DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

Subhasish Mohanty, Aditi Chattopadhyay, John Rajadas, Clyde Coelho

Arizona State University
Tempe, AZ 85287-6106

Presented at NASA CIDU-2010: Conference on Intelligent Data Understanding, Computer History Museum, Mountain View, CA, Oct 5-7, 2010

Supported by the Air Force Office of Scientific Research, grant FA95550-06-1-0309, program manager Dr. David S. Stargel
Overview

• Motivation and Objective

• Damage State Estimation

• System Identification Approach

• Experimental Setup

• Results

• Summary and Future Work
Motivation & Objective

Motivation: Automatic and real-time structural health monitoring and condition based life prognosis may reduce life cycle cost and help to avoid catastrophic failure of aerospace, mechanical & civil engineering structural systems.

Objective:
Develop an SHM approach that can use strain gauge measurements to estimate damage condition of a structure under random loading.

Online damage state estimator
Based on system identification or machine learning

Offline damage state predictor
Based on Bayesian probabilistic model

Current condition updating

Future load

RUL
Damage State Estimation

Motivation for passive sensing

- Estimate local damage (Not limited to structural hot-spots)
- No external power source required
- Can use COTS sensors

Damage state estimation using strain measurements

- Due to damage the correlation between strain at two points changes
- Equivalent change in transfer function (TF) is a measure of change in damage states
Motivation from System Identification

Input output mapping at n^{th} damage level

Measured input signal $u(\varepsilon)$

Transfer function representing degraded structure at n^{th} damage: $P_n(z)$

Measured output signal $y(\varepsilon)$

Unmeasured electrical noise: ν

Transfer function at n^{th} damage level

$$P_n = f(R_{uy}, R_{uu}); \text{ with } u \text{ constant}$$

Equivalent time-series damage index (for constant loading)

$$a_n = \sqrt{\sum_{m=0}^{m=M} ((R_{uy})_n(m) - (R_{uy})_0(m))^2} / ((R_{uy})_0(m))^2 \quad ; \quad n = 1, 2, \ldots$$

$R \rightarrow$ Correlation coefficients
Forecasting Using Gaussian Process (GP)

- GP combination of individual distributions (assumed Gaussian)
- Input-output mapped in high dimensional space
- Conjugate gradient optimization used to estimate hyperparameters

High dimensional transformation

\[k(x_i, x_j, \Theta) \]

\[\Theta^p_n \rightarrow \text{Process} \]
\[\Theta^w_n \rightarrow \text{Input Width} \]
\[\Theta^{scatter}_n \rightarrow \text{Scatter in crack growth} \]

Multi layer perceptron (MLP) kernel

\[k(x_i, x_j, \Theta^p_n, \Theta^w_n, \Theta^{scatter}_n) = \Theta^p_n \sin^{-1} \frac{x_i^T \Theta^w_n x_j}{\sqrt{(x_i^T \Theta^w_n x_i + 1)(x_j^T \Theta^w_n x_j + 1)}} + \Theta^{scatter}_n \]

Negative log-likelihood function

\[L = -\frac{1}{2} \log \det K_n - \frac{1}{2} y_n^T K_n^{-1} y_n - \frac{n}{2} \log 2\pi \]

Probability density

\[f(y_{n+1} | D = \{x_i, \Theta\}_{i=1}^n, x_{n+1}, \ldots) = \mathcal{N}(\mu_{n+1}, \sigma^2_{n+1}) \]

Dynamic Strain Based Online Damage State Estimation (Theoretical Scheme)

- Under random load the change in correlation between input (u) & output (y) can be due to random load or due to damage
- Need to consider loading information in damage index formulation

Step-1: Reference Model Estimation (at n=0) using Gaussian process (GP)

\[P^0_{U \rightarrow u} = ? \]
\[U^{n=0} (= U^0_x, U^0_y, \cdot) \]
\[P^0_{U \rightarrow y} = ? \]
\[y^0 (\varepsilon) \]

\[u^0 (\varepsilon) \]

GP model parameters estimated using conjugate gradient optimization
Step-2: Current stage dynamic strain mapping (Using GP regression)

\[P_{U \rightarrow u}^0 \]

\[U^n (= U^n_x, U^n_y, \bullet) \]

\[P_{U \rightarrow y}^0 \]

\[Y_p^n (\varepsilon_p) = ? \]

Step-3: Current stage error signal estimation

\[e_u^n (m) = u_a^n (m) - u_p^n (m) \]

\[e_y^n (m) = y_a^n (m) - y_p^n (m) \]

Step-4: Current stage damage state

\[a^n = \sqrt{\sum_{m=0}^{m=M} (R_{e_{uey}}^n (m) - R_{e_{uey}}^0 (m))^2} \]

\[\frac{(R_{e_{uey}}^0 (m))^2}{(R_{e_{uey}}^0 (m))^2} \]

\[R \rightarrow Correlation \ coefficient \]
Experimental Setup

Fatigue testing & data collection

Material: Al-2024
Loading: Random
Loading Frequency = 10Hz
Sampling frequency of data collection: 1kHz
Data collection interval: 300 fatigue cycles

1-block (=300 cycle) of random load

![Graph showing load in lbf over time in sec.](image)
Data Collection

Instrumented cruciform specimen

Original signal from DAQ

Signal amplitude (Volt)

Time (Sec)

Load cell

PZT

Strain gauge

Crack path

\(\varepsilon_1 \)

\(\varepsilon_2 \)
Step-1: Reference Model Estimation ($P_{U \rightarrow u}^0$ or $P_{U \rightarrow y}^0$) Using Gaussian process

Comparison between regenerated (predicted) and actual strain measurement

GP Input - Output
Known input = U_x^0, U_y^0
Known output = $y^0(\cdot)$

Magnified view
Step 2: Predicted versus actual input (u) dynamic strain at different damage levels

Given = L^x_n, L^y_n; Known = $P^0_{L→u}, P^0_{L→y}$
Unknown = $u^n (= ε^n)_x & y (= ε^n)_y$
Step 2 (contd.): Predicted versus actual output (y) dynamic strain at different damage levels

Given $= L_x^n, L_y^n$; Known $= P_{L\to u}^0, P_{L\to y}^0$
Unknown $= u^n(\varepsilon), y^2(\varepsilon)^n$
Step 3: Time-series input (u) error signal at different damage levels

A. Crack length (mm) = 4.1621

B. Crack length (mm) = 12.917

C. Crack length (mm) = 46.573

D. Crack length (mm) = 70.939
Step 3 (contd) : Time-series output (y) error signal at different damage levels
Step 4: Time-series Damage State Estimation

RMSE based damage index (DI)

\[a^n = \sqrt{\frac{1}{M} \sum_{m=1}^{m=M} \left[\epsilon_{(u or y)}(m) \right]^2} \]

CRA based damage index (DI)

\[a^n = \sqrt{\sum_{m=0}^{m=M} \frac{(R_{e_y}(m) - R_{e_y}^0(m))^2}{(R_{e_y}^0(m))^2}} \]

- **Good correlation between visual measurements and DI time-series**
- **CRA is better than RMSE of predicted error signal**
Summary & Future Work

Summary

- Applications of dynamic strain mapping model presented for online damage state estimation using passive sensing
- Gaussian process used to create input-output model
- Approach demonstrates clear trend over the entire stage II and stage III damage regime

Future work

- More testing on different geometries
- Test using out of phase or independent random load on each axis
- Investigate alternative passive sensors to try and detect stage I cracks
- Implementing multisensor information