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SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS
MONITORING USING GAUSSIAN PROCESS

VARUN CHANDOLA* AND RANGA RAJU VATSAVAT*

ABSTRACT. Biomass monitoring, specifically, detecting changes in the biomass or vegetation of
a geographical region, is vital for studying the carbon cycle of the system and has significant
implications in the context of understanding climate change and its impacts. Recently, several time
series change detection methods have been proposed to identify land cover changes in temporal
profiles (time series) of vegetation collected using remote sensing instruments. In this paper, we
adapt Gaussian process regression to detect changes in such time series in an online fashion. While
Gaussian process (GP) has been widely used as a kernel based learning method for regression and
classification, their applicability to massive spatio-temporal data sets, such as remote sensing data,
has been limited owing to the high computational costs involved. In our previous work we proposed
an efficient Toeplitz matrix based solution for scalable GP parameter estimation. In this paper we
apply these solutions to a GP based change detection algorithm. The proposed change detection
algorithm requires a memory footprint which is linear in the length of the input time series and
runs in time which is quadratic to the length of the input time series. Experimental results show
that both serial and parallel implementations of our proposed method achieve significant speedups
over the serial implementation. Finally, we demonstrate the effectiveness of the proposed change
detection method in identifying changes in Normalized Difference Vegetation Index (NDVI) data.

1. INTRODUCTION

Increasing availability of high resolution remote sensing data has encouraged researchers to extract
knowledge from these massive spatio-temporal data sets in order to solve different problems pertain-
ing to our ecosystem. Land use land cover (LULC) monitoring, specifically identifying changes in
land cover, is one such problem that has significant applications in detecting deforestation, crop ro-
tation, urbanization, forest fires, and other such phenomenon. The knowledge about the land cover
changes can then be used by policy makers to take important decisions regarding urban planning,
natural resource management, water source management, etc.

In this paper we focus on the problem of identifying changes in the biomass or vegetation in a
geographical region. Biomass is defined as the mass of living biological organisms in a unit area.
In the context of this study, we restrict our monitoring to plant (specifically crop) biomass over
large geographic regions. In recent years biomass monitoring is increasingly becoming important,
as biomass is a great source of renewable energy. Moreover, biomass monitoring is also important
from the changing climate perspective, as changes in climate are reflected in the change in biomass,
and vice versa. The knowledge about biomass changes over time across a geographical region can
be used estimate quantitative biophysical parameters which can be incorporated into global climate
models.

The launch of NASA’s Terra satellite in December of 1999, with the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) instrument aboard, introduced a new opportunity for terrestrial
remote sensing. MODIS data sets represent a new and improved capability for terrestrial satel-
lite remote sensing aimed at meeting the needs of global change research. With thirty-six spectral
bands, seven designed for use in terrestrial application, MODIS provides daily coverage, of moderate
spatial resolution, of most areas on the earth. Land cover products are available in 250m, 500m,
or 1000m resolutions [17]. MODIS land products are generally available within weeks or even days
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of acquisition and distributed through the EROS Data Center' and are currently available free of
charge. MODIS land products allow users to identify vegetation changes over time across a region
and estimate quantitative biophysical parameters which can be incorporated into global climate
models. A NDVI temporal profile is a graphical plot of sequential NDVI observations against time.
These profiles quantify the remotely sensed vegetation’s seasonality and dynamics. These profiles
can be described with simple parameters, like the amplitude, mean, and standard deviation. We can
understand the onset and peak of greenness and the length of growing season from analyzing these
profiles. By monitoring NDVI profiles as time series, we can understand the changes in the biomass
in a continuous manner. MODIS data has been extensively used to study vegetation and crop phe-
nological characteristics [19, 33], and monitoring [39]. However, online monitoring of biomass over
large geographic regions is relatively unexplored area.

There is an imminent need for algorithms that can be applied to the problem of identifying
land cover change in spatio-temporal data sets in an online fashion. Some of the challenges faced
by the researchers in this domain include adapting to online setting, accounting for missing data
and outliers, handling non-linear dependencies, seasonality and non-stationarity in the time series,
incorporating spatial dependencies, and scaling to the massive data sizes. Recently, land cover change
detection techniques have been proposed that identify changes in normalized difference vegetation
index (NDVI) time series data collected by applying time series change detection techniques [3, 10,
25, 21}, but do not address most of the challenges associated with the land cover change detection
problem.

1.1. Gaussian Process Based Time Series Analysis. While change detection for time series
data has been a widely researched topic in statistics and signal processing community, algorithms
that can detect changes in periodic time series data are limited [14, 3], and even these techniques
are not well-suited for online change detection. We propose a non-parametric statistical algorithm
that can detect changes in noisy time series data in an online fashion. We use Gaussian Process
[28, 31] as the basis for a Bayesian non-parametric predictive model for time series data and use the
difference between the predicted and observed values to monitor change in a continuous manner,
meaning that change detection map is continuously revised as soon as new data collected by the
remote sensing satellites is available.

Gaussian process (GP) [28, 31] 2 based approaches are increasingly being used as a kernel machine
learning tool for non-parametric regression and classification. If the time indices are used as the
inputs, one can use a GP as a forecasting or prediction model for time series data [4, 12, 5]. Besides
prediction, GP based models can also be used for other time series analysis tasks such as change
detection, anomaly detection, missing data imputation, noise removal, etc. In this paper we use the
predictive capabilities of GP for online change detection in time series data.

While GP has emerged as a popular kernel machine learning tool, its application to large scale
data sets has been limited owing to the inherent O(#*) computational complexity as well as O(t?)
memory storage requirements, where ¢ is the input data size. The key bottleneck is the handling of
a large t X t covariance matrix and solving a large system of equations. The standard approach [31]
is to use Cholesky decomposition of the covariance matrix. When dealing with time series, ¢ is the
length of the time series, which can be large (and growing) for applications such as remote sensing,
astronomy, electro-cardiograph (ECG) analysis, etc. For example, MODIS collects data for entire
globe daily and hence the length of the NDVI time series is continuous growing.

The computational bottleneck for GP based analysis is further compounded by the fact that often
one needs to simultaneously handle multiple time series. For NDVTI time series, for example, multiple
time series from a spatial region need to be analyzed simultaneously. As the spatial resolution of
the remote sensing instruments grows, the number of time series to be simultaneously analyzed will
grow accordingly. The standard GP analysis methods have a O(pt®) computational complexity and

"http://eros.usgs.gov/
2Henceforth, referred to as GP.
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a O(t? + p) memory footprint for handling p time series simultaneously. While multi-threaded or
parallel programming can alleviate the issue of handling p time series simultaneously, the quadratic
memory requirements are a significant bottleneck, especially in emerging heterogeneous computing
architectures, hybrid of multi-core and Graphical Processing Units (GPUs), in which movement of
data is expected to be the biggest computational bottleneck.

In our previous work [6], we proposed a hyper-parameter estimation algorithm for GP that exploits
the special structure of the covariance matrix associated with the GP analysis to make the algorithm
scale to massive data sizes. In this paper, we apply the fast algorithm for change detection using GP.
The computational complexity of the GP based change detection is O(#?) and requires O(t) memory.
We also present a parallel version of the algorithm to simultaneously process multiple time series.
We present results on artificial data to demonstrate the speedups achieved the proposed algorithm
running in serial as well as in parallel (multi-threaded) mode on a multi-core system.

For biomass monitoring, we demonstrate the effectiveness of the proposed method in identifying
changes in NDVI time series collected for the Iowa region. We also demonstrate the scalability of
the proposed methods in handling six years of NDVI data for the Iowa region.

1.2. Related Work.

1.2.1. Time Series Change Detection. Change detection for time series data is a widely researched
are in different research communities such as statistics [16], signal processing [2], and process control
[22]. Most of the existing change techniques can be grouped into three categories, viz., parameter
change based techniques [29, 16], segmentation based techniques [15, 27, 34] and forecasting based tech-
niques [10, 23]. Parameter change based techniques assume that the time series follows a parametric
distribution and focus on identifying when the parameters change using a hypothesis test procedure.
For periodic time series, a parametric assumption is typically unrealistic, unless the seasonality
from the time series is removed, which can result in loss of useful information. Segmentation based
techniques are non-parametric but are usually not suitable for online setting. Forecasting based
techniques [10, 23] use a forecasting model to predict at a given time instance and the combine the
predicted and observed values to identify changes. Existing forecasting based techniques have been
applied to time series.

Change detection has been applied to remote sensing data to identify events such as land use
change, forest fires, and natural disasters. While some of these techniques directly handle the
satellite images [26, 36, 30, 32], recently, several techniques have been proposed that identify changes
in NDVI time series data by applying time series change detection techniques [3, 25, 10, 21].

GP have not been explicitly used for change detection in time series though similar online Bayesian
algorithm has been proposed by Adams and Mackay [1] for time series data. Several papers have
used GP for time series modeling and prediction [4, 5, 12].

1.2.2. Addressing Computational Complezity of Gaussian Process Analysis. As noted earlier, GP
based methods typically scale as O(t?) with the size of the input data with a memory requirement
of O(#?). This makes them impractical in domains that encounter massive data sizes such as remote
sensing, ECG analysis, etc. Several approximation based methods have been proposed in the liter-
ature [40, 8, 11] to scale GP to such large datasets (See [31, Chapter 8] for a detailed overview).
These methods fall under the general purview of sparse and approximate kernel methods. All of
these methods use matrix approximation techniques to efficiently manipulate the covariance matrix
(inverse computation, Cholesky factorization, solving system of equations). Several papers [40, §]
approximate the covariance matrix using lower rank approximation techniques, such as the Nystrom
approximation, for faster but approximate results. Several papers have used a “subset of regressors”
approach [35, 11] that uses only m out of ¢ regressors and hence entail O(m?t) complexity. In this
paper we focus on scaling the GP analysis such that we obtain the exact solution and hence we do
not compare our approach to the existing approximate methods.
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While scalability has been a key issue for data mining applications, only a few existing techniques
make use of the available concurrency from high performance computing hardware and software to
address this issue in the context of GP analysis. Keane et al [20] proposed a data parallel approach
for likelihood estimation in GP regression, but their method estimate the log likelihood locally, and
hence the final outcome is not guaranteed to be the same as a sequential algorithm.

In this paper we make use of the fact that the covariance matrix encountered with GP for
time series is a symmetric Toeplitz matrix and hence several solutions that have been proposed in
literature [13, 18] can be utilized to make the hyper-parameter estimation algorithm computationally
as well as memory efficient. Specifically, there have been many O(t?) algorithms developed to invert
a Toeplitz matrix as well as solve a Toeplitz system of equations [37, 24, 9]. In our earlier work [6],
we presented the adaptations of the algorithms by Trench [37, 41, 42] for the problem of scalable
hyper-parameter estimation for GP.

2. GAUSSIAN PROCESS

A GP is a generalization of a Gaussian distribution and is defined as a collection of random
variables, any finite number of which have a joint Gaussian distribution [31, Chapter 2]. A GP
describes a distribution over a (potentially infinite) set of functions and is completely specified by
its mean function m(x) and covariance function k(x,x’)?:

(1a) m(x) = E[f(x)]
(1b) k(x,x") = E[(f(x) = m(x))(f(x') = m(x'))]

where x is an input or index belonging to an input or index set X'. Typically the mean function is
taken to be zero and the GP is written as:

(2) f(x) ~ GP(0, k(x,x))

Thus the above GP is a collection of random variables, where each random variable is the value of
function f(x) at location x. When dealing with time series, the index set X is the set of time indices
{1,2,...,T}, though a GP can be defined for more general forms of inputs such as R”. For this
paper, since we are dealing with time series, we will replace x with ¢ to denote time. The covariance
function k defines the covariance between the function values at two different time points:

(3) cov(f(t1), f(t2)) = k(ts, ta)

Typically, a covariance function is specified using a set of parameters ©, these are considered as
the hyper-parameters for the GP. For example, a widely used covariance function, called squared
exponential (se), can be written as:

2

At
(4) k(ti,ta) = U?emp(—

W) where At =t; — ty

If the time series is periodic, such as the NDVI temporal profiles, an alternate covariance function,
known as Ezponential Periodic (ep), can be used:

At?

2w At
2 w )
(5) k(tlatQ) = o-fexp(_2l2w2 )eajp(—

(1 — cos )

a

where w is the length of a single cycle of the periodic time series.

3In this paper we will denote matrices with capital letters (K), vectors with small bold letters (x, s;), and scalars
with small letters (¢,z;).
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2.1. Time Series Prediction Using GP. For GP based regression, it is assumed that the actual
observations y; are noisy versions of the function values f(¢) and the two quantities are related as:

(6) ye=[f(t) +&
where £; is a noise term that accounts for the noisy component of the observations. Traditionally,
g; is assumed to be a Gaussian noise term ~ N(0,02), Vt.

Given a noisy set of observations y¢_1, the GP prior on {f(1), f(2),..., f(¢)} (see (2)) and the
relationship between y; and f(¢) (see (6)), can be used to make a prediction at time ¢. The advantage
of GP is that the prediction is not a value but a normal distribution ~ A (4, 9), where the predictive
mean g; and predictive variance 0; are given by:

(7) Uy = K;—I(K(t—l)(t—l)+0'72LI)7IYt—1
(8) b = k(tt) = K5 (Ke—1ye-1) +onl) " K1

where K(;_1)t—-1) is a [t — 1| x [t — 1| kernel matrix such that K_1)¢—1)[i][j] = (4, j). Similarly,
K41 is a (t — 1) length vector such that K 1[i] = k(¢, 7).

Equations (7) and (8) allow one to use GP for time series prediction as well as other analysis tasks
such as outlier/anomaly detection, noise removal, and change detection. But as can be observed
in (7) and (8) handling the large covariance matrix, (K_1y¢—1) + 0.1) is the key bottleneck for
computing as well as memory resources.

For notational simplicity, we will drop the suffix ¢ when referring to different quantities, wherever
not necessary, and refer to the covariance matrix (K_1)¢—1) + 021) as K and the observational
time series as y.

2.2. Hyper-parameter Estimation Using Gradient Descent. The hyper-parameters © asso-
ciated with the covariance function can be calculated by minimizing the marginal log likelihood (1)
for a training time series, which can be calculated as:

1
(9) l=logp(y|®) = *gyTKfly

1
D) log |K|
—glog%r

The optimal hyper-parameters for the covariance function can be estimated by minimizing the
function in (9) using a gradient based optimizing algorithm. The derivative of I; with respect to a
given hyper-parameter § € © can be computed as ([31, Chapter 5]):

ol 1 +. 0K 1 10K
(10) 2= Y K WK y— itr(K %)

The computational complexity of the gradient based hyper-parameter estimation algorithm, re-
ferred to as GPLearn, requires computation of log-likelihood as well as the derivative of log-likelihood,
which is O(t3), where ¢ is the length of the time series y, if standard inversion or Cholesky decom-
position based methods are used. Moreover, the calculations require keeping the O(¢?) matrix in

the memory.

3. GAUSSIAN PROCESS BASED CHANGE DETECTION

We adapt the predictive capability of GP for time series to identify changes in an online fashion.
The steps of the GPChange algorithm are shown in Algorithm 1.

The GPChange algorithm monitors the input time series from (n + 1)** observation onwards.
It uses GP to estimate the predictive distribution at time ¢, using observations available till time
(t—1) and then computes the p-value of for the actual observation y; under the reference distribution,
N (9,62). A threshold a € (0,1) is used to determine when the actual observation does not follow the
predictive distribution, which is indicative of potential change. A running counter, a, is maintained
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Input: yt,n,a, M,©
a=0
foreacht =n+1 toT do
Compute §; and 62 (See (7) and (8))
pi < p-value for y; under N (9;,572)
if p; > a then
| a+< a+1 (Potential Alarm)
else
| a < 0 (Reset)
end
if a > M then
| Raise Alarm
end

end
Algorithm 1: Algorithm GPChange

to count the number of successive potential changes. An alarm for change is raised if the counter
exceeds a threshold M.

The algorithm GPChange requires estimation of ; and 67 using (7) and (8). At time ¢, each of
these steps are O(t?), since they involve solving two linear systems of equations. The calculations
require keeping a t2 sized covariance matrix in the memory at time t.

4. EFFICIENT GP ANALYSIS USING TOEPLITZ MATRICES

In this section we present scalable methods for the algorithms GPLearn and GPChange. These
methods were originally presented in our previous work [6], and are presented here for the sake of
completeness. We assume that the covariance function used in the GP is stationary and only depends
on the absolute difference between the inputs, i.e, k(t1,t2) = k(|]A¢|). Many widely used covariance
functions, such as the squared exponential function in (4) and the exponetial periodic function in (5)
as well as the general Matern class of functions [31, Chapter 4] fall under this category of covariance
functions.

4.1. Characteristics of Covariance Matrix. We first note that the covariance function which
only depends on |A;| will result in a symmetric Toeplitz matrix, K, as shown below:

ko ki ke ... kg
ki ko k1. kg
(11) K=\ k k k :
k‘t,1 kt,Q e e ]{30

Moreover it can be shown that such functions result in a positive semi-definite covariance matrix
while adding a o2 noise to the diagonal results in a positive definite covariance matrix. One can
straightaway note that K in (11) can be represented using just the first row (or column) of K,
henceforth denoted as k. This characteristic straightaway provides a way to reduce the memory

requirements of the algorithms involving K.

4.2. Using Toeplitz Matrix Operations. Several O(t?) algorithms have been proposed for Toeplitz
matrix inversion which make use of the special matrix structure to compute the inverse [37, 24, 9].
But one can observe that a direct inversion of the covariance matrix K is not required to calculate
the predictive distribution as well as the log-likelihood and its derivatives in (7)—(10). Instead, one
only needs to calculate the following quantities:

(1) KTE 1ty (for (7))
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Input: (k,y)
Output: z;
if k; /=1 then
k—k/ki,y —y/k
end
z1 — Y1, 81— —ko, A — 1 — k3
foreach i =1 tot —2 do
0; — Yiy1 — ZiT1A<2:L+1
Vi —kip2 — giTk2zi+1

return z;
Algorithm 2: ToeplitzInverseSolve

) kTK~1k (for (8))
) yT Kty (for (9)
; log | K| (for (10))

One can use Cholesky decomposition and solve a system of equations using the Cholesky decom-
position to compute each of these quantities but that will have O(t3) complexity to compute the
decomposition and O(t?) memory requirement for the covariance matrix K.

We will show that each of these four quantities can be computed in a computational as well as
memory efficient manner:

4.2.1. Computing y' K 'y, kTK~'y, kTK~'k. Algorithm 2 shows how one can compute K 'y
(or K~1y), i.e., solving a Toeplitz system of equations. This algorithm was originally proposed by
Trench [38, 42] for Toeplitz matrices and we simplify it for the symmetric case. This algorithm takes
the first row of the covariance matrix,x = {ki, k2, ...,k }, as input and returns the solution vector.
In the algorithm x denotes a vector obtained by reversing the vector x. A portion of a vector is
denoted as x;.;.

Note that this algorithm is O(#?) and has O(t) memory requirement.

4.2.2. Computing log |K|. Tt has been shown that the determinant of the matrix K can be computed
as a by-product of the Algorithm 2 by simply taking the product of ;s [41], i.e.,

t—1

(12) log | K| = tlog ky Zlog Ai
i=1

Thus log | K| can be computed in linear time without requiring any additional memory.

4.2.3. Computing y" K~12E K =1y, Algorithm 2 computes K ~'y. The vector K 'y can be multi-
plied with %—Ig in O(n?) time and the resulting vector can be multiplied with y in linear time. Note
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Input: <
Output: s
alpha « ToeplitzInverseSolve(ky.¢—1, Ka.t)
1

7T Bitkaea
nu « [yay]"
foreach k =0 tot—1do

St — % Z;;? (2i+k—n+ Dy

sy, is the sum of the k' diagonal starting from main diagonal (k = 0).
end

return s . . .
Algorithm 3: ToeplitzDiagonalSums

that since %—}6{ is Toeplitz, it can be multiplied using only one representative row of the matrix, i.e.,

with O(n) space requirements.

4.2.4. Computing tr(K " %—Ig). Let L=K land P = %—Ig. We are interested in computing tr(LP) =
tr(PL) where P is a symmetric Toeplitz matrix and L is the inverse of a symmetric Toeplitz matrix.
We can write:
t ot
Z Z Pijlij
i=1 j=1
t ot
= DD Pli-i=niks
i=1 j=1
t=1

t
= > o Y bikg

k=—t+1 j=k+1

t t—1 t
= pOlej+2Zpk Z li—kj
j=1

k=1 j=k+1

tr(PL)

;:kﬂ lj—k,j,Vk = 0...t—11is nothing but the sum of the kth diagonal

of L. Given the diagonal sums for L(= K~') we can compute tr(K~125) in linear time. An
O(n?) algorithm for the computation of the diagonal sums is shown in Algorithm 3. The proof of
correctness of the algorithm was given by Dias and Leitao [7].

The computational complexity involved with computing ¢r(K _1%—{9{) using Algorithm 3 is O(n?)
with O(n) memory required.

Note that each summation >

5. EFFICIENT CHANGE DETECTION AND HYPER-PARAMETER ESTIMATION

In Section 4 we have provided fast and memory efficient methods to compute various quanti-
ties required for the GP based change detection and hyper-parameter estimation. These methods
can be used instead of traditional matrix operations, we refer to the change detection and hyper-
parameter estimation methods which use these Toeplitz matrix based methods, as GPChangeFast
and GPLearnFuast, respectively.

5.1. Handling Multiple Time Series for Prediction and Hyper-parameter Estimation.
In many scenarios one needs to estimate the GP hyper-parameters with respect to multiple time
series. Let Y = [y1y2...¥p] be a set of input time series. The total marginal log likelihood for all
time series will be equal to the sum of marginal log likelihoods for individual time series using (9),
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ie.,

P
(13) logp(Y[©) = logp(yi|©)

i=1
Same holds for the computation of the derivative of the total marginal log likelihood with respect
to a hyper-parameter. One can compute these two quantities in a loop using the results in Section
4 resulting in a O(pt?) complexity.

Similarly, often one needs to run the GPChange algorithm on multiple time series using the same
set of hyper-parameters. Instead of repeatedly invoking GPChange for each time series in Y, one
can modify Algorithm 1 such that §; is computed for each of the time series in Y, while 67 is only
required to be computed once.

5.2. Parallel Version of GPChangeFast and GPLearnFast. For the parallel version, we assign
the task of handling each time series y € Y to a different processing unit. We refer to the parallel
versions of the change detection and hyper-parameter estimation algorithms as GPChangeFastP and
GPLearnFuastP, respectively.

For our experiments, we used a POSIX thread based implementation and an MPI based parallel
implementation. The same algorithm can be implemented using Map-Reduce for cloud based com-
puting architectures or for GPU based architectures using CUDA. The linear data size required by
each child node is especially attractive for the latter, where the amount of data transferred between
nodes can be a significant bottleneck.

6. EXPERIMENTAL RESULTS

In this section we present results from two sets of experiments. First set of experiments show
how well the proposed Toeplitz matrix based methods scale in comparison to the traditional meth-
ods. The second set of experiments demonstrate the effectiveness of the GPChange algorithm in
identifying changes in six year NDVTI time series data.

6.1. Performance Results. In this section we compare the computational performance of the
proposed algorithm GPLearnFast against the standard algorithm (GPLearnSlow) for computing
log-likelihoods and derivatives. We also investigate the performance of the multi-threaded and
MPIT based versions of GPLearnFast, referred to as GPLearnFastThread and GPLearnFastMPI. All
experiments are done on time series with varying lengths. All algorithms were implemented in C
using low level CBLAS routines*. The GPLearnLow algorithm used cholesky decomposition from
the LAPACK library® to solve the system of equations and compute the inverse, etc.

All experiments were run on an SGI Altix ICE 8200 cluster called Frost®. Frost is currently
configured with 128 compute nodes each having 16 virtual cores (2048 way concurrency) and 24GB
of memory, infiniband interconnects, and a gigabit ethernet network. Each node is capable of
supporting 16 threads.

6.1.1. Performance of GPLearnFast vs. GPLearnSlow. We first compare the performance of the
computational and memory efficient GPLearnFast algorithm against the standard GPLearnSlow
algorithm. Figure 1 shows the performance of the two algorithms on single time series with varying
lengths of the time series. Note that the GPLearnSlow algorithm requires a O(n?) space in the
memory and hence could not run for time series more than 100000 length, while the GPLearnFast
algorithm has no memory related issue in dealing with time series as long as 1000000. Figure 1
shows that GPLearnFuast is significantly faster than GPLearnSlow, with a maximum speedup of 137
achieved for time series of length 100000.

4http ://wuw.netlib.org/blas/index.html
Shttp://www.netlib.org/lapack/
Shttp://www.nccs.gov/computing-resources/frost/
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—&— GPLearnFast
—8— GPLearnSlow
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FI1GURE 1. Performance Comparison of GPLearnFast and GPLearnSlow. Both axes
are in logscale.

6.1.2. Performance of Parallel Version. To study the performance of the thread based and MPI
based parallel versions, we used the NDVI data collected from the MODIS instrument. Global
MODIS data is organized into non-overlapping tiles, where each image or tile is roughly 4800 rows
x 4800 columns at 250 meters pixel resolution. We collected MODIS imagery from 2001 to 2006
for Iowa region, preprocessed and generated 16 day NDVI images (23 composite images per year).
Final preprocessed Iowa image size contains 4,276,383 locations, where each location is a time series
of length 138.

The speedup results (over the serial GPChangeFast) for the multi-threaded implementation,
GPLearnFuastThread, are shown in Figure 2a, and speedup results for MPI implementation, GPLearn-
FastMPI, are shown in Figure 2b. Speedup results in Figure 2 demonstrate that the GP based

10'5

Speedup

10"}

10" 10' 10° 10° 10"
Number of Processors

0 2 4 6 8 10 12 14 16
Number of Threads

(A) Threads (B) MPI

FiGURE 2. Speedups for GPLearnFastThread and GPLearnFastMPI over serial
GPLearnFast. Both axes for right figure are in logscale.

learning algorithm can be parallelized to achieve significant speedups. For the muli-threaded version
(Figure 2a), the speedup is close to linear with the number of threads, but for the MPI based version
(Figure 2b), the speedup is sub-linear, for 1024 nodes, the speedup achieved is 70. One reason for
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this is the high communication cost entailed in sending the time series data from the master to the
slave nodes, which results in high overhead costs, thereby offsetting the parallelization speedups.
In future, we will develop methods that can further minimize the communication overheads, and
achieve better speedups.

6.2. Detecting Changes in NDVI Data. In this section we show the effectiveness of the proposed
GPChange algorithm in identifying changes in the NDVI data for Iowa state. The task is to use the
first 5 years of data for training and identifying changes in the final year.

Normalized NDVI
Normalized NDVI

| | I | | | - . . . . . |
20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time (1) Time (t)

(A) Change (B) No Change

FIGURE 3. Results of GPChange on two NDVI time series.

(A) Change (B) No Change
Time (¢t) | P-value (p;) | Possible? | Alarm? Time (t) | P-value (p;) | Possible? | Alarm?
116 0.00 116 0.00
117 0.30 v 117 0.00
118 0.13 v 118 0.09
119 0.05 119 0.09
120 0.23 v 120 0.36 v
121 0.42 i 121 0.15 v
122 0.39 vV 122 0.29 Vv
123 0.32 i 123 0.00
124 0.35 V4 Vv 124 0.09
125 0.01 125 0.02
126 0.00 126 0.00
127 0.17 Vv 127 0.00
128 0.00 128 0.00
129 0.00 129 0.06
130 0.00 130 0.07
131 0.30 v 131 0.01
132 0.00 132 0.00
133 0.00 133 0.28 4
134 0.00 134 0.24 Vv
135 0.00 135 0.00
136 0.00 136 0.00
137 0.00 137 0.00
138 0.01 138 0.00

TABLE 1. Labels assigned by GPChange to testing portion of two NDVI time series.
Thresholds a = 0.1 and M = 5.

Figure 3a shows results on a NDVI time series containing a permanent change in the sixth year,
possibly a damaged crop. The same plot also shows the GP based prediction (¢;) as dashed green
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line as well as the bounds specified by the predictive variance (62) as grayed region. The locations

where the p-value exceeds the threshold « (i.e. potential changes) are specified in Table 1(a). For
these experiments we chose a threshold to be 0.1 and M threshold to be 5. Figure 3a and Table
1(a) show that GPChange is able to identify the true change after identifying 5 consecutive possible
change points. For comparison, Figure 3b shows another NDVT time series which does not contain
a change in the sixth year. The plots indicate that the GP based prediction follows the observed
data well, and even though it identifies isolated possible changes (Table 1(b)), due to the presence
of inherent noise in the data, the number of consecutive possible change points are not sufficient to
raise an alarm for actual change.

7. CONCLUSIONS

GP based methods typically scale as O(t3) with the size of the input data with a memory re-
quirement of O(¢?). This makes them impractical in domains that encounter massive time series
data sizes such as remote sensing, ECG analysis, etc. In this paper we have shown how Gaussian
process analysis can be scaled to handle massive time series data sets. We have proposed an online
change detection algorithm that has been shown to effectively identify changes in NDVI time series,
making highly suitable for biomass monitoring at regional as well as global scale.

The parallelization demonstrated using the thread based and MPI implementations, indicate that
GP analysis is naturally suited for parallelization and hence can be further scaled by utilizing the
available as well as emerging computing architectures such as heterogeneous processing units and
cloud computing.

While the proposed algorithms utilize the special structure of the underlying covariance matrix
to produce an exact solution, in future this algorithm can be combined with the existing work in
the area of approximate GP methods to achieve further speedups while staying close to the exact
solution.
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