
Vol. 2-859

Propulsion IVHM Technology Experiment Overview

Claudia M. Meyer
NASA Glenn Research Center at Lewis Field

21000 Brookpark Road
Cleveland, OH 44135

Claudia.inever@,ac.nasa.gov
(216) 977-7511

Howard Cannon
NASA Ames Research Center

Moffett Field, CA 94035

Edward Balaban
QSS Group

NASA Ames Research Center
Moffett Field, CA 94035

Abstract-NASA researchers recently demonstrated
successful real-time fault detection and isolation of a virtual
reusable launch vehicle main propulsion system. Using a
detailed simulation of a vehicle propulsion system to
produce synthesized sensor readings, the NASA team
demonstrated that advanced diagnostic algorithms, running
on flight-like computers, can, in real time, successfully
diagnose the presence and cause of faults. This
demonstration was conducted as part of the NASA
Propulsion IVHM Technology Experiment, or P E X .

INTRODUCTION
The Propulsion IVHM Technology Experiment (PITEX) is
a NASA effort being conducted cooperatively by NASA’s
Glenn Research Center, Ames Research Center and
Kennedy Space Center. It is a key element of a Space
Launch Initiative (SLI) Risk Reduction Task being
performed by the Northrop Grumman Corporation in El
Segundo, California. PITEX has several main objectives.
First is the continued maturation of diagnostic technologies
that are relevant to 2nd Generation Reusable Launch Vehicle
(RLV) subsystems. Second is an assessment of the real-
time performance of the PlTEX diagnostic solution. Third
is the migration and evaluation of the PITEX diagnostic
solution in Northrop Grumman’s Integrated Vehicle Health
Management (IVHM) Virtual Test Bed (IVTB). In the
IVTB, a broad range of vehicle subsystem health managers,
in addition to propulsion, will be considered, and the
benefits of coordinating the subsystem health managers
through area and system-level health managers will be
demonstrated. PITEX is laying the groundwork for future
subsystems.

The current PITEX effort has considerable legacy in the
NASA IVHM Technology Experiment for X-vehicles

U.S. Government work not protected by U.S. copyright.
Paper number 1481

1

Chris Fulton, Bill Maul and Amy Chicatelli
Analex Corporation

NASA Glenn Research Center at Lewis Field
Cleveland, OH 443 15

Anupa Bajwa
USRA-RIACS

NASA Ames Research Center
Moffett Field, CA 94035

Edmond Wong
NASA Glenn Research Center at Lewis Field

Cleveland, OH 44135

(NITEX), selected to fly on the X-34 sub-scale RLV that
was being developed by Orbital Sciences Corporation.
NITEX, funded through the Future-X Program Ofice, was
to advance the technology readiness level of selected IVHM
technologies within a flight environment, and to begin the
transition of these technologies &om experimental status
into RLV baseline designs. The experiment was to perform
real-time fault detection and isolation and suggest potential
recovery actions for the X-34 Main Propulsion System
(M P S) during all mission phases using a combination of
system-level analysis and detailed diagnostic algorithms. In
addition, the experiment was to demonstrate the use of an
advanced, user-friendly ground station that combines
information provided by the on-board IVHM software with
information obtained while the vehicle was on the ground.

This paper describes the original architecture that was
designed to meet the NITEX objectives. The particular
portions of this architecture that were implemented and
subsequently demonstrated under PITEX are discussed in
detail. The X-34 M P S and associated simulated failure
scenarios are described. Finally, the metrics that were
collected during the testing of the PITEX diagnostic system
on flight-like hardware are discussed and results are
presented.

NITEX ARCHITECTURE
The NITEX architecture shown in Figure 1 was designed to
support fault detection and isolation of the X-34 M P S
throughout all mission phases. The experiment was to act
as an advisory system for detecting both functional failures
that can impact the current mission as well as degraded
component performance that may impact future missions.
In order to accommodate the various mission phases
(primarily propellant loading and ground checkout, captive
carry on the L10 1 1 and powered flight), the architecture had
both on-board and ground-based components. The
experiment was to receive MPS sensor and command data

mailto:Claudia.inever@,ac.nasa.gov

Vol. 2-860

Operations Data

CAU Conversion and Archive Unit
FC Flight Computer
GPU Ground Processing Unit
GUI Graphical User Interface
L2 Livingstone Inference Engine
ME Master Encoder
PFDA Post Flight Data Analysis
RFU Real-time Flight Unit
RGU Real-time Ground Unit
ROS Results Output System
TIS Telemetry Input System
TOS Telemetry Output System

Figure 1 - NITEX Architecture

PITEX DEMONSTRATION ARCHITECTURE
in order to track the state of the components, detect off-
nominal conditions, isolate failures to individual
components, and, when appropriate, recommend a recovery
response.

These tasks were to be performed on a NASA-provided
avionics box located on the vehicle (Real-time Flight Unit
or RFU) or a ground-based commercial grade version of the
avionics box (Real-time Ground Unit or RGU) and a
ground-based health monitoring station (Ground Processing
Unit or GPU). The RGU and RFU hosted identical
diagnostic sohare . The RGU was intended to support, in
real-time, those missions on which the RFU was not
manifested on the X-34 vehicle and to support mission
playback. The GPU was responsible for performing all
monitoring while the vehicle was on the ground. During
flight, high-level status information was to be telemetered to
the ground processing unit from the avionics box. The
ground station was to provide both high-level status
information as well as more detailed analyses. These more
detailed analyses included mission-to-mission trending.

Since the cancellation of the X-34 program, the software
items in Figure 1 that are enclosed in bold yellow (on the
RFU, RGU and GPU) have been implemented and
demonstrated on relevant hardware. These software
components are addressed in more detail in the next section.

The overall PITEX demonstration system architecture is
shown in Figure 2. The demonstration system is designed
to test a subset of software components from the NITEX
flight experiment architecture. The demonstration system
features simulated propulsion system data being processed
by diagnostic software on an RGU and display s o h a r e
hosted on a GPU.

Hardware

The PITEX diagnostic software resides on a Radstone
PPC4A-750 VME single Board Computer. The card is
housed in a chassis with a VME backplane and SCSI hard
drive. YO ports provide both serial and ethernet
accessibility to the card. The PITEX diagnostic software is
compiled in the Tornado II VxWorks (release 5.4)
environment using the compiler supplied with Tornado.
The VxWorks kernel is based on the Radstone board
support package release 1.211.

The GPU hardware is a personal computer with a Pentium
III 550 MHz processor, 256 MB of RAM, and 30 GB of
hard disk storage. The GPU uses the L h x Operating
System Redhat version 6.2 and communicates to the RGU
through a TCP/IP Ethernet connection.

2

Vol. 2-861

Graphical User Interface on
Ground Processing Unit

Figure 2 - PlTEX Demonstration Architecture

Software
101 1. During this phase of operation, the X-34 is carried to
the required launch altitude of 38,000 feet while it is
attached to the underside of an L-1011 aircraft. The engine

are in a quasi-static state, except for the liquid oxidizer
(LOX) and Rp- 1 (fuel) subsystems.

The key components Of the ‘Inx demonstration is not firing, and most of the subsystems of the M p S system include the Virtual Propulsion System, the
Telemetry Input System (TIS), the Monitors, the Real-Time
Interface (RTI), Livingstone, the Results Output System
(Res) and the user Interface (GUI)’ The Throughout fie first half-hour of captive carry, fie M p S is

RT19 Livhgstone2 and propu1sion locked-up. After this lock-up phase, the vendrelief system
System data sets reside on the RGU. The GUT resides on
the GPU. is activated to provide Lox conditioning. For two hours,

this mocess maintains. within me-defined thresholds, the

Virtual Propulsion System-This support component
provides simulated data of the physical system for
evaluation of the X-34 M P S feed system and for verification
and validation of the diagnostic software. No system-level
testing of the X-34 M P S was performed, making these
simulated data the only data available.

nom&al temperature i d press&e in the LOX tanks. Once
this is completed, the pressurization system is enabled
Subsequently, RP-1 bleed is performed for three minutes.
During this process, fuel flow to the engine is maintained at
a small rate, which is much less than that required for
nominal operation of the engine. Next, LOX chilldown and
bleed are Derformed to cool the warm feed line from the
M P S to the engine, and to prepare the engine for powered

minutes, and occur at the end of captive carry.
The specific Of x-34 subsystem and flight. Nominally, LOX chilldown and bleed span six
component will not be addressed in this paper; a history of
the vehicle and an overview of its main propulsion system

be found in the literature [l> 21’ The ne virtual propulsion System component includes both a
Rocket Engine Transient Simulator (ROCETS) model and
MATLA€3 routines that predict the behavior of various

Reference Mission for the X-34 MI’S was the captive carry
mission phase. The captive carry mission phase was
selected due to crew safety considerations of the piloted L-

3

Vol. 2-862

h LO2 I

Figure 3 - X 3 4 Main Propulsion System Schematic

portions of the physical system during different modes of
operation (i.e., propellant conditioning and bleed). The
ROCETS program was selected because of its proven ability
to reliably simulate large rocket propulsion systems. The
physical scope of the model extends from the helium
bottles, through the propellant tanks, to the ullage venting
system and LOX and RP-1 feedline and dump-systems; all
of these elements are shown in the X-34 M P S schematic
displayed in Figure 3. The ROCETS model does not
include the purge, reaction control, or pneumatic systems.
The ROCETS M P S model was initially developed to
simulate delivery of propellants to a LOXRP engine during
powered flight. It is not well-suited for simulating LOX
conditioning since the dynamic behavior of the LOX tanks
during this period is substantially different than during
steady-state powered flight. Therefore, a MATLAB code
was used to simulate LOX conditioning. The
ROCETSMA'TLAB models produce output files with time
histories of selected parameters.

The virtual M P S provides the capability to study both
nominal and off-nominal behavior of the X-34 M P S feed
system. Several off-nominal scenarios have been simulated.
These include valves sticking closed or open, valves
spontaneously closing or opening, regulator failures, and
sensor and microswitch failures. The virtual h4PS can also
generate parameter traces indicative of more subtle

degradations such as the clogging of a filter, a small
obstruction in an orifice, or degradation in valve actuation.

The accuracy of the data sets generated by the virtual h4PS
is dependent upon the approximations made when defining
the components and the physical processes. Because of this,
there is some amount of modeling error present in the
results. These types of errors can be substantially reduced
by obtaining accurate component and system-level data and
anchoring the simulations with these test data. Although
this step in the diagnostic system development process was
not possible in the case of the X-34, the data generated by
these simulation models permit appropriate initial testing of
the diagnostic software.

Included in the V i a l Propulsion System component is a
utility which combines the various output files into one
flight-like data set. This utility adjusts the output data &om
the simulations to correspond to sensor locations, applies
random noise to the data and inserts the discrete signals (i.e.
commands and switch indicators). It also adjusts the
sampling rates output by the models to correspond to the
expected telemetry rates. The entire data set generation
process is summarized in Figure 4. The final data set is in a
standardized binary format, containing header information
that declares the file's content and creation date.

4

Vol. 2-863

Simulation

Nominal
Mission

Flight-Like
Data

I

Comma&js ‘ Micro-Switch Injected
Faults Indicators

Figure 4 - Scenario data set generation process

Telemetry Input System-The demonstration TIS provides
the interface between the flight-like data set and the
Monitors and has three basic functions. First, the TIS
provides an accurate 80 millisecond timer to simulate the
hardware interrupt that would occur when a fiame of
telemetry becomes available. Second, when the simulated
interrupt occurs, the TIS reads the next frame worth of data
and stores it within an internal data buffer. The buffer
currently holds ten seconds worth of data, but the capacity
can be changed based upon specific memory limitations.
Finally, data buffer access is provided to the diagnostic
system by a TIS library routine. Access of a specific frame
of data can commence after the TIS sends a notification to
the Monitors that data are available. The TIS is designed to
guarantee that the simulated telemetry data are available to
the diagnostic system in real time.

Monitors-The Monitors are a collection of software
fimctions that receive incoming propulsion system data,
perform specific processing on these data, and then provide
the resulting observations to the Real-Time Interface (RTI)
component in the form of inter-process messages. Various
types of system data are processed including the discrete
command and switch indicator signals and the raw digitized
performance sensor signals.

For every sensor signal, the Monitors consider a predefined
number of bands that span the sensor’s performance range.
During operation, the Monitors examine each sensor data
stream and continuously qualib the values with respect to
these discrete bands. A sensor is determined to reside in a
particular band when it satisfies a persistence criterion, that
is, when a certain number of recent values have fallen
within the bounds of that band. This qualitative assignment
is then passed on to the RTI as a discrete event for use in
subsequent system diagnosis.

In many failure scenarios, the ratsof-change for certain
sensor data are key elements to be considered. As a result,
the Monitors continuously calculate these rates and then
qualitatively identify them in a manner similar to that
described in the previous paragraph for sensor range checks.
Figure 5 illustrates this sequence of operations. First the
signal is processed to obtain the rate-of-change time history;
this is followed by the qualitative identification. The rate-of-

change calculation is performed by line-fitting a user-
defined window of averaged data points over the
corresponding time interval. This computation is repeated
for successive windows of data resulting in a stream of rate
values. During periods of rapid transition in the sensor data,
the Monitors shift into a “fast rate mode” to more
effectively capture these transients. In this mode, successive
data points, rather than larger windows of points, are used to
compute the slope.

50.00 1
45.00

40.00

8 35.00
2
8 30.00
s!
o. 25.00

20.00

15.00

a
U)
.-

0 1000 2000 3000 4000

0.03 7 1

- i p -0.02

8 -0.03
-0.04 4

0 1000 2000 3000 4000
l ime (sec)

Figure 5 - Illustration of the ratesf-change
monitor processing pressure data into

qualitative rate information

To ensure robustness against signal noise, the Monitors
implement a smoothing operation on the raw sensor data.
Prior to the aforementioned sensor processing and rate
calculations, the incoming data are first smoothed to
attenuate noise that is present in the signals. The smoothing
method involves the calculation of the average value of the
incoming data stream over a predefined number of data
points. For each successive calculation, the window of data
points is moved incrementally forward in time by a pre-
defined time-step. As each average value is calculated, it is
time-stamped with the time associated with the end point of
the averaging window.

5

Vol. 2-864

Additionally, the Monitors include a Redundant Channel
Comparison Module (RCCM) which provides qualitative
information about the difference between two redundant
sensors. This module was implemented to address failure
scenarios involving redundant control loop sensors. The
RCCM derives absolute difference values between two
given sensor values; these resulting “deltas” are then
qualitatively identified as well.

One final Monitor function is to provide timing information
in response to timer request messages from the RTI. These
requests are processed, and expiration notifications are
returned when all Monitor processing is complete for the
telemetry frame in which the timer expires. This ensures the
timeliness of all reported observations required by
Livingstone when making diagnoses.

Real-7ime Inte~ace-Tke purpose of the Real-Time
Interface is to transmit discrete events from the Monitors to
the Livingstone inference engine. To do this, the RTI
handles four basic tasks. First, it translates the Monitor data
into a format that is understood by the Livingstone model.
Second, it uses timing information associated with events to
package the information into discrete Livingstone time
steps. Third, it decides when to request a diagnosis from
Livingstone. Finally, it dictates when Livingstone
information is transmitted to the GPU via the Results
Output System (ROS).

To implement this functionality, the RTI was designed with
two primary classes. The first is a translator class which is
used to translate the Monitor data into Livingstone model
variable information; this is largely a bookkeeping task.
The second class is the RTI policy, which decides how to
package the discrete events into time steps, when to request
diagnoses, and when to transmit information to the ground.
This policy has evolved thioughout the NITEXPITEX
development and testing phases. The three key
needslassumptions driving the policy design are described
along with the current design.

When a controller command occurs, there is afinite amount
of time in which the system will stabilize in response to the
command, and this amount of time is known a priori for
each command type. Likewise, when a spontaneous failure
of a component occurs, there is aJinite amount of time in
which the system will stabilize in response to the failure,
ana‘ this amount of time is also known a priori for each
component. These periods of time are known as latency
p e r i d , and they are the primary driver in determining
diagnostic delay. To handle this, the RTI policy issues a
timer request corresponding to the latency period after a
command or spurious observation occurs. While the timer
is pending, the RTI buffers the observations that are
received; later observations override prior observations.
When the timer expires, the RTI sends the event along with
all of the latest observations to Livingstone, and then
requests a diagnosis.

Controller commands can occur very rapidly, so that
suflcient time does not exist for the effects of one command
to completely settle before another command is issued. The
RTI policy should unconstrain information that has had
insuflcient time to settle during these rapid perioh, but it
should try to maximize the evidence that is provided to
Livingstone for diagnosis. The current policy for handling
these “overlapping events” is to divide time into a number
of segments as shown in Figure 6. When a command
arrives, a time segment is created which stores the event and
associated observations. If another command arrives that
overlaps the transient period of the first command, two
additional time segments are created. When Time Segment
I is debuffered and sent to Livingstone, all of those
observations that have not had sufficient time to settle and
that belong to the same subsystem as command 1 are set to
“unknown” (i.e., unconstrained). When Time Segment TI is
debuffered, only the observations in the same subsystem as
command 2 are unconstrained (because the observations
related to command 1 have now had time to settle). Finally,
when Time Segment III is debuffered, none of the
observations are unconstrained. Although a single
overlapping event is used for illustration purposes, the
policy handles any number of overlapping events, and
considers cases where the transient periods are not equal.

I I I II 1 Ill time

Figure 6 - RTI Policy for handling overlapping
events

Monitors reside in multiple tarb. Therefore, their outputs
are not necessarily temporally synchronized. The RTI
policy must ensure that a time segment is not debuffered
prior to all of the observations that belong to that segment
being posted. The RTI is capable of ordering Monitor
observations and requesting diagnoses appropriately with
the guarantee from the Monitors that, following a timer
expiration, no events will be sent to the RTI with time tags
prior to the expiration time. Therefore, whenever the RTI
policy receives a timer expiration, it is safe to debuffer all of
those time segments with end times prior to the expiration
time.

Finally, current system needs dictate that faults be detected
as soon as possible. Therefore the current policy is to

6

Vol. 2-865

request and transmit the diagnosis after every time segment
is debuffered.

Livingstone-Livingstone is the diagnostic engine
responsible for inferring the health of the MPS. It does this
by utilizing a high-level declarative model of the propulsion
system and discretized sensor and command information
(event data) generated by the Monitors. As event data are
received fiom the Monitors (through the RTI), Livingstone
continually updates its belief regarding the state of the
various components in the system. The model is used to
determine the expected observations given the component
state. When there is a discrepancy between the expected
observations and the actual observations, Livingstone
searches for the most likely set of component statedfailures
that could produce the observations. Livingstone can also
generate recommended recovery actions; however, for this
demonstration it was used only for detection and isolation of
failures. More information on Livingstone and the X-34
M P S Livingstone model can be found in [3,4].

Results Output System-The Monitors and Livingstone pass
messages to the Results Output System (ROS) for
transmission to the GPU. The source task controls the
routing of messages, specifying local storage,
‘downlinking’, or both.

Graphical User Inteflace-The purpose of the GPU
Graphical User Interface (GUI) is to display diagnostic
information fiom the RGU or RFU to ground personnel who
would be monitoring the system. The GUI has been
designed for use by ground operators who are primarily
concerned with the status of the vehicle, and experiment
developers who are interested in what is going on behind the
scenes in the experiment. Therefore, the GUI has been
designed with the idea that it should be relatively intuitive
and easy to use, provide quick access to raw data so the
ground operator can judge the correctness of a diagnosis,
and provide sufficient information to understand why the
diagnostic system is making a particular diagnosis.

The GUI contains both a timeline view and a schematic
view. The timeline view has indicators that are highlighted
in red when a failure occurs to alert the operator. Strip
charts in the timeline view display the continuous
engineering unit data, Monitor readings, and the values of
selected Livingstone model variables over time. Also in this
view is a list of failure candidates with their identified rank
(related to probability) and associated failed components.
The schematic view highlights implicated components in
color when a specific failure candidate is selected fiom the
list in the timeline view. Furthermore, when the cursor is
placed on top of a component, the component’s current
readings are displayed.

The GPU GUI software has been written in Java so that it is
portable across multiple platforms. It can be used to replay
previous missions or to connect directly to the RGU for
monitoring an active mission. The GPU GUI software was

designed in such a way that it may be easily reused when
deploying Livingstone on other subsystems or applications.

HARDWARE TESTING
Client System Scenarios

The X-34 M P S simulation described previously was
exercised under both nominal and off-nominal conditions
during the captive carry mission phase. The resulting data
sets were used to test the diagnostic sohare . Table 1
summarizes the failure scenarios that were considered in the
PITEX demonstrations. All simulated faults occurred
during the captive carry mission phase; both LOX and RP-1
subsystem faults and single and double faults were
considered. Each bulleted item in Table 1 represents a
distinct failure scenario. In some cases, several failure
modes are considered for the same component. Some
clarification with respect to failure scenario naming is in
order. The difference between a valve sticking closed and
failing closed, for example, is with respect to the valve’s
operation prior to the time that the failure occurred. The
LOX Venmelief Pneumatic Pilot valve ‘fails closed’ during
LOX conditioning at a time when it has been and should
continue to be open. This same valve ‘sticks closed’ at a
time during the LOX conditioning phase when it is
commanded open following an interval in which it was
commanded closed. Analogous descriptions apply to valves
sticking open and failing open.

Table 1 - X-34 MPS failure scenarios used in PITEX
demonstrations

Mission Phase
LOX
conditioning

LOX
chilldowntbleed

Component Failure
e

0

e

e

0

e

e

0

0

e

LOX venthelief pneumatic pilot
valve sticks open
LOX venthelief pneumatic pilot
valve fails open
LOX tank venthelief valve
sticks open
LOX tank venthelief valve fails
open
LOX venthelief pneumatic pilot
valve sticks closed
LOX venthelief pneumatic pilot
valve fails closed
LOX tank venthelief valve
sticks closed
Open switch on LOX venthelief
pneumatic pilot valve fails
Open switch on LOX venthelief
pneumatic pilot valve fails and
pneumatic pilot valves fails
Two Forward LOX tank ullage
pressure sensors fail low
Two Forward LOX tank ullage
pressure sensors fail high

sticks closed
0 LOX feed pneumatic valve

7

Vol. 2-866

Mission Phase

RP-1 bleed

RP- 1 bleed and
LOX
chilldowdbleed

Component Failure
0 LOX feed pneumatic pilot valve

fails closed
0 primary pressurization regulator

fails low . LOXtankprimary
pressurization valve sticks open
LOXtankprimary
pressurization valve sticks
closed
Closed switch on the LOX feed 0

pneumatic valve fails
RP- 1 feed pneumatic valve fails 0

closed
RP- 1 venthelief valve fails open

pressurization valve sticks open

pressurization valve sticks
closed

0 Primary pressurization regulator
fails high

0 Primaryandsecondary
pressurization regulators fail
high

. RP-ltankprimary

RP-ltankprimary

Metrics

There were four objectives in testing the PITEX diagnostic
software on flight-like computer hardware. The frrst
involved validating the correctness of the results. Second,
timing information was extracted from the results with the
goal of measuring PITEX diagnostic speed. Timing
assessments were made with respect to various PITEX
modules; however, the overall time required from the first
time at which a fault can be sensed until the time at which
the diagnostic system reports the correct diagnosis was of
primary interest.

Third, resource utilization assessment was a key objective of
the hardware testing. Memory and CPU usage were
extracted and analyzed. The memory requirements for the
PITEX s o h a r e were established in order to infer memory
requirements when expanding the software for a given
application or to cover a new application. Static, stack and
dynamic memory usage were assessed on a per task basis
and overall system memory usage was determined. Average
and maximum CPU usage were collected for each scenario,
nominal and failure, over the entire scenario length. These
statistics were collected on a per task basis and summarized
for the overall software system as well.

Finally, measurements that are indicative of telemetry
bandwidth of a flight experiment were collected. Although
the current PITEX code does not have an efficient telemetry
representation, maximum and average telemetry per second
rates were projected based on a more compact integer

representation. These numbers were analyzed with respect
to Livingstone diagnoses.

RESULTS

When the scenario data sets summarized in Table 1 and the
nominal scenario were run through the PITEX diagnostic
software, the correct diagnosis was achieved in all cases. In
some cases, several fault candidates were proposed. For
example, when the LOX feed pneumatic valve sticks closed,
PITEX attributes this to either a failure in this valve or the
LOX Feed Pneumatic Pilot Valve - both faults have equal
rank. This is because there is insufficient instrumentation to
distinguish between these two failure modes. In all cases,
however, the fault candidates included the actual failure
mode.

For the failure scenarios considered, the overall diagnostic
delay was found to be 20 seconds on average. The primary
factor in the diagnostic delay is the latency timeout period
applied. The timeout delay was instituted for a variety of
reasons. First, since Livingstone works with qualitative
propositional logic, it is not designed to handle transient
states of the system. Therefore, the physical system settling
time - the time required for the system to stabilize following
a system change or event - must be accounted for in the
timeout duration. In addition, there is processing delay from
the time of system stabilization until the change is reported.
This is especially evident in the monitoring of pressure
derivatives, where subtle changes must be discerned for
system diagnosis. Monitor and RTI policy changes which
will reduce the diagnostic delay without compromising
diagnostic accuracy are currently being investigated; recent
results indicate that latencies on the order of 5 seconds can
be achieved.

PITEX used approximately 1.8MB of static memory and
approximately 570IU3 of stack memory for all of its
subprocesses. Depending on the scenario, PITEX allocated
between 2.5 and 3.5 MB of dynamic memory. Figure 7
gives an overall worst-case picture of total memory use.
This version of the PITEX software uses the 24-bit
addressing feature of PowerPC microprocessors to achieve a
faster and more compact code. Employing this feature
limits the maximum amount of memory accessible by the
VxWorks kernel to 32MB; PITEX only uses a total of 9.5
MB, or 29.8% (including the VxWorks kernel).

With respect to CPU usage, it was found that for both the
nominal and failure scenarios, the average CPU usage did
not exceed 3%. However, when events are reported and a
diagnosis is requested fkom Livingstone, the CPU usage can
spike considerably. These brief spikes were as high as
99.7%. Figure 8 shows CPU usage as a function of time for
the major PITEX subprocesses. In this failure mode, the
series redundant helium pressurization system pressure
regulators both regulate high starting at 9000 seconds. CPU
usage is depicted in the final stage of captive carry when
Livingstone has to perform multiple diagnoses prompted by

8

Vol. 2-867

Available-
70.2%

vxworks I

Figure 7 - Overall memory usage summary

the injected fault. As can be seen, Livingstone and the RTI
are the biggest CPU consumers when a diagnosis is being
performed. The spikes in the Data U 0 CPU usage reflect
transmission of Monitor and Livingstone findings through
the telemetry channels.

If PITEX software needs to share CPU resources with other
applications, it can be internally restricted to never exceed a
certain percentage of CPU utilization; this feature has been
successfully demonstrated on multiple scenarios at levels as
low as 5%. The quality of the diagnosis was not affected by
such a restriction, only its speed. Figure 9 shows the
gradual increase in diagnostic delay as the CPU is restricted
for six scenarios.

Finally, telemetry experiment results showed that the
amount of telemetry downloaded depends to a large degree
on the number of candidates reported by Livingstone
throughout the mission; this dependency is illustrated in
Figure 10. The system state information downloaded with
each candidate was found to constitute the bulk of the

telemetry data. The amount of telemetry per candidate
varied somewhat, depending on the complexity of the
scenario and the phase of the simulation, but, on average,
reporting each candidate currently results in about 33-34 Kl3
of additional data.

The total number of candidates downloaded during the
mission should not be mistaken for the number of different
components implicated as being faulty. On average,
Livingstone implicated 2-3 components as being the likely
reasons for a single fault and ranked them by failure
probability. Many candidates were reaffirmed from one
diagnostic request to another. Also, for many failure
candidates, Livingstone suggested several possible times
when the component might have failed. Each of these
permutations is currently counted as a separate failure
candidate report. Work is being done on combining several
candidates into a single report and thus reducing the amount
of telemetry being downloaded.

s 45 - It: 40

i= 30
- %’ 25

15
10

P O

g 35

g 20

.- 9 5

0.00 20.00 40.00 60.00 80.00 100.00 120.00
X CPU Available

Figure 9 - Increase in diagnostic delay as a
function of available CPU for six failure

scenarios

100
90
80

& 70
2 60
2

8 40
$ 30

20
10
0

33 50

8980 9071 9161 9251 9341 9431

Time (Seconds)

Figure 8 - CPU usage per major PITEX subprocess for double pressure regulator
failure scenario

9

Vol. 2-868

the guidance of the SLI NHM Project Office managed by
Ames Research Center.

REFERENCES
[11 P. K. Sgarlata and B. A. Winters, “X-34 Propulsion
System Design,” 33“‘ AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, July 6-9, 1997.

[2] R H. Brown, Jr. and F. J. Darrow, Jr., “X-34 Main
Propulsion System Design and Operation,” 34Ih
ALAA/ASME/SAE/ASEE Joint Propulsion Conference am
Exhibit, July 13-15, 1998.

0 100 200 300 400
Candidates

[3] A. Bajwa and A. Sweet, “The Livingstone Model of a
Main Propulsion System,” IEEE Aerospace Conference
Proceedings, March 2003.

[4] J. Kurien and P. Nayak, “Back to the Future for
Consistency-based Trajectory Tracking,” Proceedings of
7th National Conference on Artificial Intelligence, 2000.

Figure 10 - Mission telemetry volume as a
function of the number of candidates

CONCLUDING REMARKS
As part of the 2”d Generation Reusable Launch Vehicle Risk
Reduction effort, PITEX has successfully demonstrated
real-time model-based fault detection of a virtual main
propulsion system. Realistic propulsion system failures
involving valves, regulators, microswitches and sensors
were simulated and correctly diagnosed by PITEX. The
PITEX demonstration architecture included both a flight-
like avionics box and a Ground Processing Unit. Specific
software elements that were implemented focused on real-
time system-level diagnosis. These elements were Monitors
for processing raw sensor data, a Real-Time Interface for
ordering and transmitting events and requesting diagnoses,
and Livingstone, the diagnostic engine responsible for
inferring the health of the MPS. The demonstration
architecture was part of a larger more generic architecture
that was designed to cover all phases of mission operation
and both on-board and on-ground assessments. During
testing of the software on flight-like hardware, system
resources - CPU and memory - were found to be largely
underutilized. This indicated that more complex
applications could be handled by the PITEX diagnostic
solution. The PITEX project continues to address
challenges aimed at improving the speed, efficiency and
timeliness of the diagnoses and is exploring other potential
applications.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the contributions of
all of the other current and former PITEX and MTEX team
members at the NASA Kennedy Space Center, the NASA
Ames Research Center and the NASA Glenn Research
Center. Their contributions were instrumental in the
successful completion of the work reported herein. The
authors would also like to acknowledge the support and

d

10

