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MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A
MULTI-VIEW APPROACH

VARUN CHANDOLA* AND RANGA RAJU VATSAVAT*

ABSTRACT. Multispectral remote sensing images have been widely used for automated land use
and land cover classification tasks. Often thematic classification is done using single date image,
however in many instances a single date image is not informative enough to distinguish between
different land cover types. In this paper we show how one can use multiple images, collected at
different times of year (for example, during crop growing season), to learn a better classifier. We
propose two approaches, an ensemble of classifiers approach and a co-training based approach, and
show how both of these methods outperform a straightforward stacked vector approach often used
in multi-temporal image classification. Additionally, the co-training based method addresses the
challenge of limited labeled training data in supervised classification, as this classification scheme
utilizes a large number of unlabeled samples (which comes for free) in conjunction with a small
set of labeled training data.

1. INTRODUCTION

Multispectral images collected by remote sensing instruments present an immense opportunity
for understanding the dynamic characteristics of the earth surface. In the last couple of decades
land use and land cover (LULC) identification with remotely sensed images has become of great
interest to researchers from various disciplines including earth scientists and data miners, and it
has been applied to a variety of applications such as urban planning, natural resource management,
water resource monitoring, environmental and agricultural analyses. Remotely sensed multispectral
imaging is one of the most widely used technologies for LULC mapping and monitoring, and it
provides synoptic and timely information over large geographical areas.

Thematic classification is the most widely used technique for extracting useful and interesting
patterns from remote sensing imagery. Several classification algorithms have been proposed in the
literature for analysis of remote sensing imagery. These algorithms can be broadly grouped into
two categories, supervised and unsupervised, based on the learning scheme used. Among supervised
classification methods, the maximum likelihood classifier (MLC) is the most extensively studied and
utilized for classifications of multi-spectral images. Other broad classification schemes are neural
networks, decision trees, and support vector machines. Among unsupervised methods, the K-Means,
C-Means (also known as Migrating Means or ISODATA) and Fuzzy C-Means techniques are popular
in remote sensing. Most of these methods work well if the land cover classes are spectrally separable.
In reality, the classes under investigation are often spectrally overlapping as the reflectance from these
classes is dependent on several extraneous factors like terrain, soil type, moisture content, acquisition
time, atmospheric conditions, etc. Though such factors can be incorporated into classification via
ancillary data, spectral overlapping due to temporal nature of classes can be separated by the
utilization of multi-temporal images. As an illustration we show two images, one taken in May and
the other acquired in July. Figure 1 shows how two thematic classes, Soybean (three red plots) and
corn (two black plots), which are highly overlapping (meaning, the class spectral reflectances are
highly similar) in May (all 5 plots are almost same indigo color) are spectrally dissimilar in July
(corn is greenish and soybean is purplish — thus easy to separate). Though Corn and Soybean can
be easily separated in June, there may be other classes which are not easily separable in July but
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may be separable in May or some other date. This is the basic motivation for multi-temporal image
classification, where one seeks to accurately classify thematic classes which are highly overlapping
in any single date image.

(a) AWIFS May 3, 2008, FCC (RGB Bands 4, 3, 2), (b) AWIFS July 14, 2008, FCC (RGB Bands 4, 3, 2),
Thematic Classes (C-Corn, S-Soybean) Thematic Classes (C-Corn, S-Soybean)

FIGURE 1. False color composite (FCC) images of same location at two different dates

The rest of this paper is organized as follows: Section 2 describes the related work. Section 3
presents background information on learning with multiple views and section 4 provides basic notions
used. In section 5, we describe the maximum likelihood classification framework that provides
backbone for Bayesian model averaging (described in Section 6) and co-training (Section 7). Datasets
used in this study are described in Section 8 followed by the results and comparative analysis of
various classification schemes in Section 9. Finally, conclusions and future directions are provided
in Section 10.

2. RELATED WORK

Several studies have used machine learning tools such as decision trees [9, 10] and support vec-
tor machines (SVM) [22, 4, 16, 2, 18] to build a multi-class classifier for crop classification using
multispectral remote sensing data as well as explored methods to extract features to enhance the
classification performance [14, 18]. Such methods typically deal with a single multispectral image.
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However, these methods can be readily applied to multi-temporal images by combining all bands
(features) — an approach known as stacked vector. Though, stacked vector approach do not require
any modification to existing approaches, increasing number of features require addition ground truth
data which is often costly to obtain. Typically one needs 10-30 times d (d - number of dimensions)
samples for accurate fitting of the learning model [15]. Therefore, multi-temporal image classification
requires careful design and should not increase the need for additional training data.

In contrast, several papers have used the time series of spectral observations collected across a
temporal span, as a data instance for every location[6, 13, 8, 5]. Typically, such approaches do
not use the entire spectrum but use a single composite observation, such as Normalized Difference
Vegetation Index (NDVT), to construct a univariate time series at each spatial location.

The multi-temporal image classification approach proposed in [12], is based on “decision fusion”,
where a classification model was built separately on each image, and the decisions (predictions)
combined using two different fusion criteria. Though our proposed approaches are conceptually
similar to the above method, the co-training method substantially differs in two respects: first, it
does not fuse the independent classification decisions in the end as with the other methods; second, it
incorporates unlabeled training samples, thus offers a more cost-effective solution for multi-temporal
image classification.

3. LEARNING WITH MULTIPLE VIEWS - BACKGROUND

In this paper, we treat multi-temporal images as multiple views of same phenomena under study.
There are four broad approaches to learn a classifier from data described using multiple views. The
first approach is to simply train a classifier on a single view which gives best performance. The
choice of the best view can be either made using domain knowledge or through empirical evaluation.

For the second approach, also known as the stacked vector approach, feature vectors from all views
are concatenated together to get a single composite view of the data. The stacked vector approach
results in a increase in the dimensionality of the data.

The third approach is to learn individual classifiers using each view of the data and then combine
the predictions of the individual classifiers. Such classification methods are also broadly referred
to as multiple classifier systems [1, 21, 17, 20, 7]'. Bayesian Model Averaging (BMA) [11, 7] is a
probabilistic method for combining the output of multiple classifiers. We describe this method in
more detail in Section 6.

The fourth approach has been developed in the context of semi-supervised learning, i.e., using a
small set of labeled data and a larger set of unlabeled data. One of the earliest work in this direction
was proposed by Blum and Mitchell [3], known as co-training. The authors assume that each data
instance can be described using two disjoint sets of features, such that each feature set is sufficient
for learning, given enough labeled data. In the co-training framework, the key idea is to learn a
classifier on each view of the data independently, and then use the predictions of each classifier on
unlabeled data instances to augment the training data set for the other classifier. By learning in an
iterative fashion, the authors argue that the overall classification performance can be improved.

We describe a generalized co-training based algorithm for multi-temporal (multi-view) classifica-
tion in Section 7.

4. NOTATION

We first describe the notations used in this paper. Labeled training examples are denoted as

{(x1, )}, such that each example x is described using v views, i.e., x = (x(1) x®) . x™) and
xK € R4 for k = 1...v. In this paper, we are concerned with a multi-class classification problem,
where y € {c1,¢a,...,cx}. Additionally, there exist unlabeled training examples, denoted as {X; }; ;.

The labeled training set is also denoted as X and the unlabeled training set is denoted as U.

INote that these are different from ensemble classification methods such as bagging and boosting which learn multiple
classifiers using a single view of the data.
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Note that in the above notation scheme all views are assumed to be described using d continuous
valued features. In general, however, the different views can be defined using different number
of features. Moreover, the features are not constrained to be in & and can have arbitrary type
(categorical, binary, ordinal), as long as the base classifier that uses those features can handle such
types. For simplicity, we follow the above stated notation.

5. MAXIMUM LIKELIHOOD CLASSIFICATION

All classification approaches investigated in this paper, i.e., single view, stacked vector, Bayesian
model averaging, and co-training, require a base classifier. Mazimum Likelihood Classifier (MLC)
is the most widely used method for land cover classification based on multi-spectral remote sensing
imagery because of its simplicity and efficiency[19]. Therefore we employed MLC as a base classifier
in this research.

A typical maximum likelihood classifier models the class-conditional distribution, p(x|y) as a
multivariate Gaussian distribution:

(1) p(x|y = ¢i) ~ N(pi, 2;)

The parameters for the multivariate Gaussian for each class are obtained using maximum likelihood
estimation using the labeled training examples. To assign a class label to a test example, x*, the
posterior probability for each class, given the test example, is computed as:

(2) P(y* = cilx”, {(x1,9:) Yim1) o p(X"|y" = i) P(ci)

where p(x|y = ¢;) is computed using (1) and P(¢;) denotes the prior probability for each class. The
class with maximum posterior probability is chosen as the predicted class for the test instance, x*.

The above described MLC algorithm can be directly used for the single view as well as the stacked
vector approach to handle the multiple views.

6. BAYESIAN MODEL AVERAGING

The Bayesian model averaging approach [11, 7] combines the output of multiple classifiers to
obtain a single decision for an unseen test instance. In the context of this paper, the multiple
classifiers are learnt using different views of the data and are represented as {hy, fia, ..., fi, }.

According to the BMA approach, the posterior probability for a class ¢; is computed as:

3) Peslx™ {(xi,9) Vi) = Y Plealx, {(xi, ) Vo, By P (A (x4, w0) Yo )

j=1

where P(c;|x*, {(xi,v:)}._1, fij) is the posterior density obtained for class ¢; using the j** view (See
(2)). The second term in the right hand side of (3) is the model posterior for the j* model, and is
computed as:

l
(4) P(h;[{(xi, yi) Yizr) o< P(hy) [ ] P (i, wilhy)

i=1

P(h;) is the model prior. Each term in the product in (4) is the joint probability for the training
example, x;, and the true class, y;, and can be expressed as: P(x;, y;|l;) o< P(y;|xi, hi;) which is the
posterior probability of class y; assigned by the classifier i; (See (2)). Finally, the class assigned to
the test instance x* is the one for which the posterior in (3) is maximum. Thus the BMA approach
assigns more weight to the classifier which assigns high posterior probabilities to the true class for
the training examples.
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7. CO-TRAINING

In this section we present a co-training based algorithm based on the original algorithm proposed
by Blum and Mitchell [3]. While originally, co-training was proposed for two views of the data, we
propose a generalized version in which data can be defined using more than two views. Algorithm
1 lists the steps for the training part of the co-training algorithm. The output of this algorithm is a
set of v classifiers, one for each view.

Input: (X = {(xt,y)}y U = {51 11,).0
Output: {h;}¥_,
Sample m instances without replacement from U into a set U’ = {X;}/%,
while U is not empty do
foreach j=1:v do
Learn MLC h; using {(xi(j),yi) Ly
Assign class label §; to each %X; € U’ using A,
foreach i =1:m do
if P(§j;|%i,h;) > ¢ then
Add (%;,7;) to X
Sample one instance without replacement from U into U’
end
end
end
end
Algorithm 1: Co-training

The co-training algorithm starts with the labeled training set X and unlabeled training set U. A
smaller unlabeled training set, U’ is sampled from U. A MLC classifier is learnt using first view of
training set X. The classifier then assigns labels to the unlabeled instances in U. The predictions
for which the prediction probability is greater than a certain threshold, d, are added to the labeled
training set. In the next step, a classifier is learnt using the second view of the augmented training
set. This process is repeated until all unlabeled instances in U are labeled and added to X. The
algorithm finally returns the v classifiers trained on individual views of the final training data set
X. The threshold § is used to include only those unlabeled instances to the training data set which
are predicted with high probability.

The order in which the views are used in the co-training algorithm is arbitrary. In the above
algorithm we use the natural ordering of the views, though experimentally we have observed that
the choice of ordering does not have a significant impact on the performance.

For testing, the algorithm follows the same procedure as that of the BMA classifier (See Section
6).

8. DATA

This research was carried out in the north-west portion of the Iowa state, U.S.A. The predominant
thematic classes in this study areas are corn and soybean. Table 1 shows other thematic classes and
the number of labeled samples (plots) collected over different portions of the image. Each training
plot size is 3 x 3 window (that is, 9 pixels). The ground truth for training, testing and thematic
classes were all based on the crop data layer data produced by the United Stated Department of
Agriculture (USDA). The remote sensing images used in this study were acquired on four different
dates in 2008: May 03, July 14, August 31, and September 24, by the IRS-P6 satellite using the
Advanced Wide Field Sensor (AWiFS) camera. There are four spectral bands in each image with
a spatial resolution of 56 meters. Sample image covering 370 x 370 km along with spatial location
is shown in Figure 2. For this study we used 3 bands (red, near-infrared, and short-wave infrared)
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from each images. Black dots are the sample locations where ground truth (training and testing)
data was collected.

FIGURE 2. False color composite (FCC; Bands 4,3,2) Image Acquired on May 08,
2008 by IRS-P6, AWiFS, over lowa

9. RESULTS AND ANALYSIS

In this section we compare the performance of various classification methods discussed in this
paper on MODIS data described in Section 8. MLC is used as the base classifier for all approches.
A uniform prior is assumed over all classes in 2. For BMA, a uniform prior is assumed over all
classifiers (hy, ho, ..., hy) in (4). For co-training, the ¢ threshold was set to 0.90. We experimentally
observed that the performance of the co-training based classifier is not sensitive to ¢ in the range of
[0.8,0.95]. For each classifier we report the following:

(1) Confusion matrix.
(2) Per-class recall, precision, and F-measure.
(3) Misclassification error.
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9.1. Comparing Bayesian Averaging and Stacked Vector Approach. We first compare the
performance of the two supervised methods to handle multiple views of data, i.e., Bayesian averaging
and stacked vector approach. For comparative purpose, we also report the performance of a ML
classifier using an individual view (image) only. For each of these experiments we trained on labeled
data set corresponding to 945 locations and tested on a validation data set corresponding to 963
locations. For each location there are four views, corresponding to four images collected in four
different months (May, July, August, September) and each view consists of three spectral bands.
The details of the training and validation data sets are summarized in Table 1.

Class ID Class Training | Validation

1 Corn 261 261

5 Soybean 225 225

36 Alfa alfa 27 27

62 Grass 189 180
111 Water 18 18
121 Developed 90 99
141 Deciduous Forest 117 117
190 Wetlands Forest 18 36
Total: 945 963

TABLE 1. Details of Training and Validation Data Set

The confusion matrices obtained from data corresponding to individual views are shown in Tables
2-5, respectively. In all the confusion matrix tables, we also report the per-class recalls in the last
column, and the per-class precisions and per-class F-measures in the last two rows of the table,
respectively. The last value in the precision row is the fraction of instances that are correctly
classified. The last value in the F-measure row is the average F-measure across all classes.

Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 191 45 0 12 0 2 11 0 0.73
soy 126 96 0 1 0 0 2 0 0.43
alfa 0 0 18 9 0 0 0 0 0.67
grass 8 0 16 144 0 7 5 0 0.80
Actual | Coter | 11 | 0 | 0 0 4 0 0 3] 022
dvlpd 2 9 2 10 0 74 2 0 0.75
forest 0 0 0 1 0 9 107 0 0.91
wetlnd 1 0 0 0 0 0 2 33 0.92
Prec; | 0.56 | 0.64 | 0.50 | 0.81 1.00 0.80 0.83 0.92 0.69
F; 0.64 | 0.51 | 0.57 | 0.81 0.36 0.77 0.87 0.92 0.68

TABLE 2. Confusion matrix for MLC on May image only.

In order to understand the overlapping nature of classes in various images and its impact on
classification accuracy, we computed pairwise transformed divergence. Transformed divergence is a
signature separability measure often used by remote sensing analysts to gain understanding into the
class separability in feature space. The formula for transformed divergence T;; between classes i and
7 is:

Dy,
(5) Tij = 2000(1 — exp(— =)
where D;; is the divergence between classes 7 and j, and can be computed as:
1 _ _ 1 _ _
) Dy =tr((Si— DS = 57) + (S = 25 — ) — 15)T)
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Predicted

Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 208 11 0 22 0 0 20 0 0.80
soy 4 202 0 19 0 0 0 0 0.90
alfa 9 18 0 0 0 0 0 0 0.00
grass 48 36 0 90 0 6 0 0 0.50
Actual |l ter | 0 0| o 0 18 0 0 0 1.00
dvlpd 0 4 0 3 0 89 0 3 0.90
forest 9 0 0 0 0 0 98 10 0.84
wetlnd 0 0 0 0 0 0 24 12 0.33
Prec; | 0.75 | 0.75 — 0.67 | 1.00 0.94 0.69 0.48 0.74
F; 0.77 | 0.81 | 0.00 | 0.57 1.00 0.92 0.76 0.39 0.65

TABLE 3. Confusion matrix for MLC on July image only.

Predicted

Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 232 3 0 0 0 0 17 9 0.89
soy 12 186 9 18 0 0 0 0 0.83
alfa 7 9 9 0 0 0 2 0 0.33
grass 5 13 21 119 0 11 2 9 0.66
Actual | Coter | 0 | 0 | 0 | o 18 0 0 0o | 100
dvlpd 0 0 0 2 0 96 0 1 0.97
forest 7 0 0 0 0 2 94 14 0.80
wetlnd 0 0 0 0 0 0 36 0 0.00
Prec; | 0.88 | 0.88 | 0.23 | 0.86 1.00 0.88 0.62 0.00 0.78
F; 0.89 | 0.85 | 0.27 | 0.75 1.00 0.92 0.70 0.00 0.67

TABLE 4. Confusion matrix for MLC on August image only.

Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 171 27 3 19 0 4 29 8 0.66
soy 12 180 2 11 0 20 0 0 0.80
alfa 0 0 9 18 0 0 0 0 0.33
grass 27 22 13 109 0 0 1 8 0.61
Actual | Cer | 0 | 0 | o | o | 12 6 0 0 | o067
dvlpd 9 25 0 0 0 60 5 0 0.61
forest 8 0 0 0 0 18 66 25 0.56
wetlnd 0 8 0 0 0 10 18 0 0.00
Prec; | 0.75 | 0.69 | 0.33 | 0.69 1.00 0.51 0.55 0.00 0.63
F; 0.70 | 0.74 | 0.33 | 0.65 | 0.80 0.55 0.56 0.00 | 0.54

TABLE 5. Confusion matrix for MLC on September image only.

A transformed divergence value of less than 1500 between two classes indicates that those two
classes can’t be separated, in other words, there will be lot of misclassification between those two
classes. In conjunction with transformed divergence, results of the ML classifier trained on individual
views provide several interesting insights:

(1) In May (crop planting season), the corn and soybean crops are not clearly distinguishable,
but are clearly separable in later months. Transformed divergence between corn and soy
in May is 957.98 (Table 6) which indicates that these two classes are highly overlapping.
MLC shows that 45 samples from corn are misclassified as soy and 126 samples of soy are
misclassified as corn. On the other-hand, a transformed divergence value of 1610.59 (Table 7)
indicates that these classes are fairly separable, which is also reflected in MLC performance
in July image.
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corn soy alfa grass water  dvlpd forest wetlnd
corn 0.00 ] 957.98 \ 2000.00 1999.98 2000 1999.45 1859.75 2000
soy | |957.98 0.00  2000.00 2000.00 2000 2000.00 1999.11 2000
alfa | 2000.00 2000.00 0.00 2000.00 2000 1998.70 1999.89 2000
grass | 1999.98 2000.00 2000.00 0.00 2000 1790.64 1973.95 2000
water | 2000.00 2000.00 2000.00 2000.00  0.00 2000.00 2000.00 2000
dvlpd | 1999.45 2000.00 1998.70 1790.64 2000 0.00 1817.02 2000
forest | 1859.75 1999.11 1999.89 1973.95 2000 1817.02 0.00 2000
wetlnd | 2000.00 2000.00 2000.00 2000.00 2000 2000.00 2000.00 0.00
TABLE 6. Transformed Divergence Between Classes from May Image
corn soy alfa grass water  dvlpd forest  wetlnd
corn 0.00  1610.59 2000 |927.95| 2000 2000.00 1993.94 1999.65
soy | 1610.59 0.00 2000 |1252.87| 2000 1997.30 2000.00 2000.00
alfa | 2000.00 2000.00  0.00 2000.00 2000 2000.00 2000.00 2000.00
grass | [927.95] [1252.87] 2000 0.00 2000 1992.04 1999.50 1999.76
water | 2000.00  2000.00 2000  2000.00  0.00 2000.00 2000.00 2000.00
dvlpd | 2000.00  1997.30 2000  1992.04 2000 0.00 2000.00 1999.31
forest | 1993.94  2000.00 2000  1999.50 2000 2000.00 0.00 1734.34
wetlnd | 1999.65  2000.00 2000  1999.76 2000 1999.31 1734.34 0.00

(2) Likewise one can see in Table 7 that grass in July image is confusing with corn and soy

classes, however they are fairly separable in May image.

(3) Wetlands are better identified when using May data but are completely missed by classifiers

that use August and September data.

(4) The classifier that uses May data performs poorly in identifying water, but the classifiers

using data from later months perform significantly better for water.

TABLE 7. Transformed Divergence Between Classes from July Image

Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 252 0 0 2 0 0 7 0 0.97
soy 0 224 0 1 0 0 0 0 1.00
alfa 0 0 0 27 0 0 0 0 0.00
grass 9 0 0 170 0 1 0 0 0.94
Actual | Coter | 0 0| o 0 0 18 0 0 0.00
dvlpd 0 0 0 0 0 99 0 0 1.00
forest 4 0 0 3 0 0 110 0 0.94
wetlnd | 14 0 0 2 0 2 18 0 0.00
Prec; | 0.90 | 1.00 - 0.83 - 0.82 0.81 - 0.89
F; 0.93 | 1.00 | 0.00 | 0.88 | 0.00 0.90 0.87 0.00 0.57

TABLE &. Confusion matrix for the stacked vector method.

The confusion matrices for the classifiers trained using the stacked vector and Bayesian averaging
classifier are shown in Tables 8 and 9, respectively. On average, both of these methods perform
better than the classifiers trained using individual views. This is expected, since data collected from
different months have distinguishing abilities for different types of land cover. The stacked vector
method classifies 89% of instances correctly, but the F-measure reveals that it completely misses the
smaller classes, like alfa-alfa, water, and wetlands. The reason for this is that the dimensionality of
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Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 232 3 0 0 0 0 17 9 0.89
soy 12 186 9 18 0 0 0 0 0.83
alfa 7 9 9 0 0 0 2 0 0.33
grass 5 13 21 119 0 11 2 9 0.66
Actual | Coter | 0 0| o 0 18 0 0 0 1.00
dvlpd 0 0 0 2 0 96 0 1 0.97
forest 7 0 0 0 0 2 94 14 0.80
wetlnd 0 0 0 0 0 0 36 0 0.00
Prec; | 0.88 | 0.88 | 0.23 | 0.86 1.00 0.88 0.62 0.00 0.78
F; 0.89 | 0.85 | 0.27 | 0.75 1.00 0.92 0.70 0.00 0.77

TABLE 9. Confusion matrix for the Bayesian averaging method.

the input is large (12) and hence the parameter estimation for the smaller classes is inaccurate (also
known as the Hughes effect). Since the Bayesian averaging method learns classifiers for individual
views, it does not get affected by the high-dimensionality issue and hence performs better on small
classes. Since the Bayesian averaging method combines the classifiers trained on individual views,
it is able to perform better than the individual classifiers, though it cannot correctly identify any of
the instances belonging to the wetlands class.

9.2. Comparing Co-training with Supervised Multi-view Learning Approaches. In this
section we present results using the co-training method. Since co-training is a semi-supervised
learning approach we use a small fraction of the available labeled training data for training. The
remaining training instances are used as the unlabeled data used by the co-training algorithm. The
labeled instances are picked randomly. We experimented with 10 different random samples and
report the average results of the 10 resulting confusion matrices. Table 10 shows the confusion
matrix obtained for the co-training approach using a labeled data set of size 120. Table 11 shows
the confusion matrix when the size of the labeled data set was 400.

Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 245 6 0 1 0 0 9 0 0.94
soy 14 209 1 1 0 0 0 0 0.93
alfa 0 0 18 9 0 0 0 0 0.67
grass 10 0 17 136 0 12 0 5 0.76
Actual | Coter | 0 | 0 | 0 0 18 0 0 0 1.00
dvlpd 0 3 0 1 0 94 1 0 0.95
forest 6 0 0 0 0 0 108 3 0.92
wetlnd 0 0 0 0 0 0 23 13 0.36
Prec; | 0.89 | 0.96 | 0.50 | 0.92 1.00 0.89 0.77 0.62 0.87
F; 0.91 | 0.94 | 0.57 | 0.83 1.00 0.92 0.84 0.46 0.81

TABLE 10. Confusion matrix for co-training using 120 labeled training instances.

We immediately notice from Table 10 that the co-training based method uses only 120 labeled
training instances and still significantly outperforms the stacked vector and Bayesian averaging based
classifiers which use 945 labeled training instances. Increasing the number of training instances for
co-training to 400 only marginally improves the performance. Moreover, the co-training classifier
performs well on all classes, even those for which other classifiers performed poorly, like alfa-alfa,
water, and wetland. The key strength of co-training is that it iteratively adds high quality unlabeled
instances to the training set and hence builds classifiers (for each view) using a relatively higher
quality training data compared to the entire data set used by the other methods.

For comparison we also report the performance of the stacked vector and the Bayesian model
averaging methods using the same labeled training data set (of size 120) as used by the co-training
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Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 244 8 0 0 0 0 9 0 0.93
soy 15 209 0 1 0 0 0 0 0.93
alfa 1 0 10 16 0 0 0 0 0.37
grass 10 0 7 146 0 10 1 7 0.81
Actual | Coter | 0 0| o 0 18 0 0 0 1.00
dvlpd 0 2 0 1 0 96 0 0 0.97
forest 3 0 0 0 0 0 113 1 0.97
wetlnd 0 0 0 0 0 0 26 11 0.30
Prec; | 0.89 | 0.95 | 0.59 | 0.89 1.00 0.91 0.76 0.58 0.88
F; 0.91 | 0.94 | 0.45 | 0.85 1.00 0.94 0.85 0.39 0.79

TABLE 11. Confusion matrix for co-training using 400 labeled training instances.

algorithm. This was done to ensure that the subset of 120 instances, by itself is not enough to
learn a good classifier. Tables 12 and 9.2 show that the performance of these classifiers significantly
deteriorates compared to when the larger training data is used (Tables 8 and 9). This indicates
that the iterative augmentation of training data by co-training is indeed a better way to incorporate
multiple views of the data as well as unlabeled training instances.

Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 231 0 0 28 0 0 2 0 0.89
soy 28 162 0 35 0 0 0 0 0.72
alfa 0 0 0 27 0 0 0 0 0.00
grass 0 0 0 180 0 0 0 0 1.00
Actual | ter | 4 0| o 5 0 9 0 0 0.00
dvlpd 17 0 0 53 0 29 0 0 0.29
forest 6 0 0 70 0 0 41 0 0.35
wetlnd 6 0 0 19 0 5 6 0 0.00
Prec; | 0.79 | 1.00 — 0.43 - 0.67 0.84 - 0.67
F; 0.84 | 0.84 | 0.00 | 0.60 | 0.00 0.41 0.49 0.00 0.40

TABLE 12. Confusion matrix for stacked vector method using 120 labeled training instances.

Predicted
Class | corn | soy | alfa | grass | water | dvlpd | forest | wetlnd | Rec;
corn 212 12 0 20 0 0 15 3 0.81
soy 11 194 4 15 0 0 0 0 0.87
alfa 8 15 3 1 0 0 0 0 0.11
grass 29 29 6 105 0 8 0 2 0.59
Actual | Coter | 0 | 0 | 0 0 18 0 0 0 1.00
dvlpd 1 6 0 4 0 83 0 5 0.84
forest 12 0 0 1 0 1 83 21 0.70
wetlnd 0 0 0 0 0 0 18 18 0.50
Prec; | 0.78 | 0.76 | 0.23 | 0.72 1.00 0.90 0.72 0.37 | 0.74
F; 0.79 | 0.81 | 0.15 | 0.65 1.00 0.87 0.71 0.42 0.67

TABLE 13. Confusion matrix for Bayesian averaging method using 120 labeled
training instances.

10. CONCLUSIONS

In this paper we proposed two approaches for classifying multi-temporal images. In the first
approach, we used fusion of predictions from ensemble of classifiers using Bayesian model averaging.
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In the second approach we generalized co-training method for multiple views. We compared the
performance of these two classification schemes with regular MLC and straightforward stacked vector
approach that are often used in multi-temporal image classification. All four methods were evaluated
on multi-temporal images from four different dates spanning crop growing season in 2008. Evaluation
on independent test dataset shows the better overall performance of co-training based method over
all three other methods. The key strength of co-training is that it iteratively adds high quality
unlabeled instances to the training set and hence builds classifiers (for each view) using a relatively
higher quality training data compared to the entire data set used by the other methods. As co-
training requires less number of labeled samples as compared to the other methods, this methods
can be widely used in multi-temporal image classification over large geographic regions.
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