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‘Mining Complex Data i

 Complex spatio-temporal data pose unique challenges
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etworked Thinking”

 Networks are pervasive in
social science, technology,
and nature

framework for identifying relationships, patterns, etc.
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 But networks can also represent other types of data,




Historical Climate Data

« NCEP/NCAR Reanalysis — proxy for observation
 Monthly for 60 years (1948 2007) on 5°x5° grid

Sea surface temperature (SST) Sea Ievel pressure (SLP)
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Network Construction

* View the global climate [ e
system as a collection of S L e
Interacting oscillators

Create Network
from Gridded
Climate Data
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 Network Topology

« Small-World (high clustering, short paths)

* Not scale-free (power law exponenta ~ 1)
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Geographic Properties

e Examine network structure in spatial context
— Link lengths computed as great-circle distance

— Compare autocorrelation / de-correlation lengths for

different variables, int t within the domain
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Clustering Climate Networks

* Apply community detection
to partition networks

* Visualize spatial pattern ~ =ss =
!Eh - ‘._‘ F ﬂ \ | i ) 4 ;t-: v

~ climate system

Precipitable Water
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fi scriptive - Predictive

* Network representation is able to capture
Interactions, reveal patterns in climate

— Validate existing assumptions / knowledge
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—Suggest potentlally new | ."\

atmospherlc dynamlcs over ocean and Iand T

— l.e., “Learn” physical phenomena from the data
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Case Study: Teleconnections

* Predictive models for ocean-based indicators
 Use network clusters as candidate predictors

o Create response varlables for target reg|ons

~ ocean clusters
to land climate
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lllustrative Example

* Predictive model for air temperature in Peru

_ Long-term variability highly predictable due to
well-documented relation to El Nino
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Results on Train/Test

Region Network Clusters B-Means e ———
k= k= 10| k=&, = —— =
SE Asia 0.541 0.629 0.694 0.886 | = —_— =
g Brazil 0.534 0.556 0.532 0.528 r
< | India 0.649 0.784 1.052 0.791
3 | Peru 0.468 0.564 0.623 0.615 =F
g* Sahel 0.685 0.752 | 0.750 | 0.793 2=
ﬁ S Africa 0.726 0.711 0.968 0.734
+ | East US 0.815 0.824 0.844 0.811
:1' West US 0.767 0.805 0.782 0.926
W Europe 0.936 1.6%8 0.891 0.915
Mean 0.680 0.737 0.793 0.778
StdDev +0.150 +0.152 | £0.165 | +£0.135
SE Asia 0.665 0.691 0.700 0.684
= Brazil 0.509 0.778 0.842 0.522
9 | India 0.672 0.813 0.823 (). 998
E Peru 0.864 1.199 1.095 1.130
2, | Sahel 0.533 0.869 0.856 0.593
'g S Africa 0.697 0.706 0.705 0.703
S:: East US 0.686 0.750 0.808 0.685
West US 0.605 0.611 0.648 0.632
B W Europe 0.450 0.58/ 0.549 0.542
-~ Mean 0.631 0.778 0.781 0.721
- StdDev +0.124 +0.182 | £0.156 | £0.207
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Variations / Extensions

Compare network approach to traditional
clustering methods

— k-means, k-medoids, spectral, EM, etc.

Compare differe t types of M|or,';|c>t|ve modelé S
~ ﬁm il R
(linear) ,,r ssion tree | Higtemm—

,,

. Evalua'te both model flt and performance on
split train/test sets
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~ Computational Issues

e Network Construction

— 5%5°network has O(10 ©) pairs of nodes, calculating
correlations takes thousands of CPU-hours

— ngh resolutlon data

ava llable (lact‘ﬁ Space and tlme)
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—~ Curreﬁtly conS|der|ng only 18 sample target regions,
- want to predict everywhere (thousands of locations)
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b Oe” Questionsi?" "' 1"

* Nonlinearity — known to exist in climate, but
relevance in network context not fully explored

e Multivariate Relationships — must be integrated
within networks for realisti

» Spatio-Tempore IT yn%ﬂ‘m:s capttire
stabiIJI;L;ar.tefer‘}t:tfatngt'é.r in stru ot e iy

* Predictive Modeling — work with domain experts
to define relevant predictive tasks
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Summary

Complex networks provide a flexible data
representation and powerful analysis tool

. Data mining methods able to extract complex

. Interd|SC|pI|nary approach requwed from problem
definition to analysis and interpretation of results
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