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 “Omnes scientiae sunt connexae...” — R. Bacon 

7.1  Introduction 

This chapter will discuss some of the algorithmic techniques commonly used in Integrated 

Vehicle Health Management (IVHM) once sensor validation, pre-processing, and feature 

extraction have been completed (see Chapter 6).  Health management observes signals from the 

system and then reasons (using automated thinking or rules application) over the signals to 

determine the state of health, possible causes for faults, remaining life, and suitable mitigation 

strategies.  Input into such a health management system is information about the configuration of 

the system under observation, stimuli from the system, usage history, and anticipated loads.  

Configuration and past usage information can come from a database.  Anticipated usage loads 

may also come from a manual or automated input / output interface.  Stimuli from the system are 

usually data that have been obtained from sensor measurements.  Raw sensor measurements 

typically do not provide the fidelity of information needed to make health management 

determinations.  Depending on the underlying physics of the sensor used, the sensor data will 

require some level of treatment to determine key useful information.  Before interrogating the 

data for health information, some pre-processing is usually necessary to remove noise and to 



make the signals crisper, and to extract features that can be used by a reasoner, as discussed in 

more detail in Chapter 6.   

In a next step, the features are combined to determine whether the system is functioning normally 

or whether there are abnormal conditions.  Techniques used here combine signal processing and 

classifiers.  The former are used to transform the data into a readily used domain, while the latter 

are meant to make a yes-no determination about system normality.  If the system is in an 

abnormal state, it is said to exhibit a fault; multi-class classifiers can be used to isolate such a 

fault.  Under certain conditions one can determine how long it will take until the system reaches 

its end-of-life threshold.  This step involves understanding of the damage propagation mode and 

uses extrapolation techniques.  Critical to all steps is an understanding and handling of the 

inherent uncertainties in the data.  An assortment of statistical techniques is available to 

characterize the quality and potential limits for the available data.  Finally, to mitigate the 

suspected fault–and therefore actively manage the health of the system–one needs to convert the 

health information into actionable decisions.  This can be done by applying the proper 

optimization method that trades off various objectives such as system safety, minimizing 

operational cost, and maximizing system performance.   

It should be noted that from an operator perspective, making the distinction into the different 

elements outlined here may not always seem important because the fundamental objective of 

IVHM is to perform the most efficient process that will support operator safety, mission goals, 

and affordable operation / availability.  Indeed, during the history of vehicle health management, 

the term “diagnostics,” for example, was sometimes used less stringently to also embrace a 

number of other activities related to health management, such as trending, abnormal condition 

detection, or perhaps even fault mitigation.  However, from an algorithm development 

perspective, it is important to be able to distinguish between these elements because the developer 



faces different issues and — based on the findings — he/she would possibly choose different 

algorithmic solutions. 

 

Additionally, some of the algorithmic elements discussed in the following paragraphs are 

optional.  Referring back to Figure 6.2 in the previous chapter, it is possible to skip some of the 

elements if they are not needed to accomplish the particular health management objective (e.g., 

maybe it is not important to know the remaining life) or if the cost-benefit for deployment is not 

favorable. 

7.2  Algorithmic Tools and Techniques Used 

The following sections describe in some detail the individual elements mentioned in the 

introduction, in the order shown in Figure 6.2. 

7.2.1  Abnormal Condition Detection 

The first line of defense in IVHM is often a check whether the system under observation behaves 

normally or whether there is any abnormal condition.  An abnormal condition could be one where 

the normal operating conditions are exceeded in one or several monitored parameters.  Therefore, 

one has to have an idea what constitutes “normal” and where to set the thresholds defining 

“abnormal.” 

 
Figure 7.1 Measured symptoms. 
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Consider the data represented by the circles and the triangle in Figure 7.1.  These data can be seen 

as some measured quantity in the system that varies during normal operation.  The fundamental 

question to answer in abnormal condition detection is whether the triangle should be considered 

an indication for an abnormal condition.  The two symptoms in this figure could represent the 

exhaust gas temperature and the core speed in a jet engine, for example. 

 

Abnormal condition detection is an important first step in system health management.  Abnormal 

conditions are the first signs of a potential equipment failure at some future time.  Detecting 

abnormal conditions implies, at the very least, detecting change through observations from one or 

more sensors, ideally in a minimum number of samples after the change has occurred.  Having 

detected that there has been a change, one might then desire to determine the precise nature of the 

change.  This is accomplished using diagnostics (described in the next section).  Numerous 

algorithms can be used for change detection on time series, including statistical approaches 

(cumulative Error! Reference source not found.], sequential probability ratio test Error! 

Reference source not found.], and generalized likelihood ratio test Error! Reference 

source not found.], etc.), signal processing techniques (wavelet Error! Reference source 

not found.]), regression (autoregressive process Error! Reference source not found.]), and 

computational intelligence techniques (neural networks Error! Reference source not found.] 

and fuzzy logic Error! Reference source not found.Error! Reference source not 

found.], etc.).  To achieve good performance, relatively large amounts of accurately labeled data 

are necessary to train many algorithms (particularly computational intelligence approaches, e.g., 

neural networks).  Often this requirement is particularly difficult for real-world problems–data are 

costly to collect, fault data are sparse, and the labeling is uncertain. 

One example of a change detection algorithm is the rank permutation test.  This technique 

transforms features from the raw feature space to a so-called “rank permutation probability 



space.”  In this method, “n” sequential data points are assessed against another “n” points drawn 

randomly from all the raw data.  For example, in Figure 7.2, the ranked order of seven raw data 

points (the red stars) will be tested against sets of seven ranked points, each drawn randomly from 

the full population of blue points.   

 
Figure 7.2 Example time series for rank permutation test. 

 
The statistical assessment (here, the sum of ranks) is computed for each comparison as new sets 

of seven blue dots are randomly redrawn from the set of all points.  After the sampling tests have 

been repeated many times, the results are assembled as a distribution and the test hypothesis is 

either accepted or rejected.  Based on this test for the data in Figure 7.2, there is a, say, 91.7% 

chance that the red stars should be considered abnormal.  The rank permutation method has the 

advantage that it boosts the classification rate by making events that are statistically improbable 

more pronounced.  It also helps to diminish the effect of noise and outliers. 

Other techniques used in abnormal condition detection include 1-class or 2-class classifiers.  

These are covered in more detail in the section on diagnostics. 
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7.2.2  Diagnostics 

Generally, diagnostics is the process of reasoning over manifestations of effects to determine a 

possible cause.  In the context of IVHM (and noting the statements made in the introduction of 

this chapter), this becomes the process of determining (or “isolating”) fault modes from 

symptoms. 

To accomplish the goals of diagnostics, it is required that the operation of the system be observed 

using appropriate instrumentation that senses thermal, electrical, mechanical, and fluid 

characteristics such as temperature, pressure, voltage, displacement, strain, and vibration.  

Selecting the best instrumentation suite for the systems is described in Chapter 8 (Design).  One 

of the most basic methods is to correlate the magnitude of a sensed sensor signal with a fault 

condition.  If a threshold is surpassed, a fault condition can be declared.  Unfortunately, in most 

situations, such a straightforward assessment does not work because the sensor signal is poorly 

correlated with the fault, or it may be drowned in transients or operational and environmental 

conditions.  More advanced methods include neural networks, rule-based expert systems, case-

based reasoning systems, model-based reasoning systems, learning systems, and probabilistic 

reasoning systems.  

Neural net diagnosis algorithms are almost considered the baseline technique because of their 

ease of use.  Fundamentally, a set of labeled training data is used to “learn” the model of the 

behavior of the system.  A neural net is composed of a parametric interconnected representation 

of nonlinear functions that allows adaptation of its parameters (“training”) such that the desired 

result can be retrieved (within bounds) based on a particular input stimulus.  The stimulus is the 

observation from the system.  The desired result is the diagnostic finding.   

In rule-based systems, one would encapsulate quantitative and qualitative expert knowledge about 

the component or systems.  Through logical inferences and constraint analysis, one can arrive at a 



set of potential failure candidates.  In qualitative model-based methods, one relies on dependency 

tracking, constraint analysis, and qualitative simulations of the dynamics of system behavior.  In 

model-based methods, abstracted forms of observed behavior are compared to behaviors 

generated by the quantitative models, and differences are traced. 

Case-based reasoning is another data-driven method that is fairly easy to deploy.  What is 

required is a number of validated “cases” that provide solutions to different problems.  The 

problems need to be characterized by a set of measurable observations (such as sensor 

measurements).  A new problem would then be evaluated with regard to its proximity to the 

different solutions.  Ultimately, the correctness of the answer will be confirmed and the 

observation-solution pair can be added to the database of “cases.”   

It has to be recognized that there is no one method that performs optimally for all possible 

application domains (also called the “no-free-lunch theorem”).  Challenges for applying 

diagnostic reasoning technology include determining the best combination of methods for a given 

system under the constraints of computational resources available, providing information with 

enough time to act in time-critical situations, the cost of developing the automated system, and 

the costs of maintaining the automated system over the lifetime of the application. 

 

 

7.2.3  Prognostics 

Prognostics is the science of determining the remaining useful life of a component or subsystem 

given the current degree of wear or damage, the component’s load history, and anticipated load 

and environmental conditions.  A quantification of the degree of a component’s wear or damage 

and the estimate of end-of-life gives decision makers additional knowledge about the health of a 

system.  It provides critical information for risk reduction in go / no-go decisions, cost reduction 

through the scheduling of maintenance as needed, and improved asset availability.  Prognostics 



employs technologies that are often based on a detailed analysis of fault modes and modeling of 

the physics of both the component at hand as well as the mechanisms underlying the fault.  For 

the latter, the idea is to model the damage progression and its dependency on certain accelerators 

or stressors.  Next, algorithms that estimate the remaining life use these physics-based models as 

well as measurements from the system as input.  They then use estimation techniques that 

propagate the anticipated degradation into the future and provide, as output, the point where the 

component no longer meets its desired functionality.  The anticipated degradation is a function of 

future load conditions and environmental conditions.  For many systems, future load and 

environmental conditions are very similar to the load and environmental variations seen in the 

past, but in applications where the future loads and environmental conditions may vary 

significantly from those of the past, it is desirable to formulate an anticipated load profile, based 

on knowledge of how conditions may vary, to improve prediction accuracy and precision. 

The task of tracking a state variable and predicting future values is often cast as a filtering 

problem.  Generally, quantification and management of different sources of uncertainty — 

stemming from state assessment, model, measurements, future load, and environmental 

conditions–provides critical information necessary for users to assess the risk of failure of a 

component and determine when action needs to be taken.  Therefore, algorithms need to be able 

to receive, process, and output information about uncertainty in the system.  Where detailed 

modeling of the component’s physics is not feasible (or to augment the less-important fault 

modes that are not modeled with detailed physics-based models), the remaining life estimation 

can also be accomplished through an evaluation of run-to-failure data using machine learning 

techniques.   

Prognostics can be developed for almost any critical component as long as one has either some 

knowledge about the underlying physics or a sufficient amount of run-to-failure data exist.  In the 

following, the basic elements that are required to perform remaining life estimation will be 



explored in more detail.  These are knowledge about the system behavior, damage threshold(s), 

damage propagation model, data, and a propagation algorithm.   

Model 

Models are meant to encode one’s knowledge of the domain into a form that replicates the 

system’s behavior under nominal conditions as well during degraded conditions.  Typically, a 

model is composed of a structure and its parameters.  Physics-based models capture the 

underlying physical properties of a system or component.  An example of a physics-based model 

is one based on first principles, such as conservation of energy.  Sometimes, these physics-based 

models require the use of simplifying assumptions to keep the problem tractable, e.g., 

linearization, hierarchy of local models, or the use of default values.  Theoretically derived 

knowledge may then be inconsistent with the real system’s behavior.  Models can be 

supplemented with experiential knowledge. 

Data-driven models, in contrast, attempt to derive models from any information available from 

(or usually buried in) historical data that may have been collected.  Information is then 

represented by a collection of instances of relationships among the system variables, which 

ideally points to causality, but more often just highlights correlation.  Purely data-driven methods 

have other drawbacks, because data tend to be high-dimensional, noisy, incomplete (e.g., 

databases with empty fields in their records), or wrong (e.g., outliers due to malfunctioning or 

failing sensors, transmission problems, or erroneous manual data entries).  Some techniques, 

which attempt to address these problems, include feature extraction, filtering and validation gates, 

imputation models, and virtual sensors that model the recorded data as a function of other 

variables.   

Models can be built to encapsulate the system behavior as well as the propagation of damage. 



Damage Threshold 

The need for a damage threshold seems straightforward.  Of course, one needs to know what 

condition should terminate the end-of-life prediction.  There are numerous cases where the end-

of-life condition is difficult to establish or to determine.  It would be convenient if the system (or 

subsystem or component) fails at the end-of-life condition.  But a requirement for an end-of-life 

threshold also needs to be a measurable condition.  This is not always the same condition as a 

catastrophic event.  It is also possible that the system may continue to operate beyond the limits 

of the end-of-life conditions. 

Algorithms 

The task of the prognostic algorithm is to perform state assessment and to determine the 

remaining life with the aid of the models.  The algorithms must take into consideration future 

load and environmental conditions, and express the fidelity of the solution using appropriate 

uncertainty representation.  Algorithms that can take advantage of physics-based models include 

Kalman filters and particle filters.  Data-driven algorithms, in contrast, retrieve information from 

an internal mapping of expected load and environmental conditions.  They can also extrapolate on 

the current trend.  Data-driven algorithms include various types of regression algorithms that can 

come from statistics or the machine-learning domain.  They include auto-regressive algorithms, 

neural nets, relevance vector machines, and others. 

7.2.4  Contingency Management 

Contingency management is meant to close the loop of integrated vehicle health management by 

providing the appropriate mitigating action to resolve the issue stemming from the degraded state 

of health.  Depending on the prognostic horizon, different technologies need to be employed for 

contingency management.  This has to do with the inertia of the system and lead-time for certain 

mitigation actions (see Figure 4.2).  If the time-to-failure is in the range of milliseconds, one 



needs to generally react fast using adaptive control mechanisms at the machine controller level.  

If the prognostic horizon is in the second range, appropriate contingencies may involve control 

reallocation, i.e., the use of other components or subsystems.  If the prognostic horizon is longer, 

one can consider mission re-planning.  Finally, if the prognostic horizon is considerably longer, 

perhaps even extending beyond the duration of the mission at hand, one can integrate the logistics 

operations and consider various optimal maintenance actions.  The latter would typically involve 

multi-objective optimization.   

In the following, we give an example for controller adaptation, and the different individual 

contingency management actions will be discussed briefly. 

 

Adaptive Controls 

The optimization of the controller can be divided into several complementary subtasks.  These 

subtasks include (1) optimization of the actuator gains, (2) optimization of the control modifiers 

(adjustables), and (3) design and optimization of the control schedules.  This task decomposition 

is necessitated by the fact that local gain modifications often do not result in any significant 

variation at the global performance level.  In addition, the potential for crosstalk, i.e., the 

difficulty to track correlations of several simultaneously manipulated variables on the overall 

controller, supports the strategy of dividing the optimization endeavor into smaller optimization 

tasks.  Depending on the impact that the particular control variable under consideration has on the 

overall and local performance criteria, we maximize the observability from an optimization 

standpoint.  This means that for some control variables, only local performance criteria (local 

tracking errors) are considered while other control variables are considered from a global level 

(critical margins, tracking of vital parameters, and global tracking error).  Figure 7.3 gives an 

overview of this strategy. 

 



 

Figure 7.3 Architecture for engine controller reconfiguration  

[Subbu, R., K. Goebel, and D. Frederick.  2005.  “Evolutionary Design and Optimization of 

Aircraft Engine Controllers.”  In IEEE Transactions on Systems, Man, and Cybernetics; Part C: 

Applications and Reviews, IEEE]. 

The optimization can take advantage of simulators that encapsulate the dynamic behavior of a 

system (e.g., a jet engine) and its controller with a high degree of fidelity.  The user may specify 

control settings and flight scenarios, and execute the simulator to obtain the engine response 

given a high-level pilot command, such as demanded fan speed, which is a good measure of 

thrust. 

Optimization of parameters in engine controllers is reported by Chipperfield and Fleming [1996, 

1998] and Fonseca and Fleming Error! Reference source not found.].  Gremling and 

Passino Error! Reference source not found.] report the design of an online adaptive state 

estimator for a jet engine compressor whose model is evolved by a genetic algorithm.  Subbu et 

al. Error! Reference source not found.] use genetic algorithms for controller design. 

 

Multi-Objective Optimization 

When the prognostic horizon is sufficiently large, one can consider various long-term actions that 

might include considerations of the logistics chain.  Challenges arise from the large amount of 

different information pieces upon which a decision-maker has to act.  Consider, as an example, a 

decision support system (DSS) for use in operational decision-making in the context of running 
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missions and performing maintenance.  The DSS enables the user to make optimal decisions 

based on his / her expression of rigorous trade-offs through guided evaluation of different optimal 

decision alternatives under operational boundary conditions using user-specific and interactive 

collaboration.  An Evolutionary Multi-Objective Optimization (EMOO) can perform the search in 

this space and generates a set of optimal solutions (the “Pareto frontier”).  This will result in the 

identification of alternative mission allocations and maintenance plans that are non-dominated 

(i.e., optimal) along IVHM-specific objectives (e.g., overall mission success, safety, and 

maintenance cost) Error! Reference source not found.]. 

Having generated the non-dominated alternatives, and depending upon present and future 

requirements, the end-user can potentially employ constraint-based approaches or interactive 

tools Error! Reference source not found.] to select the operational plan that best meets the 

field requirements to iteratively select a small subset of alternatives.  An interactive method 

would also allow users to employ what-if situations, permitting them to manually test the 

robustness of the solution.   



 
Figure 7.4 Interactive decision-making for selection of best repair and mission allocation 

[Adapted][Iyer, N., K. Goebel, and P. Bonissone.  2006.   “Framework for Post-Prognostic 

Decision Support.”  IEEE Aerospace Conference, IEEE]. 

 

Figure 7.4 shows an instance of the decision problem, where the decision space is composed of 

actions or allocations.  In the figure, each point represents a potential plan that prescribes the 

repair actions for an asset in the repair shop as well as the asset to be allocated to a mission. 

The plot shows the intrinsic trade-offs present in the real world when trying to satisfy multiple 

missions (Mission i and Mission j, in this case) which compete for the same resources (parts, 

time, and manpower).  Figure 7.4 shows that repair plans with very high values of predicted 

reliability for a mission i are also plans that result in low predicted reliability values for 

competing mission j in the deck of missions to be satisfied (and vice-versa).  Presenting actors in 

the logistics platforms with such plots confronts them with the need to understand the competing / 

conflicting nature of the metrics they are trying to simultaneously maximize, and thereby presents 

them also with the opportunity to locate feasible plans that can potentially optimize along all such 

metrics simultaneously.   
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7.3   Closing Thoughts 

This chapter discussed some of the algorithmic choices one encounters when designing an IVHM 

system.  While it would be generally desirable to be able to pick a particular set of algorithms for 

a particular problem, the reality is a bit more complex. Depending on the budget, the performance 

requirements, the computational constraints, sensor availability, access to historical data, 

operational and environmental conditions, robustness to changing system configurations, 

algorithm maintenance needs, etc., no one algorithm will perform best in all situations.  Indeed, it 

is necessary to evaluate these constraints during the algorithm design process and determine the 

best choice on a case-by-case analysis.  The trade-offs between different choices are very real, 

and sometimes no solution can be found, which means that some of the constraints have to be 

relaxed.  The simplest solution is generally preferred over a more complex one, but it is also 

important to consider that there is no free lunch.  Finally, any health management solution also 

has to undergo verification and validation (V&V) and, in some cases, certification.  Some of these 

issues are topics of other chapters in this book. 
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