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Abstract. A semi-supervised learning algorithm for the classification of hyperspectral data,
Gaussian process expectation maximization (GP-EM), is proposed. Model parameters for each
land cover class is first estimated by a supervised algorithm using Gaussian process regressions
to find spatially adaptive parameters, and the estimated parameters are then used to initialize a
spatially adaptive mixture-of-Gaussians model. The mixture model is updated by expectation-
maximization iterations using the unlabeled data, and the spatially adaptive parameters for un-
labeled instances are obtained by Gaussian process regressions with soft assignments. Two sets
of hyperspectral data taken from the Botswana area by the NASA EO-1 satellite are used for ex-
periments. Empirical evaluations show that the proposed framework performs significantly better
than baseline algorithms that do not use spatial information, and the results are also better than
any previously reported results by other algorithms on the same data.

1. Introduction

Remotely sensed images provide valuable information for observing large geographical areas in a
cost-effective way. Hyperspectral imagery is one of the most useful and most popular remote sensing
techniques for land use and land cover (LULC) classification [20]. Each pixel in a hyperspectral image
consists of hundreds of spectral bands, and each land cover type is identified by its unique spectral
signature. For example, spectral responses of wetland classes are different from the responses of
upland classes, and land covers with different vegetation also have spectral signatures different from
one another. However, similar land cover classes such as various types of corn fields generally show
similar spectral signatures, and identifying one type from the other becomes a more challenging task
since spectral signatures of a land cover type often vary considerably over time and space.

Conventional classification algorithms assume a globally constant model that applies to the entire
image. Though this assumption may hold for small spatial footprints, it is generally not true for large
geographical areas. The spectral signature of the same land cover can substantially vary across space
due to varying soil type, terrain and climatic conditions. Figure 1 shows how spectral signatures of
a single land cover class change over space. Figure 1(a) shows three different locations of water in
different colors, and Figure 1(b) shows the average spectral response of each location plotted with the
same color. In the presence of spatial variations, the performance of a classifier with a global model
degrades. Another challenge in hyperspectral data classification is the cost of collecting the ground
truth. Class labels are expensive to obtain for remotely sensed areas, and the task often requires
human experts, costly surveys, and/or actual physical trip to the site [27]. Since we cannot have
ground truth for all possible locations of interest, one is forced to train a model using training data
collected from certain geographic areas, and generalize the model for classification of land covers at
other locations [21].

In spatial statistics, spatially varying quantities are often modeled by a random process indexed
by spatial coordinates. Kriging is a technique that finds the optimal linear predictor for spatial
random processes [5], and in the machine learning literature the same technique is referred to as
the Gaussian process model [23]. In [17], a supervised learning algorithm called Gaussian process
maximum likelihood (GP-ML) was developed for the classification of hyperspectral data, where the
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Figure 1. Illustration of varying spectral signatures of a single class at different locations.

spatial variation of each spectral band is modeled by a Gaussian random process indexed by spatial
coordinates. In a typical Gaussian process model, the predictive distribution of an out-of-sample
instance is affected more by nearby points than by faraway points. Consequently, the uncertainty
of the predictive distribution increases as the distance from the training instances increases. The
Gaussian process model is generally regarded as a good tool for interpolation, but not for extrap-
olation. The GP-ML algorithm has the same limitation, and good classification results are not
guaranteed when the algorithm is used to classify land cover classes located far from the training
data.

We propose a spatially adaptive semi-supervised learning algorithm for the classification of hy-
perspectral data to overcome the problems of the GP-ML framework, and name it the Gaussian
process expectation-maximization (GP-EM) algorithm. GP-EM is a semi-supervised version of the
GP-ML classification framework, where the test data is modeled by a spatially adaptive mixture-of-
Gaussians model. GP-ML is used to find the initial estimates of the mixture components, and the
mixture model is updated by EM iterations with the unlabeled test instances. By utilizing the test
data in a transductive setting for the Gaussian process regression, the proposed framework suffers
less from the extrapolation problem.

2. Related Work

Generative models of hyperspectral data often assume a multi-variate Gaussian distribution for
each class, and both the maximum-likelihood classification and the expectation-maximization algo-
rithm have been widely used in hyperspectral data analyses [8]. In real applications, it is often the
case that the classifier is trained at one location and applied to other locations; however not many
studies have addressed this issue so far. Rajan et al [21] proposed a knowledge transfer framework for
classification of spatially and temporally separated hyperspectral data. There have also been studies
on the active learning of hyperspectral data to minimize the required number of labeled instances
to achieve the same or better classification accuracies [22][16], and these active learning algorithms
have also been tested on spatially and temporally separated datasets. Active learning utilizes the
abundance of unlabeled data, but it is different from semi-supervised learning since active learning
algorithms need an oracle that can provide ground truth for selected instances.

There have been a number of studies that utilize spatial information for hyperspectral data
analyses. A geostatistical analysis of hyperspectral data has been studied by Griffith [11], but no
classification method was provided. One way to incorporate spatial information into a classifier is
stacking feature vectors from neighboring pixels [12]. A vector stacking approach for the classification
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of hyperspectral data has been proposed Chen el al [2], where features from the homogeneous
neighborhood is stacked using a max-cut algorithm. Another way to incorporate spatial information
is using image segmentation algorithms [15] [25]. The results from these approaches largely depend on
the initial segmentation results. Some algorithms exploits spatial distributions of land cover classes
directly. The simplest direct method is majority filtering [6], where the classified map is smoothed
by 2-dimensional low-pass filters. A popular method that incorporates spatial dependencies into the
probabilistic model is the Markov random field model [14][28]. The closest approach to this paper is
by Goovaerts [10], where the existence of each land cover class is modeled by indicator kriging to be
combined with the spectral classification results, but the spatial information was not used to model
variations of spectral features.

The proposed GP-EM framework is related to the Gaussian process maximum likelihood (GP-
ML) classification model by Jun and Ghosh [17]. A detailed description of the GP-ML model
follows in the background section. GP-ML models the class-conditional probabilistic distribution of
each band as a Gaussian random process that is indexed by spatial coordinates. This approach is
related to a geostatistical technique called kriging [5]. Kriging finds the optimal linear predictor for
geospatially varying quantities, and the approach has been recently adopted by machine learning
researchers [23]. Recently, a technique called geographically weighted regression (GWR) [9] has been
studied for regression problems where relationships between independent and dependent variables
vary over space. GWR is different from kriging in a sense that its objective is finding spatially
varying regression coefficients, while in kriging the objective is finding spatial variation of variables.
GWR and kriging both can be used for similar tasks, and a recent comparative study has shown
that kriging is more suitable for prediction of spatially varying quantities, but a hybrid approach
may be beneficial for description of complex spatially varying relationships[13].

In the GP-EM algorithm we use the mixture of Gaussian processes model by Tresp [26] to calculate
Gaussian process regressions with softly assigned instances. We also employ the best-bases feature
extraction algorithm to reduce the dimensionality of hyperspectral data [19].

3. Background

3.1. Maximum likelihood classification. Maximum likelihood (ML) classifier is a popular tech-
nique for classification of hyperspectral data. Let y ∈ {1, ..., c} be the class label and x ∈ Rd is the
spectral feature vector. The posterior probability distribution follows the Bayes rule:

(1) p(y = i|x,Θ) =
p(y = i|Θ)p(x|y = i,Θ)∑c
i=1 p(y = i|Θ)p(x|y = i,Θ)

,

where Θ is the set of model parameters. The class-conditional distribution of hyperspectral data is
typically modeled by a multi-variate Gaussian distribution:

(2) p(x|y = i,Θ) ∼ N (μi, Σi) =
1

(2π)n/2|Σi|1/2
e−

1
2 (x−μi)

T Σ−1
i (x−μi) .

Θ = {(μi,Σi)|i = 1, ..., c}, where μi and Σi are the mean vector and the covariance matrix of the
i-th class. The ML classifier estimates these parameters by maximum likelihood estimators using
training data with known class labels, and then predicts class labels of test instances that have the
maximum posterior probabilities according to (1) and (2).

As mentioned earlier, spectral characteristics of hyperspectral data change over space due to var-
ious reasons. A single land cover class often shows different spectral responses at different locations.
It is too simplistic, therefore, to assume non-varying stationary probabilistic distributions without
adjustments for spatially varying spectral signatures. With incorporation of the spatial coordinate
s, the posterior distribution in (1) becomes:

(3) p(y = i|x, s,Θ) =
p(y = i|s,Θ)p(x|y = i, s,Θ)∑c
i=1 p(x|y = i, s,Θ)p(y = i|s,Θ)

.
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By employing a Gaussian process regression model, we can write the class-conditional distribution
in (2) using spatially varying parameters:

(4) p(x|y = i, s,Θ) ∼ N (μi(s), Σi) .

The spectral covariance matrix Σi is kept constant for each class to avoid an explosion of parame-
ters, i.e., a stationary covariance function is employed for the Gaussian process model. The resulting
Gaussian process maximum-likelihood (GP-ML) model provides a framework to estimate the spa-
tially varying μi(s) for ML classifiers [17].

3.2. GP-ML framework. The GP-ML algorithm models the mean of each spectral band of a given
class as an independent Gaussian random process indexed by spatial coordinates. It is generally not
true that spectral features in hyperspectral data are independent given the class, but we employed
the näıve Bayes assumption to make the model computationally tractable. In this paper, we use the
GP-ML algorithm that is slightly modified from [17]. For simple notation, let us focus on a single
class and omit i for now. We model x(s) ∈ Rd as a random process indexed by a spatial coordinate
s ∈ R2 with a mean function μ(s) and a spatial covariance function k(s1, s2) according to the GP
model.

For a given class, let X = {x1,x2, ...xn} be the set of n training instances of the class at corre-
sponding locations S = {s1, s2, ...sn}. First, we estimate the constant (global) mean μc and then
subtract it from each instance to make the data zero-mean:

x̂k = xk − μc , where μc =
1
n

n∑
k=1

xk .

For a given location s, we want to get a spatially adjusted mean vector μ(s) of the residue, so
that the overall class mean is the sum of the constant mean and the spatially varying component,
μc + μ(s). Assuming a zero-mean Gaussian process prior for each band, μj(s), the predictive mean
of the j-th band of μ(s), is easily derived from the conditional distribution of Gaussian random
vectors:

(5) μj(s) = σ2
fj

k(s, S)[σ2
fj

KSS + σ2
εj

I]−1x̂j .

x̂j is a column vector with the collection of j-th bands, and the k-th element of xj is the j-th band
of x̂k. σ2

fj
and σ2

εj
are hyperparameters for signal and noise powers of the j-th band. k(s, S) is a

row vector such that the k-th element in the vector corresponds to spatial covariance between s and
sk. Similarly, KSS is a spatial covariance matrix such that (i, j)-th element of KSS corresponds to
k(si, sj). We use the popular isometric squared exponential covariance function:

k(s1, s2) = exp
(
−||s1 − s2||2

2L2

)
,

where L is the length parameter that is identical over all classes and bands. L is selected by
cross-validations, and the signal power σ2

f and the noise power σ2
ε are directly measured from the

training data. We use (5) to get the spatially detrended training data x̄ = x − μ(s), and then x̄
is modeled by a stationary multi-variate Gaussian distribution. Rather than estimating parameters
of high-dimensional Gaussian distributions, we use Fisher’s multi-class linear discriminant analysis
(LDA) to reduce the dimensionality of data, because it provides the optimal linear projection for
the separation of Gaussian distributed data [7].

Returning to the multi-class setup, assume that the steps above are repeated for all classes to
yield μi(s)’s and estimated constant parameters (μr

ci
,Σr

i )’s for all i = 1, ..., c, where the superscript
r denotes the reduced dimensionality. Then the classification of an out-of-sample test instance x∗

at location s∗ is performed by estimating the mean of spatially varying component μi(s∗) for each
class by (5). The spatially adaptive class-conditional distribution at location s∗ is modeled as:

(6) p(x∗|y = i, s∗,Θ) ∼ N (x∗r;μr
i (s

∗) + μr
ci

, Σr
i ) .
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4. Proposed Method

4.1. GP-EM framework. The ML classifier estimates parameters of class-conditional Gaussian
distributions using labeled training data, and it assumes that the test data has the same class-
conditional distributions. This assumption generally does not hold when we have test data from
spatially distant regions. When the discrepancy between the training and the test data is small,
a semi-supervised expectation maximization (EM) algorithm can be used to modify the obtained
distributions. In GP-EM, the unlabeled test data is modeled by a spatially adaptive mixture-of-
Gaussians model, where it is assumed that each component represents a single land cover class.
Each component of the mixture model is initially seeded by the parameters of the class-conditional
Gaussian distributions obtained by GP-ML, and then only the test data is used in unsupervised
fashion for the following EM iterations.

A mixture-of-Gaussians model is defined as:

p(x|Θ) =
c∑

i=1

αiN (μi,Σi) ,
c∑

i=1

αi = 1 ,

where αi is the mixing propotion associated with each Gaussian component and c is the number of
components, i.e. the number of land cover classes. Instead of assuming constant (global) parameters,
we propose a spatially adaptive mixture-of-Gaussians model:

p(x|s,Θ) =
c∑

i=1

αi(s)N (μi(s),Σi) ,
c∑

i=1

αi(s) = 1 .

We still assume that the spectral covariance Σi is independent of the spatial location s, but we model
both the mixing proportion αi(s) and the spectral mean μi(s) as spatially varaying parameters.

4.2. E-Step. Let zt
i,k ∈ [0, 1] be an indicator variable that represents the probability of the k-th

instance belonging to the i-th component. The superscript t denotes the t-th interation of the EM
process. The E-step updates zt

i,k as:

zt
i,k =

zt
i,k p(xk;μt

i,k,Σt
i)∑c

l=1 zt
l,k p(xk;μt

l,k,Σt
l)

,

where p(xk;μt
i,k,Σt

i) ∼ N (xk;μt
i,k,Σt

i). Note that we use μt
i,k to denote μt

i(sk), for simplicity and
consistency with other notations in the EM process. The difference from conventional EM is that
now μt

k,i is not a constant across all k’s, and can have different values for instances at different
locations.

4.3. M-Step. First we subtract the constant mean μc
i from x as in GP-ML, but now the mean is

calculated with soft assignments:

x̂k = xk − μc
i , where μc

i =

∑n
k=1 zt

i,kxk∑n
k=1 zt

i,k

.

To perform a Gaussian process regression with soft assignments, we employ the mixture of Gaussian
processes approach [26]. Let μj

i,· be a column vector with the collection of the j-th elements of μj
i,k,

then its regressive value with soft membership is calculated as:

(7) μj
i,· = σ2

fj
KSS [σ2

fj
KSS + diag(σ2

εj
/zt

i,k)]−1x̂j ,

where diag(σ2
εj

/zt
i,k) is a n×n diagonal matrix that its k-th diagonal element is σ2

εj
/zt

i,k. Small value
of zt

i,k means that the probability of k-th sample belonging to the i-th class is low, and it results in
implying a high noise power to the k-th point, making the predicted value less affected by the k-th
instance. If zt

i,k = 1 for all k’s, then (7) becomes the standard Gaussian process regression model.
The M-step for the mean parameter is:

μt+1
i,k = μi,k + μc

i ,

31

2010 Conference on Intelligent Data Understanding



where the j-th element of μi,k is the k-th element of μj
i,· from (7). There is an additional adjust-

ment step in [26] to prevent domination of a Gaussian process component with the largest length
parameter, but we do not need such an adjustment here because we assume length parameters are
the same across all components in our model. The M-step for the spectral covariance parameter is
straightforward:

Σt+1
i =

∑n
k=1 zt

i,k(x̂k − μt+1
i,k )(x̂k − μt+1

i,k )T∑n
k=1 zt

i,k

.

GP-EM also uses Fisher’s multi-class LDA for dimensionality reduction. The Fisher’s projection is
re-calculated at every M-step with soft assignments to find the optimal linear subspace with updated
parameters.

The M-step for the indicator variable is done by fitting a separate Gaussian process for zt
i,k, which

is similar to the indicator kriging approach [10]:

zt+1
i,k = σ2

fz
kz(sk, S)[σ2

fz
KzSS + σεz

I]−1(zt
i,k −

1
2
) +

1
2

,

where kz(s1, s2) is a covariance function for the indicator variable, as described in the following
section. We subtract 1

2 because z ∈ [0, 1], and add it back after the GP regression. Hyperparameters
σ2

fz
and σεz are measured from the distribution of zt

i,k.

4.4. Covariance function for the indicator variable. In (5) and (7), we used the squared expo-
nential covariance function to model spatial variation of the spectral bands. The extreme smoothness
of the squared exponential covariance function might be suitable for modeling of smoothly varying
quantities such as spectral signatures of hyperspectral data, but such smoothness is not suitable for
many other physical processes such as geospatial existence of certain materials [24]. It is commonly
recommended to use covariance functions from the Matérn class for such processes. We used the
Matérn covariance function with ν = 3/2:

kz(s1, s2) =

(
1 +
√

3||s1 − s2||
Lz

)
exp

(
−
√

3||s1 − s2||
Lz

)
.

The length parameter Lz is set to be in the same order of magnitude as the spatial resolution of the
image, since we do not want to impose unnecessarily smooth filtering effects to the classified results.
The difference between the squared exponential function and the Matérn function is illustrated in
Figure 2 using the 9-class Botswana data. The blue lines represent initial values of zt

i,k for i = 7 and
t = 1, and the green lines represent zt+1

i,k after the M-step. Note that the points are sorted according
to the index k for illustration, but they are from spatially disjoint two-dimensional chunks as shown
in Figure 3; hence there are several discontinuities in the plot. Figure 2(a) shows the result using
the Matérn covariance function, and Figure 2(b) shows the result using the squared exponential
function. Both covariance functions used the same length parameter. It is clear from the figure that
the squared exponential function is too smooth to model abruptly changing quantities.

4.5. Fast computation of GP. At each M-step of the GP-EM algorithm, we need to calculate
(d+1) Gaussian processes for d-dimensional data, and this is more problematic than in the GP-ML
case since we use all unlabeled instances for every GP regression. In the supervised learning case,
we fit a separate GP for each class using only samples from the class; and the number of instances
belonging to one class of the training data class is usually much smaller than the number of all
unlabeled instances. The most time-consuming step of the GP-EM algorithm is the inversion of
the spatial covariance matrix in (7): σ2

fKSS [σ2
fKSS + diag(σ2

ε /zt
i,k)]−1. When we have n instances,

KSS is an n× n matrix, and inverting the matrix requires O(n3) computations. By using an eigen-
decomposition of the covariance matrix we can get the result in O(n2) time instead of O(n3). Since
KSS is a positive semi-definite matrix, we can diagonalize the matrix:

K−1
SS = V Λ−1 V T = V diag(λ−1

k ) V T ,
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Figure 2. Effects of different covariance functions with the same length parameter.

where V is the matrix of eigenvectors and λk is the k-th eigenvalue of KSS . The matrix computation
in (7) is hence simplified as:

σ2
fKSS [σ2

fKSS + diag(σ2
ε /zt

i,k)]−1 = σ2
fV diag(λk)���V T V (σ2

fdiag(λk) + diag(σ2
ε /zt

i,k))−1 V T

= V diag

(
σ2

f

σ2
fλk + σ2

ε /zt
i,k

)
V T .

It is important to note that the remaining matrix multiplications should be calculated from right to
left, because it will always leave a column vector in the right end of the equation and we do not need
to multiply two n×n matrices. This method has the time complexity of O(n2) instead of O(n3) for
the entire calculation once we have the eigen-decomposition beforehand. Because KSS is common
across all dimensions, we need only two eigen-decompositions for the entire GP-EM iterations: KSS

and KzSS .

5. Experiments

5.1. Dataset. The Botswana dataset was obtained from the Okavango Delta by the NASA EO-1
satellite with the Hyperion sensor on May 31, 2001. The acquired data originally consisted of 242
bands, but only 145 bands are used after removing noisy and water absorption bands. The area used
for experiments has 1476×256 pixels with 30m spatial resolution. We used two different sets of data
with different list of classes from the same geographical region. The first dataset has 9 land cover
classes, and the second one has 14 classes. Each dataset has spatially disjoint training and test data.
The ground truth is collected using a combination of vegetation surveys, aerial photography, and a
high resolution IKONOS multispectral imagery. Table 1 shows the list of classes in the data with the
number of training and test instances in each class. The 14-class data has similar land cover types
in different classes; hence the classification task is more challenging than the 9-class data. Figure 3
shows the Botswana image with class maps for training and test data for both datasets. Different
land cover classes are shown in different colors in the class map. The training and test data are used
as provided to compare the results to previously reported results on the same data.

5.2. Experimental setup. The proposed GP-EM algorithm was evaluated and compared to three
other classification algorithms: conventional ML, EM, and the GP-ML algorithm. The semi-
supervised learning was performed in a transductive manner by using the test data as unlabeled

33

2010 Conference on Intelligent Data Understanding



Class no. Class name # Training # Test
1 Water 158 139
2 Primary Floodplain 228 209
3 Riparian 237 211
4 Firescar 178 176
5 Island interior 183 154
6 Woodlands 199 158
7 Savanna 162 168
8 Short mopane 124 115
9 Exposed soil 111 104

(a) 9-class data

Class no. Class name # Training # Test
1 Water 270 126
2 Hippo grass 101 162
3 Floodplain grasses 1 251 158
4 Floodplain grasses 2 215 165
5 Reeds 269 168
6 Riparian 269 211
7 Firescar 259 176
8 Island interior 203 154
9 Acacia woodlands 314 151
10 Acacia shrublands 248 190
11 Acacia grasslands 305 358
12 Short mopane 181 153
13 Mixed mopane 268 133
14 Exposed soils 95 89

(b) 14-class data

Table 1. Class names and number of data points for Botswana data.

data. The EM process was initialized by learning a supervised classification model using the train-
ing data, and then the unlabeled test data is used for the following EM iterations for both EM and
GP-EM experiments. The EM classifier was initiated with parameters estimated by the ML classi-
fier, and the GP-EM classifier was initiated with parameters estimated by the GP-ML classifier. To
find best length parameters for GP-ML and GP-EM classifiers, we divided the training data into
two spatially disjoint sets and performed two-fold spatial cross-validation on them. The same L was
used for both GP-ML and GP-EM results. The length parameter for the indicator variable, Lz, was
also searched in the same manner, but it made little differences in the same order of magnitudes.
We also used the best-bases dimensionality reduction algorithm [19] to pre-process the data to save
computational time. The best-bases algorithm combines highly correlated neighboring bands; hence
the dimensionality reduced features are less correlated with each other, which makes the näıve Bayes
assumption of GP-ML/EM more plausible. It was also shown that ML and EM algorithms also ben-
efit from the best-bases algorithm [19]. For ML and EM experiments, Fisher’s multi-class LDA was
also used for further dimensionality reduction in a pre-processing manner.

5.3. Results. Table 2 shows the overall classification accuracies for both datasets. EM and GP-EM
processes are repeated for 30 iterations. The GP-EM results are 98.81 % for the 9-class data, and
95.87 % for the 14-class data. The proposed GP-EM algorithm shows significantly better results than
all other methods evaluated. In fact this result is better than any other results reported so far on
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(a) 9-class data

1. Water

2. Hippo Grass

3. Floodplain Grass 1

4. Floodplain Grass 2
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13. Mixed Mopane
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(b) 14-class data

Figure 3. Images of the Botswana data. From left to right, reconstructed RGB
image, class map of training data, and class map of test data.

the same data as shown in Table 3: the multi-resolution manifold algorithm (MR-Manifold) [18], the
knowledge transfer framework with class hierarchies (KT-BHC) [21], the nonlinear dimensionality
reduction by Isomap with support vector machine classifier (Iso-SVM)[4], the k-nearest neighbor
on the manifold approach (SkNN) [1], and the hierarchical support vector machine algorithm (BH-
SVM) [3]. It is also noteworthy that comparable results can be observed after acquiring substantial
amount of class labels from the unlabeled data by active learning algorithms in [16] and [22], but
we do not use any labels from the test data in this paper. Figure 4 shows error rates for individual
classes. Even though GP-ML shows better overall accrucies than ML, it is observable that GP-ML
performs poorly for some classes. This usually happens when test data is located too far from
training data; hence the GP regression makes inaccurate predictions. The EM algorithm effectively
reduces error rates from the initial ML results for almost all classes; however it is also noticeable
that the EM results show similar distributions with the ML results by making more errors for classes
that ML made more errors. On the contrary, the proposed GP-EM algoithm effectively overcomes
shortcomings of the initial estimates provided by the GP-ML classifier. Figure 5 shows how errors
and log-likelihoods progress for two EM based algorithms. GP-EM shows consistently lower error
rates than EM as well as better log-likelihoods.

ML EM GP-ML GP-EM
9-class 87.24 % 93.72 % 90.03 % 98.81 %
14-class 74.30 % 85.36 % 82.76 % 95.87 %

Table 2. Overall classification accuracies for different algorithms. EM and GP-EM
results are shown with 30 iterations.
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9-class results 14-class results
Iso-SVM [4] MR-Manifold [18] SkNN [1] KT-BHC [21] BH-SVM [3]

Overall accuracy 80.7 % 86.9 % 87.5% 84.42 % 72.1 %
Table 3. Classification accuracies with spatially disjoint Botswana data from pre-
vious studies.
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Figure 4. Classification error for each class after 30 iterations.

6. Conclusion

We have proposed a novel semi-supervised learning algorithm for the classification of hyperspectral
data with spatially adaptive model parameters. The proposed algorithm models the test data by
a spatially adaptive mixture-of-Gaussians model, where the spatially varying parameters of each
component are obtained by Gaussian process regressions with soft memberships using the mixture-of-
Gaussian-processes model. Experiments on the spatially separated test data show that the proposed
framework performs significantly better than the baseline algorithms, and the result is better than
any previously reported results on the same datasets.
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