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Abstract. Mathematical models of physical phenomena are of critical importance in
virtually all applications of science and technology. This paper addresses the problem of
how to use data to improve the fidelity of a given model. We approach this problem using
retrospective cost optimization, a novel technique that uses data to recursively update an
unknown subsystem interconnected to a known system. Applications of this research are
relevant to a wide range of applications that depend on large-scale models based on first-
principles physics, such as the Global Ionosphere-Thermosphere Model (GITM). Using
GITM as the truth model, we demonstrate that measurements can be used to identify
unknown physics. Specifically, we estimate static thermal conductivity parameters, and
we identify a dynamic cooling process.

1. Introduction

The goal of this work is to use data to build better models. Figure 1 illustrates this
objective. Models serve a variety of purposes by capturing different phenomena at varying
levels of resolution. High-resolution models are desirable when the goal is to understand
scientific phenomena or assimilate data, whereas a coarser model may be preferable when
the goal is to capture critical details in an efficient manner, for example, for fast prediction
or control. Consequently, the fidelity of a model must be gauged against its intended usage.

Figure 1. This diagram illustrates the goal of this work, namely, initial model +
data = improved model.

Most models are constructed from collections of interconnected subsystem models, which
in turn are based on a combination of physical laws and empirical observations. For exam-
ple, the core of a model might be the Navier-Stokes or MHD equations, while various source
terms (such as chemistry, heating, and friction) may be modeled using either first principles
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submodels or empirical relations that have different levels of self-consistency and complex-
ity. Physical laws embody first-principles knowledge, whereas empirical observations may
include relations that are based on the statistical analysis of data, for example, regression.
Physics can provide the backbone of a model, while empirical relations can flesh out details
that are beyond the ability of analytical modeling (e.g., sub-grid-scale phenomena).

When data are available, an empirical model can be constructed by means of system
identification methods. The construction of a linear dynamic model that relates measured
inputs to measured outputs is well developed [14, 15, 16]. A more challenging problem is
to develop methods for nonlinear system identification. Since nonlinear models can have a
vast range of structures, the problem of nonlinear system identification requires the choice
of a suitable model structure as well as an algorithm that uses data to tune the parameters
of the model. Model structures range from black-box (unstructured) models, such as neural
networks, to grey-box and white-box models, where some or all of the structure of the model
is specified [17, 18, 19, 20].

Accessibility impacts the ability to perform nonlinear model identification. For exam-
ple, the Hammerstein and Wiener grey-box model structures, in which a static nonlinear
mapping is cascaded with a dynamic linear subsystem, are reasonably tractable for model
identification [21]. However, when the static nonlinear mapping of a dynamic linear sys-
tem is not directly accessible, in the sense that neither its input nor its output is directly
measured, then the identification problem becomes significantly more difficult. The highest
degree of accessibility arises when two variables are measured and the unknown subsystem
is a static mapping between the variables.

System identification is typically concerned with the construction of a model of the entire
system. In contrast, our goal is to identify a specific subsystem of the model, where the
remainder of the model is assumed to be accurate and the goal is to improve understanding
of the physics of the poorly modeled subsystem despite its low accessibility. With this
concept of accessibility in mind, we introduce the problem of data-based model refinement,
where we assume the availability of an initial model, which may incorporate both physical
laws and empirical observations. The components of the initial model may have varying
degrees of fidelity, reflecting knowledge or ignorance of the relevant physics as well as the
availability of data. With this initial model as a starting point, our goal is to use additional
measurements to refine the model. Components of the model that are poorly modeled
can be updated, thereby resulting in a higher fidelity model, as shown in Figure 1. This
problem is variously known as model correction, empirical correction, model refinement,
model calibation, or model updating, and relevant literature includes [1, 2, 3, 4] on finite-
element modeling, [5, 6, 7] on meteorology, [8] on feedback control, as well as our algorithmic
research [9, 10, 11] with applications to health monitoring [12, 37].

The uncertain physics of a subsystem may range from the simplest case of an unknown
parameter (such as a diffusion constant), to a multivariable spatially dependent static map-
ping (such as a conductivity tensor or boundary conditions), to a fully dynamic relation-
ship among multiple variables (such as reaction kinetics). The difficulty of identifying these
phenomena from empirical data depends on something we call accessibility, which refers,
roughly, to the degree of separation between the data and the subsystem. The ability to use
data to update a model despite limited accessibility is the ultimate goal of model refinement.

In this paper we examine model refinement for a first principles model of the ionosphere
and thermosphere. Specifically, our approach is to use the Global Ionosphere Thermosphere
Model (GITM) [28] to provide a known initial model.

229

2010 Conference on Intelligent Data Understanding



GITM is a 3-dimensional spherical code that solves the Navier-Stokes equations for the
thermosphere. These types of models are more effective than empirical models because
they capture the dynamics of the system instead of snapshots of steady-state solutions.
GITM is different from most models of the atmosphere in that it solves the full vertical
momentum equation instead of assuming that the atmosphere is in hydrostatic equilibrium,
where the pressure gradient is balanced by gravity. While this assumption is fine for the
majority of the atmosphere, in the auroral zone, where significant energy is dumped into the
thermosphere on short time-scales, vertical accelerations often occur. This heating causes
strong vertical winds that can significantly lift the atmosphere [29].

The grid structure within GITM is fully parallel and uses a block-based two-dimensional
domain decomposition in the horizontal coordinates [30]. Since the number of latitude
and longitude blocks can be specified at runtime, the horizontal resolution can easily be
modified. GITM has been run on up to 256 processors with a resolution as fine as 0.31∘

latitude by 2.5∘ longitude over the entire globe with 50 vertical levels, resulting in a vertical
domain from 100 km to roughly 600 km. This flexibility can be used to validate accuracy
by running model refinement at various levels of resolution.

First principles models, such as GITM, are drastically influenced by unknowns such as
thermal conductivity coefficients and cooling processes in the atmosphere. These effects
cannot be directly measured at each altitude. We identify these subsystems, which are
assumed to be unknown or uncertain using data that are readily available from simulated
satellites on orbit, and we correct the uncertain model to demonstrate the feasibility of
implementing model refinement techniques.

2. Adaptive Model Refinement for Subsystem Identification

Model refinement is concerned with the identification of a specified subsystem of a larger
overall model. The challenge is to perform this identification despite the fact that the
subsystem of interest has low accessibility, that is, when neither the inputs nor the outputs
of the subsystem are accessible in the form of data. The innovation of this paper is to
recognize as in [9, 10, 11, 12, 35] that this problem is equivalent to a problem of adaptive
control theory. This equivalence is evident when the model-refinement problem is cast in
the form of a block diagram, as in Figure 2.

Figure 2 shows a block diagram of adaptive model refinement. Each block is labeled
to denote its uncertainty status. The blocks labeled “Known Subsystem” and “Unknown
Subsystem” represent the physical system, whose inputs include known and unknown in-
puts (also called “physics drivers”). These subsystems are connected through feedback,
which captures the fact that each subsystem impacts the other. Although serial and paral-
lel interconnections can also be considered, feedback interconnection provides the greatest
generality in practice. The majority of the dynamics of the system are assumed to be in-
cluded in the “Known Subsystem” block, while the “Unknown Subsystem” block includes
static or dynamic maps that are poorly known. The objective is to use data to better
understand the “Unknown Subsystem” block.

The lower part of the diagram in Figure 2 constitutes the “Simulated System.” The
“Physics Model,” which is implemented in computation, captures the dynamics of the
“Known Subsystem” and serves as the initial model. This model is interconnected by
feedback with the block labeled “Identified Physics,” which is refined (updated) recursively
as data become available. This model refinement occurs through the “Physics Update”
procedure, which is denoted by the diagonal arrow. The subsystem model update is a
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tuning procedure that recursively identifies the unknown physics to provide a model of the
“Unknown Subsystem” block. This tuning procedure is driven by the model-error signal
𝑧, which is the difference between the data from the “Physical System” and the computed
output of the “Simulated System.”

Figure 2. This block diagram illustrates the model refinement problem, where the
goal is to identify the “Unknown Subsystem” of the “Physical System.” By depicting
this problem as a block diagram, it becomes evident that the model refinement
problem is equivalent to a problem of adaptive disturbance rejection.

When cast in the form of a block diagram in Figure 2, the model refinement problem
has a form of an adaptive control system. This resemblance suggests that adaptive control
methods may be effective in tackling the model refinement problem. To do this, we require
techniques for adaptive control that are sufficiently general and computationally tractable
to address the features of large-scale physically meaningful applications.

2.1. Retrospective Cost Optimization. To address the model refinement problem, we
apply techniques that we have developed for adaptive control. These techniques, which are
described in [22, 23, 24], are distinct from standard adaptive control approaches in several
crucial ways. Specifically, the approach of [22, 23, 24, 35] requires minimal modeling infor-
mation concerning the “Known Subsystem,” and is applicable to a wide range of adaptive
control problems, including command following, disturbance rejection, stabilization, and
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model following. The algorithm utilizes a surrogate cost function that entails a closed-
form quadratic (and thus convex) optimization step. Surprisingly, the controller update
requires information about only the zeros of the system; no information about the poles is
needed. Even more surprising is the fact that the control update requires only knowledge
of the nonminimum-phase zeros of the system. This result is truly remarkable in that it
shows definitively that nonminimum-phase zeros are the crucial modeling information that
is needed for adaptive control.

For model refinement, the specific problem of interest is adaptive disturbance rejection,
where the “disturbance” to be rejected is the unknown driver 𝑣. The performance signal in
the example application described below is the error in neutral mass density of the upper
atmosphere, and this signal is used to drive the “Physics Update.”

The novel feature of the technique developed in [22, 23] is the use of a retrospective

cost criterion to update the estimate of the “Unknown Subsystem.” Unlike many adaptive
control techniques that are limited to systems with minimum-phase zeros and low relative
degree, this approach is effective for systems with arbitrary poles and zeros. This unique
flexibility allows us to apply the technique of retrospective cost adaptive control to the
problem of model refinement.

Although the techniques developed in [22, 23, 24] apply to linear systems, the exam-
ple discussed in the next subsection shows that the method can be effective for large-scale
nonlinear systems such as GITM. Additional relevant literature on retrospective cost opti-
mization includes [13, 31, 32, 33, 34, 36, 38, 39, 40].

Retrospective cost optimization depends on several parameters that are selected a pri-

ori. Specifically, 𝑛c is the estimated order of the unknown subsystem, 𝑝 ≥ 1 is the data
window size, and 𝜇 is the number of Markov parameters obtained from the known model.
The methodology for choosing these parameters is as follows. The subsystem order 𝑛, is
overestimated, that is 𝑛𝑐 is chosen to be greater than the expected order of the unknown
subsystem; for parameter estimation, 𝑛𝑐 is zero. 𝜇 is generally chosen to be 1, however, a
larger value is needed if nonminimum phase zeros are present in the initial model.

The adaptive update law is based on a quadratic cost function, which involves a time-
varying weighting parameter 𝛼(𝑘) > 0, referred to as the learning rate since it affects the
convergence speed of the adaptive control algorithm.

We use an exactly proper time-series controller of order 𝑛c such that the control 𝑢(𝑘) is
given by

𝑢(𝑘) =

𝑛c∑
𝑖=1

𝑀𝑖(𝑘)𝑢(𝑘 − 𝑖) +

𝑛c∑
𝑖=0

𝑁𝑖(𝑘)𝑦0(𝑘 − 𝑖),(1)

where 𝑀𝑖 ∈ ℝ
𝑙𝑢×𝑙𝑢 , 𝑖 = 1, . . . , 𝑛c, and 𝑁𝑖 ∈ ℝ

𝑙𝑢×𝑙𝑦0 , 𝑖 = 0, . . . , 𝑛c, are given by an adaptive
update law. The control can be expressed as

𝑢(𝑘) = 𝜃(𝑘)𝜓(𝑘),(2)

where

𝜃(𝑘)
△
=
[
𝑁0(𝑘) ⋅ ⋅ ⋅ 𝑁𝑛c

(𝑘) 𝑀1(𝑘) ⋅ ⋅ ⋅ 𝑀𝑛c
(𝑘)

]
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is the controller parameter block matrix and the regressor vector 𝜓(𝑘) is given by

𝜓(𝑘)
△
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑦0(𝑘)
...

𝑦0(𝑘 − 𝑛c)
𝑢(𝑘 − 1)

...
𝑢(𝑘 − 𝑛c)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℝ

𝑛c𝑙𝑢+(𝑛c+1)𝑙𝑦0 .

For positive integers 𝑝 and 𝜇, we define the extended performance vector 𝑍(𝑘) and the
extended control vector 𝑢(𝑘) by

𝑍(𝑘)
△
=

⎡
⎢⎣ 𝑧(𝑘)

...
𝑧(𝑘 − 𝑝 + 1)

⎤
⎥⎦ , 𝑈(𝑘)

△
=

⎡
⎢⎣ 𝑢(𝑘)

...
𝑢(𝑘 − 𝑝c + 1)

⎤
⎥⎦ ,

where 𝑝c
△
= 𝜇 + 𝑝.

From (2), it follows that the extended control vector 𝑢(𝑘) can be written as

𝑈(𝑘)
△
=

𝑝c∑
𝑖=1

𝐿𝑖𝜃(𝑘 − 𝑖 + 1)𝜓(𝑘 − 𝑖 + 1),

where

𝐿𝑖
△
=

⎡
⎣ 0(𝑖−1)𝑙𝑢×𝑙𝑢

𝐼𝑙𝑢
0(𝑝c−𝑖)𝑙𝑢×𝑙𝑢

⎤
⎦ ∈ ℝ

𝑝c𝑙𝑢×𝑙𝑢 .

We define the surrogate performance vector 𝑍(𝜃, 𝑘) by

𝑍(𝜃, 𝑘)
△
= 𝑍(𝑘) − 𝐵̄𝑧𝑢

(
𝑈(𝑘) − 𝑈̂(𝑘)

)
,(3)

where

𝑈̂(𝑘)
△
=

𝑝c∑
𝑖=1

𝐿𝑖𝜃𝜓(𝑘 − 𝑖 + 1),(4)

and 𝜃 ∈ ℝ
𝑙𝑢×[𝑛c𝑙𝑢+(𝑛c+1)𝑙𝑦0 ] is the surrogate controller parameter block matrix. The block-

Toeplitz surrogate control matrix 𝐵̄𝑧𝑢 is given by

𝐵̄𝑧𝑢
△
=

⎡
⎢⎢⎢⎣

0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢 𝐻𝑑 ⋅ ⋅ ⋅ 𝐻𝜇 0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢

0𝑙𝑧×𝑙𝑢

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0𝑙𝑧×𝑙𝑢

...
0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢 0𝑙𝑧×𝑙𝑢 ⋅ ⋅ ⋅ 0𝑙𝑧×𝑙𝑢 𝐻𝑑 ⋅ ⋅ ⋅ 𝐻𝜇

⎤
⎥⎥⎥⎦ ,

where the relative degree 𝑑 is the smallest positive integer 𝑖 such that the 𝑖th Markov
parameter 𝐻𝑖 of the initial model is nonzero. The leading zeros in the first row of 𝐵̄𝑧𝑢

account for the relative degree 𝑑. The algorithm places no constraints on either the value
of 𝑑 > 0 or the rank of 𝐻𝑑 or 𝐵̄𝑧𝑢.

233

2010 Conference on Intelligent Data Understanding



We now consider the cost function

𝐽(𝜃, 𝑘)
△
= 𝑍T(𝜃, 𝑘)𝑅1(𝑘)𝑍(𝜃, 𝑘) + tr

[
𝑅2(𝑘)

(
𝜃 − 𝜃(𝑘)

)T
𝑅3(𝑘)

(
𝜃 − 𝜃(𝑘)

)]
,(5)

where 𝑅1(𝑘)
△
= 𝐼𝑝𝑙𝑧 , 𝑅2(𝑘)

△
= 𝛼(𝑘)𝐼𝑛𝑐(𝑙𝑤+𝑙𝑣), and 𝑅3(𝑘)

△
= 𝐼𝑙𝑤 . Substituting (3) and (4) into

(5), 𝐽 is written as the quadratic form

𝐽(𝜃, 𝑘) = 𝑐(𝑘) + 𝑏Tvec 𝜃 +
(
vec 𝜃

)T
𝐴(𝑘)vec 𝜃,

where

𝐴(𝑘) = 𝐷T(𝑘)𝐷(𝑘) + 𝛼(𝑘)𝐼,

𝑏(𝑘) = 2𝐷T(𝑘)𝑓(𝑘) − 2𝛼(𝑘)vec 𝜃(𝑘),

𝑐(𝑘) = 𝑓(𝑘)T𝑅1(𝑘)𝑓(𝑘) + tr
[
𝑅2(𝑘)𝜃T(𝑘)𝑅3(𝑘)𝜃(𝑘)

]
,

where

𝐷(𝑘)
△
=

𝑛c+𝜇−1∑
𝑖=1

𝜓T(𝑘 − 𝑖 + 1) ⊗ 𝐿𝑖,

𝑓(𝑘)
△
= 𝑍(𝑘) − 𝐵̄𝑧𝑢𝑈(𝑘).

Since 𝐴(𝑘) is positive definite, 𝐽(𝜃, 𝑘) has the strict global minimizer

𝜃 =
1

2
vec−1(𝐴(𝑘)−1𝑏(𝑘)).

The controller gain update law is

𝜃(𝑘 + 1) = 𝜃.

The coefficients of the time series (1) contain information about the unknown subsystem.
For parameter estimation, the entries of 𝜃(𝑘), in the case 𝑛𝑐 = 0, are parameter estimates
that can be used to correct the initial model. For dynamic subsystem identification, the
entries of 𝜃(𝑘), when 𝑛𝑐 > 0, are parameters of a system of equations that describe the
unknown dynamics. We demonstrate the both scenarios on GITM.

3. Application of Model Refinement to Ionospheric Parameter

Estimation

To illustrate adaptive model refinement, we consider the problem of using upper atmo-
spheric mass-density measurements, as can be obtained from a satellite, to estimate the
thermal conductivity of the thermosphere. This problem is challenging due to the fact that
we do not assume the availability of measurements that can serve as inputs or outputs to the
“Unknown Subsystem” modeling thermal conductivity. In other words, the objective of the
identification in this particular application is inaccessible relative to the available measure-
ments. Furthermore, the identified subsystem parameters must be physically representative
of the unknown subsystem. Specifically, the identified subsystem must not only refine the
true model such that the closed-loop outputs of the known and unknown subsystem match
the output of the known and identified subsystem, but the identified parameters must also
match the unknown parameters to provide useful information about the unknown physics
of the system.
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Figure 3. This block diagram specializes Figure 2 to the case of model refine-
ment for a model of the ionosphere-thermosphere. Simulated data are generated by
using the 1D Global Ionosphere-Thermosphere Model (GITM), where the thermal
conductivity is assumed to be unknown. The goal is to estimate the thermal con-
ductivity by using measurements of the neutral mass density. The fact that this
problem is precisely a problem of adaptive control allows us to apply retrospective
cost adaptive control methods. This problem is difficult for conventional parameter
estimation methods due to the low accessibility of the unknown physics relative to
the available measurements.

We use GITM to simulate the chemistry and fluid dynamics in a 1D column in the
ionosphere-thermosphere. The temperature structure of the thermosphere depends on many
factors, such as the Sun’s intensity in extreme ultraviolet (EUV) wavelengths, eddy diffusion
in the lower thermosphere, radiative cooling of the O2 and NO, frictional heating, and the
thermal conductivity.

The basic structure of the thermal conductivity is 𝜆 = 𝐴𝑇 𝑠, where 𝐴 and 𝑠 are the thermal
conductivity and rate coefficients, respectively. The thermal conductivity may depend on
chemical constituents (e.g., N2, O2, and O). Uncertainty concerning the values for 𝐴 and 𝑠

[27], can strongly control the temperature structure. The need to estimate these coefficients
from available data is shown in Figure 4, where published values of these coefficients vary
depending on the reference source. We use this uncertainty in the literature as a bound on
performance. Ideally, the estimates we obtain using data should be within these bounds.
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Figure 4. Steady-state globally averaged temperature structure using three pub-
lished conductivity values.

To estimate the unknown thermal conductivity coefficient, we apply the retrospective
cost adaptive control algorithm to the simulated measurements of neutral mass density
provided by 1D GITM. We do this by running a “truth model,” from which we extract
mass-density data at 400-km altitude (a typical altitude for satellites). The thermal con-
ductivity coefficient is initialized to be zero, and its value is updated recursively by the
retrospective cost adaptive control algorithm. Figure 5 shows the evolution of the estimate
of the thermal conductivity as more data become available. The estimate is seen to converge
to a neighborhood of the true value within about 0.6 × 104 data points.

To further illustrate the model refinement method, we now assume that both the thermal
conductivity, 𝐴, and rate coefficient, 𝑠, are unknown. The parameters 𝐴 and 𝑠 are initialized
as zero, and are updated simultaneously and recursively. Figure 6 shows the update of the
estimates. Both estimates converge to within a neighborhood of the true values within
0.6 × 105 data points.

The performance gains attributed to the refined parameters are shown in Figure 7. The
upper figure is a performance comparison of a nominal GITM model, which is assumed to
be the truth model, while another GITM model with a thermal conductivity coefficient is
set to zero. Within the simulated model, this value prevents energy deposited in one layer
of the atmosphere from remaining in that layer. The lower plot of Figure 7 illustrates the
reduction in model error obtained by including the identified coefficients, thereby accounting
for the thermal conductivity of this species. The benefits of refining the GITM model are
evident by the improvement in model accuracy.

4. Application of Model Refinement to Ionospheric Dynamics Estimation

To illustrate model refinement in the case of an unknown dynamic subsystem, the NO
radiative cooling was removed from GITM to provide an initial model but retained in GITM
for the truth model. The goal is to reproduce the missing process. This is nontrivial since
the functional form of the cooling was assumed to be unknown as were the dynamics. We
assumed only that something was missing from the energy equation, and that this was
most likely a function of temperature. The dynamics of the cooling were estimated at
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Figure 5. This plot shows the true and estimated thermal conductivity coeffi-
cient. The initial guess for the thermal conductivity is zero. The estimate converges
to a neighborhood of the true value within about 0.6× 105 data points. The lack of
final convergence is due to nonlinearities in the dynamics of the system. However,
the oscillations are well within the uncertainty bounds, which reflect the range of
published values for this coefficient.

three different altitudes, connecting the other altitudes through linear interpolation, which
is obviously an approximation, but illustrates the technique. Nothing else about this energy
sink was assumed. The thermospheric density was utilized as data at 407 km altitude from
a simulated truth model that included NO cooling. The result of the model refinement
in Figures 8 and 9 demonstrates that this technique captured the actual dynamics in the
system. The height profile of the cooling matches the actual cooling quite well. Furthermore,
the temporal variation of the maximum cooling matched the cooling simulated by the model.

Three linear dynamical equations were derived (one for each of the three chosen altitudes),
which reproduced the dynamics of the cooling. To determine the relevant drivers, the
temperature estimate was fed into the model refinement technique. What resulted was a
profile that looks remarkably like the natural logarithm of the NO density, indicating that
this may be the source of the cooling, which it actually is. This technique can thus be used
to refine and improve an initial model (or models, if several are hypothesized) that is either
uncertain or erroneous. In turn, the improved model provides a more accurate foundation
for data assimilation aimed at wind and density estimates in the presence of solar storm
disturbances. Figure 10 shows a comparison of the model without correction versus the
model with correction, both of which are baselined against the truth model. Without data-
based model refinement, the estimated density measurements degrade as time increases.
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Figure 6. These plots show the true and estimated thermal conductivity coeffi-
cient as well as the true and estimated rate coefficient. The initial guesses for both
coefficients are zero. The estimates converge to a neighborhood of the true value
within about 0.6 × 105 data points. The estimates are also within the uncertainty
limits, which are determined by the range of published values for these coefficients.

5. Conclusions

In this paper we presented a method for improving the fidelity of models using empirical
data, which is known as model refinement. Model refinement presents challenges relative to
standard input-output system identification, specifically, a lack of accessibility to the sig-
nals required to identify the refining subsystem. For model refinement we use retrospective
cost optimization to identify the unknown model. We demonstrated the feasibility of the
method in refining first principles models. In particular, to model the ionosphere and ther-
mosphere using the global ionosphere-thermosphere model (GITM). We to demonstrated
how uncertain parameters are identified when the structure of the refining model is known.
Furthermore, we demonstrated how unknown dynamics are identified from data when the
internal structure of the updated subsystem is unknown.
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Figure 9. These plots show the difference between the actual NO cooling included
in the truth model and the cooling estimated by the model-refinement technique as
a function of altitude at a given time. Cooling is along the horizontal axis, while
altitude is along the vertical axis. The blue dashed line is the estimated value. The
measured data were taken at an altitude of 407 km. The vertical dashed lines in
Figure 8 are the time instances when the altitude vs. NO cooling plots are taken.
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