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Abstract because of the large number of data sources, the asynchro-

This paper offers #ocal distributed algorithm for multivari- Nous nature of the P2P networks, and dynamic nature of the
ate regression in large peer-to-peer environments. Thedata. . o .

gorithm is designed for distributed inferencing, data com- This paper offers a local distributed algorithm for per-
paction, data modeling and classification tasks in maf@fming multivariate regression and monitoring the model
emerging peer-to-peer applications for bioinformatics, dn @ P2P network. The approach is scalable, decentralized,
tronomy, social networking, sensor networks and web misynchronous, and inherently based on in-network computa-
ing. Computing a global regression model from data avaion- The algorithmic framework is local, in the sense that
able at the different peer-nodes using a traditional cénéh the computation and communication load at each node is in-
algorithm for regression can be very costly and impracticgPpendent of the size or the number of nodes of the network.
because of the large number of data sources, the asynchfds is very important for the scalability of the algorithm i
nous nature of the peer-to-peer networks, and dynamic [sgge P2P networks. The proposed methodology takes a two-
ture of the data/network. This paper proposes a two-step &i§P approach for building and maintaining MR models in
proach to deal with this problem. First, it offers an effidiel?2P networks. The first step in our algorithm is thenitor-

local distributed algorithm that monitors the “quality”tfe Ind Phasén which, given an estimate of the MR model to all
current regression model. If the model is outdated, it use§ Peers, they asynchronously track any change between the
this algorithm as a feedback mechanism for rebuilding tAe?del and the global data using a provably correct local al-
model. The local nature of the monitoring algorithm guaraforithm. The second step, known as duenputation phase
tees low monitoring cost. Experimental results presenteds€s the monitoring algorithm as a feedback loop for trig-

algorithm guarantees that as long as the MR model correctly
1 Introduction represents the data, little computing and communication re

Multivariate Regression (MR) is a powerful statistical an(sglources are spent for monitoring the environment. When the

: ) S L ata undergoes a change in the underlying distribution and
machine learning tool that is widely used for predictioasel . .
e . L . the MR model no longer represents it, the feedback loop in
sification, and data compression. Multivariate regresson . : . .

. . .dicates this and the model is rebuilt. Moreover, we also show
relatively well understood given a sample of the data (if)- .

) . at all the data need not be centralized to recompute the MR
p_ut vanablgs and corresponding target output v_alues) ECoefficients. We can do in-network aggregation for finding
i;gg\ifhfr%agg?é :_S'Og\i/;\: ﬁ:{,ttggrgvae'}eamna:xvgmeé?I&%Sﬁﬁn@ém? thereby using far less resources than brute force cen-

S ilization. The specific contributions of this paper are as
Peer-to-Peer (P2P) networks offer one such example. 2

systems such as Gnutella, BitTorrents, e-Mule, Kazaa, an ws:

Freenet are increasingly becoming popular for many appli-4 To the best of the authors’ knowledge this is one of the
cations that go beyond downloading music without paying first attempts on developing a completely asynchronous
for it. Examples include P2P systems for network storage, and local algorithm for doing multi-variate regression

web caching, searching and indexing of relevant documents jn, p2p networks which is robust to data and network
and distributed network-threat analysis. The next genera- changes.

tion of advanced P2P applications for bioinformatics [9flan

client-side web mining [21][10] are likely to need suppantf e Besides this, we have also considerably enhanced our
advanced data analysis and mining. Performing basic oper- earlier work on a highly efficient and local algorithm
ations like regression is very challenging in a P2P network for tracking the L2 norm of the global average vector.

—=CSEE Dept, UMBC, kanishk1@cs.umbc.edu e Most of the previous work in the literature focuses
TCSEE Dept, UMBC, and AGNIK LLC, hillol@cs.umbc.edu on linear regression in distributed environments. Our



technique can be applied to most types of commoegression model. Therefore, such an algorithm will enable
multivariate regression. the user to monitor regression models using low resources.

The rest of the paper is organized as follows. Relatde? Related Work The work presented in this paper is re-
background material is presented in Section 2. Sectior@ged t0 two main bodies of literature - multivariate regres
introduces the notations and problem definition. Secti§}ph and computation in large distributed environments.

4 presents the MR monitoring algorithm, while Section 5 o o )

discusses the MR computation problem. Section 3.3 defifed-1 Distributed Multi-variate Regression: The prob-
local algorithms and analyzes the local behavior of ol of distributed multivariate regression has been adexes
algorithm. Experimental results are presented in Section®¥ many researchers till date. Hershberger et al. [16] con-

Finally, Section 7 concludes this paper. sidered the problem of performing global MR in a vertically
partitioned data distribution scenario. The authors psepo
2 Background a wavelet transform of the data such that, after the transfor

mation, effect of the cross terms can be dealt with easily.
The local MR models are then transported to the central site

2.1 Approach Statistical models can be built and update"%qﬁIOI combln_ed o for_m the globa! MR model. Such synchro-
nized techniques will not scale in large, asynchronous sys-

from distributed data in various ways. Tperiodicapproach tems such as modern P2P networks.

is to simply rebuild the model from time to time. The :
incrementalapproach is to update the model whenever the Many researcher_s hav_e Ipoked into the proble_m of do-
ing distributed MR using distributed kernel regressiorntec

ggi cihsatr:)g%sérh;srﬂ{ﬁ é"“éﬁi%eeapféﬁi‘é'ﬁ,uvﬁﬁiﬁgerfég2?3?%1&4“es such as Guestrin et al. [15] and Predd et al. [25]. The
when it no longer suits the data. Theriodic approach algorithm presented by Guestrin et al. [15] performs linear

regression in a network of sensors using in-network precess

can be highly inefficient since, there is the risk of wastinﬁ o
) . . g of messages. Instead of transmitting the raw data, the
resources even if the data is stationary and also the of ris

model inaccuracy if the updating is delayethcremental proposed technique transmits constraints only, thereby re

algorithms are very efficient; however their major drawba-gycmg the communication complexity drastically. Similar

is that a separate algorithm needs to be handcrafted Otrhe work proposed here, their work also uses local rules to

every problem. Data drivereactivealgorithms are efficient, prune messages. However the major drawback is that their

. . . .arlgorithm is not suitable for dynamic data. It will be very
simple and can accommodate a wide variety of functig . . .
computation costly if the data changes since, as the authors point ait, th

The work presented in this paper considers buildirﬁ\év;) passes are required over the entire network to make sure

. : o t the effect of the measurements of each node are propa-
and updating regression models from data distributed over
: ted to every other node. Moreover, contrary to the broad
a P2P network where each peer contains a subset of 1he

data tuples. In the distributed data mining literatures ki class of problems that we can solve using our technique, thei

usually called the horizontally partitioned or homogerspu tigg?;?:e is only applicable for solving the linear regass
distributed data scenario. Building a global regressiodeho P :

(defined on the union of all the data of all the peers) in large- Meta-learning is an mteres'_ung class of algorlth_ms typI
T : “cally used for supervised learning. In a meta learning, such
scale networks and maintaining it is a vital task. Consider : . .
as bagging [7] or boosting [14] many models are induced

a network where there are a number of nodes (by node 1yrvc(>a different partitions of the data and these “weak” madel

mean peers, sensors, grid components etc.) and each ngde : . : .
. . are combined using a second level algorithm which can be
gets a stream of tuples (can be sensor readings, music Tiles. :
) as simple as taking the average output of the models for any
etc.) every few seconds thereby generating huge volume 0 . . . . .
new sample. Such a technique is suitable for inducing mod-

data. We may wish to build a regression model on the glob L
data to (1) compactly represent the data and (2) predict ?Sé from distributed data as proposed by Stolfo et al. [27].

. A . e basic idea is to learn a model at each site locally (no
value of a target variable. This is difficult since the data is o
o o . . communication at all) and then, when a new sample comes,
distributed and more so because itis dynamic. Centrabizat| . . .
edict the output by simply taking an average of the local

obviously does not work bec‘?‘us? the data may (_:hange %{J?puts. Xing et al. [30] present such a framework for doing
faster rate than the rate at which it can be centralized. ILoca S

. o . . fegression in heterogenous datasets. However, these tech-
algorithms are an excellent choice in such scenarios smce |

alocal algorithm, each peer computes the result based onH'es perform poorly as the number of such data partitions

information from only a handful of nearby neighbors. Hendecrease to millions — as in typical P2P systems.

local algorithms are highly scalable and guarantee that onc
the computation terminates, each node will have the correct

This section provides the necessary background material



2.2.2 Computation in large distributed (P2P) systems: et al. [1] and Linial [20] in the context of graph theory. More
Computation for P2P networks span three main areas: @gently, local algorithms have been developed for several
best effort heuristics, (2) gossip based computations, (#ta mining problems: association rule mining [29], fagili
broadcast-based systems and (4) local algorithms. Fdoeation [19], L2 Thresholding [28], outliers detectior],[6
detailed survey interested readers can refer to [11]. and meta-classification [22]. Finally, several efforts ever
Algorithms using best effort heuristics have been devahade at the description of local algorithm complexity [3].
oped for large distributed systems. The P2Rleans al-
gorithm by Banyopadhyay et al. [2] is one such exampl@. Notations and Problem Definition

Typically for such algorithms, a peer collects some sampleg  Notations Let V = {Py,...,P,} be a set of peers
from its own data and its neighbors and builds a model @gnnected to one another via an underlying commu-
this sample. The samples are generally collected using S{&tion infrastructure such that the set #f's neigh-
variations of random walk-based techniques. These alggys n;, is known to P,. Additionally, for at a given
rithms can be classified as probabilistic approximate alggne instancet, P, is given a stream of data vectors
rithms since the results are bounded only on average.jArd.  The local data of peeP; at time ¢ is S;; =
different class is the set of deterministic approximate ai- - =3 — =3 — — ]
gorithms such as the inferencing problem in sensor n g%’ Sy )> ; (Iz' f(xs )> ; 7(I§’tv (xé’t))],

works using variational approximation technique propos —

i,t

by Mukherjee et al. [23]. where eachz;” is a (d-1)-dimensional data point
Gossip algorithms rely on the properties of random sa thx;; . x;}(tdil) and f is a function fromR4—1 — R.

ples to provide probabilistic guarantees on the accuracyg;fery data point can be viewed as an input and output pair.
the results. _Researphers haye developed differentag®eac  paers communicate with one another by sending sets of
for performing basic operation®.g. average, sum, MaX,innt vectors (or statistics thereof, as defined below). Let
random sampling) on P2P networks using gossmtech_nlqugﬁ.j denote the last set of vectors sent by pégrto P;.
Kempeet al. [18] and Boydet al. [5] present such primi- Asquming reliable messaging, once a message is delivered
tives. In gossip protocols, a peer exchanges data or ‘ﬂat'séothPi andP; know X, ; andX ;. Now we define four sets
with a random peer. However, they can still be quite costly actors which are crucial to our algorithm.

—requiring hundreds of messages per peer for the computa-

tion of just one statistic. Another closely related tecligiq pegniTion 3.1. (Knowledgd Theknowledgeof P is the

is to use deterministic gossip or flooding. In flooding, evepion of S;; with X;; for all P; € N, and is denoted by
peer floods/broadcasts the data and therefore, eventhally,% _g U’ U X'j’ !
i = it jyi-

data/statistic is propagated through the entire netwoeteH

again the major drawback is scalability and the answer to

dynamic data. o _ DEFINITION 3.2. (Agreement The agreementof P, and
Communication-efficient broadcast-based algonthraﬁy of its neighbor®; is A; ; = X, U X ;.

have been also developed for large clusters such as the one ! . R

developed by Sharfman et al. [26]. Since these algorithiyg 710~ 3.3. (Withheld knowledge The subtraction of

rely on broadcasts as their mode of communication, the @&t agreement from the knowledge iswithheld knowledge

quickly increases with increasing system size. of P, with respect to a neighbaP; i.e. W, ; = K; \ A, ;.
Local algorithms are a good choice for data mining in ' -

P2P networks since in a local algorithm, the result is gengyerniTion 3.4. Global knowledge The global knowl-

ally computed by communicating with a handful of nearbyqgeis the set of all inputs at time and is denoted by
neighbors. Local algorithms rely on data dependent Congi-: U i,

tions which we refer to as local rules, to stop propagatiné
messages. This means that if the data distribution does not
change, the communication overhead is very low. On the Since these vector sets can be arbitrarily large, we define
other hand, the local rules are violated when the distriioutitwo sufficient statistics on these sets which the peers will
changes. While on one hand, local algorithms are highlge to communicate: (1) thaverage vectomwhich is the
efficient (and hence scalable), on the other hand they gugferage of all the vectors in the respective sets (e.g. for
ant.ee eventual convergence.to th(actresglt (equal to t_hat S;¢ itis ﬁ = \S—lt| Z ¥ similarly IC ﬁ VT”) )?J)
which would be computed given the entire data). This fea- :
ture makes local algorithms exceptionally suitable for P
networks as well as to wireless sensor networks.

Early work on local algorithms include the ones by Afe

P;eN;

TSt

%N and 5;), and (2) thesizesof the sets denoted by, |,
Xiilo 1X5.4l, 1Kl [Ai 1, Wi 1, and|G|. If we assume

at communication always takes place in an overlay tree



topology, we can write the following expressions for thiénd an update(f(?). This is themodel computation prob-

sizes of the sets: lem Mathematically, the subproblems can be formalized as
1A ] =X ] + |1 X5 follows.
2. |ICZ| = |Si7t|+ Z |Xj,i|,and ) ) ) ~
P.eN,; Problem 2[Monitoring Problem] Given S;;, and f(Z')
J (2 E
3. Wi il = |Kil — | Aijl to all the peers, the monitoring problem is to output O if

Similarly for the average vectors we can write, ‘ < ¢, and 1 otherwise, at any time

—~ 2
Avg [£(F) - F() \
[oslie o)

P,EN; | | Problem 3[Computation P@blem] The model computa-
3. W ;= IVIVCJ Ila _ Ilfvi,;\‘A,J tion problem is to find a neyi(z’) based on a sample of the

Note that, for any peer, any of these vectors can fata collected from the network.

computed based solely on its local data and what it gets from
its immediate neighbors. This, makes the communication of
the algorithm localized. We are interested in computing a
regression model defined @j.

Next we formally state the problem definition.

3.2 Problem Definition In MR, the task is to learn a
function f(Z') which “best” approximateg (') according
to some measure such as least square. Now depending on the
representation chosen fg?(?), various types of regression
models (linear or nonlinear) can be developed. We leave this
type specification as part of the problem statement for our
algorithm, rather than an assumption. =
In MR, for each data poin’, the error betweerf(z') L

~ 2
and f(') can be computed a%f(?) - f(?)} - Inour rigure 1: (A) the area inside an circle (B) A tangent
scenario, since this error value is distributed acrosséieesy defining a half-space (C) The areas between the circle and
agood estimate of the global errordsyg {f(_’) _ f(7)} > the union of half- -spaces are the tie areas. Also shown are
knowledge agreement and withheld knowledge in red, blue

There exist several methods for measuring how suitable
rad green respectively.

model is for the data under consideration. We have use
the L2-norm distance between the current network data and

the model as a quality metric for the model built. Given a The global average error between the true model and
dynamic environment, our goal is to mamtamfa:v) al the computed one is a point R, In order to use L2 norm
each peer at any time which best approximafies’). thresholding as the metric for tracking this average ewer,
transform this 1-D problem to a 2-D problem by defining a

Problem 1. [MR Problem] Given a time varying dataset, g tor inR? with the first component set to the average error
Si+, a user-defined thresholdand f(@) to all the peers, for the peer and the second component set to 0. Therefore,
the MR problem is to maintain #(7) at each peer suchdetermining if the average error is less thais equivalent

— to finding if the average error vector lies inside a circle of
Avg [1(7) - F@)] || <

radiuse. Our theorem (presented in Section 4) requires us
For ease of explanation, we decompose this tatg(split the entire space iR? (henceforth called thdomain)

.
into two subtasks. First, given a representationf6t’) Nto non-overlapping convex regions such tH@tH has the

to all the peers, we want to raise an alarm whenewgame value inside each of these convex regions. We denote
the set of all such convex regions bY. For the regression
monitoring algorithm, it consists of the following regions
threshold. This is thenodel monitoring problemSecondly, the inside of the-circle (R.) and the half-space$(,,, Ry,

if f(?) no longer representg ('), we sample from the ...) defined by each of these tangent lines (and hence unit
network (or even better do an in-network aggregation) ¥ectors). The angle between each of these unit vecté#s,is

whered is the number of tangent lines chosen. Note that the

that, at any time, ‘

~ 2
‘ Avg [f(?) — f(?)} H > ¢, wheree is a user-defined




region in which the output is 0 i&., which itself is convex. verse the network, and hence a peer can decide solely based

The output is 1 inside any of thgse half-planes. The areasiC;, A, ;, andW, ;, if G; resides either inside thecircle
uncovered by’s denote theie regions. or one of the half-spaces defined by the tangent lines. In ei-

For simplicity, we assume that the network topolog¥ier case, as stated by the Theorem below, the peer achieves
forms a tree. Note that, as shown in [4], such a tree ca®ermination state.

be efficiently constructed and maintained using variatains _
Bellman-Ford algorithms [13][17]. THEOREMA4.1. [Convex Stopping Rule] Let Py,..., P,
be a set of peers connected to each other over a spanning

3.3 Local Algorithm Local algorithms, as defined by Dadree G (V. E). LetGy, K;, A; ;, andW; ; be as defined in
et al. [10], are parameterized by two quantities — 1)} the previous section. L€t; denote the set of convex regions
which is the number of neighbors a peer contacts in ordef-® the inside of the circle and the non-overlapping half-
find answer to a query and (2)— which is the total size of SPaces. Further, lek € Cs be any such convex regiondy.
the response which a peer receives as the answer to allltr@ ime¢ no messages traverse the network, and for each
queries executed throughout the lifetime of the algoritam.P;, K; € R and for everyP; € N;, A;; € R and either
can be a constant or a function parameterized by the siza/mzfj €RorW,; =10, thenz cR.
the network whiley can be parameterized by both the size of
the data of a peer and the size of the network. Proof (SKETCH) We omit the formal prOOf here due to

The idea is to design algorithms that offers bounded toflortage of space. Simply speaking, the theorem can be
communication cost per node and also spatially localizBepved by taking any two arbitrary peers and exchanging all
communication among the neighbors_ We call SUChC&ﬂ Pf their withheld knOWledge. We call this as the unification
~)-local algorithmefficient if both o andy are either small Step.  After unifying all the peers it can be shown that
constants or some slow growing functions (sublinear) with, € R. |}
respect to its parameters. We prove that the regression The significance of Theorem 4.1 is that under the condi-
monitoring algorithm is ¢, v)-local in Section 4. tion described®; can stop sending messages to its neighbors

and outpu”la ‘ Theideais to ensure th@ andz finally

4 Step 1: Monitoring Regression Model reside in the same convex region. If the result of the theorem
In MR monitoring problem, each peer is given a datasesids for every peer, then Theorem 4.1 guarantees this is the
S;+ and an estimatef(7). Our goal is to monitor correct solution; else, there must either be a messagenn tra
HAUQ [f(?) _ f(?)ﬂ sit, or some peeBC for whom the conditi_on dqes not holq.
Then eitherP, will send a message which will change its
The problem now is to monitor the L2 norm of the aveutput or the message will be received, leading to a change
erage error. As stated before, although the error is a singl&’, eventually. Thus eventual correctness is guaranteed.
number instead of a vector, we can easily define a vector in |n order for the monitoring algorithm to track the global
R? with the second component 0. We present here a loggkrage error, we need to specify the input to the algorithm.

algorithm which monitors the regression coefficients usingyr the input, every data poifit:, f(7')] € S, is mapped
the L2 norm of the average error vector. A preliminary L2 ’

~ 2 ) .
norm monitoring algorithm was also dealt in our previod$ ([f(?) - f(?)} 70)- Reusing the notation, hence-
paper [28] in the context of-means clustering. The algoforth we will refer to this ass; ;.

rithm outputs 0 if‘ a; < e and 1 otherwise. The algorithm . _

. . L . . ALGORITHM 4.1. Monitoring Regression Model
presented in [28] is prone to noise in the data since it Com'lnput' e Cs S . N:andL
municates all the data for every data change. In this paper, IS ' ,
we take care of that problem by applying a different condi- ©utput: O if "C%‘ < ¢ Lotherwise
tion for sending messages and ensuring that all data is ndnitialization : Initialize vectors;
sent whenever a peer communicates. Rather, we keep sonﬁfeMessageRecvdFro@Pj, ?, |X|) then
data (in the form of witheld knowledge) so that if the data
changes later, the change is less noisy. Moreover we tune the
algorithm to make it suitable for regression. Thus, we feel .
that this is a significant contribution in its own right. _end i

The regression monitoring algorithm guarantees evenlf Si.t, Ni or K changeshen
tual correctness, which means that once computation termi- for_ all Neighbors?; do . .
nates, each peer computes the correct result as compared to | LastMsgSent > L time units agahen
a centralized setting. In a termination state, no messages t if 2 :ﬁhen R 1 | _ )
SetX, ; — S S ewin {/*Tie Region*/}

— —
Update vectors



Set|X; ;| — [Ki| — | Xl algorithm e.g. [22][29][28] (including the one described

enﬂ> . here) will have worst case = O(size of network). For this

if A;; & RorW,; ¢ Rthen algorithm, this can happen when the average error vecwr lie
Set)?_; and|X; ;| such tha@ and in the tie region. While O(size of network) is the upper
W—if € R {/*Theorem Condition*} bound on the communication complexity, more accurate

end ifj bounds oy can be Qeveloped by identifying the spegific

MessageSent on’X—i;’ X, problems and input instances. We feel that there is an

intrinsic relation betweeny and e, though it needs to be
investigated more and we plan to report those in a future
article. On the other hand; = O(1) whenever the system

LastMsgSent— CurrentTime
Update all vectors

eIsV(\a/ it L it dth heck . moves from one termination state to the other and the data
ond ;' Ime units and then check again change is not significant to make all the peers communicate
lobally. We present this formally in Lemma 4.1.
end for 9 y P y
end if LEmMMA 4.1. [Locality] The regression monitoring algo-

rithmis (O(1), )-local wherey can vary between O(1) and

Algorithm 4.1 presents the pseudo-code. The inp size of network)

to the algorithm ares; ;, NZ, e and Cs andL Each peer

initializes its local vector%i, Al-_’j andWiyj. A peer may Proof (SKETCH): The algorithm requires each peer to
need to send a message if its local data changes, if it receR@mmunicate with its immediate neighbors only. Hence,
a message or if the set of neighbors change. In anycof= O(1), independent of the size of the network.

these cases, the peer checks if the condition of the theorem Now consider the situation where the system is in a
holds First peerP; finds the regionkR € Cj such that termmatlon state wheré*” € R, for each peer (hence

IC € R (R = 0 otherwise). IfR = 0, thenIC isin a gt € R.) and then the data changes. We seek to count
tie region and hencﬁ‘.p has to sel send all its data. If, for allthe number of messages which take the system to another
P; € N, bothA” e R andW” € R, P; does nothing; termlnatlon state. If the data change is such that for each

else it needs to seX;, and |X;,| and send those, suctpeer stillS;, € R., any given peer will send at most one
that after the message is sent, the condition of the theor@@ssage to each of its neighbors. One the other hand, if the
holds for this peer. As we already pointed out that if a pegew S, , ¢ R., but rather in a tie region, any given peer may
communicates all of its data, then if the data changes aga@ed to send as many messages which will convince it that
later, the change is far more noisy than the original data. ﬁ@eedgt ¢ R.. In the worst case, each peer may need to
we always sef(” and|X;, ;| such that some data is retainedet data from all the nodes in the network in order to get
while still maintaining the conditions of the theorem. Weonvinced of this change. In this case= O(size of the

do this by checking with an exponentially decreasing setmdtwork). Therefores can vary between O(1) and O(size of
values of[ W, ;| until either allK;, A;; andW,, € R, or network) |

[W;.;1=0, in which case we have to send everything. Note

that other than these two cases, a peer need not send alhe high scalability of the local algorithms is due to
message since the theorem guarantees eventual correctigdact thata andy are constants and is independent of

Similarly, whenever it receives a messag?é and |)_(’|), it the network size for many interesting problem instances as
sets)?; X andl)(—j;| o |)—(>|' This may trigger anothercorroborated by our extensive experimental results.

round of communication since itgz can now change. 5 Step 2: Computing Regression Model

To prevent message explosion, in our event-based s
tem we employ a “leaky bucket” mechanism which ensuriEe regression monitoring algorithm presented in the earli
an be viewed as a fIag which is raised by a peer

that no two messages are sent in a period shorter than a GGFHON ¢

stantL. Note that this mechanism does not enforce synchighenever | Avg [f( T) — f(?)}
nization or affect correctness; at most it might delay conve

gence. This technique has been used elsewhere also [28fiscuss how the peers collaborate to find a féw ) using
Locality: Determining the communication complexity oft convergecast-broadcasttechnique.

local algorithms in dynamic environments is still an open Thebasicideais to use thenvergecagthase to sample
research issue. Researchers have looked into the probféd from the network to a central post and compute, based
using the idea of veracity radius [3] for simple aggregatiéi this sample, a nevi(). Thebroadcastphase distrib-

problems. Considering thev(~) framework, there alwaysutes th|sf( ) to the network. The monitoring algorithm
exist problem instances for which any eventually corresdw monitors the quality of the result. The efficiency and

> ¢. In this section we
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Figure 2: Convergecast and broadcast through the diffsteps. The blue circles represent states when the peerg do no
raise a flag. The purple circles represent the state whenrdopseaised and alert (flag=1) and sent its data to its pakent.
soon as the peer gets data from all but one neighbor it tudimwyéd-inally, the roots are denoted by red.

correctness of the monitoring algorithm allows a very sinby size of the subtree from which the sample was received.
ple sampling technique to be used — if an ill-fit model is built  The broadcast phase is fairly straightforward. Every
atall, it will soon be detected by the local algorithm reit peer which receives the nef\ ), restarts a new regression
in another round of convergecast in the worst case. Anothgénitoring algorithm with this neV\f(E’). It then, sends
point to note is that, in our convergecast-broadcast pB)C&fie new(7') to its other neighbors and changes the status
we do not specify the root of the convergecast tree. Rath&roonyergecast. There could be one situation in which a
we let the network structure (edge delays and data skewn %%)r receives a neﬁ(?) when it is already in the broadcast

Qegde It -Il—h'g IIS sgglﬁlcant_ smce(;t gnsukr)es 1) decen_tr lnase. This is when two neighbor peers concurrently become
1z€ lcont_rot, (ff) .(I)a alancing, and (3) robustness again oots for the convergecasttree. To break this tie, we s#iect
sing'e point ot faiiure. : g?) to propagate the root of which has a higher id. Figure
In the convergecast phase there are two main parame; .
o I Shows a snap-shot of the convergecast broadcast steps as it
ters. Each peer maintains a user selected alert mitigation S
; rogresses up the communication tree.
constant,r and the sample size. An alert should be stab?e . . .

) . . . The pseudo-code is presented in Algorithm 5.1.
for a given period of timer before the peer can send its
data, thereby preventing a possibly false alarm from prop- _ .
agating. In order to do this, the peer relies on the underly-ALGORITHM 5.1. P2P Regression Algorithm
ing monitoring algorithm. If the monitoring algorithmrais  Input: ¢, Cs, S;+, N;, L, f andr

; : : - N 9
a f_Iag, the peer notes _the time, and sets a tlmqr tone . é)utput: 7 such that| Avg {f(?) _ (?)}
units. If the timer expires, or a data message is receive
from one of its neighborsp; first checks if there is an ex- Initialization : Initialize vectors;
isting alert and if it has been recordedr more time units ~ MsgType= MessageRecvdFrorfy)
ago. If so, it counts the number of neighbors from which it if M sgType = Monitoring-M sg then
has received data messages. Once it receives data messageE’e_lSS Message to Monitoring Algorithm
from all of its neighbors, the peer computes a new regressiorﬁ?nd if
model f(Z) based on the sample it received and sends it tof M sgType = New_Model_M sg {/*Broadcast*}
itself. It then moves to the broadcast phase and s¢idg ~ then N
to all its neighbors. On the other hand, if it has receiveadat ~ Updatef _
messages from all but one of the neighbors then it takes a Forward newf to all neighbors
uniform sample (of user-defined size) from its own data and Datasent=false _ _ N
the data it has received from its neighbors. It then forwards Restart Monitoring Algorithm with nevf
the sample to the peer from which it has not received dat£nd if
and marks its state as broadcast. The peer does nothing if it M sgType = Dataset_Msg {/*Convergecast then
has not received data from two or more neighbors. Note that, if Received from all but one neighbitren
at each peer, the sampling technique is such that, each data /lag=Output Monitoring Algorithm()
point gets an equal chance of being included in the sampled  if Datasent = false and flag = 1 then

data set. We do this by properly weighing every data point if DataAlert stable forr timethen
D=Samplef; ;, Recvd_Dataset)

<€




Datasent=true; computing the matrix (or more appropriately vectaywe

SendD to remaining neighbor need to evaluate the matricésandY. This can be donein a
else communication efficient manner by noticing that the entries
DataAlert=CurrentTime of these matrices are simply sums. Hence, instead of sending
end if the raw data in the convergecast round, peecan forward
end if a locally computed matriX; andY,. PeerP;, on receiving
end if this, can forward a new matriX; andY ; by aggregating, in
if Received from all neighbothen a component-wise fashion, its local matrix and the received
D=Samplef; +, Recvd_Dataset) ones. Note that the avoidance of the sampling technique
f:Regressionl()) ensures that the result is exactly the same compared to a
Forward newf to all neighbors centralized setting. Moreover, the dimensionality of the
Datasentfalse matricesX; andY; isd.d+d.1 = O(d?). This shows that the
Restart Monitoring Algorithm with new:; communication complexity is only dependent on the degree
end if of the polynomial or the number of attributes. Since, in most
end if cases, the number of attributes is much small compared to
if S;,, N; or K; changeshen the sample size required in the convergecast round, thare ca
Run Monitoring Algorithm be significant savings in terms of communication.
flag=OutputMonitoring_Algorithm() )
if flag=1 andP;=IsLeaf()then 6 Experimental Results
Execute the same conditions as In this section we discuss the experimental setup and amalyz
MsgType = Dataset_M sg the performance of the P2P regression algorithm.
end if
end if 6.1 Experimental Setup We have implemented our algo-

rithms in the Distributed Data Mining Toolkit (DDMT) [12]
Special case : Linear Regressiorin many cases, samplingdeveloped by the DIADIC research lab at UMBC. We use
from the network is communication intensive. We capological information generated by thigarabasi Albert
find the coefficients using an in-network aggregation if W&A) model in BRITE [8] since it is often considered a rea-
choose to monitor a widely used regression me@ellinear sonable model for the internet. BA also defines delay for net-
regression (linear with respect to the parameters or therk edges, which is the basis for our time measurefnent
unknown weights). On top of the network generated by BRITE, we overlay a
Since the dataset of each peer consists sofi- communication tree.
dimensional tuplegz’, f(7)] and@’ = [z129 ... 24-1], We
want to fit ad — 1 degree polynomial since the last attribut6.2 Data Generation The input data of a peer is a vector
corresponds to the outpuf(?) = ap + a1x1 + asxs + (w1,72,...,24) € R?, where the firstd — 1 dimensions
..+ aq_17q—1, Wherea;'s are the coefficients that need tgorrespond to the input variables and the last dimension
be estimated from the global datagkt We drop the cross corresponds to the output. We have conducted experiments
terms involvingz; andz; for simplicity. Using least squareon both linear and non-linear regression models. For the
technique and after simplification we get, linear model, the output is generated accordingte= ag +
a1z1+asxa+...+ag_124—1. We have used two functions
\gt ) Ga| for th_e nonl-linear model: (1}3 = agp + ayazx1 + apaizs
|Gt _ Z ) Z =1 xd 1 (multiplicative) and (23 = ag * sin(a; + asx1) + aq *
Z'Jg:f{ ) Z‘gf ( D LA Z‘jg:fl ) xa | sin(as + apas) (sinusoidal). Every time a simulated peer
. . needs an additional data point, it chooses the values of
x1,To,...24-1, €ach independently in the range -100 to

Z‘gg:tl Ty leg:tl xfi—l LGS Z‘ggtl(xd )? +100. Then it generates the value of the target variahle
a Z\Qt (T) gsing any of the above functions and adds a uniform noise
a Z|gt (E’ )Ij in the range 5.to 20% of the value of the target output. The

% . _ 1 — Xa—7Y regressionweightsy,ai,...,aq—1’'s are changed randomly

: : at controlled intervals to create an epoch change.
Gel
cas)  \SE

j th ; ; th
where |s_t>he_value of the* att_”bUte ing, for the j* Twall time is meaningless when simulating thousands of cderpuon
row and f(z’7) is the corresponding output. Therefore fad single PC.
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Figure 3: A typical experiment is run for 10 equal length dmocQuality and overall cost are measured across the entire
experiment — including transitional phases. The monitpdast is measured on the 1&t% of every epoch, in order to
ignore transitional effects.

6.3 Measurement Metric In our experiments, the tworegression monitoring algorithm: size of local buffé .|,
most important parameters for measurement arejttadity the radius of the circle, size of the leaky buckedt and noise

of the result and theostof the algorithm. For the monitoringin the data. Apart from these there are also the system size
algorithm, quality is measured in terms of the percentageimber of peers) and dimensionality of the multivariate re
of peers which correctly compute an alérg., the number gression problem which can affect performance. In this sec-

of peers which report thr#laH < € WhenH@> < e and tion we present the quality (insidee. ’ a < ¢, outside

‘ a; > e. For the regressioni.e. a > ¢ and overall) and cost of the algorithm w.r.t.

computation algorithm, quality is defined as the L2 nordifferent parameters. Note that, unless otherwise stated,
distance between the solution of our algorithm and the &cthave used the following default values for the different pa-
regression weights. We refer to the cost of the algoritmameters: number of peers = 1008; ;| = 50, ¢ = 1.5,
as the number ohormalized messagesent, which is the d = 10 andL = 500 (where the average edge delay is about
number of messages sent by each peer per unit of ledkyO0 time units). As we have already stated, independent
bucketL. Hence, 0.1 normalized messages means that nifi¢he regression function chosen, the underlying momitpri
out of ten times the algorithm manages to avoid sending@blem is always ifR?. The results reported in this section
message. We report both overall cost and the monitoriag with respect to linear model since it is the most widely
cost (stationary cost), which refers to the “wasted effoft” used regression model. Results of monitoring more complex
the algorithm. We also report, where appropriate, messagesdels are reported in the next section.
required for convergecast and broadcast of the model. Figures 4(a) and 4(e) show the quality and cost of the
algorithm as the size of local buffer is changed. As expected
6.4 Typical Experiments A typical experiment is shownthe inside quality increases and the cost decreases as the
in Figure 3. In all the experiments, about 4% of the data size of buffer increases. The outside quality is very high
each peer is changed every 1000 simulator ticks. Moreowbrpughout. This stems from the fact that, with the noise
after every 5x 10° simulator ticks, the data distribution isin the data, it is easy for a peer to get flipped over when it is
changed. To start with, every peer is supplied the same ¢becking for inside a circle. On the other hand, noise cannot
gression coefficients as the coefficients of the data genataange the belief of the peer when the average is outside.
tor. Figure 3(a) shows that for the first epoch, the quality the second set of experiments, we varieffom 1.0 to
is very high (nearly 96%). After 5 10° simulator ticks, 2.5 (Figure 4(b) and 4(f)). Here also, the quality increases
we change the weights of the generator without changing #e is increased. This is because with increasinghere
coefficients given to each peer. Therefore the percentagésoé bigger region in which to bound the global average.
peers reportin ;C < e drops to 0. For the cost, Figurelhis is also reflected with decreasing number of messages.
H}j}ote that, even foe = 1.0, the normalized messages are
around 1.6, which is far less than the theoretical maximum
of 2 (assuming two neighbors per peer). The third set of
experiments analyzes the effect of leaky buadkeAs shown
Figure 4(c) quality does not depend @n while Figure

3(b) shows that the monitoring cost is low throughout t
experiment if we ignore the transitional effects.

6.5 Results: Regression MonitoringThere are four ex-
ternal parameters which can influence the behavior of fﬁe
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Figure 4: Behavior of the monitoring algorithm w.r.t thefdient algorithm parameters.

4(g) shows that the cost decreases slowly with increasimgnted the Nelder-Mead simplex method [24].
L. Finally, Figures 4(d) and 4(h) depict the dependence of We have conducted experiments on three datasets. Each
the noise on the monitoring algorithm. Quality degrades aqdality graph in Figure 6 presents two sets of error bars.
cost increases with increasing noise. This is expectedesiithe square markers show the L2 norm distance between the
with increasing noise a peer is more prone to random effedistributed coefficients and the actual ones. Also shown in
This effect can, however, be nullified by using a large buffeach figure is the L2 norm distance between the coefficients
or biggere. found by a centralized algorithm and the actual ones (dia-
Our next experiment analyzes the scalability of the momond markers). The first pair of figures, Figures 6(a) and
itoring algorithm w.r.t the number of peers and dimension 6{d) show the results of computing a linear regression model
the multivariate problem. As Figures 5(a) and 5(c) sho®ur aim is to measure the effect of variation of alert mitiga-
both the quality and cost of the algorithm converge to a caien periodr on quality and cost. As shown in Figure 6(a),
stant as the number of peers increase. This is a typical beltihe quality of our algorithm deteriorates agncreases. This
ior of local algorithms. For any peer, since the computatigbecause, on increasing a peer builds a model later and
is dependent on the result from only a handful of its neigtherefore is inaccurate for a longer intermediate periogk F
bors, the overall size of the network does not degrade tive 6(d) shows that the number of data collection rounds (dot
quality or cost. Similarly, Figures 5(b) and 5(d) show thamarkers) decrease from four times to twice per epoch. This
the quality or the cost does not depend on the dimensiorr@dults from a decrease in the number of false alerts. Also
the multivariate problem either. This independence of tshown are monitoring messages (green squares).
quality and cost can be explained by noting that the under- Figures 6(b) and 6(e) analyzes the quality of our algo-
lying monitoring problem is irnR?. Therefore for a given rithm while computing a non-linear multiplicative regress
problem, the system size or dimensionality of the problemodelviz. x5 = ag+ayaz21 +agaixo. Figure 6(b) presents
has no effect on the quality or the cost. the quality as other parameteiz. sampling size is varied.
Overall, the results show that the monitoring algorithis expected, the results from the distributed and cen&dliz
offers extremely good quality, incurs low monitoring costomputations converge with increasing sample size. Also th

and has high scalability. number of data collection rounds as depicted in Figure 6(e)
decrease as sample size is increased.
6.6 Results: Regression Model®©ur next set of experi- The third pair of figures, Figures 6(c) and 6(f) show the

ments measure the quality of the regression model computache results for a sinusoidal modets = ag * sin(a; +

by our algorithm against a centralized algorithm having ag;z1) + a; * sin(az + apz2). Here also the quality becomes
cess to the entire data. There are two important parametsrter and the cost decreases as the sample size is increased
to be considered here — (1) the alert mitigation constant ( To sum everything up, the regression computation al-
and (2) the sample size (for non-linear regression). For-cogorithm offers excellent accuracy and low monitoring cost.
puting the non-linear regression coefficients, we haveémpAlso, the number of convergecast-broadcast rounds is also
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Figure 6: Quality and cost of computing regression coeflitsiéor both linear and non-linear models.

two times per epoch on an average. We have tested our7al-Conclusions and Future Work

gorithm on several regression functions and the results gethe best of the authors’ knowledge this is one of the first
highly satisfactory. attempts on developing completely local and asynchronous
regression algorithm for P2P systems which maintains the



same regression models given all the data to all the pe€ts] L.R. Ford and D.R. FulkersorFlows in Networks Princton
The algorithm is suitable for scenarios in which the data is
distributed across a large P2P network as it seamlessly hiddl J. Friedman, T. Hastie, and R. Tibshirani. Additive isig
dles data changes and node failures. We have performed Regression: a Statistical View of Boosting. Technical repo
dynamic experiments with random epoch changes which  Dept. of Statistics, Stanford University, 1998.

showed that the algorithm is accurate, efficient and higt{&ﬁ]
scalable. Such algorithms are needed for next generation
P2P applications such as P2P bioinformatics, P2P web min-
ing and P2P astronomy using National Virtual Observatoriq%]
As a next step, we plan to explore other methods of learning
such as support vector machines and decision trees.
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