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6.1  Introduction 

Integrated Vehicle Health Management (IVHM) must rely on accurate and robust 

detection of incipient failures (faults) for critical components / systems and estimation of 

the Remaining Useful Life (RUL) of such failing components.  Recently, stringent 

diagnostic, prognostic, and health management capability requirements are being placed 

on many new aircraft and spacecraft applications to enable the benefits of logistic support 

concepts, but also to assist in avoiding catastrophic events.  While effective diagnostics 

with low false alarm rates continue to improve on these new applications, prognostic 

requirements are even more ambitious and present very significant challenges to both the 

system design and program management teams.  

 

The “reasoning” performed by the diagnostics and prognostics tasks is done using 

sophisticated algorithms that process sensor information, historic use, design and 



materials data, alarm thresholds, real-time usage information, future load, and 

environmental conditions.  (These algorithms, called “reasoners,” are discussed in more 

detail in Chapter 7.)  Before any of the reasoning can be carried out, a host of algorithmic 

steps has to be completed to ensure that the algorithms receive the correct information.  

In particular, there are checks that the sensor information, upon which much of the 

reasoning hinges, are working properly; that noise is removed to the largest degree 

possible; that the information is brought into focus through various transformations; etc.  

All this has to be done in an architectural framework that supports these tasks in the 

optimal fashion.  This chapter reviews the fundamental principles that form the 

foundation for Prognostics Health Management (PHM) and Condition-Based 

Maintenance (CBM) technologies.  

6.2  The OSA-CBM Framework 

 This chapter presents the general outline of a systems engineering approach that 

facilitates the integration and interchangeability of computational components from a 

variety of sources.  An open systems standard should consist of publicly available 

descriptions of component interfaces, functions, and behaviors.  The Open Systems 

Architecture for Condition-Based Maintenance (OSA-CBM) has been developed 

specifically to meet these requirements Error! Reference source not found.]. 

 

Figure 6.1 is a schematic representation of the major modules of the OSA-CBM 

architecture.  The figure suggests the progression of components from data acquisition, 

data manipulation (processing), condition monitoring (state detection), health assessment, 



prognostics, and decision support (advisory generation).  The components are not 

application specific; they are scalable and upgradeable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 The OSA-CBM components. 
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MIMOSA is a standard for data exchange between asset management systems, whereas 

OSA-CBM is a specification for transactions between components within a Condition-

Based Maintenance system Error! Reference source not found.].  The core of the OSA-

CBM standard is the Object Oriented data model, defined using Unified Modeling 

Language (UML) syntax.  It is a mapping of key concepts from the MIMOSA Common 

Relational Information Schema (CRIS) with extensions for diagnostics, prognostics, and 

data transactions.  This common architecture has been demonstrated in a variety of 

application domains.  In reviewing fundamental IVHM technologies, we pursue the same 

basic structure of the OSA-CBM architecture. 

6.3  An Integrating IVHM Architecture  

Figure 6.2 lists the major modules of a generic architecture in sequential order.  The 

modules include Sensor Validation, Data Pre-Processing, Feature Extraction, Data 

Fusion, Anomaly Detection, Diagnostic Analysis, Prognostic Analysis, and Contingency 

Management.  This chapter covers Sensor Validation, Data Pre-Processing, Feature 

Extraction, and Data Fusion.  Anomaly Detection, Diagnostic Analysis, Prognostic 

Analysis, and Contingency Management are covered in Chapter 7, “Algorithms and their 

Impact on IVHM.” 
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Figure 6.2 Integrated Vehicle Health Management functions. 

 

Figure 6.3 depicts a more specific architecture for implementation of fault diagnosis and 

failure prognosis algorithms [Vachtsevanos et al. 2006; Roemer et al. 2005] on board a 

helicopter.  In this example, some of the functions mentioned in Figure 6.2 are performed 

on board, while others are performed off board (it should be noted that in other 

applications, this separation is not being made). A further distinction is made in that 

training of the models and algorithms is performed offline, while analysis of data from 

the system is made online; i.e., while the system is operating.  For the example case 

considered in Figure 6.3, the online modules perform raw data pre-processing, feature 

extraction, fault diagnosis, and failure prognosis that exploit available ground truth fault 

data, noise models, experimental data, system models, and other tools offline to tune and 



Figure 6.3 An architecture for development and implementation of 

fault diagnosis and failure prognosis algorithms. 

adapt online parameters and estimate suitable mappings.  The architecture suggests a 

hybrid and systematic approach to sensing, data processing, fault feature extraction, fault 

diagnosis, and failure prognosis that may lead to a system hardware/software 

configuration implementable online in real time.  The integrated architecture, when 

augmented with V&V (Verification and Validation) studies, may be optimized to 

facilitate its eventual on-platform transition.  

 

 

 

The online modules are designed to perform in sequence: data pre-processing, feature 

extraction, diagnosis, and prognosis. The architecture suggests also the possibility of 

closing the loop and providing corrective action to maintain a degree of acceptable 

system performance for the duration of an emergency. 



6.4  Sensing and Data Processing  

Much of the reasoning in IVHM hinges on data obtained from sensors.  Therefore, 

sensors and sensing strategies constitute the foundational basis for fault diagnosis and 

prognosis.  Strategic issues arising with sensor suites employed to collect data that 

eventually will lead to online realization of diagnostic and prognostic algorithms are 

associated with the type, number, and location of sensors (see Chapter 8 for more 

information on this topic); their size, weight, cost, dynamic range, and other characteristic 

properties; whether they are of the wired or wireless variety; etc.  Data collected by 

transducing devices rarely are useful in their raw form.  Such data must be processed 

appropriately to enable extraction of useful information that is a reduced version of the 

original data but preserves, as much as possible, those characteristic features or fault 

indicators that are indicative of the fault events we are seeking to detect, isolate, and 

predict the time evolution of.  Thus, such data must be preprocessed, that is, filtered, 

compressed, correlated, etc., in order to remove artifacts, and reduce noise levels and the 

volume of data to be processed subsequently.  Furthermore, the sensors providing the 

data must be validated; that is, the sensors themselves might be subjected to fault 

conditions.  Once the preprocessing module confirms that the sensor data are “clean” and 

formatted appropriately, features or signatures of normal or faulty conditions must be 

extracted.  This is the most significant step in the Condition-Based 

Maintenance/Prognostics Health Management (CBM/PHM) architecture whose output 

will set the stage for accurate and timely diagnosis of fault modes.  The extracted-feature 

vector will serve as one of the essential inputs to fault diagnostic algorithms. 



6.4.1 Sensor Validation 

Raw sensor data are a measurement of operational and environmental quantities.  Before 

they are further processed, the sensor itself must be assessed to determine its integrity in a 

step called “sensor validation.”  Here, data are acquired from sensors (and possibly from 

other sources) to be validated.  Next, the output of each sensor is estimated using 

analytical relationships with other sensors.  For example, the pressure at a particular 

location in the flow of a system is related to the pressure at a different reading via laws of 

physics that can be expressed as mathematical equations.  One can then build entire 

networks of relationships (“Analytical Redundancy Relationship Network” Error! 

Reference source not found.]) between sensors for which the readings are all related in 

some way via mathematical equations. 
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Figure 6.2 Analytical Redundancy Relationship Network Error! Reference source not found. et 

al. 2009]. 

As an illustrative example, consider a medium flowing in a pipe (Figure 6.2). One can 

then describe physical relationships between the sensor measurements.  Next, one would 

determine whether any of these relationships are violated.  That can be done by checking 

whether the difference between the measurement and the estimate is larger than some 

predefined threshold Error! Reference source not found.].  For example, if the 



difference between the estimate of the measurement (as established through the physical 

relation) and the actual measurement is less than the threshold, then the relation is 

declared qualified; otherwise, it is declared failed.  As a safeguard, and to contain the 

number of false positives (i.e., the number of cases where a sensor is declared failed 

although it is still operational), one can require more than one of these relationships to 

fail or one can wait for repetitions of condition violation to declare the sensor failed.  In 

addition, one can employ health management principles on the sensors themselves and 

when a sensor fault is suspected, have the system call for maintenance on itself before it 

fails.   

6.4.2  Data Pre-Processing  

Raw sensor data (vibration, temperature, etc.) must be pre-processed to reduce the data 

dimensionality and to improve the (fault) Signal to Noise Ratio (SNR).  Typical pre-

processing routines include data compression and filtering, Time Synchronous Averaging 

(TSA) of vibration data, Fast Fourier Transforms (FFTs), etc.  Pre-processing methods, 

which improve the SNR (de-noising), are particularly valuable in aircraft situations where 

significant noise levels tend to mask the real information.  As an example, a de-noising 

methodology, based on blind deconvolution, for a helicopter application is outlined 

below.  

 

The process of blind deconvolution attempts to restore the unknown vibration signal by 

estimating an inverse filter, which is related to partially known system characteristics.  

This is an active field of current research in image processing, speech signal processing 

Error! Reference source not found.], but rarely applied in mechanical vibration signals 



Error! Reference source not found.].  Vibration and other high-bandwidth signals are 

typically corrupted by multiple noise sources.  An iterative de-noising scheme may be 

constructed starting with an initial estimate of the inverse of the modulating signal, which 

demodulates the observed signal to give a rough noise-free estimate in the time-domain.  

Its Fourier transform is passed next through a nonlinear projection, yielding the ideal 

characteristics of the vibration signal.  The estimate is iteratively refined via an 

optimization scheme.  Figure 6.5 shows the blind deconvolution de-noising scheme.  

Note that the proposed scheme is implemented in the frequency domain, and the 

nonlinear projection, which is derived from a nonlinear dynamic model, is also given in 

the same frequency domain Error! Reference source not found.2010]. 
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Figure 6.3 A blind deconvolution data de-noising scheme. 



6.4.3 Feature Extraction and Selection  

Feature or Condition Indicator (CI) selection and extraction constitute the cornerstone for 

accurate and reliable fault diagnosis.  The classical image recognition and signal 

processing paradigm of data → information → knowledge becomes most relevant and 

takes central stage in the fault diagnosis case, particularly since such operations must 

often be performed in a real-time environment.  Irrespective of whether the function has 

to be performed online or offline, the objective is to transform high-dimensional raw data 

into a tractable lower-dimensional form without loss of useful information.  

Fault diagnosis depends mainly on extracting a set of features from sensor data that can 

distinguish between fault classes of interest, and can detect and isolate to a particular 

fault at its early initiation stages [Wu et al. 2005; Error! Reference source not found.].  

These features should be fairly insensitive to noise and within fault class variations.  

“Good” features must have the following attributes.  They must be: 

• Computationally inexpensive to measure 

• Mathematically definable 

• Explainable in physical terms 

• Characterized by large interclass mean distance and small interclass variance 

• Insensitive to extraneous variables 

• Uncorrelated with other features 

 

Researchers have relied on ad hoc or empirical methods to define a feature vector for a 

particular application domain.  Knowledge of the system structure and function, 

modeling, and heuristics is called upon to arrive at the “best” features or CIs.  



Past research has focused on feature extraction, whereas feature selection has relied 

primarily on expertise, observations, past historical evidence, and understanding of fault 

signature characteristics.  In selecting an “optimum” feature set, the following questions 

need to be addressed: Where is the information?  How do fault (failure) mechanisms 

relate to the fundamental “physics” of complex dynamic systems?  How do fault modes 

induce changes in the energy, entropy, power spectrum, signal magnitude, etc.?  Is the 

feature selection application-dependent?  

When seeking those features for a particular class of fault modes from a large candidate 

set that possesses properties of fault distinguishability and detectability, a reliable fault 

classification must be determined in the minimum amount of time.  Feature extraction, on 

the other hand, is an algorithmic process where features are extracted in a 

computationally efficient manner from sensor data, while preserving the maximum 

information content.  A hybrid methodology for feature selection and extraction may rely 

on physics-based modeling of the fault modes in combination with sensor data as the 

latter are streaming into the processor.  The physics-based models employ a finite 

element analysis technique jointly with a nonlinear dynamic model of the failing 

component’s behavior to guide the selection process.  Figure 6.6 depicts a typical scheme 

for feature extraction from raw vibration data.  The data in each Ground-Air-Ground 

(GAG) cycle is reduced to one feature value Error! Reference source not found. et al. 

2009]. 



 

Feature evaluation and selection metrics include the similarity (or linear correlation) 

between the feature and the true fault (crack) size, based on the linear dependency 

between them.  A feature is desirable if it shows a similar growth pattern to that of the 

ground truth data.  A correlation coefficient, the covariance between the two signals 

divided by their standard deviations, may be employed as a metric of similarity for 

feature evaluation.  When multiple features are extracted for a particular fault mode, it 

might be desirable to combine or fuse uncorrelated features to enhance the fault 

detectability.  Genetic Programming algorithms may assist to define an appropriate 

fitness function by using genetic operators to construct new feature populations from old 

ones. 

6.4.4 Sensor Data Fusion 

Although significant achievements have been reported in the recent past, the processing 

of sensor data intelligently still requires development, testing, and validation of new 

techniques to manage and interpret the increasing volume of data, and to combine them 

as they become available from multiple and diverse sources.  Sensor data fusion describes 

a set of techniques that can contribute significantly toward a better understanding and a 

more efficient utility of raw data by reducing it to useful information.  Information is 
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Figure 6.4 A typical illustrative example of a feature extraction scheme. 



synthesized to higher informational levels.  A typical sensor data fusion process 

incorporates several levels of abstraction: fusion at the data level, feature (characteristic 

signature of the collected data) level, sensor level, and knowledge level.  At the data 

level, a variety of filtering, data compression, and data validation algorithms are 

employed to improve such indicators as signal to noise ratio, among others.  The enabling 

technologies at the feature level may borrow from Dempster-Shafer theory [Shafer 1976], 

soft computing, and Bayesian estimation to fuse features while meeting specified 

performance metrics.  At the sensor level, we rely upon concepts from information theory 

while multiple sensors are gated and coordinated spatially and temporally to minimize 

their number while maximizing the probability of detection.  Significant reduction of the 

computational burden is always a desired objective.  The top level of the fusion 

hierarchy, i.e., the knowledge fusion module, is designed to reason about the evidence 

provided by the lower echelons, aggregate the available information in an intelligent 

manner, resolve conflicts, and report to the end-user the finding of the fusion architecture.  

Artificial Intelligence (AI) tools and methods from Dempster-Shafer theory, Bayesian 

estimation techniques, and soft computing may find utility as the reasoning enablers at 

this level. 

6.5  Diagnostics and Prognostics 

Fault diagnostics and, more recently, prognostics have been the subject of in-depth study.  

Researchers in such diverse disciplines as medicine, engineering, the sciences, business, 

and finance have developed methodologies to detect fault (failure) or anomaly conditions, 

to pinpoint or isolate which component in a system / process is faulty, to decide on the 

potential impact of a failing or failed component on the health of the system, and to 



determine a component’s remaining life.  Diagnostics and Prognostics are covered in 

more detail in Chapter 7. 

6.6  Performance Metrics 

Generally, metrics to measure the performance and effectiveness of the CBM/IVHM 

system are laid out during the requirements phase as part of the systems engineering 

process.  Low-level performance metrics are used to verify that algorithms meet stated 

performance goals.  For fault detection, typical metrics include detection rates.  Fault 

isolation is the ability to determine the exact fault root cause from a set of possible root 

causes.  Here, false negatives (the inability to detect a fault), false positives (incorrectly 

determining the presence of a fault), and false classified (identifying the wrong root 

cause) are important metrics.  An exhaustive set of metrics for diagnostics is presented by 

Kurtoglu et al. Error! Reference source not found.et al. 2009].  In the context of 

prognostics, the prognostic horizon (the first prediction of remaining life within 

acceptable uncertainty bounds) is an important metric.  Similarly,  performance 

quantifies prediction quality by determining whether the prediction falls within specified 

limits at particular times with respect to an accuracy or precision performance measure.  

The topic is discussed in more detail by Saxena et al. [2010]. 

 

6.7  Database Management 

Central to a successful and efficient health management architecture that enables some of 

the functionality outlined above is a well-designed database and a flexible database 

management schema.  There are OSA-CBM and MIMOSA efforts to establish database 



standards for IVHM.  The purpose of the database is to store and facilitate exchange of 

the different types of information that come from the sensors, the feature extraction, and 

the reasoning module (abnormal condition detection, diagnostics, prognostics, and 

contingency management) as well as static information.  Demands on such a database can 

be quite high since it must collect dynamic information that arrives at various, possibly 

non-synchronous, instances.  Thus, the database management system must be able to 

provide the ability to organize large amounts of data in linked tables to facilitate ease of 

understanding.  It also needs to provide a complete language for data definition, retrieval, 

and update.  

6.8  Closing Thoughts 

This chapter described at a very high level some of the considerations that need to be 

made when designing algorithms for a vehicle health management application.  The 

choices made here affect the quality of the diagnosis and prognosis (covered in Chapter 

7).  Therefore, the algorithmic design choices are made in conjunction with the design 

choices for diagnostics and prognostics to optimally support these tasks.  Furthermore, 

additional considerations imposed by computational constraints, resource availability, 

algorithm maintenance, need for algorithm re-tuning, etc. will impact the solutions. 

It should also be noted that technological advances, both in hardware and software, 

impose the need for new solutions.  For example, as new materials and new sensors are 

being developed, the algorithmic solutions will need to follow suit.  

In general, there seems to be a trend to have more sensor data available.  While this is 

potentially a good thing, sensor data provides value only when it is being processed and 

interpreted properly, in part by the techniques described here.  Testing of the methods, 



however, requires the “right” kind of data.  Generally, there is a lack of seeded fault data 

which are required to train and validate algorithms.  It is also important to migrate 

information from the component to the subsystem to the system levels so that health 

management technologies can be applied effectively and efficiently at the vehicle level.  

It may be required to perform elements described in this chapter between different levels 

of the vehicle architecture. 
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