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ABSTRACT 
This paper presents a framework to compare the resiliency 

of different designs during the conceptual design, when 
information about implementation details is unavailable. We 
apply the Inherent Behavioral Functional Model (IBFM) tool to 
develop an initial functional model for a system and simulate the 
failure behavior. The simulated failure scenarios provide us the 
information on the unique failure propagation paths and the end 
state/final behavior of the system assigned to each failure. Each 
failure path is caused by injecting one or multiple simultaneous 
faults into the functional model. Within this framework, we 
generate a population of functional models from a baseline seed 
model, and evaluate its potential failure scenarios. We also 
develop a cost-risk model to compare resiliency of different 
designs, and produce a preference ranking. select the most 
resilient one, based upon the cost-risk objective. The risk is 
calculated based on the probability of having an undesired end 
state for each design, and a consequential cost is assigned to 
each failure to quantify the cost-risk for a given design. In this 
paper, we implement and demonstrate the proposed method on 
the design of a resilient mono-propellant system.  

Keywords: resilient design, complex system, failure analysis, 
functional model 

1. INTRODUCTION
Complex systems contain an ever increasing number of 
components and subsystems that interact with each other, often 
in unpredictable ways. Unintended interactions lead to 
unexpected behaviors and consequences, some of which have 
proven to be catastrophic. A key technical challenge in 
developing such complex systems is to ensure that the behavior 
of the system in undesired and uncertain situations is determined 
early in the design phase, prior to the manufacturing and 
operational life of the system. 

To develop an engineered design, modeling and 
characterization of the complex systems, and simulation of the 
fault scenarios are necessary. Many complex engineering 
systems can be represented by their component model; however, 
their complexity is dependent on the quantity of different 
components as well as the formation of connections between 
those components, Also, when developing a new design, or in 
the early design phase, there is generally no component-level 
model available, and typically the set of components is not 
selected. Because of this, system properties are studied using 
functional models. Developing a functional model of a complex 

Proceedings of the ASME 2017 International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference 

IDETC/CIE 2017 
August 6-9, 2017, Cleveland, Ohio, USA 

DETC2017-67952

1 Copyright © 2017 ASME
This work was authored in part by a U.S. Government employee in the scope of his/her employment. 
ASME disclaims all interest in the U.S. Government’s contribution.

Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

engineered system is an effective way to study the system and its 
behavior, and achieve a reliable fault analysis of the system. 

An overall description of the design methodology is 
provided as follows. A functional model is the first phase of the 
overall design methodology. Based on the system requirements 
and user knowledge, functions and flows are defined. Each 
function can have different modes: nominal, degraded, and 
failed. Function, flow, and mode definitions are fed to the IBFM 
tool, and the simulation runs to produce all system fault 
scenarios. The unique fault scenarios provide the probability of 
undesired end states. Applying the cost-risk model the engineer 
evaluates the cost of a design versus the resiliency or the ability 
of the design to recover from a failure. If the design fulfills the 
requirements the process ends, otherwise, with modifications in 
the original functional model a new design is generated and the 
program runs until the algorithm achieves the lowest cost- 
highest resilient design.  Figure 1 shows the flowchart for the 
presented method. 
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Fig.1: Presented method flowchart 

This paper provides an applicable framework to develop a 
resilient design. It illustrates how to develop a functional model, 
simulate the fault scenarios, and implement the cost-risk analysis 
to assess the resilient design.  

The material of the paper is organized as follows: Section 
2 proposes a clear and consistent definition of resilient design, 
and carefully disentangles it from reliability and robust design. 
Section 3 provides the function failure logic and behavior rule 
implementation. Section 4 illustrates system representation 
applying the functional models. Section 5 presents the scoring 

function. Section 6 presents generating different designs. Section 
7 provides a case study of an electrical power system design, to 
illustrate the application of our method.  Section 8 is the result 
summary and finally, section 9 provides conclusion and 
summary. 

2. RESILIENT DESIGN  
Resilience can be defined as a system ability to recover 

from a fault to maintain desired level of performance. The ability 
of an engineered system to recover from failure must be designed 
into the system [1]. 
Design strategies used for advancing reliability and robustness 
can be implemented for the purpose of advancing resilience in a 
system; however, there is meaningful difference between these 
concepts. Reliability describes the ability of a system or 
component to function under states conditions for a specified 
period of time. Reliability is defined as the probability of success 
or availability of a component/system [2]. Reliability 
concentrates more on “why and how” components or systems 
may fail or have failed. This information can be utilized to 
formulate detailed operational and maintenance manuals and 
procedures, as well as being applied to improve safety-critical 
designs. Fault Tree Analysis (FTA), Failure Modes and Effects 
Analysis (FMEA), and event tree analysis are known techniques 
to study reliability [3]. Practice has shown that the greatest 
criticism of these techniques is they require component-level 
detail throughout the system, at which point a designer may have 
limited ability to influence the design. 

Robustness is the state where the system performance is 
minimally sensitive to factors causing variability either in the 
system or environment. [4, 5, 6]. However, the factors causing 
variability are not completely known and predictable when 
designing a system. Therefore, the ability to overcome such 
uncertainties should be embedded into the system. Uncertainty 
is the inability to specify something with precision [7]. 
Uncertainty influences designs, and system behaviors. Reducing 
uncertainty has been, and continues to be, a costly endeavor in 
time and resources [8].  

Recovery from the effects of uncertain events is an 
alternative to reducing uncertainty. There are different ways to 
recover from the uncertain events: flexibility, Monitoring and 
Automated Contingency Management (ACM), and resiliency are 
known ways. Flexibility is the ability of a system to respond to 
changes in initial requirements and objectives, after it has been 
fielded, in a timely and cost effective way [9, 10, 11, 12]. An 
ACM system adapts autonomously and allows some degradation 
in the system performance when failure occurs with the goal of 
still achieving the mission [13]. Resilient Design enables 
engineering systems to recover from uncertain event occurrences 
[14]. A resilient system is one that maintains state awareness and 
an accepted level of operational normalcy in response to 
disturbances, including threats of an unexpected and malicious 
nature [15]. Yodo et al. provide a literature survey of existing 
studies in engineering resilience from a system design 

2 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

perspective, with the focus on engineering resilience metrics and 
quantification [16]. However, there is a lack of applicable 
methodology that shows how to design a resilient system from 
the early design phase.  

To develop a resilient design, fault analysis is a necessary 
step. In most existing fault analysis methods, system designers 
need a precise model of system components to be able to analyze 
fault behavior in a complex system; however, in the early design 
stages, selection of specific components have not been made and 
such detailed models of system components are not available. 
Because of this lack of methods to manage risks on early stages 
of design, the idea of representing the complex system by only 
its intended functionality has been developed. The following 
section discusses failure analysis using functional models. 

3. FAILURE ANALYSIS AND FUNCTIONAL MODELS  
An engineered system is defined as an assemblage of sub-
systems, hardware/software components, and people designed to 
perform a set of tasks to satisfy specified functional requirements 
and constraints [17]. The traditional approach for designing an 
engineered system is to establish a pre-defined set of 
requirements based on market studies and best estimate 
extrapolations of the current state, and then find the optimal 
design to satisfy the requirements [18]. However, these 
approaches are inadequate to respond to changes in initial 
requirements and uncertain events. This can lead to failure if the 
system is faced with significantly different conditions than the 
ones predicted. As a system becomes more complex, the 
uncertainty in the operating conditions increases. In such system, 
implementing a precise failure analysis in early design stage is 
vital to study system scenarios.  

There are different types of failure analysis techniques for 
complex systems [19-27], including quantitative and 
probabilistic methods [28, 29], and reliability analysis 
techniques applied to design [30, 31], or knowledge-based 
approaches such as lessons learned databases and hazard 
analyses [32]. Studies have shown that the early design stages 
are the best times to catch potential failures and anomalies [33]. 
However, in the early design phase, decisions about the specific 
set of components is not made, and a component model is not 
available. The idea of using functional model, instead of 
component model, to design a complex system is of increasing 
interest. A functional model in systems engineering is a 
structured representation of the functions required to meet 
system requirements. The purpose of a functional model is to 
describe the system behavior and determine vulnerable parts of 
the design, resulting in potential system improvement.  

Methods have been developed to combine functional 
modeling with failure analysis. Stone and Tumer developed the 
Function Failure Design Method (FFDM) which was the bridge 
between failure analysis and functional modeling. They applied 
functional models to represent the system design and identify 
possible failure modes for a given function [34, 35]. Grantham 
et al. developed the Risk in Early Design method to formulate 

functional-failure likelihood. Based on the consequence of 
failures, functions are classified as high-risk to low-risk [36, 37]. 
The idea of providing function-based failure analysis represented 
progress in the design of complex systems; however, these 
methods limit the designer of the system to only consider one 
single-fault impact analysis at a time.  

To overcome this restriction and to enable the designer to 
investigate the effects of multiple function failures, the Function 
Failure Identification and Propagation (FFIP) method was 
developed [38-47]. The FFIP method identifies failure 
propagation paths by mapping component failure states to 
function health. This approach uses a separate behavioral model 
simulation to determine fault propagation and fault effect. 
Typically, the modeling language Modelica is applied to 
simulate failure scenarios [48, 49], however, system models 
cannot be automatically constructed from a description of the 
functional structure of a system and therefore it may not be 
useful in FFIP where multiple designs are investigated.  

McIntire et al. have created The Inherent Behavior of 
Functional Models (IBFM), a new function failure reasoning 
method which generalizes failure behavior directly from 
functions. With this method, an engineer can create functional 
models to simulate the functional failure propagations a system 
may experience early in the design process without a separate 
behavioral model [50]. An open access IBFM tool in Python has 
been developed by our group at Oregon State University to 
simulate the behavior of the system as a hierarchical state 
machine. In the IBFM tool, one avoids equation-based physical 
behavioral modeling in favor of discrete event based modeling 
using a hierarchical state machine. Not only does this allow for 
incomplete knowledge of specific system implementation, but it 
allows for very fast simulation of a huge number of failure 
scenarios due to the lack of time-based differential equation 
solvers [50]. 

 In the presented framework, we apply the IBFM tool to 
simulate the fault scenarios for different design topologies. The 
following section describes the functional models in detail. 

4. SYSTEM REPRESENTATION BY FUNCTIONAL 
MODEL  
The first step in our proposed method is to study the 

requirements and expectations from the system and define the 
functions and flow. We use a graph to represent the system 
functionality and its interaction with the environment. We 
implement the method in Python, to be used in conjunction with 
other function-failure analysis tools, such as representing the 
graphical model by applying NetworkX [51]. Models as Python 
graph objects help users quickly model multiple functional 
architectures of their proposed system.  

Each graph edge (arrow) represents a flow of material, 
energy, or information within the system and each graph node 
(rectangle) represents a function that acts on the flows 
intersecting it. Figure 2 provides an example of a graph 
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representation of a functional model consisting of a single 
internal function and three functions.  

 

Fig.2: Graphical representation of a functional model 

In this paper, a flow is defined similar to a bond used in the 
bond graph approach [50]. As in a bond graph, the flow has a 
direction, and uses two variables to define the flow: an effort 
variable, and a rate variable. For example, a liquid flow can be 
modeled as either a liquid pressure (effort) or a liquid volume 
flow rate (rate). The function at one end of the flow controls the 
effort state, while the function at the other end controls the flow 
rate. In the IBFM approach, effort and rate variables take 
qualitative values, such as Zero, Low, Nominal, and High.  

Each function consists of a set of modes. Mode definitions 
show the different levels of functionality for a function, which 
are usually categorized as operational, degraded and failed 
modes. Conditions determine how the flows go from one 
function to another and basically provide the conditions to 
generate the failure paths. Conditions define the transition 
between modes, e.g. the transition from a nominal to degraded 
state, or from a degraded to failed state. All modes and 
conditions are qualitative, rather than quantitative in the IBFM 
approach. The conditions that regulate a function transitioning 
from one mode to another mode are also flow specific. For 
example, the operational mode of the function “Regulate Gas 
Pressure” has a “Gas High-Pressure” condition that leads to a 
failed mode. The “Gas High-Pressure” condition is only used by 
functions that have a “Gas” flow. Functions, flows, modes, 
behaviors and conditions are defined to construct a functional 
model to be fed to the IBFM tool to simulate all system fault 
scenarios.  

The Inherent Behavior in Functional Models (IBFM) 
module in Python [50] is applied to simulate the fault scenarios. 
The IBFM tool is hosted on the Oregon State University Design 
Engineering Lab GitHub site at 
https://github.com/DesignEngrLab/IBFM. The repository 
contains the module ibfm.py, which includes classes defining 
each component that make up the program structure: 
Experiment, Model, Function, Flow, Mode, and Condition. It 
also contains the user guide and example scripts which run 
example models demonstrating the simulator [50]. The IBFM 

tool simulates the functional effects of single and multiple 
simultaneous faults. An exhaustive list of scenarios comprising 
fault paths is constructed by single fault, or two or more 
simultaneous faults.  

The simulation of each fault scenario begins at that nominal 
model state, and then changes the mode of one or more functions 
to a degraded or failed mode. The end state of each scenario is 
recorded for further analysis. The number of unique paths that 
have a particular undesired end state is used in the cost-risk 
model described in the following session. 

5. RESILIENT SCORING FUNCTION 
We have developed a cost-risk model to evaluate the 

resiliency of different designs (Equation 1). The idea of this 
model is rooted in the risk-based utility theory [52]. This model 
studies the tradeoffs between the cost of designing a system that 
can recover from a failure, versus the cost of designing a system 
without a recovery while accepting the inherent risk of failure. 
The key element is that the “cost of risk” can be quantified, such 
that the trade-off between adding system cost versus accepting 
risk can be made. The proposed model is composed of three cost 
elements: the baseline cost of the design, the cost of mitigation, 
and the cost of risk, given by Eq. (1): 

Min (𝐶𝐷 + 𝐶𝑂) + 𝐶𝑀 + ∑ 𝐶𝑅,𝑖𝑝𝑅,𝑖(1 − 𝑝𝑀,𝑖)
𝑁
𝑖=1                         (1) 

Where: 

CD = Baseline cost of the design 

CO = Operation cost 

CM = Cost of mitigation  

CR = Consequential cost of the risk 

pR = Probability of risk  

pM = Probability of mitigation  

1 − 𝑝𝑀,𝑖 = Probability of mitigation failure 

N = Number of undesirable end states 

CD is the cost of design when there are no strategies to recover 
from failure embedded in the design: in other word the design is 
not resilient. CM, represents the cost of changing the design to be 
able to recover from a particular failure; there are different ways 
to change a functional model to design a more resilient system 
and in the next session we describe four ways. Independent of 
the quality of performance, there is a certain cost to operate a 
system, defined as operation cost, CO.  

With respect to defining the “cost of risk”, we define a risk 
as a triplet of its impact or consequence, its probability of fault 
occurrence, and its probably of being mitigated. In Eq. (1), CR is 
the impact or consequential cost of the risk; in our approach, it is 
quantified as the cost of having a failure and not recovering from 
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it (in units of dollars). Secondly, pR is the probability of having a 
specific undesired end state or fault, and is quantified using the 
results of the IBFM fault simulation. It is quantified as the 
number of unique scenarios with a particular undesired end state 
(or fault) divided by total number of unique scenarios. Lastly, pM 
is the probability a resilient design recovers from a failure due to 
a mitigation action (a mitigation action is assumed to have a cost 
of CM). Probability of mitigation is also calculated from the 
IBFM simulation result, by adding the mitigation action as a 
function to the functional model and rerunning the simulation. N 
is the number of system end states that the system is designed to 
consider. Except for the nominal scenario when all functions 
perform nominally, other end states are fault scenarios and 
undesired. However, an undesired end state does not imply that 
a safety hazard is present, it may just reflect an end state that 
prevents the system from nominal operation or from completing 
a mission. For instance, when designing a car, having a flat tire 
is undesirable, but may not be classified as a safety hazard; 
however, an engine fire is both an undesirable state and a safety 
hazard. 

Applying the cost-risk model, the designer specifies the 
tradeoff between the resiliency and cost of the design; the cost-
risk model is treated as an objective function in an optimization 
framework. In the optimization formulation, the objective is to 
minimize total system cost (i.e., Eq. (1)), subject to any system-
level constraints. Treating the search for the best system-level 
design as an optimization problem necessitates identifying a 
termination condition for the search.  In application, the search 
would most likely be done by a heuristic or stochastic search 
method, given the discrete nature of the functional model 
representation of the system. Since these methods cannot be 
guaranteed to converge to the optimum in finite time, the search 
must be ended based on a heuristic. Termination Conditions for 
the proposed framework in Fig.1 can be defined as: 
• An upper limit on the number of evaluations (designs) is 

reached. 
• An upper limit on the number of evaluations of the fitness 

function (cost-risk model) is reached. 
• The chance of achieving significant changes is very low. 
If the design meets one or more of the termination conditions, it 
would be selected, otherwise a new design is generated and 
evaluated. 

6. GENERATE NEW DESIGNS  
As noted in Section 5, the cost-risk approach is implemented 

as a search problem, in which the objective is to find the lowest 
cost design. An issue to address is how to change of modify the 
design in a way to produce feasible designs in the search process. 
The challenge becomes one of identifying alternate functional 
models which are technically feasible, i.e., functional models 
which preserve the key system functions and the associated 
flows. Therefore, a method is needed to ensure that functional 
models evaluated in the search process are technically feasible. 
Graph grammars [50] could be implemented to address this issue 

and are compatible with the cost-risk approach. In this work, we 
define design strategies to generate new design based upon a few 
simple rules used by designers of aerospace systems. The design 
modification rules can be placed into four categories as follows:  

1. Redundancy and Health Management  

In this technique, redundancy or health management is added to 
the functional model. The redundancy could be the addition of a 
redundant function, or it could be added in the form of partial 
redundancy. In the case of partial redundancy, we may be able 
to fulfill the needed functionality using secondary functions from 
a specific component. For example, we may be able to use a 
pressure sensing function to also indirectly fulfill a flow rate 
sensing function, in the case that the flow rate sensing function 
is faulted. Adding redundancy or health management will affect 
CM and pM in Eq. 1; the tradeoff will in general be one in which 
mitigation cost is added to increase the probability of mitigation 
(and thus reduce the cost of risk). 

2. Change the order of the functions (change to pR) 

Changing the order of functions is another way to generate a new 
design at the conceptual level of the design. This change affects 
the probability of the risk, pR, by focusing on fault avoidance; 
i.e., arranging the functions is such a way that fault propagation 
path is changed and thus the probability of a risk is changed. 

3. Using unused flows as new inputs (using unused flows as 
inputs) (changes CD and pR, or CM and pM) 

In this method, any flows that transfer material or energy to the 
environment (i.e., are not used by the system directly) are 
utilized as additional inputs for other functions where applicable. 
This improves the fault avoidance aspect of the design. For 
example, one could use waste heat to supplement a heating 
function as a mitigation function (CM and pM), or one could lower 
the cost of design of a heating function (CD) by coupling waste 
heat from a different function with the heating function. 

4. Combining functions (or splitting functions) 

Two or more functions can be combined (or split) to make a new 
design and potentially improve the fault avoidance of a system. 
This could affect both CD and pR. whether combining two or 
more functions into a single function (or splitting a single 
function into two or more functions) improves or worsens the 
cost-risk objective function must be determined by the results of 
an IBFM simulation. Combining functions may lead to 
elimination of a fault path (thus reducing pM), or may make the 
new combined function more likely to fail (thus increasing pM). 

We can generate an infinite number of functional models 
from a single seed functional model. The following section 
presents a case study using a monopropellant propulsion system 
design to show how the methodology can be applied in a system 
design problem.
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Fig.3 Functional model for monopropellant propulsion system
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7. CASE STUDY: MONOPROPELLANT PROPULSION 
SYSTEM 
A monopropellant propulsion system refers to a chemical 

propulsion fuel which does not require a separate oxidizer, and 
thus can be used in space. Monopropellant designs are typically 
used in the aerospace industry because it makes the engine 
lighter, less expensive, and more reliable. In this case study, the 
monopropellant is hydrogen peroxide (𝐻2𝑂2).  

In designing a monopropellant system, outer space 
environmental conditions should be considered. With no gravity 
assistance, the system should be able to push the propellant 
towards the catalyst. The concept for this system design is to 
apply expanded gas to push the monopropellant over a catalyst 
and produce thrust. This system can be divided into three main 
subsystems; gas, propellant, and catalyst. 

When there is a command for a change of the aircraft 
velocity, the inert gas is heated to expand. The expanded gas is 
fed through regulation and control functions to reach the right 
quantity, pressure, and temperature. The expanded gas places 
pressure on the propellant (hydrogen peroxide) and guides it to 
the catalyst. When the propellant passes the catalyst, combustion 
occurs and changes the velocity of the aircraft. Figure 3 presents 
the detailed functional model of the system. 

When the thrust is commanded, if all functions are nominal, 
the system performs as expected; however, there are numerous 
scenarios in which something can go wrong with one or more 
functions and the result is not as expected. This would cause the 
engine to provide too much, too little or no thrust. In practice, it 
means the aerospace system passes the location, or does not 
reach it. In rare catastrophic failures, the system might catch on 
fire or explode (i.e. loss of system).   To monitor system outputs, 
all sault scenarios are simulated by IBFM.  

To apply IBFM tool, the first step is to define the functions, 
flows, modes and conditions in Python. The advantage of 
defining the functions and flows in Python is that the Python 
NetworkX tool can be used to represent the functional model 
graphically. The following session describes how to develop a 
functional model in IBFM tool and simulate all fault scenarios. 

 
7.1. Functions  

The monopropellant propulsion system shown in Fig.3 
contains 29 functions and 129 modes. One example of how to 
define a function for mono propellant propulsion system is as 
follows: 

function ImportHeat 
 mode 1 Operational NominalHeatSource 
 mode 2 Degraded LowHeatSource 
 mode 3 Degraded HighHeatSource 
 mode 4 Failed NoHeatSource 

The first line contains the keyword function, followed by the 
desired name of the function. The indented lines contain all of 
the modes and conditions of the function. Each line describing a 

mode begins with the keyword mode, followed by a unique 
within-function alphanumeric identifier, followed by the 
function health associated with the mode, followed by the name 
of the mode. Available mode health states 
are Operational, Degraded, and Failed. A single mode in each 
function definition may be followed by the keyword default, 
which assigns that mode to be the initial mode of the function at 
the beginning of simulations.  
 
7.2. Flows 

Flows are defined in a single line. The definition always 
begins with the keyword flow, followed by the desired name of 
the flow, followed by the name of its parent flow type. The top 
level flows are Material, Energy, and Signal. All other flows 
derive from them. 

flow Heat Energy 

7.3. Modes  

Mode definitions are more complicated, as all of the mode’s 
behaviors must be explicitly described. Operational, degraded, 
and failed modes are required to be defined for each function. A 
simple mode definition example is the nominal gas source mode: 

mode NominalGasSource 
    InertGas output effort = Nominal 

The first line consists of the appropriate keyword, in this 
case mode, followed by the desired name of the mode. Each 
indented line consists of a single assignment statement. The 
expression to the left of the assignment operator = is evaluated 
to determine the flow variable(s) being assigned to. The 
expression to the right of the assignment operator is evaluated to 
determine the state(s) to assign to the flow variable(s). Every 
flow in the statement must be referred to using three words: the 
flow type name, its direction, either input or output, and its 
variable, either effort or rate. More complex behaviors may be 
defined by using operators. A single unary operator is used in the 
definition of the “NoGasSource” mode: 

mode NoGasSource 
    InertGas output effort = Zero 

This mode definition makes use of a constant state. 
Available states are Zero, Low, Nominal, High, and Highest. The 
definition of the drifting low pressure sensing mode uses two 
unary operators: 

mode DriftingLowPressureSensing 
    import NominalConductingRegulatedGas 
    SignalDesiredPressure output effort =  
RegulatedGas input effort --          

The first one, the keyword import, copies all of the 
statements from the definition of the mode directly following the 
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keyword. In this case, the two statements from 
the “NominalConductingRegulatedGas” mode are copied into 
“DriftingLowPressureSensing”. The second one, the decrement 
operator --, decreases the value of the state by one qualitative 
level. 
  
7.4. Conditions  

Condition definitions are similar to mode definitions. They 
name the condition being defined, and explicitly describe the 
behavior, but they only include a single behavior statement. 
Rather than being an assignment, the statement is a logical test. 
For example, the condition to test for a function being exposed 
to high temperature is: 

condition HighTemperature 
    Heat output effort > Nominal 

Logical operators may be combined to form more complex 
tests. All binary operators are evaluated from left to right, so 
parentheses may be required.  

Running the IBFM tool, all fault scenarios are produced and 
the unique scenarios terminating with particular undesired end 
state are tabulated. The final performance of the system is 
categorized into different main end states. The designers of the 
system decide about what end states the system failures could 
cause.  In this case study, undesired end states are:  

• Pass the Mission Location  
• Do Not Reach to Mission Location 
• No System Movement  
• Loss of the System 
 

7.5. Alternative system designs  

The baseline design, shown in Fig.3, represents an early 
stage design of the functions that the mono propellant system is 
required to perform. In the baseline system, the normal operating 
condition assumes that all gas, propellant, and catalyst functions 
operate nominally. Any change or distribution will have some 
effect on the system; in other words, the initial design is not 
designed to be fault tolerant. However, the same set of functional 
design requirements can be met by designing different system 
topologies representing fault tolerant behavior by employing 
various levels of redundancy and reconfigurability. In addition, 
the sensor allocation related to the integrated health management 
functionality can be made several ways. 

In this case study, we analyze the basic baseline design and 
compare it to six alternative conceptual system designs. These 
alternatives demonstrate different levels of risk mitigation in 
different functional areas of the system. The first modification of 
the baseline design includes a redundant gas rate sensor, if no 
signal is coming from the primary sensor, a secondary sensor can 

supply the required information. The second modification of the 
baseline design is an identical system with redundant gas 
pressure sensor. The third modification of the baseline design 
combines the adjusting pressure and rate into one function. The 
forth design uses output heat to expand inert gas, in the baseline 
the heat is exported from the system and disappear in the space. 
The fifth design incorporates the redundant the sensor in 
propellant tank. The sixth design applies the output thrust heat to 
preheat propellant, the propellant would play the role of cooling 
system. The following session presents the results. 

8. RESULTS OF THE CASE STUDY 

For the monopropellant propulsion system, six candidate 
designs are investigated. In each design, the functional model has 
been modified to be more resilient to a particular failure or end 
state. Table 1 shows all the designs generated by the functional 
model modifications. 

Table 1: Generated designs for monopropellant propulsion 
system 

Basic Design  The original unaltered system design  
Design 1 Redundant gas rate sensor added 
Design 2 Redundant gas pressure sensor added 

Design 3 Combine adjusting gas pressure and rate into one 
function  

Design 4 Use output thrust heat to expand inert gas   
Design 5 Redundant propellant tank pressure sensor added 

Design 6 Use output thrust heat to preheat propellant 
(propellant plays the role of cooling material)  

All system scenarios have been simulated using the IBFM 
tool. The amount of CPU time required to simulate each scenario 
increases as the complexity and the number of faults injected to 
the model increases. For instance, the time of simulation for 
injecting two simultaneous faults is less than the time of 
simulation for having three simultaneous faults. In this study, we 
investigate injecting up to 3 faults in each one of the functional 
models. The classified simulated scenarios for the seed and the 
six design topologies is shown in Fig.4. In this histogram, the 
number of successful and failed scenarios simulated for each 
design is different.  

 

Fig.4: Simulation results for different monopropellant 
propulsion system designs  
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The probability of risk in each design is applied to the cost-
risk model of Eq. 1. The mitigation cost CM is the cost of adding 
to or changing the basic design to make it more resilient to a 
particular failure or undesired end state. The operation cost CO 
for all candidate design is assumed to remain the same, based on 
the assumption that regardless how the system is performing, 
there is an on ground system to monitor, control and run the 
aircraft. For other design studies, the operating cost may vary by 
design concept. It is assumed that the aircraft completes three 
missions per year, and for each mission the operation cost is $500 
million. The number of failed scenarios versus the total number 
of scenarios for each design defines the probability of risk, pR, 
for each design. The probability of the mitigation failure, pM , is 
the probability of the redundant part does not work when needed, 
these probabilities and The costs for having an undesired 
performance, CR, are simulated in this study. The total cost 

reflects the tradeoff between making a resilient design and the 
costs, the lower total cost is the higher rank the design would be.  

The results of cost-risk optimization for the monopropellant 
system are shown in Table 2. In the table, we tabulate all the 
elements of Eq. 1. Since there were only seven designs to 
consider, an optimization algorithm was not used; however, an 
evolutionary of other stochastic algorithm could be used to 
search larger design spaces. As shown the table, Design 6 has 
the best tradeoff between resilience and cost; in this design the 
propellant acts as a cooling system and the preheating helps 
produce thrust. This design was selected because it had the 
lowest value of the cost-risk objective function. The next best 
design is Design 3, which combines the gas pressure and rate 
control into a single function.  This may indicate that since both 
functions are critical to operation, and a failure of either function 
is highly detrimental to the system, it is better to address them 
with a single function with a single failure rate.

Table 2: Scoring function for monopropellant propulsion system (costs are simulated in Millions $) 

Cost-Risk Model  Basic 
Design 

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 

Cost of Basic Design CD 100 100 100 95 90 100 80 
Mitigation Cost CM 0 10 10 0 0 20 0 
Operation Cost CO 1500 1500 1500 1500 1500 1500 1500 

Cost of Risk  
𝑪𝑹𝒑𝑹(𝟏 − 𝒑𝑴) 

45.50 32.20 30.75 34.90 40.70 21.30 35.20 

Total Cost 1645.50 1642.25 1640.75 1629.90 1630.70 1641.30 1615.20 

Resilient Score Rank 7 Rank 6 Rank 4 Rank2 Rank 3 Rank 5 Rank 1 

9. CONCLUSION 

This paper presented a framework for resilient design based 
upon the evaluation of different designs during the early design 
stage. We created a framework to present an initial functional 
model of the system and evaluate its potential failure scenarios. 
To produce a preference ranking of designs, we developed a cost 
risk-model to generate a resilient score for each design. The 
central idea is that each design is evaluated based upon the trade-
off between the cost of risk and embedding resiliency into the 
design of the system. The design implications of using this 
framework for the development of resilient engineered systems 
were discussed, with the focus on the functional model 
development, failure simulation, and cost-risk analysis to rank 
different designs and choose the most resilient one. The method 
was applied in the case of mono propellant propulsion system 
design. The results show that the presented method is an 
applicable engineering resilience analysis and design framework 
that can be used for system design. 

While we have presented the general framework, future 
work is needed to improve the current approach. A primary issue 
is that the current approach does not address uncertainty in costs 
or failure estimation. This could be addressed by quantifying 

such uncertainties with probability distribution functions and 
creating a utility function, with the cost-risk equation as the 
selection criterion. Another issue is that we have only 
demonstrated this approach on a small design space and on a 
single system design problem. Graph grammars could be 
implemented to help generate a large number of design 
alternatives. Finally, visualization of the functional models 
generated and the results would be necessary for development of 
a tool which implements the proposed method. 
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