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Usage of dissimilarity measures and multidimensional scaling for large scale solar data
analysis
Juan M. Banda?, Rafal Anrgyk?

ABSTRACT: This work describes the application of several dissimilarity measures combined with
multidimensional scaling for large scale solar data analysis. Using the first solar domain-specific
benchmark data set that contains multiple types of phenomena, we investigated combinations of
different image parameters with different dissimilarity measures in order to determine which
combinations will allow us to differentiate our solar data within each class and versus the rest of the
classes. In this work we also address the issue of reducing dimensionality by applying
multidimensional scaling to our dissimilarity matrices produced by the previously mentioned
combinations. By applying multidimensional scaling we can investigate how many resulting
components are needed in order to maintain a good representation of our data (in a artificial
dimensional space) and how many can be discarded in order to economize our storage costs. We
present a comparative analysis between different classifiers in order to determine the amount of
dimensionality reduction that can be achieve with said combination of image parameters, similarity
measure and multidimensional scaling.

1. INTRODUCTION

In this work, we present the some of our steps toward the ambitious goal of building a
Content Based Image Retrieval (CBIR) system for the Solar Dynamics Observatory
(SDO) mission [24]. Our motivation for this work developed from the fact that with the
large amounts of data that the SDO mission will be transmitting, hand labeling of these
images will be an impossible task. There have been several successful CBIR systems for
medical images [8] as well as in other domains [7]; none of them, however, have dealt
with the volume of data that the SDO mission will generate.

After having investigated supervised and unsupervised attribute evaluation methods [1]
that let us select the image parameters, which are the most relevant for our solar images.
We are now confronted with the problem of determining the most informative
dissimilarity measures for our benchmark dataset images and future images, since most
classes and images are very similar to each other. Having this in mind we proceeded to
experiment with twelve similarity measures that are widely used for images [10, 13, 19]
in order to determine which ones would provide a better differentiation between our
classes. In order to determine which combination of image parameters and similarity
measures work best we created over 120 combinations, this will allow us to observe the
behavior of all these combinations and help identify the most (and least) informative
and useful.

Besides determining which combination of dissimilarity measure and image parameters
works best, we also performed multidimensional scaling (MDS) to the resulting
dissimilarity matrices. This method for visualization and dimensionality reduction has
been widely used by researchers in different areas for image processing and retrieval [3,
4,7, 21]. By applying MDS to our dissimilarity matrices, we want to achieve two things:
1) Have a 2D or 3D visualization of our image dataset dissimilarities that shows the class
separation in a convenient way. 2) Verify the amount of dimensionality reduction that
we can achieve with our data points mapped into a new artificial dimensional space.
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In order to measure the degree of dimensionality reduction we can achieve, we set up
two different ways of limiting the MDS components. We evaluate our work using
comparative analysis, where we compare the two different component selection
methods by presenting comparative classification results for four different classifiers.
This will allow us to determine how to select our components in order to achieve similar
or even better classification results than with our original data. This dimensionality
reduction is very important in terms of allowing us to considerably reduce our storage
costs.

Our goal of publishing this work is not only to contribute to the existing knowledge on
solar data analysis [1, 2, 31], but also to obtain valuable feedback from the community,
especially from astrophysicists using image parameters different than the ones
presented in our work. We are looking forward to build new collaborations with domain
experts that are working on identifying individual solar phenomena and proceed with
additions to our previously published benchmark data set and the CBIR system in order
to better serve its purpose. Since the SDO mission has recently launched, the need to
accurately detect and classify different types of solar phenomena in an automated way
becomes of vital importance. We are open for discussion, and would greatly appreciate
any feedback.

With the foundation framework presented here, other astrophysicists can greatly benefit
from knowing which image parameters/distance measure combinations work well and
could improve their work on classification of specific solar phenomenon. As we noted
on [1], the results are very domain and individual solar phenomena specific allowing
researchers working on a particular type of solar events (i.e. flares) to use the
combination of image parameters/distance measures that better serve their classification
purposes.

The rest of the paper is organized in the following way: a background is presented in
Sec. 2. In Sec. 3 we present our experiments and the results produced. Sec. 4 presents the
overall conclusions reached based on the experiment results. Sec. 5 includes the future
work.

2. BACKGROUND
2.1 Benchmark dataset

Our dataset was first introduced in [1] consists of 1,600 images divided in 8 equally
balanced classes representing 8 types of different solar phenomena. All of our images
are 1,024 by 1,024 pixels.

Table 1. Characteristics of our benchmark data set

Event Name # of images retrieved Wavelength
Active Region 200 1600
Coronal Jet 200 171
Emerging Flux 200 1600
Filament 200 171
Filament Activation 200 171
Filament Eruption 200 171

Flare 200 171

Oscillation 200 171
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The benchmark data set both in its original and pre-processed format is freely available
to the public via Montana State University’s server [27]. Because of promising results
obtained during our preliminary investigations [2] and some earlier works [14], we
choose to segment our images using an 8 by 8 grid for our image parameter extraction
and labeling.

In this work, each image was transformed into ten 64-bin histograms, each bin
representing the value of the each image parameter (table 2) extracted for each grid cell.
We chose to treat each image parameter separately since want to determine their
usefulness and behavior with the different dissimilarity measures.

2.2 Image parameters

Based on our literature review, we decided that we would use some of the most popular
image parameters used in different fields such as medical images, text recognition,
natural scene images and traffic images [5, 6, 8, 9, 11, 20, 29]. Since the usefulness of all
these image parameters has shown to be very domain dependent, we performed our
own investigation on the evaluation of this image parameters, which was published in

[1].

The ten image parameters that we used for this work are presented on table 2. In our
earlier work, we started with a larger list of parameters but we have been discarding
them based on computational expense, performance and relevance [1, 2]. Please note
that these image parameters are not exhaustive and there are a very large number of
other parameters that we could have tested.

Table 2. List Of Extracted Image Parameters

Label Image parameter
P1 Entropy
P2 Fractal Dimension
P3 Mean
P4 3rd Moment (skewness)
P5 4t Moment (kurtosis)
Pé6 Relative Smoothness
pP7 Standard Deviation
P8 Tamura Contrast
P9 Tamura Directionality
P10 Uniformity

2.3 Dissimilarity measures

We selected twelve dissimilarity measures to use for comparison purposes. Based on our
literature review, we believe that the measures selected are widely used in image
analysis and produce good results when applied to images in other domains [10, 13, 19].
Since we work on very similar image data we decided to investigate different measures
in order to verify how well they differentiate our images between our solar phenomena
classes and mark similarities within the classes themselves. We will address this later in
our experiment section, where we present plots of dissimilarity matrices.
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For the first eight measures given an m-by-n data matrix X (in our case it contains
m=1600 histograms and n=64 bins), which is treated as m (1-by-n) row vectors xi, xa, ...,
xm, the various distances between the vector x, and x, are defined as follows:

1) Euclidean distance [30]: Defined as the distance between two points give by the
Pythagorean Theorem. Special case of the Minkowski metric where p=2.

D, =(x,—x)(x, - x,) (1)

2) Standardized Euclidean distance [30]: Defined as the Euclidean distance calculated on
standardized data, in this case standardized by the standard deviations.

D, = \/(xs —x)V7'(x,—x,) @)

Where V is the n-by-n diagonal matrix whose jth diagonal element is S(j)?2, where S is the
vector of standard deviations.

3) Mahalanobis distance [30]: Defined as the Euclidean distance normalized based on a
covariance matrix to make the distance metric scale-invariant.

D, = \/(xs —x)C'(x,—x,) )

Where C is the covariance matrix

4) City block distance [30]: Also known as Manhattan distance, it represents distance
between points in a grid by examining the absolute differences between coordinates of a
pair of objects. Special case of the Minkowski metric where p=1.

D,=>
j=1

X=X,

(4)

5) Chebychev distance [30]: Measures distance assuming only the most significant
dimension is relevant. Special case of the Minkowski metric where p = .

} 5)

D, = max jﬂx‘vj —X;
6) Cosine distance [26]: Measures the dissimilarity between two vectors by finding the
cosine of the angle between them.

D, =1-——2

: —_— 6
¥ FERETE) (6)

7) Correlation distance [26]: Measures the dissimilarity of the sample correlation
between points as sequences of values.
('xs _)_Cs)(xt _)_Ct)'

D =1- 7
&, —X)(x, = %) /(x, =% )(x, - %)’ ?)
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s

Where x =12x‘vj and X, =12xtj
Z n

8) Spearman distance [25]: Measures the dissimilarity of the sample’s Spearman rank
[25] correlation between observations as sequences of values.

(r=r)(, —7)

\/(r r)(r—r)\/(r =), —1) ®)

Where 1, is the rank of x;; taken over xi;, xzj, .. xmj, ts and r; are the coordinate-wise rank

(n+1) :_Z _(n+1)

=3

vectors of x; and x;, i.e., rs = (rs1, s, ... ) and r, = —Z ry =
j=1

Since our focus is on comparing image histograms, we present the next for measures in
terms of histograms.

9) Hausdorff Distance [17]: Intuitively defined as the maximum distance of a histogram

to the nearest point in the other histogram.

DH(H,H') = max{sup 1nf d(x,y), suplngd(x )} (10)
xeH Y yeH'™

Where sup represents the supremum, inf the infimum, and d(xy) represents any
distance measure between two points, in our case we used Euclidean distance.

10) Jensen-Shannon divergence (JSD) [15]: Also known as total divergence to the
average, Jensen-Shannon divergence is a symmetrized and smoothed version of the
Kullback-Leibler divergence.

: 2H 2H'
JD(H,H')=) H, log——"—+H' log——"— 11
( ) ; " gHm+H'm " gH'm+Hm (
11) yx° distance [22]: Measures the likeliness of one histogram being drawn from
another one.
H,-H',

H,H' 12
Z(H,H") = Z T (12)

12) Kullback-Leibler divergence (KLD) [12]: Measures the difference between two
histograms H and H’. Often intuited as a distance metric, the KL divergence is not a true
metric since the KL divergence from H to H' is not necessarily the same as the KL
divergence from H’ to H.

i H
KL(H.H')=YH, logH—’” (13)

m=1 m

Since this is the only non-symmetric measure we used for this work. We treated it as a
directed measure and considered H-H" and H'-H as two different distances.
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2.4 Multidimensional scaling and curve fitting

Multidimensional scaling (MDS) is a set of statistical techniques used for the exploration
of similarities or dissimilarities in data, in the field of Information visualization. MDS is
also commonly used as a method for dimensionality reduction for large similarity or
dissimilarity matrices [3, 4, 7, 21]. We used the classical multidimensional scaling
approach since we have input matrices giving dissimilarities between pairs of items
(produced by our similarity measures). This process will output a coordinate matrix
whose configuration minimizes a loss function called strain.

With our resulting MDS matrices we have a new dimensional space, where each
component of the matrix determines how relevant they are in discerning similarities
within the original data (similar to PCA or SVD). However, one of the main issues
behind MDS is that does not provide an explicit mapping function governing the
relationship between patterns in the input space and in the projected space [18].

Based on the magnitudes of each of the resulting MDS components, we decided to use
exponential curve fitting in order to be able to threshold the optimal number of
components needed in order to reduce dimensionality and still retain valuable
components in order to produce good classification results. For comparative purposes
we also opted for a far simpler approach of only selecting 10 components and discarding
the rest, this would allow us to verify how much will a few (sometimes many) extra
components will increase or decrease our classification results.

2.5 Classifiers and boosting algorithms

We selected Naive Bayes and Support Vector Machines (SVM) with a linear kernel
function as our linear classifiers and C4.5 as a decision tree classifier. Linear classifiers
achieve the grouping of items that have similar feature values into groups by making a
classification decision based on the value of the linear combination of the features.
Whereas C4.5 uses entropy-based information gain measure to split samples into classes.

Based on the dimensionality and distribution of the values from our image parameters,
we decided to investigate the results of a decision tree classifier in addition to the linear
classifiers. A decision tree classifier has the goal of creating a model that predicts the
value of a target variable based on several input variables. Each interior node
corresponds to one of the input variables; there are edges to the children for each of the
possible values of that input variable. Each leaf represents a value of the target variable
given the values of the input variables represented by the path from the root to the leaf.

We selected Adaptive Boosting as our boosting algorithm in order to determine the
effectiveness of boosting on our data. AdaBoost is adaptive in the sense that subsequent
classifiers built are tweaked in favor of those instances that were misclassified by
previous iterations of the classifier. This algorithm is sensitive to noisy data and outliers.
But it is less susceptible to the overfitting problem than affects most learning algorithms.
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Note that we use these classifiers in order to present a comparative analysis of our
experiments. In this paper we are not trying to find the best classification results or
tweak the classifiers to perform at its best. We are trying to determine how many
components of our new artificial data space we can be omitted without significant
decrease in classification results.

3. APPROACH AND EXPERIMENTS

All experiments were performed using Matlab R2009b. For the exponential curve fitting
we used the Ezyfit Tool box [16]. The classification experiments were performed using
WEKA 3.6.1. These programs were run on a PC with AMD Athlon II X4 2.60 Ghz Quad
Core processor with 8 GB’s of RAM and Windows XP 64-bit Edition.

3.1 Dissimilarity matrix calculations

In order to correctly evaluate each of the extracted image parameters (table 2) we need
to treat them individually. We created a 64 bin histogram (from our 8x8 grid
segmentation) per image parameter, per image. In order to use these histograms
correctly when calculating the KLD and JSD measures we need to make sure the sum of
the bins adds to one. To achieve this, we normalized every single parameter per image
in the following way:

NH, =1L (14)

m i Hm
m=1

Where n=64, since we have a total of 64 bins.

For each bin in the histograms, this allows us to scale our histograms and preserve their
shape. For bins equaling zero, we had to add a very small quantity (0.1x10-%) in order to
avoid divisions by zero on the KLD measure.

After all our data has been normalized this way, we proceeded to calculate the pair wise
distance between the histograms using Matlab’s pdist function. As this function is
highly optimized for performance, the computation time for our first 8 measures is very

low. The Haussdorff, KLD, JSD and y*distances where implemented from scratch and
yield higher computational expense due to their nature.

In total we produced a total of 130 dissimilarity matrices (13 measures, counting KLD H-
H’ and H'-H, times a total of 10 different image parameters). All these dissimilarity
matrices are symmetric, real and positive valued, and their diagonals are zero, fitting the
classical multidimensional scaling requirements.

These dissimilarity matrices help us to identify which image parameters and measures
provide nice differentiation for our images between the 8 different classes on our
dataset. In this paper we will focus on three of the most informative parameter-measure
combinations we generated (good and bad), but you can access all these matrices online
at [28]. Here the classes of our benchmark are separated on the axes, every 200 units
(images) the next class starts. The classes are ordered in the same way as on table 2.
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Figure 1. Scaled Image plot of dissimilarity matrix for (a) Correlation measure with image parameter
mean, (b) JSD measure with image parameter mean, (c) Chebychev measure with image parameter
Relative Smoothness

As we can see in figure 1(a), this combination of similarity measure (correlation) and
image parameter (mean) produces a nice separation between classes. Blue means high
similarity, and red means high dissimilarity. Figure 1(b) shows that the JSD measure
produces and entirely different dissimilarity matrix for the same image parameter
(mean) that highlights different similarities that the correlation measure reflected. Figure
1(c) is a clear example of a combination of similarity measure (Chebychev) and image
parameter (relative smoothness) that highlights dissimilarities within only one class of
the benchmark, but recognizes everything else are highly similar for the rest of the
classes. This validates our idea of testing every image parameter individually, since
there are combinations that will allow us to notice different relationships between
measure/ parameter that will allow us to differentiate images between classes.

The figure 2 presents the average time in minutes that is required to calculate one 1,600

by 1,600 dissimilarity matrix for each of the twelve dissimilarity measures. Note that the
first 8 distances on average are very fast and optimized; this is due to the fact that we
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used Matlab’s own pdist function to calculate them. The remaining 4 distances are our
own implementations and can be further optimized. We mention that KLD is times two
since we need to consider H-H" and H'-H since the measure is not symmetric.

Euclidean
Standardized Euclidean
Mahalanobis

Gty block

Chebychev

Cosine

Correlation

Spearman

Hausdorff
JsD

Chi squared
KLD (x2)

0123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27

Figure 2. Average time in minutes that is required to calculate one 1,600 by 1,600 dissimilarity matrix
3.2 Multidimensional scaling and curve fitting

After generating our 130 dissimilarity matrices, we performed classical
multidimensional scaling using Matlab’s cmdscale function. MDS has been widely
utilized in many image retrieval works to reduce dimensionality [3, 21], and to aid in the
visualization of similar images in a convenient two and three dimensional plot [4].
However these works present results on a considerably smaller number of images and
using a considerably smaller number of dimensions. The most commonly used MDS
plots (maps) involve using the first two or three components of the outputted coordinate
matrix.

T %% w6 o4 w2z o o2 o4 o6 o8 4

Figure 3. MDS map for the correlation measure with image parameter mean
As we suspected, on figure 3 we can’t really identify a clear separation between our 8
different classes. We theorize that since our images themselves have high similarity we
need a considerable amount of components in order to start to see separation between
them. All the 130 MDS maps are available at [28], where we present an extended version
of this paper as well as all the results of the experiments performed for in this work.

Like we mentioned before, MDS is also used for dimensionality reduction and we
analyzed the magnitudes (importance) of the components in order to determine how
many components we really need to maintain a good representation of our data in the
new dimensional space, and how many components we can discard in order for us to
reduce our storage costs.
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In order to determine this number of components we plotted the magnitudes of each
component. Since the MDS coordinate matrix output is ordered by importance, the
magnitudes should be decreasing as the number of component increases. In order for us
to threshold this data we utilized exponential curve fitting [23] to find a function that
would model this behavior and we could use to threshold the number of components
needed. We utilized a 135 degree angle of the tangent line to this function in order to
determine where to threshold and discard the components that their magnitudes where
not providing significant improvement over the previous one.

500 ; = 1 - x . 80

450 ¥ix) = 8 expib x) yix) = a expib x)
a=1505.712 7o} a=§3.507
b=-0.15312 b =-0.19383

400 R = 058478 (in) | R=08814 (i}

350+
300
250 40}
200
150
100
50

a . i = 3 .
o 10 20 30 40 50 60 70 0 10 20 30 40 50 B0 T

(a) (b)
Figure 4. Exponential curve fitting for: (a) correlation measure with image parameter mean, (b) JSD measure
with image parameter mean

As you can see from figure 4, we have the magnitudes of the components decreasing up
to a certain point, and then the change is very minimal and thus not too important for
the new dimensional space.

Based on these curve fitting results and the threshold output, we determined a specific
number of components per combination of measure/image parameter. We can now
determine how well this reduced dimensionality performs in our classification tasks on
section 3.3.

3.3 Classification

Until now we have described how we applied the similarity measures to our image
parameters and how MDS transformed them into a different dimensional space, one that
will require, hopefully, less dimensions in order to represent our data in a similar way
than originally. We now describe the classification experiments we performed on the
resulting tangent thresholded components versus our original data. Since we noticed an
empirical observation that after 10 components the decrease in their magnitudes stops
being drastic (in most of the cases), we decided to take a somewhat naive approach and
perform a threshold of 10 components per similarity measure/image parameter
combination of the same tangent thresholded components. All classification experiments
were run using 10 fold cross-validation.

We ran a total of 270 different datasets through the 4 classifiers described in section 2.5.

In the following plots we present the overall results of this classification experiments
and after that we offer a more detailed explanation of the most interesting results.
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Figure 5. Percentage of correctly classified instances for the 10 component threshold

Figure 5 shows the classification accuracy of our selected classifiers on our 10
component per measure/image parameter combination. The first 10 columns indicate
our original normalized dataset values with no measure or dimensionality reduction
applied to them. The rest of the columns (11 to 140) indicate our measure/image
parameter combinations in the order they are presented in section 2.3 and table 1.
Individual charts presenting the classification results for each classifier are available at
[28].

We can see from the figures that our 10 components only approach produces very
similar classification results that our original data for most combinations of measure and
image parameters. We can also notice the worst performing measure/image parameter
combination is presented in columns 91 to 100 which correspond to the Hausdorff
similarity measure. We will discus the rest of our general conclusions on the following
section.

In figure 6 we present the resulting number of components to be used based on the
tangent thresholding. The columns represent the 130 different image
parameter/measure combinations with the omission of the first 10, which are the
original dataset.
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Figure 6. Number of components to use indicated by the tangent thresholding method.
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In the next figure we present the tangent thresholded classification results. The number
of components selected varied between 1 and 63 depending on the combination of
measure/image parameter. The columns are ordered the same way as in the previous

figures.
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Figure 7. Percentage of correctly classified instances for the tangent-based component threshold

As we can observe in the thresholded components classification results, we get very
similar results than with only 10 components, and in some cases we get considerable
drops i.e., for the Chebychev measure (columns between 51-60), this is due to the fact
that the thresholding selected less than 10 components per combination of
measure/image parameter and in some instances even only 1 component. An interesting
thing to notice is that the overall classification percentages increased consistently for the
KLD H-H" and H’'-H combinations, but also due to the fact that the thresholding selected
63 components for the several of image parameter combinations.

With the previously mentioned results for both of the tangent thresholding and the 10
component limiting we can observe that even with only 10 components we can achieve
good accuracy results (around 80-90%) for the selected classifiers. We can also see which
image parameters perform the best with which measures, one of our objectives with this

paper.

The Support Vector machines classifier produces better results when it has a higher
number of components, and achieves its best with the original data since it has the
highest number of data points. For a better comparison, we decided to show only the
results from the Naive Bayes, C45 and Adaboost C45 classifiers, since they tend to not be
influenced as much by the number of data points that they are using for classification.

In the next table we present the top 5 classification results for each the tangent
thresholded and the 10 components limited datasets.
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Table 3. Top 5 classification results for 10 component limited and tangent thresholded dimensionality reduction exp.

10 Component limit
Bayss C45 AdaC45
Distance-KLD B-A-Feature-FracDim 8244 Original Data-Mzan 00.69 Original Data-Mzan 01.56
Crriginal Data-Mean 81.31 Distance-corrslation-Featurs-hlzan 80.63 Distance-correlation-Feature-Izan 91.56
Distance-KLD A-B-Featvre-FracDim 31.25 Distance-KLD A-B-Faatvre-MMaan 80.63 Distance-ELD A-B-Faatvre-Maan G144
Original Data-Uniformity 79.19 Distance-spearman-Featurs-hMean 89.63 Distance-spearman-Feature-hMean 91.13
Orizinal Data-F=lSm 79.00 Orizinal Data-F=lim §9.38 Original Data-Rsl8m S1.00
Tangent Thrashold
Bayss C45 AdaC43
Comp-63-Distance-KLD A-B-Feature-FracDim 85.50 Original Data-hMean 5065 Comgp-27-Distance-KLD A-B-Feature-Entropy 52.54
Comp-32-Distanca-correlation-Faature-Entropy 85.06 Original Data-Ral3m 80.38 Comp-63-Distance-KLD A-B-Featura-FracDim 92.13
Comp-29-Distance-correlation-Featurs-Mean 84.65 Comp-21-DHstance-EKLD A-B-Feature-hean)| 85.38 Comp-11-Distance-KLD B-A-Featur=-Entropy 51.88
Comp-39-Distance lid Featura-Mean 8431 Orizinal Data-Uniformity 80.19 Original Data-Mzan 91.56
Comp-27-Distance-spearman-Featurz-Mzan 84.19 Comp-27-DHstance-spearman-Feature-hzan 85.1% Comp-14-Distance-KLD B-A-Fzature-hzan 91.56

4. CONCLUSIONS

With the ambitious tasks of analyzing all the combinations between image parameters
and dissimilarity measures, we managed to create a solid foundation of information that
will allow us to determine what works best for the classification of different solar
phenomena. The results of these experiments also allowed us to show that we can
considerably reduce our dimensionality and still get good (and sometimes even better)
classification results.

Some dissimilarity measures, like Correlation, Euclidean, KLD and JSD, allowed us to
easily discern the dissimilarities between our images in our dataset and provided
different levels of relevance between different image parameters. As every researcher
knows, not everything works always, and with this work we can actually notice what
works well and for when in terms of solar images.

While not all dissimilarity measures performed equally well, we now know which ones
to remove and omit due to their computational expense for future experiments (i.e.
Hausdorff measure).

In terms of dimensionality reduction, we managed to achieve very similar (and
sometimes better) classification results than with the original data. The thresholding of
these components provided good performance; improving sometimes the classification
results of the limiting of 10 components, but with its added computational expense the
improvements where not considerable. For future work we will utilize this limiting of 10
components with the certainty that in our domain specific task, the thresholding did not
provide considerable improvements. Astrophysicists using a similar machine learning
approach to classify individual phenomena can be benefited by our approach on how to
select the number of components and might choose to implement it in order to reduce
their storage costs and possibly speed up their retrieval times.

With the massive amounts of experiments performed, in this medium we lack the
proper space to display all the results we produced. All the dissimilarity matrices, MDS
maps, exponential curve fitting plots, and all the classification results are presented on
[28] for researchers interested in all these results. We also included all the Matlab and
WEKA files produced in order for people to easily replicate these results.
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5. FUTURE WORK

With all the different dissimilarity measures and image parameters in the community,
we would greatly appreciate any feedback from other researchers using different
measures/ parameters to the ones presented in this paper and expand our research.

We are currently working with different dimensionality reduction methods other than
MDS, such as Principal Component Analysis and Singular Value Decomposition among
others. These two methods have the advantage of producing mapping functions in order
to transform new data into the artificial dimensional space created by them. This will
allow us to use a particular training dataset and a new test dataset in order to create
more accurate classification predictions.

As we mentioned before, all the classifiers used in this paper, were created using the
default WEKA settings for them. The classification results are for comparative purposes
and in no way they reflect the results that can be obtained after fine tuning the settings
of these classifiers. We are currently working on this issue, and we expect to publish
soon results of fine-tuned classifiers in a future paper. We also expect to add the number
of classifiers used to have a more comprehensive evaluation of them in the future.

Lastly, we continue working towards the goal of creating a fully working CBIR system
for the SDO mission, and with this work as well as our previous papers, we are getting
closer to this ambitious goal.
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