosis from 
Livingstone. Finally, it dictates when Livingstone 
information is transmitted to the GPU via the Results 
Output System (ROS). 

To implement this functionality, the RTI was designed with 
two primary classes. The first is a translator class which is 
used to translate the Monitor data into Livingstone model 
variable information; this is largely a bookkeeping task. 
The second class is the RTI policy, which decides how to 
package the discrete events into time steps, when to request 
diagnoses, and when to transmit information to the ground. 
This policy has evolved thioughout the NITEXPITEX 
development and testing phases. The three key 
needslassumptions driving the policy design are described 
along with the current design. 

When a controller command occurs, there is afinite amount 
of time in which the system will stabilize in response to the 
command, and this amount of time is known a priori for 
each command type. Likewise, when a spontaneous failure 
of a component occurs, there is aJinite amount of time in 
which the system will stabilize in response to the failure, 
ana‘ this amount of time is also known a priori for each 
component. These periods of time are known as latency 
p e r i d ,  and they are the primary driver in determining 
diagnostic delay. To handle this, the RTI policy issues a 
timer request corresponding to the latency period after a 
command or spurious observation occurs. While the timer 
is pending, the RTI buffers the observations that are 
received; later observations override prior observations. 
When the timer expires, the RTI sends the event along with 
all of the latest observations to Livingstone, and then 
requests a diagnosis. 

Controller commands can occur very rapidly, so that 
suflcient time does not exist for the effects of one command 
to completely settle before another command is issued. The 
RTI policy should unconstrain information that has had 
insuflcient time to settle during these rapid perioh, but it 
should try to maximize the evidence that is provided to 
Livingstone for diagnosis. The current policy for handling 
these “overlapping events” is to divide time into a number 
of segments as shown in Figure 6. When a command 
arrives, a time segment is created which stores the event and 
associated observations. If another command arrives that 
overlaps the transient period of the first command, two 
additional time segments are created. When Time Segment 
I is debuffered and sent to Livingstone, all of those 
observations that have not had sufficient time to settle and 
that belong to the same subsystem as command 1 are set to 
“unknown” (i.e., unconstrained). When Time Segment TI is 
debuffered, only the observations in the same subsystem as 
command 2 are unconstrained (because the observations 
related to command 1 have now had time to settle). Finally, 
when Time Segment III is debuffered, none of the 
observations are unconstrained. Although a single 
overlapping event is used for illustration purposes, the 
policy handles any number of overlapping events, and 
considers cases where the transient periods are not equal. 

I I I II 1 Ill time 

Figure 6 - RTI Policy for handling overlapping 
events 

Monitors reside in multiple tarb. Therefore, their outputs 
are not necessarily temporally synchronized. The RTI 
policy must ensure that a time segment is not debuffered 
prior to all of the observations that belong to that segment 
being posted. The RTI is capable of ordering Monitor 
observations and requesting diagnoses appropriately with 
the guarantee from the Monitors that, following a timer 
expiration, no events will be sent to the RTI with time tags 
prior to the expiration time. Therefore, whenever the RTI 
policy receives a timer expiration, it is safe to debuffer all of 
those time segments with end times prior to the expiration 
time. 

Finally, current system needs dictate that faults be detected 
as soon as possible. Therefore the current policy is to 
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request and transmit the diagnosis after every time segment 
is debuffered. 

Livingstone-Livingstone is the diagnostic engine 
responsible for inferring the health of the MPS. It does this 
by utilizing a high-level declarative model of the propulsion 
system and discretized sensor and command information 
(event data) generated by the Monitors. As event data are 
received fiom the Monitors (through the RTI), Livingstone 
continually updates its belief regarding the state of the 
various components in the system. The model is used to 
determine the expected observations given the component 
state. When there is a discrepancy between the expected 
observations and the actual observations, Livingstone 
searches for the most likely set of component statedfailures 
that could produce the observations. Livingstone can also 
generate recommended recovery actions; however, for this 
demonstration it was used only for detection and isolation of 
failures. More information on Livingstone and the X-34 
M P S  Livingstone model can be found in [3,4]. 

Results Output System-The Monitors and Livingstone pass 
messages to the Results Output System (ROS) for 
transmission to the GPU. The source task controls the 
routing of messages, specifying local storage, 
‘downlinking’, or both. 

Graphical User Inteflace-The purpose of the GPU 
Graphical User Interface (GUI) is to display diagnostic 
information fiom the RGU or RFU to ground personnel who 
would be monitoring the system. The GUI has been 
designed for use by ground operators who are primarily 
concerned with the status of the vehicle, and experiment 
developers who are interested in what is going on behind the 
scenes in the experiment. Therefore, the GUI has been 
designed with the idea that it should be relatively intuitive 
and easy to use, provide quick access to raw data so the 
ground operator can judge the correctness of a diagnosis, 
and provide sufficient information to understand why the 
diagnostic system is making a particular diagnosis. 

The GUI contains both a timeline view and a schematic 
view. The timeline view has indicators that are highlighted 
in red when a failure occurs to alert the operator. Strip 
charts in the timeline view display the continuous 
engineering unit data, Monitor readings, and the values of 
selected Livingstone model variables over time. Also in this 
view is a list of failure candidates with their identified rank 
(related to probability) and associated failed components. 
The schematic view highlights implicated components in 
color when a specific failure candidate is selected fiom the 
list in the timeline view. Furthermore, when the cursor is 
placed on top of a component, the component’s current 
readings are displayed. 

The GPU GUI software has been written in Java so that it is 
portable across multiple platforms. It can be used to replay 
previous missions or to connect directly to the RGU for 
monitoring an active mission. The GPU GUI software was 

designed in such a way that it may be easily reused when 
deploying Livingstone on other subsystems or applications. 

HARDWARE TESTING 
Client System Scenarios 

The X-34 M P S  simulation described previously was 
exercised under both nominal and off-nominal conditions 
during the captive carry mission phase. The resulting data 
sets were used to test the diagnostic sohare .  Table 1 
summarizes the failure scenarios that were considered in the 
PITEX demonstrations. All simulated faults occurred 
during the captive carry mission phase; both LOX and RP-1 
subsystem faults and single and double faults were 
considered. Each bulleted item in Table 1 represents a 
distinct failure scenario. In some cases, several failure 
modes are considered for the same component. Some 
clarification with respect to failure scenario naming is in 
order. The difference between a valve sticking closed and 
failing closed, for example, is with respect to the valve’s 
operation prior to the time that the failure occurred. The 
LOX Venmelief Pneumatic Pilot valve ‘fails closed’ during 
LOX conditioning at a time when it has been and should 
continue to be open. This same valve ‘sticks closed’ at a 
time during the LOX conditioning phase when it is 
commanded open following an interval in which it was 
commanded closed. Analogous descriptions apply to valves 
sticking open and failing open. 

Table 1 - X-34 MPS failure scenarios used in PITEX 
demonstrations 

Mission Phase 
LOX 
conditioning 

LOX 
chilldowntbleed 

Component Failure 
e 

0 

e 

e 

0 

e 

e 

0 

0 

e 

LOX venthelief pneumatic pilot 
valve sticks open 
LOX venthelief pneumatic pilot 
valve fails open 
LOX tank venthelief valve 
sticks open 
LOX tank venthelief valve fails 
open 
LOX venthelief pneumatic pilot 
valve sticks closed 
LOX venthelief pneumatic pilot 
valve fails closed 
LOX tank venthelief valve 
sticks closed 
Open switch on LOX venthelief 
pneumatic pilot valve fails 
Open switch on LOX venthelief 
pneumatic pilot valve fails and 
pneumatic pilot valves fails 
Two Forward LOX tank ullage 
pressure sensors fail low 
Two Forward LOX tank ullage 
pressure sensors fail high 

sticks closed 
0 LOX feed pneumatic valve 
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Mission Phase 

RP-1 bleed 

RP- 1 bleed and 
LOX 
chilldowdbleed 

Component Failure 
0 LOX feed pneumatic pilot valve 

fails closed 
0 primary pressurization regulator 

fails low . LOXtankprimary 
pressurization valve sticks open 
LOXtankprimary 
pressurization valve sticks 
closed 
Closed switch on the LOX feed 0 

pneumatic valve fails 
RP- 1 feed pneumatic valve fails 0 

closed 
RP- 1 venthelief valve fails open 

pressurization valve sticks open 

pressurization valve sticks 
closed 

0 Primary pressurization regulator 
fails high 

0 Primaryandsecondary 
pressurization regulators fail 
high 

. RP-ltankprimary 

RP-ltankprimary 

Metrics 

There were four objectives in testing the PITEX diagnostic 
software on flight-like computer hardware. The frrst 
involved validating the correctness of the results. Second, 
timing information was extracted from the results with the 
goal of measuring PITEX diagnostic speed. Timing 
assessments were made with respect to various PITEX 
modules; however, the overall time required from the first 
time at which a fault can be sensed until the time at which 
the diagnostic system reports the correct diagnosis was of 
primary interest. 

Third, resource utilization assessment was a key objective of 
the hardware testing. Memory and CPU usage were 
extracted and analyzed. The memory requirements for the 
PITEX s o h a r e  were established in order to infer memory 
requirements when expanding the software for a given 
application or to cover a new application. Static, stack and 
dynamic memory usage were assessed on a per task basis 
and overall system memory usage was determined. Average 
and maximum CPU usage were collected for each scenario, 
nominal and failure, over the entire scenario length. These 
statistics were collected on a per task basis and summarized 
for the overall software system as well. 

Finally, measurements that are indicative of telemetry 
bandwidth of a flight experiment were collected. Although 
the current PITEX code does not have an efficient telemetry 
representation, maximum and average telemetry per second 
rates were projected based on a more compact integer 

representation. These numbers were analyzed with respect 
to Livingstone diagnoses. 

RESULTS 

When the scenario data sets summarized in Table 1 and the 
nominal scenario were run through the PITEX diagnostic 
software, the correct diagnosis was achieved in all cases. In 
some cases, several fault candidates were proposed. For 
example, when the LOX feed pneumatic valve sticks closed, 
PITEX attributes this to either a failure in this valve or the 
LOX Feed Pneumatic Pilot Valve - both faults have equal 
rank. This is because there is insufficient instrumentation to 
distinguish between these two failure modes. In all cases, 
however, the fault candidates included the actual failure 
mode. 

For the failure scenarios considered, the overall diagnostic 
delay was found to be 20 seconds on average. The primary 
factor in the diagnostic delay is the latency timeout period 
applied. The timeout delay was instituted for a variety of 
reasons. First, since Livingstone works with qualitative 
propositional logic, it is not designed to handle transient 
states of the system. Therefore, the physical system settling 
time - the time required for the system to stabilize following 
a system change or event - must be accounted for in the 
timeout duration. In addition, there is processing delay from 
the time of system stabilization until the change is reported. 
This is especially evident in the monitoring of pressure 
derivatives, where subtle changes must be discerned for 
system diagnosis. Monitor and RTI policy changes which 
will reduce the diagnostic delay without compromising 
diagnostic accuracy are currently being investigated; recent 
results indicate that latencies on the order of 5 seconds can 
be achieved. 

PITEX used approximately 1.8MB of static memory and 
approximately 570IU3 of stack memory for all of its 
subprocesses. Depending on the scenario, PITEX allocated 
between 2.5 and 3.5 MB of dynamic memory. Figure 7 
gives an overall worst-case picture of total memory use. 
This version of the PITEX software uses the 24-bit 
addressing feature of PowerPC microprocessors to achieve a 
faster and more compact code. Employing this feature 
limits the maximum amount of memory accessible by the 
VxWorks kernel to 32MB; PITEX only uses a total of 9.5 
MB, or 29.8% (including the VxWorks kernel). 

With respect to CPU usage, it was found that for both the 
nominal and failure scenarios, the average CPU usage did 
not exceed 3%. However, when events are reported and a 
diagnosis is requested fkom Livingstone, the CPU usage can 
spike considerably. These brief spikes were as high as 
99.7%. Figure 8 shows CPU usage as a function of time for 
the major PITEX subprocesses. In this failure mode, the 
series redundant helium pressurization system pressure 
regulators both regulate high starting at 9000 seconds. CPU 
usage is depicted in the final stage of captive carry when 
Livingstone has to perform multiple diagnoses prompted by 
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Available- 
70.2% 

vxworks I 

Figure 7 - Overall memory usage summary 

the injected fault. As can be seen, Livingstone and the RTI 
are the biggest CPU consumers when a diagnosis is being 
performed. The spikes in the Data U 0  CPU usage reflect 
transmission of Monitor and Livingstone findings through 
the telemetry channels. 

If PITEX software needs to share CPU resources with other 
applications, it can be internally restricted to never exceed a 
certain percentage of CPU utilization; this feature has been 
successfully demonstrated on multiple scenarios at levels as 
low as 5%. The quality of the diagnosis was not affected by 
such a restriction, only its speed. Figure 9 shows the 
gradual increase in diagnostic delay as the CPU is restricted 
for six scenarios. 

Finally, telemetry experiment results showed that the 
amount of telemetry downloaded depends to a large degree 
on the number of candidates reported by Livingstone 
throughout the mission; this dependency is illustrated in 
Figure 10. The system state information downloaded with 
each candidate was found to constitute the bulk of the 

telemetry data. The amount of telemetry per candidate 
varied somewhat, depending on the complexity of the 
scenario and the phase of the simulation, but, on average, 
reporting each candidate currently results in about 33-34 Kl3 
of additional data. 

The total number of candidates downloaded during the 
mission should not be mistaken for the number of different 
components implicated as being faulty. On average, 
Livingstone implicated 2-3 components as being the likely 
reasons for a single fault and ranked them by failure 
probability. Many candidates were reaffirmed from one 
diagnostic request to another. Also, for many failure 
candidates, Livingstone suggested several possible times 
when the component might have failed. Each of these 
permutations is currently counted as a separate failure 
candidate report. Work is being done on combining several 
candidates into a single report and thus reducing the amount 
of telemetry being downloaded. 
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Figure 9 - Increase in diagnostic delay as a 
function of available CPU for six failure 

scenarios 
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Figure 8 - CPU usage per major PITEX subprocess for double pressure regulator 
failure scenario 
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the guidance of the SLI NHM Project Office managed by 
Ames Research Center. 
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Figure 10 - Mission telemetry volume as a 
function of the number of candidates 

CONCLUDING REMARKS 
As part of the 2”d Generation Reusable Launch Vehicle Risk 
Reduction effort, PITEX has successfully demonstrated 
real-time model-based fault detection of a virtual main 
propulsion system. Realistic propulsion system failures 
involving valves, regulators, microswitches and sensors 
were simulated and correctly diagnosed by PITEX. The 
PITEX demonstration architecture included both a flight- 
like avionics box and a Ground Processing Unit. Specific 
software elements that were implemented focused on real- 
time system-level diagnosis. These elements were Monitors 
for processing raw sensor data, a Real-Time Interface for 
ordering and transmitting events and requesting diagnoses, 
and Livingstone, the diagnostic engine responsible for 
inferring the health of the MPS. The demonstration 
architecture was part of a larger more generic architecture 
that was designed to cover all phases of mission operation 
and both on-board and on-ground assessments. During 
testing of the software on flight-like hardware, system 
resources - CPU and memory - were found to be largely 
underutilized. This indicated that more complex 
applications could be handled by the PITEX diagnostic 
solution. The PITEX project continues to address 
challenges aimed at improving the speed, efficiency and 
timeliness of the diagnoses and is exploring other potential 
applications. 
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