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DATA MINING THE GALAXY ZOO MERGERS

STEVEN BAEHR*, ARUN VEDACHALAM*, KIRK BORNE*, AND DANIEL SPONSELLER*

ABSTRACT. Collisions between pairs of galaxies usually end in the coalescence (merger) of the two
galaxies. Collisions and mergers are rare phenomena, yet they may signal the ultimate fate of
most galaxies, including our own Milky Way. With the onset of massive collection of astronomical
data, a computerized and automated method will be necessary for identifying those colliding
galaxies worthy of more detailed study. This project researches methods to accomplish that goal.
Astronomical data from the Sloan Digital Sky Survey (SDSS) and human-provided classifications
on merger status from the Galaxy Zoo project are combined and processed with machine learning
algorithms. The goal is to determine indicators of merger status based solely on discovering those
automated pipeline-generated attributes in the astronomical database that correlate most strongly
with the patterns identified through visual inspection by the Galaxy Zoo volunteers. In the end,
we aim to provide a new and improved automated procedure for classification of collisions and
mergers in future petascale astronomical sky surveys. Both information gain analysis (via the
C4.5 decision tree algorithm) and cluster analysis (via the Davies-Bouldin Index) are explored as
techniques for finding the strongest correlations between human-identified patterns and existing
database attributes. Galaxy attributes measured in the SDSS green waveband images are found to
represent the most influential of the attributes for correct classification of collisions and mergers.
Only a nominal information gain is noted in this research, however, there is a clear indication of
which attributes contribute so that a direction for further study is apparent.

1. INTRODUCTION

1.1. Scientific Rationale. Current computational detection of a galaxy merger in astronomical
data is less than ideal. However, human pattern recognition easily identifies mergers with varied, but
strong, levels of accuracy. If this superior human input can be incorporated into the automated data
pipeline detection scheme, informed by machine learning models, then a more accurate assessment
of merger presence can be gained automatically in future large sky surveys. These improvements
could potentially lead to more powerful detection of various astronomical objects and interactions.

Our goal was to generate merger classification models using two prominent machine learning
approaches, as a preliminary exercise toward the incorporation of human input into future automated
pipeline classification models.

1.2. Citizen Science. Citizen Science refers to the involvement of layperson volunteers in the sci-
ence process, with the volunteers specifically asked to perform routine but authentic science research
tasks that are beyond the capability of machines. Complex pattern recognition (and classification)
and anomaly detection in complex data are among the types of tasks that would qualify as Citizen
Science activities. The Galaxy Zoo project (galaxyzoo.org) presents imagery from the Sloan Digital
Sky Survey (SDSS) to laypersons for classification (e.g., whether a galaxy is of the elliptical or spiral
type) via a web interface. The project went live in 2007, and already over 200 million classifications
have been provided by more than 260,000 individuals. During the classification process, volunteers
can flag a particular image as depicting a merger of two or more galaxies. Approximately 3000
prominent mergers in the SDSS (Sloan Digital Sky Survey) have been identified|[3].
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1.3. Related Work. Image recognition has long been a major deficiency in computation. Clas-
sification tasks such as facial recognition, trivially exercised with great accuracy and precision by
living organisms, have been predominantly inaccurate and slow when attempted using computers.
While current algorithms are fairly capable of recognizing substructures and details in imaging data,
recognition of gestalt in the data has proved more elusive. This shortcoming, combined with the
contemporary unyielding influx of data in the natural sciences and the vastness of a data domain
such as astronomy, has led to the necessity of attempting to tap into the effortless capability of
human cognition.

The Galaxy Zoo web application has as its goal the collection and application of human clas-
sifications applied to images of galaxies from the SDSS. Efforts have been made to use human
input to reinforce existing machine learning models such as artificial neural networks and genetic
algorithms[2]. Additionally, work has been done using supervised learning algorithms to classify
galaxy type (non-merging), with considerable success using spectroscopic data for training[1] and
data derived from human cognition[6]. It has been found that the introduction of parameters cho-
sen using human input shows great promise for improving current detection and classification of
astronomical objects.

2. DEFINING THE DATA

To help us identify the SDSS photometric attributes that show promise in merger classification,
data from the SDSS survey were collected in two distinct groups, one group chosen as a representative
sample of galaxy objects in SDSS, and the other to represent known mergers.

2.1. Data Sources. We utilized data strictly from the Galaxy Zoo project and SDSS. Galaxy
Zoo was used to obtain SDSS ID’s for merger objects, along with an attribute representing the
users’ confidence in the classification as a merger. All photometric data, merger or non-merger, was
obtained from the SDSS.

2.1.1. Mergers. The data chosen to represent known merging galaxies were represented by 2,810
of the 3,003 SDSS mergers presented in [3] (i.e., those that had the full set of attributes that we
examined).

These objects are known to be involved in mergers and to represent objects with relatively high
surface brightness (making human classification possible).

2.1.2. Non-Mergers. To build classification models, galaxies assumed to be predominantly non-
mergers were also needed as training examples.

As the vast majority of the 100 million SDSS galaxies are not mergers, a representative random
sample of SDSS galaxies was chosen for this role.

The sample (initially comprised of 3500 instances) was chosen at random from objects of galaxy
type within the SpecPhotoAll view in the SDSS database. This view represents objects that have
spectral data associated with them. The spectral data was necessary to obtain object redshift, which
was needed to remove distance dependence from the gathered attributes.

Utilizing objects with spectral data also had the ancillary impact of restricting the non-mergers
to those with similar surface brightness to the mergers.

2.2. Data Cleaning and Pre-Processing. Upon completion of these steps, the sample consisted
of 6,310 objects with 76 attributes, including the nominal attribute “merger/non-merger.” Con-
siderable pre-processing was necessary to ready the data for use as the training set for classifiers.
Some pre-processing steps were necessary for both of the two algorithms utilized. All attributes
that did not represent morphological characteristics were removed. For example, the SDSS object
ID’s, measurement error magnitudes, and attributes representing location or identity, rather than
morphology, were among those removed. In Astronomical Catalog missing values occurs for vari-
ety of reason from. It is not possible to estimate these values, as these values may be physically
meaningful. Therefore instances with placeholder values (in SDSS, 7-9999”) in any attribute were
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removed. Since data were gathered from bright objects, most objects did not require this removal.
Distance-dependent attributes were transformed, using redshift, to be distance-independent. A con-
centration index was also generated, using the ratio of the radii containing 50% and 90% of the
Petrosian flux within each galaxy.

2.3. Attributes. Note: Fach of the following attributes typically exists for the five SSDS filter
wavebands u, g, T, i, 2.

Attribute Description

petroMag,g Petrosian magnitude colors. A color was calculated for four inde-
pendent pairs of bands in SDSS (u-g, g-r, r-i, and i-z).

petroRad,, * z Petrosian radius, transformed with redshift to be distance-
independent.

invConIndx, Inverse concentration index. The ratio of the 50% flux Petrosian

radius to the 90% flux Petrosian radius.

isoRowcGrad_u * z | Gradient of the isophotal row centroid, transformed with redshift
to be distance-independent.

isoColcGrad, * z Gradient of the isophotal column centroid, transformed with red-
shift to be distance-independent.

1S0A, * 2 Isophotal major axis, transformed with redshift to be distance-
independent.

1S0By, * 2 Isophotal minor axis, transformed with redshift to be distance-
independent.

1s0AGrad, * z Gradient of the isophotal major axis, transformed with redshift
to be distance-independent.

isoBGrad, * z Gradient of the isophotal minor axis, transformed with redshift to
be distance-independent.

isoPhiGrad,, * z Gradient of the isophotal orientation, transformed with redshift
to be distance-independent.

texture,, Measurement of surface texture.

InLExp, Log-likelihood of exponential profile fit (typical for a spiral
galaxy).

InLDeV, Log-likelihood of De Vaucouleurs profile fit (typical for an ellipti-
cal galaxy).

fracDev,, Fraction of the brightness profile explained by the De Vaucouleurs
profile.

3. MACHINE LEARNING

3.1. Decision Trees. Decision trees are a straightforward machine learning algorithm that produces
a classifier with numerical or categorical input, and a single categorical output (the ’class’). Decision
trees have several advantages:

e The resulting tree is equivalent to a series of logical ’if-then’ statements, and is therefore
easy to understand and analyze.

Missing attribute values can be incorporated into a decision tree, if necessary.

Easy to implement as a classifier.

Computationally cheap to ‘train’ and use in classification.

The most popular decision tree algorithm, C4.5, was published by Ross Quinlan in 1993 [8].
To generate a decision tree, the Weka data mining software suite was utilized. Weka is a robust
and mature open source Java implementation of many prominent machine learning algorithms.
It also automates many pre-processing tasks, including transformations of parameters and outlier

135



2010 Conference on Intelligent Data Understanding

detection/removal. Weka refers to its C4.5 implementation as J48. This is the routine we used to
build a decision tree for classification.

3.1.1. Decision Trees in Weka. The Weka J48 algorithm has several arguments. The relevant argu-
ments for our exploration are:

e binarySplits: If set to true, the generated tree will be binary. A binary tree is simpler to
interpret.

e confidenceFactor: The lower this is set, the more pruning that will take place on the tree.
More pruning can result in a simpler tree, at the expense of predictive power. However, too
little pruning can contribute to overfitting.

e minNumODbj: The minimum number of instances required in each tree leaf. The higher
this is set, the simpler the resulting tree.

As the goal of this work is primarily to explore the strength of SDSS attributes in merger clas-
sification, emphasis in tree generation was on generating simple trees, and examining the strongest
predicting attributes. In particular, we are searching for those database attributes that contain the
most predictive power: those that show the highest correlation with Galaxy Zoo volunteer-provided
classification as a merger. These would be the attributes that match most strongly with the outputs
of human pattern recognition.

3.1.2. Information Gain. In the C4.5 and J48 algorithms, the tree design is predicated upon max-
imizing information gain (a measurement of entropy in the data). Using Weka, the information
gain was calculated for each of the attributes, using the 6310 instances referenced in section 2.2 with
tenfold cross-validation. The top five attributes are listed below. Notably, 4 of these top 5 attributes
are related to the SDSS observations in the green waveband. These are the attributes that have the
highest predictive power in merger classification accuracy.

Attribute Information Gain
InLEzp, 0.099
texture, 0.074
InLDeV, 0.068
petroMagy, 0.065
1s0AGrad, * z 0.057

3.1.3. Decision Tree Results. We decided to generate three different trees, with the following char-
acteristics:

(1) A tree that is trained on all instances. This tree should use all mergers, regardless of the
vote of merger confidence given by Galaxy Zoo users.

(2) A tree that is trained on merger instances with stronger Galaxy Zoo user confidence. This
tree was to be generated with only mergers that a majority of Galaxy Users flagged as such.
These instances are assumed to be the mergers that are, in some sense, ‘obvious.’

(3) A tree that is trained on merger instances with less than a majority of Galaxy Zoo users
indicating then as such. These instances are assumed to be less than obvious to the layperson.

If one simply classifies all galaxies as non-mergers, a predictive accuracy of 55% is obtained. In
the simplest tree with one split (seen in figure 1), a 66% correct classification occurs, so there is a
modest but definite information gain. The attribute InLExp, is at the root node with values at or
below -426.586609 indicating a merger and all others classified as non-mergers.

When the minimum number of leaf instances is set to 500, and the confidence factor to 0.001, a
relatively simple tree is obtained that still has a reasonable predictive power of 70%. A 66%/34%
training/test set split was used. A portion of the model output is shown below.
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= -426.59

Merger Non-Merger

FIGURE 1. Visualization of decision tree with a single node.

Precision Recall F-Measure
Merger 0.659 0.682 0.670
Non-Merger 0.734 0.714 0.724
Weighted Avg. 0.700 0.699

0.700

The root node of this tree (as seen in figure 2) is InLExp,, which is not a wholly unexpected
result, as will be discussed later in this paper.

<=-426.59

= -426.59

== 1.67

= 1.54

Merger Non-Merger

Non-Merger

== -80.81

petroMag_i*z

= -80.81

Non-Merger

Merger Non-Merger

FIGURE 2. Visualization of decision tree built using all mergers.
After removing merger instances with a user confidence of less than 0.50 (with the number of leaf

instances set to 200 to produce a simple tree and a 66%/34% split),we measured the precision, recall
and F-measure for each of the two classes to determine the accuracy of the model. For mergers,
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recall is calculated as the proportion of the number of mergers correctly classified as such out of the
total number of mergers. Precision is calculated as the proportion of the number of mergers correctly
classified as such out of all instances classified as mergers (correctly or not). The F-measure is a

commonly reported measure intended to incorporate both precision and recall into a single measure.

ce . 2-precision-recall
It is defined as precision+recall *

Precision Recall F-Measure
Merger 0.657 0.456 0.538
Non-Merger 0.766 0.882 0.820
Weighted Avg. 0.730 0.741 0.726

Contrary to intuition, while the overall classification accuracy increases, the recall of the model
for mergers decreased significantly. With this approach, petroMagy, is now the strongest predictor
at the root of the tree. This can be seen in figure 3. InLFExp_g is still a key attribute, but it is no
longer at the root. This model has very strong predictive power for non-mergers, but quite weak

recall for mergers.

Merger

<= -426.59

= -426.59

Non-Merger

= 1.86

Non-Merger

== -69.74

Non-Merger Merger

> -69.74

Non-Merger

<= 0.053 > 0.053

FIGURE 3. Visualization of decision tree built using the strongest mergers.

After removing merger instances with a user confidence of more than 0.50 (with the number of

leaf instances set to 200 to produce a simple tree and a 66%/34% split), we achieve the output shown
below.
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Precision Recall F-Measure

Merger 0.416 0.167 0.238

Non-Merger 0.796 0.933 0.859

Weighted Avg. 0.712 0.762 0.721
The users’ confusion seems to be expressed in the resulting model, which has high overall accuracy,
but a very weak recall. This poor performance is due to its excessive tendency to classify as Non-
Merger, as the data set now is only comprised of objects that are not obviously mergers. Using these

weaker voted mergers, the model is rooted on petroMag,;, as seen in figure 4.

petroMag_u i

== 1.35 = 1.35
petroMag_g_z Non-Merger
== 0.48 = 0.48
Merger isoPhiGrad_i*z
== -0.04 = -0.04
Merger petroMag_r_z

= 0.41

Mon-Merger Merger

FIGURE 4. Visualization of decision tree built using the weakest mergers.

3.1.4. Tree Strengths and Weaknesses. The trees generated are of varying usefulness.

The tree generated using all of the mergers exhibited an overall accuracy of about 70%, with
precision of 66% and recall of 68%. This is above average predictive power, but not incredibly
useful.

The trees generated using the stronger and weaker mergers separately seem to indicate two things:

(1) The user confusion over some mergers appears to be manifested in the resulting model, as
the parameters that are influential in the model are not strongly morphological, indicating
that the objects may be missing strong visual cues of merging.

(2) The confidence of users in some merger classifications results in a tree that incorporates
more strongly morphological attributes, but has diminished recall power. We feel that this
merits further investigation.

There are two especially interesting things about the decision trees generated from this data:

e The strongest predicting attributes seem to be associated with the SDSS green filter wave-
band.

e Poor exponential fit and small isophotal minor axis are among the strongest indicators of
merger presence.
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3.1.5. Significance of the Green Band. The strongest predicting attributes seem to be associated
with the green band. In the tree generated using all merger instances, The two strongest attributes
for merger prediction are associated with the green band, and fully half of the top ten information
gaining attributes are associated with this band. The green band seems to carry a disproportionate
amount of information relative to the other four bands measured in SDSS photometry.

Upon investigation, we discovered that strong green spectral lines are associated with stellar
formation via doubly ionized oxygen, and stellar formation is itself unusually abundant in galactic
mergers[7]. So it is not surprising that the green band seems to be important in the classification
models we have generated.

3.1.6. Significance of InLExp and isoB Attributes. The attributes InLExp and isoB both featured
prominently in the decision tree approach as influential values for merger detection.

The isoB attribute represents the length of the minor axis of the isophote of the galaxy’s sur-
face brightness in a given band. It is a reasonable expectation that tidal distortion from merger
involvement may influence an axis of such an isophote.

The InLExp attribute represents the extent to which the galaxy object has a brightness profile
that is fit well by an exponential fit, the details of which can be found in [9]. It is not surprising that
this measure of morphology would be an influential factor in merger classification, as tidal distortion
would almost certainly affect the brightness profile of a galaxy involved in a merger and thereby
reduce the likelihood that the galaxy brightness profile would be fit by a standard non-distorted
spiral galaxy exponential function. It should also be noted that another measure of brightness
profile fit was featured among attributes with the highest information gain: InLDeV. InLDeV is
a measure of goodness of fit with the De Vaucouleur profile (which is the functional form of the
brightness profile in elliptical galaxies), and this would also be expected to exhibit irregularities in
the presence of tidal distortion in true colliding/merging galaxies.

3.1.7. Future Direction for Decision Trees. Given the modestly strong evidence that we have gener-
ated for the quality of green-band morphological attributes as merger predictors, a promising avenue
for further development of classifiers may be other attributes in this band. These may be novel image
characterization parameters or simply transformations of existing database parameters.

The inclusion of isophotal axis length among the influential parameters seems to indicate that
more examination of isophotal properties may be fruitful in this area.

4. CLUSTER ANALYSIS

Identifying groups of similar observations in a dataset is a fundamental step in any data analysis
task. Classification and clustering are the two main approaches used to identify similar groups of
data instances. Whereas classification attempts to assign instances to one of several known classes,
clustering attempts to derive the classes themselves. In the case of one or two dimensions, visual
inspections of the data such as scatter plots can help to quickly and accurately identify the classes.
Datasets in astronomy are generally comprised of many more dimensions. With advancements in
astronomical data collection technology, astronomers are able to collect several hundred variables
for millions of observations. Not all these collected variables are useful for a given classification
task. There typically are many insignificant attributes that might prevent us from identifying the
structure of the data.

With the knowledge of class labels from the Galaxy Zoo catalog of merging and interacting
galaxies, we would like to be able to identify which morphological and photometric attributes in the
SDSS data correlate most strongly with the user-selected morphological class. These variables can
be identified by measuring the separation of the instances in the attribute feature space in which
the data reside: which attributes provide the best discriminator between different human-provided
patterns and classes? Measures like Dunn’s Validity Index[4] and Davies-Bouldin Validity Index|5]
are two metrics by which to achieve this.
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4.1. The Davies-Bouldin Index. Davies-Bouldin Validity Index (DBI) is a function of the ratio
of intra-cluster instance separation to inter-cluster instance separation. This is given by:

RS  Sa(Qi) + 5.(Qy)
DB = - gmam# S(Qi;Qj)

...where n is the number of clusters, S, (Q;) is the average distance of all objects from the cluster
to their cluster center, and S(Q;, @Q;) is the distance between clusters centers. Good clusters (i.e.,
compact clusters with respect to their separation) are found with low values of DBI, and poor
clusters (i.e., strongly overlapping groupings) have high values of DBI. For the inter-cluster distance
function S one could use single linkage, complete linkage, average linkage, centroid linkage, average
of centroids linkage, or Hausdorff metrics and for the intra-cluster distance function S one could
use complete diameter, average diameter, or centroid diameter[4]. For purposes of experimentation,
we picked used the centroid linkage and the centroid diameter as our measures to calculate the DB
index.

4.2. Approach. To determine the database attributes that influence the separation of the human-
provided galaxy classes (merger versus non-merger) most strongly, we first calculated the DB index
for the two clusters (i.e., the cluster of mergers versus the cluster of non-mergers) using each one
of variables individually. We then ranked the variables based on these calculated DBI values. The
variable that tops this list is the most important variable for instance separation, at least according
to this metric. This single variable of course cannot necessarily provide us with the best separation.
So we looked for any higher dimensional subset of the feature space that has improved separation for
these two classes of objects. To this end, we selected the top ten individual variables and calculated
the DB index of all possible combinations of these ten variables and ranked the combinations to
identify the subset of the original attribute set that provides the best separation.

4.3. Results. The following is the list of the top 10 features and subsets with the lowest DB index:

10 Best Separating Individual Attributes | 10 Best Separating of all 1014
Subsets of Best 10 Attributes
1s0AGrad, * z 1s0AGrad, * z
petroRad,, x z petroRad,, * z
texture,, texture,,
1S0A, * 2 1S0A, * 2
InLEzxp, InLEzp,
InLEzp, InLExp,
180A, * z petroRad,, * z, isoB, * z,
isoBGrad, * z, InLExp,
180B, x 2z is0AGrad, * z, InLExp,
isoBGrad, * z petroRad, *z, 1S0A, %z, isoB,*z,
InLExp,
1s0AGrad, * z 180AGrad, * z, isoBGrad, * z,
InLExp,

Features such as isoPhiGrad;*z, isoColcGradgxz, isoColcGrad,xz, petroM agyg, isoColcGrad;*
z, and fracDev, have a significantly large DBI and are therefore do not appear to be useful for
clustering. These features seem to be of little significance for decision tree classification as well, since
they were not present in any of the trees we generated. Also, visual inspection of the attributes
using histograms revealed that with the four individual attributes with lowest DB Index values (seen
in figure 5), little to no separation can be seen.

In the scatter plot (seen in figure 6) of mergers and non-mergers in isoAGrad, * z, InLExp,
feature space shows slight separation between these two classes.
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FI1GURE 5. Histograms of the four lowest attributes according to DBI.

4.4. Future Direction for Cluster Analysis. From the plots it is evident that there is not a
clear separation between mergers and non-mergers in the subsets of the feature space that we have
explored. This is also evident from the fact that the minimum value of all DBI’s that we calculated is
2.19, which is substantially greater than the ideal value of 1. This is an indication of relatively weak
clustering. The value 2.19 is the local minimum of the parameter-space. With further analysis of
all the possible (75-factorial!) combinations of the 75 numerical attributes, we might be able to find
the global minimum value where the clusters have the strongest separation. However, finding the
global minimum in this way would be extremely (in fact, prohibitively) computationally intensive.
It is, however, important to note that two of the top ten features according to individual DBI
are isoAGrad, * z and InLExp,, which are also among the top five features in information gain.
Therefore, our approach to feature extraction is to some degree consistent with the information
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FIGURE 6. Merger and non-merger classes in isoAGrad,, * z, InLExp, space.

gain-based decision tree approach. With limited computation time and resources, only certain
combinations of the best ten attributes could be examined. Use of optimal search algorithms (such
as genetic algorithms) and use of a massively parallel computational environment (such as Cloud
computing) could empower us to discover the best separating subset of the attributes and provide
some interesting results.

5. SUMMARY OF OUTCOMES

We were able to generate a decision tree with accuracy of approximately 70%, including recall for
merger detection of approximately 66%. Two classes of morphological attributes were identified as
potentially having promise in future work on decision tree analysis:

e Attributes related to the SDSS green waveband, specifically brightness profile fits in this
band. This result is validated by the known characteristics of star formation emissions in
merging galaxies.

e Attributes related to the galaxy isophotes. This has validity due to the tidal distortions of
isophotes that are typically present in galactic mergers.
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Results from the cluster analysis also indicate the significance of these two feature-types, pro-
viding more evidence of their importance in merger classification. Further analysis might lead to
combinations of features that greatly improve the classification accuracy of mergers and non-mergers.
Mathematically derived or entirely novel features (especially of a more morphological nature) could
also be a promising avenue for improving merger classification, as success with the chosen features
was modest. Utilizing a combination of cluster-based feature extraction and decision tree analysis
will likely aid in further improvements to classification accuracy, and more generally, to the iden-
tification of the salient features that will enable automated pipelines to emulate human cognitive
powers and pattern recognition abilities, and thereby automatically indicate the presence of such
events in massive petascale sky surveys of the future.
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