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Abstract—This paper offers a local distributed algo- beyond downloading music without paying for it.
rithm for multivariate regression in large peer-to-peer Examples include P2P systems for network storage,
environments. The algorithm can be used for distributed \yap caching, searching and indexing of relevant
inferencing, data compaction, data modeling and classifi- documents and distributed network-threat analysis
cation tasks in many emerging peer-to-peer applications Th . f ad d P2p licati )
for bioinformatics, astronomy, social networking, sensor e _ne_Xt gene_ratlon or a Va_nce ) app '?a_tlons
networks and web mining. Computing a global regression fOr b|0|nfo_rmat|cs [1] and client-side web mining
model from data available at the different peer-nodes using [2][3] are likely to need support for advanced data
a traditional centralized algorithm for regression can be analysis and mining. Performing basic operations
very costly and impractical because of the large number |jke regression is very challenging in a P2P net-
of data sources, the asynchronous nature of the peer-to- work because of the large number of data sources

peer networks, and dynamic nature of the data/network.
This paper proposes a two-step approach to deal with this the asynChronous nature of the P2P networks, and

problem. First, it offers an efficient local distributed algo- dyna_mic nature of the data-. ‘ _
rithm that monitors the “quality” of the current regression This paper offers a local distributed algorithm for

model. If the model is outdated, it uses this algorithm performing multivariate regression and monitoring
as a feedback mechanism for rebuilding the model. The the model in a P2P network. The approach is scal-
local nature of the monitoring algorithm guarantees low able, decentralized, asynchronous, and inherently
monitoring cost. Experimental results presented in this baséd on in-networi< computation "I'he alaorithmic

paper strongly support the theoretical claims. . . pu ’ 9 .

o N framework is local, in the sense that the computation
Index Terms— peer-to-peer, data mining, decision trees and communication load at each node is indepen-
dent of the size or the number of nodes of the

network. This is very important for the scalability of

|. INTRODUCTION the algorithm in large P2P networks. The proposed

Multivariate Regression (MR) is a powerful stamethodology takes a two-step approach for building
tistical and machine learning tool that is widely use@nd maintaining MR models in P2P networks. The
for prediction, classification, and data compressiofifst step in our algorithm is thenonitoring phase
Multivariate regression is relatively well understooth which, given an estimate of the MR model to
given a sample of the data (input variables arfdl the peers, they asynchronously track any change
corresponding target output values) at a single lodsgtween the model and the global data using a
tion. However, there are many emerging scenaripgovably correct local algorithm. The second step,
where data is distributed over a network of manown as thecomputation phaseises the monitor-
chines. Peer-to-Peer (P2P) networks offer one subg algorithm as a feedback loop for triggering a
scenario. P2P systems such as Gnutella, BitTéew round of MR model-building if necessary. The
rents, e-Mule, Kazaa, and Freenet are increasinghgorithm guarantees that as long as the MR model

becoming popular for many applications that georrectly represents the data, little computing and
communication resources are spent for monitoring
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aggregation for finding them; thereby using far The work presented in this paper considers build-
less resources than brute force centralization. Timg and updating regression models from data dis-
specific contributions of this paper are as followstributed over a P2P network where each peer con-
« To the best of the authors’ knowledge this itains a subset of the data tuples. In the distributed
one of the first attempts on developing a conglata mining literature, this is usually called the hor-
pletely asynchronous and local algorithm foizontally partitioned or homogeneously distributed
doing multi-variate regression in P2P networkéata scenario. Building a global regression model
which is robust to data and network changeidefined on the union of all the data of all the
. Besides this, we have also derived an uppeeers) in large-scale networks and maintaining it
bound on the total number messages exchandeda Vvital task. Consider a network where there
between the peers in the worst case. are a number of nodes (by node we mean peers,
« Most of the previous work in the literaturesensors, grid components etc.) and each node gets
focuses on linear regression in distributed ef- stream of tuples (can be sensor readings, music
vironments. Our technique can be applied fdes etc.) frequently. We may wish to build a
most types of common multivariate regressiofiegression model on the global data to (1) compactly
The rest of the paper is organized as follow§epresent the data and (2) predict the value of
Related background material is presented in Set-target variable. This is difficult since the data
tion Il. Section Il introduces the notations and® distributed and more so because it is dynamic.
problem definition. Section IV presents the Mreentralization obviously does not work because the
monitoring algorithm, while Section V discusse§a@ta may change at a faster rate than the rate at
the MR computation problem. Experimental resuli§hich it can be centralized. Local algorithms are
are presented in Section VII. Finally, Section VIIgn excellent choice in such scenarios since in a

concludes this paper. local algorithm, each peer computes the result based
on the information from only a handful of nearby
Il. BACKGROUND neighbors. Hence local algorithms are highly scal-
. . . ahle and offer bounded communication complexity
Th'? section provides the necessary backgrousgr peer. Therefore, such an algorithm will enable
material. : : .
the user to monitor regression models using low
resources.
A. Approach

Statistical models can be built and updated frogl
distributed data in various ways. Thperiodic ap- Related Work
proach is to simply rebuild the model from time The work presented in this paper is related to two
to time. The incremental approach is to updatemain bodies of literature - multivariate regression
the model whenever the data changes. Lastly, taed computation in large distributed environments.
reactive approach, what we propose here, is to 1) Distributed Multi-variate Regression:The
monitor the change, and rebuild the model onlgroblem of distributed multivariate regression has
when it no longer suits the data. Theeriodic been addressed by many researchers till date. Her-
approach can be highly inefficient since, there ghberger et al. [4] considered the problem of per-
the risk of wasting resources even if the data ferming global MR in a vertically partitioned data
stationary and also the risk of model inaccuracy dfistribution scenario. The authors propose a wavelet
the updating is delayedincrementalalgorithms can transform of the data such that, after the transfor-
be very efficient; however their major drawback igation, effect of the cross terms can be dealt with
that a separate algorithm needs to be handcrafakily. The local MR models are then transported to
for every problem. Data drivereactivealgorithms the central site and combined to form the global MR
are efficient, simple and can accommodate a wideodel. Such synchronized techniques are unlikely
variety of function computation. This is because the scale in large, asynchronous systems such as
algorithm only reacts and rebuilds the model if thenodern P2P networks.
data changes — in other cases, the algorithm doedany researchers have looked into the problem
nothing and saves unnecessary communication. of doing distributed MR using distributed kernel



regression techniques such as Guestrin et al. figcision tree in vertically partitioned data. They
and Predd et al. [6]. The algorithm presented hysed Gini information gain as the impurity measure
Guestrin et al. [5] performs linear regression iand showed that Gini between two attributes can
a network of sensors using in-network processirg formulated as a dot product between two binary
of messages. Instead of transmitting the raw dateectors. To reduce the communication cost, the
the proposed technique transmits constraints ordythors evaluated the dot product after projecting
thereby reducing the communication complexitthe vectors in a random smaller subspace. The major
drastically. Similar to the work proposed here, thedisadvantages of these techniques are (1) strong
work also uses local rules to prune messages. Hasynchronization requirements and (2) inability to
ever the major drawback is that their algorithm iadapt to changes in data or network.

not suitable for dynamic data. It will be very costly Distributed probabilistic classification on het-

if the data changes since, as the authors point oeftpgenous data sites have also been discussed by
two passes are required over the entire network Merugu and Ghosh [14]. Similarly, Parkt al.
make sure that the effect of the measurements lave proposed a fourier spectrum-based approach
each node are propagated to every other node. Mdi@- decision tree induction in vertically partitioned
over, contrary to the broad class of problems thdatasets [15].

we can solve using our technique, their technique Meta-classification from horizontally partitioned

is only applicable for solving the linear regressiodata for large distributed systems have been pro-
problem. posed by Lou et al. [16]. The system builds local

Meta-learning is an interesting class of algorithmmodels which requires no communication at all.
typically used for supervised learning. In a met&/hen a new tuple arrives, it is broadcast to all
learning, such as bagging [7] or boosting [8] mare nodes and the output is determined using a
models are induced from different partitions of theariation of the majority voting scheme which the
data and these “weak” models are combined usiagthors term as distributed plurality voting (DPV).

a second level algorithm which can be as simple &0 disadvantages of this method are as follows.
taking the average output of the models for any neline tuple to be classified needs to be flooded in the
sample. Such a technique is suitable for inducingetwork. Similar to other meta-learning techniques,
models from distributed data as proposed by Stolfoe quality of such algorithms degrade as the size
et al. [9]. The basic idea is to learn a model af the systems increases to millions of peers.

each site locally (no communication at all) and A robust, completely asynchronous and commu-
then, when a new sample comes, predict the outmitation efficient algorithm for decision tree induc-
by simply taking an average of the local outputsion from horizontally partitioned data distributed in
Xing et al. [10] present such a framework for dointarge P2P systems has been proposed by Bhaduri et
regression in heterogenous datasets. However, thalkg17]. The algorithm is eventually correct which
techniques perform poorly as the number of sucheans the decision tree inducted by our algorithm
data partitions increases to millions — as in typicé the same that would be induced given all the data
P2P systems. at a central location. The algorithm also seamlessly

A closely related topic is classification in whicthandles changes in the data and the network. Exper-
the output is discrete instead of real-valued. Sewnental results show the low cost of building and
eral algorithms have been proposed for distributedaintaining the decision trees even when the data
classification. Here we present only a few of thenchanges.

Carageaet al. [11] presented a decision tree 2) Computation in large distributed (P2P) sys-
induction algorithm for both horizontally and vertitems: Computation for P2P networks span three
cally distributed data. Noting that the crux of anynain areas: (1) best effort heuristics, (2) gossip
decision tree algorithm is the use of an effectiMeased computations, (3) broadcast-based systems
splitting criteria, the authors propose a method tand (4) local algorithms. For a detailed survey
which this criteria can be evaluated in a distributadterested readers can refer to [18].
fashion. Their system is available as part of the Algorithms using best effort heuristics have been
INDUS system. A different approach was taken bgeveloped for large distributed systems. The R2P
Giannellaet al. [12] and Olsen [13] for inducing Means algorithm by Bandyopadhyay et al. [19] is



one such example. Typically for such algorithms, entire data). This feature makes local algorithms
peer collects some samples from its own data asgceptionally suitable for P2P networks as well as
its neighbors and builds a model on this sampl& wireless sensor networks.
The samples are generally collected using someThe idea of using local rules for algorithms dates
variations of random walk-based techniques. Thelsack to the seventies. John Holland described such
algorithms can be classified as probabilistic approniles for non-linear adaptive systems and genetic al-
imate algorithms since the results are bounded orjgrithms in his seminal work for biological systems
on average. A different class is the set of determif24]. Local evolutionary rules for grid-based cellular
istic approximate algorithms such as the inferenautomaton were first introduced in 1950's by John
ing problem in sensor networks using variationalon Neumann [25] and later adopted in many fields
approximation technique proposed by Mukherjee stich as artificial agents, VLSI testing, physical
al. [20]. simulations to mention a few. In the context of
Gossip algorithms rely on the properties of rargraph theory, local algorithms were used in the early
dom samples to provide probabilistic guarante@ieties by Afeket al. [26] and Linial [27]. Naor
on the accuracy of the results. Researchers hawel Stockmeyer [28] asked what properties of a
developed different approaches for performing bagjeaph can be computed in constant time independent
operations €.g. average, sum, max, random sanwof the graph size. Kutten and Peleg [29] have intro-
pling) on P2P networks using gossip techniquesuced local algorithms for fault-detection in which
Kempeet al.[21] and Boydet al.[22] present such the cost depends only on the unknown number of
primitives. In gossip protocols, a peer exchangésults and not on the entire graph size. They have
data or statistics with a random peer. Howeveteveloped solutions for some key problems such
they can still be quite costly — requiring hundredss the maximal independent set (MIS) and graph
of messages per peer for the computation of jusbloring. Kuhnet al. [30] have suggested that some
one statistic. Another closely related technique fgoperties of graphs cannot be computed locally.
to use deterministic gossip or flooding. In flooding, More recently, local algorithms have been de-
every peer floods/broadcasts the data and therefaigloped for several data mining problems: associ-
eventually the data/statistic is propagated througion rule mining [31], facility location [32], L2
the entire network. Here again the major drawbagtresholding [33], outliers detection [34], meta-
is scalability and the answer to dynamic data.  classification [16] and decision tree induction [17].
Communication-efficient broadcast-based alg®esearchers have also looked at the complexity of

rithms have been also developed for large clustéégal algorithms using the concept of veracity radius
such as the one developed by Sharfman et al. [2f]5].
Since these algorithms rely on broadcasts as their
mode of communication, the cost quickly increases
with increasing system size. [1I. N OTATIONS AND PROBLEM DEFINITION

Local algorithms are a good choice for datg\ Notations
mining in P2P networks since in a local algorithm,”
the result is generally computed by communicatingLet V' = {P,,..., P,} be a set of peers con-
with a handful of nearby neighbors and the totalected to one another via an underlying commu-
communication per peer is also bounded. Locaication infrastructure such that the set &f's
algorithms rely on data dependent conditions whigteighbors,I';, is known to P,. Additionally, at a
we refer to as local rules, to stop propagating metsme ¢, P, is given a stream of data vectors in
sages. This means that if the data distribution do@é._)The_l)ocal dj\ta o_f) peeP; at timet is bl) =
not change, the communication overhead is ve x’i»f(l“li)) 7 (xé,f(xé)) .... |, where eachrj. is
low. On the other hand, the local rules are violate ) . S ,
when the distribution changes. On one hand, local@-1)-dimensional data pointzj, x5, . . "T;(d—l)]
algorithms are highly efficient (and hence scalablend f is a function fromR?! — R. Every data
The exact local algorithms we consider in this papgpint can be viewed as an input and output pair.
guarantee eventual convergence to ¢éxactresult Below we define the global knowledge which is the
(equal to that which would be computed given thenion of all the data of all the peers.



Definition 3.1 (Global knowledge)The global Definition 3.4 (Agreement)The agreement of
knowledge is the set of all inputs at tim¢ and F; and any of its neighborg; is A; ; = X; ;U X ;.

is denoted byg = U S;. Definition 3.5 (Withheld knowledge)the
i=1,..n subtraction of the agreement from the knowledge
Henceforth we will drop the indices iG. is thewithheld knowledge of P; with respect to a

In MR, the task is to learn the functiofiz’) neighborP;ie. W;; = K;\ A;;.
which “best” approximateg (') according to some We are interested in computing regression models
measure such as least square. Now dependingdgfined ong. Note that no peer has the global error
the representation chosen fgt '), various types or £9. Therefore each peer will estimafé based
of regression models (linear or nonlinear) can ¥ only its local knowledgéC;. These sets can be
developed. We leave this type specification as p&fbitrarily large. Hence in order to represent these
of the problem statement for our algorithm, rath&ets efficiently, we define two statistics on each set:
than an assumption. (1) theaveragewhich is the average of all the points
For each data point@, f(7)), the error be- in the respective sets (€4, A;;, Wi;, Xi;, Xj;
tween f(Z) and f(Z) can be computed asand £9), and (2) thesizesof the sets denoted by
N ~_,.12 . |Xl'7j‘, ‘Xj,i|, VCZ‘, |.Ai,j‘, |Wm’|, and‘Eg‘. Instead
f(&) = f(a)| . Normally we require the ermor ¢ o nminicating the entire sets of points, each peer
to be zero. However, since we have a dynamic daign communicate only these two statistics for each

change scenario we relax this assumption and ce@t which is sufficient to represent them.
sider a solution to be admissible if the global error

is less thare, wheree is a user chosen threshold. o o
For peerP,, this error&; is a set of points iR i.e. B- Sufficient Statistics
_ I w1 Ty AR Our algorithm relies on the fact that points sent
& = {[f(xl) B f(xl)] : [f(%) B f(%)] ’} by any peerP, to P; are never sent back t&,.
The average error forP, is denoted by& = This can be done in several different ways such
E o) [f(z) B f(z)r as message indexing, tagging and ensuring that the
1] = - J , , .graph topology has no cycles. In this paper we take a
Moreover, in our scenario, this error value i impler approach — we assume that a tree topology

dlsmbuted across the peers — therefore a gofédimposed over the network. We could get around
estimate of the global error is the global averagg;g assumption in one of two ways:

i G_ 1\ ¢ ints i
errorie. &% =, Zl & ovgr all the points irg. . 1) We can use a similar technique as proposed by
Peers communicate with one another by sending Liss et al. [36] which extends the original ma-

sets of points iR or statistics as defined in Section jority voting algorithm for arbitrary network
l1I-B. Let X, ; denote the last sets of points sent by topology

peerF; to P]d Algsum(ljng rl%llablgpmekssagl;g, onge a 2) There exist several technigues in the literature
message IS delivered born and f; Know X, ; an for maintaining tree communication topology

Xi- Our next definition formally defines a message. such as [37] (for wired networks) or [38] (for
Definition 3.2 (Message)The messagehat peer wireless networks).

P, needs to send t@; consists of a set of vectors L
If we assume that communication always takes

?hned sliszedgfn ?ﬁgdsgtwég .eﬁgghoxetﬁfrd:talrtmsa? %ceje rplace in an overlay tree topology, we can write the
P following expressions for the sizes of the sets:

needs to send t@;. LA = |X] + 1]
Below we show that for our case, sending the =~ "’ "7 2

statistics of the set (such as mean and size) /il = 1€ + > X, and

sufficient. Now we define four entities which are, Wil = IKi] ljeﬁél”‘

crucial to our algorithm. Similarly for the average of the sets we can write,

Definition 3.3 (Knowledge)The knowledge of T = sl Kl
P, is the union of€; with X;; forall P, e I'; and ~ 7" [Awl™ I&jl | It
i — . &l Jsi
is denoted byC, = & U U X 2. K, = M& + Z @ X,

P;€T; P;€T; [KCil



3. Wij = b Ks — fh Ay regression model be linear in the regression coeffi-
Note that,’#or any |bJeer, any of these quantitiegents:ay+ a,x; +asx2, Whereay, a; anda, are the

can be computed based solely on its local data amgression coefficients having values 1, 2 and -2 re-

what it gets from its immediate neighbors. spectively and:; andz, are the two attributes of the
Next we formally state the problem definition. data. The coefficients are given to all the peers. The

data of peerP; is S; = {(3,1,3.9),(0,—1,3.6)},
C. Problem Definition where the third entry of each data point is the
Problem 1.[MR Problem] Given a time varying output generated according to the regression model.

dataset S, a user-defined thresholde and 1©° this, we add 30% noise. Similarly, for peer
F(F) : R - R to all the peers, the MR 81 = {(1,4,-6.5),(=3,2,-9.1)}. Now for

. o — peer P;, the squared error for each point §;: =
{)r:gtblzznalnsytfi)mr;algtgazl ?c(x) at each peer SUCh{(O.Q)z,(0.6)2}. Similarly for P;, the errors are

& = {(1.5)%,(2.1)%}. Hence&; = {W} _

_ For ease of explana_tion, we decompose this t_a{sé(_585} and &, = {(1.5)245(2.1)2} _ 333}, As-
into two subtasks. First, given a representation . =~ ___ —
of (Z) to all the peers, we want to raise ag-nd Xij = X;i = 0, for peer b, K; =
alarm whenevet£? > ¢, wheree is a user-defined < — 10585} Similarly for peerr;, K; = &; =
threshold. This is thenodel monitoring problem {3:33}. Also the global average error i§9 =
Now if f(Z) no longer represents (), we 1 0005 +2D } = {1.9575}. In R, the
sample from the network (or even better dtask is to determine if.9575 > ¢ for a user defined
an in-network aggregation) to find an updated

f(7'). This is the model computation problem

Mathematically, the subproblems can be formalized _
as follows. E. Local Algorithm

o ) Local algorithms, as defined by Das et al. [3], are
Problem 2[Monitoring Problem] Given S;, and narameterized by two quantities: (&)— which is

f(7) to aII_ the peers, the monitoring probl_em I¥he number of neighbors a peer contacts in order to
to output 0 if€9 < ¢, and 1 otherwise, at any timte finq answers to a query and (2)— which is the
) total size of the response which a peer receives as
Problem 3[Computation Problem] IrE model the answer to all the queries executed throughout
computation problem is to find a neyi(z’) based ine jifetime of the algorithma can be a constant or
on a sample of the data collected from the network.fynction parameterized by the size of the network
) while v can be parameterized by both the size of
Also note that the case for which thene data of a peer and the size of the network. Here
output is O can be defined as the regiofe present the definition proposed by Das et al. [3].
C, = {zeR:0<z<e). The region in  pefinition 3.6 4-neighborhood of a vertex):
WTCh the output is 1 can be defined aggr o — (V,E) be the graph representing the
¢, = +{55 €R:e<w<oo} Further, 16t nonyork wherel” denotes the set of nodes art
Co = {CJ,C ). In order to ensure globalignrasents the edges between the nodes. dhe

correctness of the monitoring algorithm,  Wegjghhorhood of a vertexw € V is the collection
have transformed the thresholding problem t0 & \ertices at distancer or less from it in G-

geometric problem: we check if the global average (o, v, V) = {u|dist(u,v) < a}, wheredist(u, v)
error lies inC;;’. In Section 1V, we discuss a lemmagyengies the length of the shortest path in between
relying on €, which will guarantee correctness of, anq,, and the length of a path is defined as the
the monitoring algorithm. number of edges in it.
Definition 3.7 (-local query): Let G = (V, E)

D. Example be a graph as defined in last definition. Let each

In this section we illustrate the P2P MR algonodewv € V store a data seX,. An a-local query
rithm. Let there be two peer®;, and P;. Let the by some vertex is a query whose response can



be computed using some functigifX,(v)) where A;;, and W, if £9 is greater than or less than
Xo(v) ={X,|lv € T'y(a,v,V)}. e. As stated by the Theorem below, if the following
Definition 3.8 (¢, v)-local algorithm): An condition holds, the peer can stop sending messages
algorithm is called(«, v)-local if it never requires and determine the correct output based solely on its
computation of ag-local query such that > « local averages.
and the total size of the response to all suelocal Theorem 4.1:[Stopping Rule] Let Py,..., P,
gueries sent out by a peer is bounded-byx can be a set of peers connected to each other over a
be a constant or a function parameterized by tspanning treeZ (V, E). Let £9, K;, A, ;, and W, ;
size of the network whiley can be parameterizedbe as defined in the previous section. liebe any
by both the size of the data of a peer and the simgion inC,,. If at time ¢ no messages traverse the
of the network. network, and for each?, K; € R and for every
The idea is to design algorithms that offer®; € I';, A;; € R and eithenV, ; € Ror W, ; =0,
bounded total communication cost per node anlden&Y € R.
also spatially localized communication among the  Proof: [Sketch]:We omit the formal proof here.
neighbors. We call such anx(~)-local algorithm Simply speaking, the theorem can be proved by
efficient if both o« and~ are either small constantsaking any two arbitrary peers and exchanging all
or some slow growing functions (sublinear) witlof their withheld knowledge. We call this the uni-
respect to its parameters. We prove that the regréisation step. After unifying all the peers it can be
sion monitoring algorithm igO(1), O(n))-local in shown that€9 € R. Interested readers are referred
Section IV-B. to [39]. [ |
The significance of Theorem 4.1 is that under the
IV. STEP 1: MONITORING REGRESSIONMoDEL condition described”; can stop sending messages
o .. to its neighbors and output iK; < €. The idea
In MR monitoring pr_oblerAn,_(?ach PEEr 1S gVel +5 ensure thaiC; and €9 finally reside in the
a dqtasetgi and an estimatg(z'). Our goal is 10 game region i If the result of the theorem holds
monitor £7. _ _ _ for every peer, then Theorem 4.1 guarantees this
We present here a local algorithm which monitof§ he correct solution: else, there must either be
the regression coefficients by thresholding the aVe[-message in transit, or some pe@r for whom

age error. In our earlier work [33], we presented 8fjg condition does not hold. Then eithé will
algorlthm fo_r monitoring the L2 norm of the average.nq 4 message which will change its output or the
vector distributed across a_I)arge number of Peeffessage will be received, leading to a changkjin
The algorithm outputs 0 IH g ‘ < e and 1 other- eventually. Thus eventual correctness is guaranteed.
wise. The algorithm presented in [33] is prone t@/e formally prove this in Section IV-A.
noise in the data since it communicates all the dataAlgorithm 1 presents the pseudo-code. The inputs
for every data change. In this paper, we take catethe algorithm ares;, I';, e and C,, and L. Each
of that problem by applying a different conditiorpeer initializes its local statistics;, A;; and W ;.
for sending messages and ensuring that all dataAispeer may need to send a message if its local
not sent whenever a peer communicates. Rather, daga changes, if it receives a message or if the
keep some data (in the form of withheld knowledgeget of neighbors change. In any of these cases, the
so that if the data changes later, the change is lggser checks if the condition of the theorem holds.
noisy. Here we use a similar algorithm but i First peer P; finds the regionR € C, such that
and use a different set of conditions for sending; € R. If, for all P, e T, bothm € R and
messages in order to reduce the communicatib¥i ; € R, P, does nothing; else it needs to set
overhead in dynamically changing environments. X; ; and | X; ;| and send those, such that after the
The regression monitoring algorithm guaranteesessage is sent, the condition of the theorem holds
eventual correctness, which means that once cofor this peer. As we already pointed out that if a peer
putation terminates, each peer computes the correstnmunicates all of its data, then if the data changes
result as compared to a centralized setting. Inagain later, the change is far more noisy than the
termination state, no messages traverse the netwarnkginal data. So we always séf; ; and|X; ;| such
and hence a peer can decide solely basedCgn that some data is retained while still maintaining the




Input: ¢, C,, S;, I'; and L the time difference betweeh and the time it had

Output: 0 if K; < ¢, 1 otherwise sent the last message. When the timer expires, the
Initialization : Initialize vectors; peer checks the conditions for sending messages and
if MessageRecvdFrort?;, X, |X|) then decides accordingly. Note that this mechanism does
X X; not enforce synchronization or affect correctness; at
| X4 < | X]; most it might delay convergence. This technique has
Update vectors; been used elsewhere as well [33][17].
end In the next two sections we discuss the cor-
if S;, I'; or K; changeghen rectness and locality of the multivariate regression
forall P; € I'; do monitoring algorithm.
if LastMsgSent > L time units ago
then A. Correctness
if R=0 then . . :
v o Kl IXNIK. ~In this section we prove that the regression mon-
BT TR IX; itoring algorithm is eventually correct. Theorem 4.2
| Xig| — K| = |XM formally proves the claim.
end . Theorem 4.2;[Correctness] The regression
it Ai; € RorW;; ¢ R then monitoring algorithm iseventually correct
SetX;; and|X; | such that Proof: Each peer will continue to send mes-
Aij andW,; € R; sages and accumulate more and moré€%fn each
end o IC; until one of the two things happen: either for
SendMessageP;, X; ;, | X:;|); every peer/C; = £9 or for every P, both IC;, A, ;,
LastMsgSent « L; and W, ; are in the samei, € C,,. In the former
Update all vectors; case,K; = £Y, so every peer obviously computes
end _ the correct output. In the latter case, Theorem 4.1
elseWait L time units and then check| gjctates thatc9 € R,. Since the function output (in
again, this case 0 or 1) does not change inside each of
endend these regions irC,,, and£9 and K, lie inside the

same region, the output of the tet < ¢ will be
Algorithm 1 Monitoring Regression Model. the same ak; < e. Therefore in either of the cases,
the regression monitoring algorithm is correctm

conditions of the theorem. We do this by checking. Locality

with an exponentially decreasing set of values of |n this section we claim that the regression mon-
[W; ;| until either all i, A;; and W,; € R, or itoring algorithm is(O(1), O(n))-local. The art of
[W;,;|=0, in which case we have to send everythingheasuring («, v)-locality of algorithms is at its
Note that other than these two cases, a peer n@efdncy. An attempt has been made to define locality
not send a message since the theorem guaranigrg respect to thé/eracity Radiuof an aggrega-
eventual correctness. Similarly, whenever it receiv@gn problem [35]. However this method does not
a message X and |X|), it sets X;; < X and extend well to algorithms that contain randomness
| Xj| < [X]|. This may trigger another round of(e.g., in message scheduling) or to dynamic data
communication since it&; can now change. and topology. Considering the(v) framework we

To prevent message explosion, in our event-basagefined earlier, there always exist problem instances
system we employ a “leaky bucket” mechanisior which any eventually correct algorithm (e.g.
which ensures that no two messages are sent ifil&][31][33][40][41] and the one described in this
period shorter than a constaht Whenever a peer paper) will have worst case = O(n) (as shown in
needs to send a message it checkg ifime units Theorem 4.4), where is the size of the network.
have passed since the last time it sent a messag#ile O(n) is the upper bound on the communica-
If yes, it simply sends the message and notes tthen complexity, more accurate bounds prtan be
time. If not, it sets up a timer and initializes it tadeveloped by identifying the specific problems and



input instances. We feel that there is an intrinstbe regression monitoring algorithm only communi-
relation betweeny and e. For example increasingcates with immediate neighbors, in the worst case
¢ decreasesy though it needs to be investigatedny peerP; will be updated with each value df;,
further. j # i one at a time. Every timé&; gets onek;, it
Lemma 4.3:Considering a two node networkcommunicates with all its neighbors except the one
P, and P;, the maximum number of messagefom which it gotkC;. This process can be repeated
exchanged between them to come to a consenguthe worst case fofrn—1) times in order to get all
about the correct output is 2. theC;’s. At every such update?, will communicate
Proof: Using the notations defined earlierwith |T';| — 1 neighbors. Therefore, the total number
let K; € Ry, K; € R, and €9 € R,,, where of messages sent ) is (n — 1) x (][] —1). =
R,,Ry,R, € C, andk # ¢ andm = k or /. Our next theorem shows that the multivariate
Considering an initialization state, whetg; ; = regression monitoring algorithm isO(1),O(n))-
X;; = 0 such that4;; = 0 = A;,. In this case local.
the condition of Theorem 4.1 does not hold for Theorem 4.5:[Locality] The multivariate regres-
either P, or P;. Without loss of generality let ussion monitoring algorithm isO(1), O(n))-local.
assume that the conditions are violatedatlt will Proof: The multivariate regression algorithm is
send all of its data.e. K; to P; which will enable designed to work by communicating with immediate
P; to correctly compute£9 (since£9 is a convex neighbors of a peer only. Hence by design:= 1.
combination ofKC; and K;). On receivingkC; from  From Lemma 4.4, we know that = O(n).
P;, P; will apply the conditions of Theorem 4.1.Hence, the multivariate regression monitoring algo-
Since clearlyk; = €9 € R, but A;; = K; € Ry, rithm is (O(1),O(n))-local. |
the condition of the theorem dictates it to send a Although the worst case communication com-
message ta?; and it will send all the data whichplexity v is O(n), for many interesting problem
it has not received fron?; i.e. K;. At this point instancesy is a small constant and independent
both P, and P; have bothK; and ;. Hence they of the size of the network as corroborated by our
can compute&? correctly. Therefore the number ofextensive experimental results.
messages exchanged is 2. [ ]
Our next theorem bounds the total number (3 An Alt te A h
messages sent by the regression monitoring algo- n Allernate Approac
rithm. Because of the dependence on the data/n the previous section we used L2-norm monitor-
counting the number of messages in a data indag as the building block for monitoring the regres-
pendent manner for such an asynchronous a|gorit|$iﬁn coefficients. In this section we discuss another
seems extremely difficult. Therefore in the followprimitive viz. majority voting protocol which can be
ing theorem (Theorem 4.4), we find the upper bourt$ed for the same matter.
of the number of messages exchanged by any peeMajority voting protocol for large P2P systems
when the data of all the peer changes. was proposed by Wolff and Schuster [31]. In its
Lemma 4.4:[Communication Complexity] Let basic form, each peepP; contains a real number
D, be a state of the network at timewhere for ' and the objective is to determine wheth&r=
every P, K; € Ry, R, € C,. Hence&9 € R, Y ;o0 > €, wheree is a user chosen threshold.
as well and thus the peers have converged to thelhe task of computing if\ > ¢’ can be achieved
correct result. Let at timé > ¢ the data of each peerby the following algorithm. For peerB; and P;, let
changes. Without loss of generality, let us assumé’ denote the most recent message (a real number)
that at timet’, K, € R; where eachR; € C.,,. Let us peerFP; sends toP;. Similarly ’* denotes the last
also assume tha? € R, whereg ¢ {1...n}. The message received by, from P;. Now using a
maximum number of messages sent by any geersimilar mnemonic as done in the previous sections,
is (n — 1) x (|Ty| — 1) in order to ensurdC; € R,. the knowledge ofP; is A" = 0" + > p . 07"
Proof: It is clear that the output of each peeSimilarly, the agreement of peét and P; is A"/ =
will be correct only when eaclC; = £9. This will §%7 + ¢+, for each neighboP; € T';. The algorithm
only happen when each; has communicated withis entirely event based — an event &t can be
all the peers in the network i.&;, = 37" | K,. Since one of the following: (i) 7 is initialized (enters
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the network or otherwise begins computation of the input: ¢, I, L, 3

algorithm); (ii) P, experiences a data changfeor Output: if A®>0thenl else0

a change of its neighborhoodl;; (iii) P, receives | Local Yaflé}b'efi Wjj er: 51"%?2” A

a message from a neighbd?,. If any of these | Definitions: AT=0"43 p cp 67, AW = 0% 4 67
. Initialization:

events occur, peef’; needs to check conditions

i . .1 begin
on its knowledge and agreement to determine if a gfora” P T do

message needs to be senfio It can be shown that 53 = §ii = 0;
peer P, needs to send a messageRponly if the SendMessagéy);
following test returns true(A™ > 0 A A% > AY)V end end

(AW < OANAY < A7), Since all these events are MessageRec;, §) then 67 — g

local to a peer, the algorithm requires no form of PeerFailuréP; € I') then T — I\ {P;};

global synchronization and hence can be used forf AddNeighbof P; € T7%) then T% « T U {P;};

our regression monitoring algorithm. if ', §* changes or MessageRectfen call
What is left to discuss is whab, sends toP;, | OnChangg);

if the conditions dictate soP, first setsd/ to | FunctionOnChange()

BAT — §7t (thereby makingA™’ = SAY) and sends beg']%ra” P el do
itto j, where/j is a fixed parameter between 0 and if ("Am > 0A AN > AY) v
1. Reducingg reduces the number of messages |n (A% <0 A AW < AY) then
a dynamic setup while increasing the convergence call SendMessagg?));
time. This mechanism replicates the one used by de”d
Wolff et al. in [33] and Bhaduriet al. [17]. The | 4"
pseudo-code is presented in Algorithm 2. FunctionSendMessaget;)
In order to use this protocol for regression mom- begin
itoring, the following steps need to be taken: if time () — last-message > L then
. . ) [ W RAY
« The inputo® for each peer should be the aver- ? (BA" = 67°); :
) ast_message — time ();
age error calculated on its own local da2ta§ﬁt Send(59) to P;;
Le. 0 = & = i Y, [1(@) = @] end
o Choose’ = exn, wheren is the total number Wait L — (time () — last_message) time units;
of nodes in the network. Call OnChangg);

nd

Other than these two changes, the majority voting ende
algorithm can be used for regression monitoring—— Argorithm 2 Local Majority Vote
without any further change.

In the next section we discuss the algorithm for
computing the regression coefficients.

simple sampling technique to be used — if an ill-
fit model is built at all, it will soon be detected
by the local algorithm resulting in another round
The regression monitoring algorithm presented of convergecast in the worst case. Another point to
the earlier section can be viewed as a flag whichnste is that, in our convergecast-broadcast process,
raised by a peer whenevéf > ¢. In this section we do not specify the root of the convergecast tree.
we discuss how the peers collaborate to find a né&ather we let the network structure (edge delays and
f(?) using a convergecast-broadcast technique.data skewness) decide it. This is significant since it
The basic idea is to use tlmnvergecasphase ensures (1) decentralized control, (2) load balancing,
to sample data from the network to a central posnd (3) robustness against a single point of failure.
and compute, based on this sample, a e’ ). In the convergecast phase there are two main
The broadcastphase distributes thig(z’) to the parameters. Each peer maintains a user selected alert
network. The monitoring algorithm now monitorsnitigation constanty and the sample size. An alert
the quality of the result. The efficiency and corshould be stable for a given period of timébefore
rectness of the monitoring algorithm allows a verthe peer can send its data, thereby preventing a

V. STEP 2: COMPUTING REGRESSIONMODEL
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possibly false alarm from propagating. In order o Input: ¢, C.y, S, Ty, L, f andr
do this, the peer relies on the underlying monitoring output: f such that9 < e

algorithm. If the monitoring algorithm raises a flag,
the peer notes the time, and sets a timer tiime

units. If the timer expires, or a data message |is

received from one of its neighborB; first checks if

there is an existing alert and if it has been recordedif MsgType = Monitoring_Msg then Pass Message

T Or more time units ago. If so, it counts the
number of neighbors from which it has received dat
messages. Once it receives data messages from al

its neighbors, the peer computes a new regressjon
model f(7) based on the sample it received and

Initialization
begin
Initialize vectors;

q MsgType= MessageRecvdFromy);
en

to Monitoring Algorithm;
a if MsgType = New_Model_M sg then
Updatef; R
Forward news to all neighbors;
Datasent=false; N
Restart Monitoring Algorithm with newy;

| of

sends it to itself. It then moves to the broadcastend

phase and sendf ') to all its neighbors. On the
other hand, if it has received data messages fro

all but one of the neighbors then it takes a uniform
sample (of user-defined size) from its own data and

the data it has received from its neighbors. It the

forwards the sample to the peer from which it has
not received data and marks its state as broadcast.
The peer does nothing if it has not received data
from two or more neighbors. Note that, at eagh
peer, the sampling technique is such that, each data
point gets an equal chance of being included in the
sampled data set. We do this by properly weighing
every data point by size of the subtree from whigh

the sample was received.
The broadcast phase is fairly straightforwar
Every peer which receives the nefyz’), restarts

=

if MsgType = Dataset_M sg then
m if Received from all but one neighbtren
flag=Output Monitoring Algorithm();
if Datasent = false and flag = 1 then
if DataAlert stable forr time then
n D=Samplef;, Recvd_Dataset);
Datasent=true;

SendD to remaining neighbor
end

elseDataAlert=CurrentTime;
end

end

if Received from all neighborthen
D=Samplef;, Recvd_Dataset);
f=RegressionD);
Forward newf to all neighbors;
Datasentfalse;

Restart Monitoring Algorithm with nevy?;
end

end

a new regression monitoring algorithm with this it g o k;, changesthen

new f(7Z). It then, sends the new () to its

other neighbors and changes the status to converge-
cast. There could be one situation in which a peer

receives a newf(Z) when it is already in the

broadcast phase. This is when two neighbor peers

Run Monitoring Algorithm;

flag=OutputMonitoring Algorithm();

if flag=1 and P;=IsLeaf() then
Execute the same conditions as

MsgType = Dataset_M sg
end

concurrently become roots for the convergecast treeend

To break this tie, we select thﬁ(?) to propagate

Algorithm 3: P2P Regression Algorithm.

the root of which has a higher id. Figure 1 shows a
shap-shot of the convergecast broadcast steps as it

progresses up the communication tree. The pseudol-_et the global dataset over all the peers be de-

code is presented in Algorithm 3.

noted by:
VI. SPECIAL CASE: LINEAR REGRESSION _
_ _ T 12 Tia-1y  f(Z1)
In many cases, sampling from the network is Tor  Too Toa-ry Sf(T3)
communication intensive. We can find the coeffi- : , :
cients using an in-network aggregation if we chooseg — ' : BN
to monitor a widely used regression mod. lin- Tt Tj2 zja-n - f(7)
ear regression (linear with respect to the parameters : : :
or the unknown weights). Tigh gl Tiga-1) f(Tg))
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Flag=1
[ o
/] \. N ® ?
. ® ® Flag=1 Fla Flag=1 Fla Flag=1
z & x\ Flag=1 Flag \ Flag=1  Flag=1 Flag &{39'1
/\ N\ o o d% o &% S
. . . . Flag=1  Flag=1 Flag=1  Flag=1  Flag=1  Flag=1 Flag=1  Flag=1  Flag=1 Flag=1

(a) Initial state (b) Activated leaves (c) Activated intermediate nodes (d) Activated roots

Fig. 1. Convergecast and broadcast through the differepsstn subfigure 1(a), the peers do not raise a flag. In subfigi), the two
leaves raise their flags and send their data up (to the paasrghown using arrows. Figure 1(c) shows an intermediafe Bieally, the
roots (two of them) become activated in subfigure 1(d) by arging data with each other.

wherez; = {zj12j2... Tj4-1)}- can be written as:

In MR, the idea is to learn afunctiof(xj)which G| S z'J N 1)
approximatesf (;) for all the data points iy For S S ()2 I e
linear regression, that functhf(xj) is chosen to be : : " :

a linear function i.e. al — 1 degree polynomial fit- S iy S e . B 1(%@ )’
ted to the input attribute pointsz; 1z, . .. 241} 9
Vj = 1 to |G|. More specifically, the linear model agp > i f(z5)
which we want to fit bef(xj) = ap+a12j1+asT 0+ a | Z‘g‘ ( )T

..+ aja-1zs—1, Wherea,'s are the coefficients that X ; -

need to be estimated from the global dataget G
QAg—1 Z' | ( )%(d N

We drop the cross terms involving;, and x;, for
simplicity V&, ¢ € [1..(d — 1)].

For every data point in the sét the squared error
is: Therefore for computing the matrix (or more ap-

propriately vectorjp, we need to evaluate the matri-
cesX andY. This can be done in a communication

= Xa=Y

— 2
B = [f(@)—a0— . —aiawm@] efficient manner by noticing that the entries of these
Ey = [f(z))—ay—...— ad_lxg(d_l)]z matrices are simply sums. Consider the distributed
) scenario whereG is distributed amongn peers
- ,  S1,8,..., S, Any entry ofX, say>_ 7! (z;1)?, can
Eg = [f(%g) —ao— .. — aa-12/g/@a-1)] be decomposed as

4
Thus the total square error over all the data poing:(x,l)z = 3 @t Y @+ S @)
J - J J J

IS j=1 zj1E€51 zj1€S52 zj1€Sn
———
for Sy for Sy for S,
4 1G]
2Therefore each entry of andY can be computed
SSE = E; = —ag— ... — Qg_1%; ) .
Z ; ) — an =150 1Qy simple sum over all the peers. Thus, instead of

sending the raw data in the convergecast round, peer
For linear regression, closed form expressioi$ can forward a locally computed matriX; and
exist for finding the coefficients;’s by finding the Y,. PeerP;, on receiving this, can forward a new
partial derivatives of SSE with respect to thegs matrix X, andY; by aggregating, in a component-
and setting them to zero. In the matrix form thisvise fashion, its local matrix and the received ones.
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Note that the avoidance of the sampling techniga®d non-linear regression models. For the linear
ensures that the result is exactly the same compameddel, the output is generated according to
to a centralized setting. Tqg = Qo + a1 + ass + ... + ag_124—1. We have

Communication Complexity: Next we prove a used three functions for the non-linear model: (1)
lemma which states the communication complexityy = ag + ajasx7 + agaizo (Multiplicative), (2)
of computing the linear regression model. x3 = ag X sin(a; + aswy) + a1 X sin(ag + agxs)

Lemma 6.1:The communication complexity of(sinusoidal) and (3)xs = a¢\/zToa1 + ai1\/Z1ag
computing a linear regression model is only ddsquare root). Every time a simulated peer needs
pendent on the degree of the polynomid) @nd an additional data point, it chooses the values of
is independent of the number of data points [(B. =z, xs,...24_1, €ach independently in the range

Proof: As shown in Section VI, the-100 to +100. Then it generates the value of the

task of computing the regression coefficientarget variabler, using any of the above functions
{ag,ai,...aq-1} can be reduced to computing thend adds a uniform noise in the range 5 to 20%
matricesX; andY ;. The dimensionality oK; d.d = of the value of the target output. The regression
d?. Similarly the dimensionality ofY; d.1 = d. weightSag,ay,...,aq_1’s are changed randomly at
Therefore the total communication complexity isontrolled intervals to create an epoch change.
O(d?), which is independent of the size of the
datasetG|. m C. Measurement Metric

The efficiency of the convergecast process is dueln our experiments, the two most important pa-
to the fact thatd < |G|. Hence there can berameters for measurement are thaality of the
significant savings in terms of communication byesult and thecost of the algorithm.

not communicating the raw data. For the regression monitoring algorithm, quality
is measured in terms of the percentage of peers
VIl. EXPERIMENTAL RESULTS which correctly compute an aleitge., the number

peers which report thall; < ¢ when &9 < ¢
similarlyC; > ¢ when &9 > ¢. We also report
the overall quality which is average of the qualities
for both less than and greater thaand hence lies
_ in between those two. Moreover, for each quality
A. Experimental Setup graph in Figures 3, 4, 5, 6, 7 and 8 we report two
We have implemented our algorithms in the Disjuantities — (1) the average quality over all peers,
tributed Data Mining Toolkit (DDMT) [42] de- all epochs and 10 independent trials (the center
veloped by the DIADIC research lab at UMBCmarkers) and (2) the standard deviation over 10
We use topological information generated by thedependent trials (error bars). For the regression
Barabasi Albert (BA)model in BRITE [43] since computation algorithm, quality is defined as the L2
it is often considered a reasonable model for tmrm distance between the solution of our algorithm
internet. BA also defines delay for network edgeand the actual regression weights. We compare this
which is the basis for our time measurenter®n to a centralized algorithm having access to all of the
top of the network generated by BRITE, we overlagata.

In this section we discuss the experimental set
and analyze the performance of the P2P regress
algorithm.

a communication tree. We refer to the cost of the algorithm as the
number ofnormalized messagesent, which is the
B. Data Generation number of messages sent by each peer per unit of

The input dat ¢ . ¢ leaky bucketLZ. Hence, 0.1 normalized messages
€ Inpd ata ot a peer IS a VeClOfaans that nine out of ten times the algorithm

d 1 _ . .
(21,2,...,74) € RY where the firstd —1 |, nages to avoid sending a message. We report

dimensions correspond to the input variables a¥3th overall cost and the monitoring cost (station-

the last dimension corresponds to the outptgry cost), which refers to the “wasted effort’ of

We have conducted experiments on both I'neﬁ{e algorithm. We also report, where appropriate,
Wall time is meaningless when simulating thousands of caerpu ME€SSAgES required for convergecast and broadcast
on a single PC. of the model.
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Fig. 2. A typical experiment is run for 10 equal length epod@siality and overall cost are measured across the entireriexpnt —
including transitional phases. The monitoring cost is mess on the lasg80% of every epoch, in order to ignore transitional effects.

D. Typical Experiments parameters: number of peers = 1008;| = 50,

A typical experiment is shown in Figure 2. In alf, — 1.5, d =10, k = & and L = 500 (where
the experiments, about 4% of the data of each peemg average edge delay is a.bout 1100 time units).
changed every 1000 simulator ticks. Moreover, aftey we have a_lready stated, mdependent of _the_ re-
every 5x 10° simulator ticks, the data distributiond"€SSion function chosen, the underlying monitoring
is changed. Therefore there are two levels of dfi0PIem is always iR. The results reported in this
change — (1) every 1000 simulator ticks we samp ction are‘W|th respect to Ilnlear model since it is
4% of new data from the same distribution (statior‘i-e most widely used regression model. Results_of
ary change) and (2) every 5 10° clock ticks we monitoring more complex models are reported in
change the distribution (non-stationary change). 1€ Next section.
start with, every peer is supplied the same regressiorfFigures 3(a) and 3(b) show the quality and cost of
coefficients as the coefficients of the data generattire algorithm as the size of local buffer is changed.
Figure 2(a) shows that for the first epoch, the qualifys expected, the quality when the average is less
is very high (nearly 96%). After 5< 10° simula- thane increases and the cost decreases as the size
tor ticks, we change the weights of the generatof buffer increases. The other quality is very high
without changing the coefficients given to each peéhroughout. This stems from the fact that, with the
Therefore the percentage of peers reporfifjg< ¢ noise in the data, it is easy for a peer to get flipped
drops to 0. For the cost, Figure 2(b) shows that tlmeer when it is checking for less than On the
monitoring cost is low throughout the experiment ibther hand, noise cannot change the belief of the
we ignore the transitional effects. peer when the average is greater thanin the
second set of experiments, we variettom 1.0 to
2.5 (Figure 4(a) and 4(b)). Here also, the quality
increases as is increased. This is because with

There are four external parameters which camcreasinge, there is a bigger region in which to
influence the behavior of the regression monitoringpund the global average. This is also reflected
algorithm: size of local buffelsS;|, the threshold with decreasing number of messages. Note that,
¢, size of the leaky buckef, and noise in the even fore = 1.0, the normalized messages are
data. Apart from these there are also the systemround 1.6, which is far less than the theoretical
size (number of peers) and dimensionality of thaximum of 2 (assuming two neighbors per peer).
multivariate regression problem which can affedihe third set of experiments analyzes the effect of
performance. In this section we present the qualilgaky bucketl. As shown in Figure 5(a) quality
(less thani.e. £9 < ¢, greater than.e. £9 > ¢ and does not depend or, while Figure 5(b) shows
overall) and cost of the algorithm w.r.t. different pathat the cost decreases slowly with increasihg
rameters. Note that, unless otherwise stated, we h&igures 6(a) and 6(b) depict the dependence of the
used the following default values for the differenhoise on the monitoring algorithm. Quality degrades

E. Results: Regression Monitoring



15

and cost increases with increasing noise. This asd therefore is inaccurate for a longer intermediate
expected, since with increasing noise a peer is mgreriod. Figure 9(b) shows that the number of data
prone to random effects. This effect can, howevamllection rounds (dot markers) decrease from four
be nullified by using a large buffer or bigger times to twice per epoch. This results from a de-

Our next experiment analyzes the scalability afrease in the number of false alerts. Also shown are
the monitoring algorithm w.r.t the number of peemnonitoring messages (green squares).
and dimension of the multivariate problem. As Fig- Figures 10(a) and 10(b) analyzes the quality
ures 7(a) and 7(b) show, both the quality and costof our algorithm while computing a non-linear
the algorithm converge to a constant as the numbmeultiplicative regression modeliz. 3 = ay +
of peers increase. This is a typical behavior of localasx; + aga;xs. Figure 10(a) presents the quality
algorithms. For any peer, since the computation & other parameteviz. sampling size is varied.
dependent on the result from only a handful of itds expected, the results from the distributed and
neighbors, the overall size of the network does noéntralized computations converge with increasing
degrade the quality or cost. Similarly, Figures 8(@ample size. Also the number of data collection
and 8(b) show that the quality or the cost doesunds as depicted in Figure 10(b) decrease as
not depend on the dimension of the multivariateample size is increased.
problem either. This independence of the quality andThe third pair of figures, Figures 11(a) and 11(b)
cost can be explained by noting that the underlyirghow the same results for a sinusoidal modgl=
monitoring problem is inR. Therefore for a given qg * sin(a; + asxy) + a1 * sin(ay + apr2). Here also
problem, the system size or dimensionality of thiae quality becomes better and the cost decreases as
problem has no effect on the quality or the cost. the sample size is increased.

Overall, the results show that the monitoring Finally Figures 12(a) and 12(b) demonstrate the
algorithm offers extremely good quality, incurs loveffect on quality of the regression model built and
monitoring cost and has high scalability. the cost incurred as the for building a model of the
form x5 = ag\/zoa1 + a1\/T1a9. As shown here,
the quality improves and the cost decreases as the
sample size is increased.

Our next set of experiments measure the qualityTo sum everything up, the regression computa-
of the regression model computed by our algorithgibn algorithm offers excellent accuracy and low
against a centralized algorithm having access fgonitoring cost. Also, the number of convergecast-
the entire data. There are two important parametgji®adcast rounds is also two times per epoch on
to be considered here — (1) the alert mitigatioan average. We have tested our algorithm on sev-

constant f) and (2) the sample size (for non-lineagral regression functions and the results are highly
regression). For computing the non-linear regressigatisfactory.

coefficients, we have implemented the Nelder-Mead
simplex method [44].

We have conducted experiments on three datasets.
Figures 9(a), 10(a) and 11(a) presents two sets offo the best of the authors’ knowledge this is one
error bars. The square markers show the L2 nowh the first attempts on developing a completely
distance between the distributed coefficients and tloeal and asynchronous regression algorithm for
actual ones. Also shown in each figure is the LR2P systems which maintains the same regression
norm distance between the coefficients found bynaodels given all the data to all the peers. The
centralized algorithm and the actual ones (diamowatgorithm is suitable for scenarios in which the
markers). The first pair of figures, Figures 9(ajata is distributed across a large P2P network
and 9(b) show the results of computing a lineas it seamlessly handles data changes and node
regression model. Our aim is to measure the effdailures. We have performed dynamic experiments
of variation of alert mitigation period on quality with random epoch changes which showed that the
and cost. As shown in Figure 9(a), the quality adlgorithm is accurate, efficient and highly scalable.
our algorithm deteriorates as increases. This is Such algorithms are needed for next generation P2P
because, on increasing a peer builds a model laterapplications such as P2P bioinformatics, P2P web

F. Results: Regression Models

VIIl. CONCLUSIONS ANDFUTURE WORK
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