
RESILIENT SYSTEM DESIGN USING COST-RISK ANALYSIS WITH
FUNCTIONAL MODELS

Elham Keshavarzi
PhD Candidate

Mechanical Engineering
Oregon State University

Corvallis, OR, USA

Matthew McIntire
PhD Candidate

Mechanical Engineering
Oregon State University

Corvallis, OR, USA

Kai Goebel
Intelligent Systems Division

Coordinator
Ames Research Center
Moffett Field, CA, USA

Irem Y. Tumer
Professor

Mechanical Engineering
Oregon State University

Corvallis, OR, USA

Christopher Hoyle
Assistant Professor

Mechanical Engineering
Oregon State University

Corvallis, OR, USA

ABSTRACT
This paper presents a framework to compare the resiliency

of different designs during the conceptual design, when
information about implementation details is unavailable. We
apply the Inherent Behavioral Functional Model (IBFM) tool to
develop an initial functional model for a system and simulate the
failure behavior. The simulated failure scenarios provide us the
information on the unique failure propagation paths and the end
state/final behavior of the system assigned to each failure. Each
failure path is caused by injecting one or multiple simultaneous
faults into the functional model. Within this framework, we
generate a population of functional models from a baseline seed
model, and evaluate its potential failure scenarios. We also
develop a cost-risk model to compare resiliency of different
designs, and produce a preference ranking. select the most
resilient one, based upon the cost-risk objective. The risk is
calculated based on the probability of having an undesired end
state for each design, and a consequential cost is assigned to
each failure to quantify the cost-risk for a given design. In this
paper, we implement and demonstrate the proposed method on
the design of a resilient mono-propellant system.

Keywords: resilient design, complex system, failure analysis,
functional model

1. INTRODUCTION
Complex systems contain an ever increasing number of
components and subsystems that interact with each other, often
in unpredictable ways. Unintended interactions lead to
unexpected behaviors and consequences, some of which have
proven to be catastrophic. A key technical challenge in
developing such complex systems is to ensure that the behavior
of the system in undesired and uncertain situations is determined
early in the design phase, prior to the manufacturing and
operational life of the system.

To develop an engineered design, modeling and
characterization of the complex systems, and simulation of the
fault scenarios are necessary. Many complex engineering
systems can be represented by their component model; however,
their complexity is dependent on the quantity of different
components as well as the formation of connections between
those components, Also, when developing a new design, or in
the early design phase, there is generally no component-level
model available, and typically the set of components is not
selected. Because of this, system properties are studied using
functional models. Developing a functional model of a complex

Proceedings of the ASME 2017 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE 2017
August 6-9, 2017, Cleveland, Ohio, USA

DETC2017-67952

1 Copyright © 2017 ASME
This work was authored in part by a U.S. Government employee in the scope of his/her employment.
ASME disclaims all interest in the U.S. Government’s contribution.

Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

engineered system is an effective way to study the system and its
behavior, and achieve a reliable fault analysis of the system.

An overall description of the design methodology is
provided as follows. A functional model is the first phase of the
overall design methodology. Based on the system requirements
and user knowledge, functions and flows are defined. Each
function can have different modes: nominal, degraded, and
failed. Function, flow, and mode definitions are fed to the IBFM
tool, and the simulation runs to produce all system fault
scenarios. The unique fault scenarios provide the probability of
undesired end states. Applying the cost-risk model the engineer
evaluates the cost of a design versus the resiliency or the ability
of the design to recover from a failure. If the design fulfills the
requirements the process ends, otherwise, with modifications in
the original functional model a new design is generated and the
program runs until the algorithm achieves the lowest cost-
highest resilient design. Figure 1 shows the flowchart for the
presented method.

Domain Functions,
Flows, Modes and

Conditions

Functional Model
for Conceptual

Design
Python Input File

Fault Scenarios
Generation

Software

Resilience Scoring
Function

Alternative
Functional Topology

Generator

IBFM Toolkit

Cost Model to
Balance Design
and Risk Cost

Green: User
Blue: Software

Does the Design
Meet

the Termination
Condition ?

No

User Knowledge

End Yes

Fig.1: Presented method flowchart

This paper provides an applicable framework to develop a
resilient design. It illustrates how to develop a functional model,
simulate the fault scenarios, and implement the cost-risk analysis
to assess the resilient design.

The material of the paper is organized as follows: Section
2 proposes a clear and consistent definition of resilient design,
and carefully disentangles it from reliability and robust design.
Section 3 provides the function failure logic and behavior rule
implementation. Section 4 illustrates system representation
applying the functional models. Section 5 presents the scoring

function. Section 6 presents generating different designs. Section
7 provides a case study of an electrical power system design, to
illustrate the application of our method. Section 8 is the result
summary and finally, section 9 provides conclusion and
summary.

2. RESILIENT DESIGN
Resilience can be defined as a system ability to recover

from a fault to maintain desired level of performance. The ability
of an engineered system to recover from failure must be designed
into the system [1].
Design strategies used for advancing reliability and robustness
can be implemented for the purpose of advancing resilience in a
system; however, there is meaningful difference between these
concepts. Reliability describes the ability of a system or
component to function under states conditions for a specified
period of time. Reliability is defined as the probability of success
or availability of a component/system [2]. Reliability
concentrates more on “why and how” components or systems
may fail or have failed. This information can be utilized to
formulate detailed operational and maintenance manuals and
procedures, as well as being applied to improve safety-critical
designs. Fault Tree Analysis (FTA), Failure Modes and Effects
Analysis (FMEA), and event tree analysis are known techniques
to study reliability [3]. Practice has shown that the greatest
criticism of these techniques is they require component-level
detail throughout the system, at which point a designer may have
limited ability to influence the design.

Robustness is the state where the system performance is
minimally sensitive to factors causing variability either in the
system or environment. [4, 5, 6]. However, the factors causing
variability are not completely known and predictable when
designing a system. Therefore, the ability to overcome such
uncertainties should be embedded into the system. Uncertainty
is the inability to specify something with precision [7].
Uncertainty influences designs, and system behaviors. Reducing
uncertainty has been, and continues to be, a costly endeavor in
time and resources [8].

Recovery from the effects of uncertain events is an
alternative to reducing uncertainty. There are different ways to
recover from the uncertain events: flexibility, Monitoring and
Automated Contingency Management (ACM), and resiliency are
known ways. Flexibility is the ability of a system to respond to
changes in initial requirements and objectives, after it has been
fielded, in a timely and cost effective way [9, 10, 11, 12]. An
ACM system adapts autonomously and allows some degradation
in the system performance when failure occurs with the goal of
still achieving the mission [13]. Resilient Design enables
engineering systems to recover from uncertain event occurrences
[14]. A resilient system is one that maintains state awareness and
an accepted level of operational normalcy in response to
disturbances, including threats of an unexpected and malicious
nature [15]. Yodo et al. provide a literature survey of existing
studies in engineering resilience from a system design

2 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

perspective, with the focus on engineering resilience metrics and
quantification [16]. However, there is a lack of applicable
methodology that shows how to design a resilient system from
the early design phase.

To develop a resilient design, fault analysis is a necessary
step. In most existing fault analysis methods, system designers
need a precise model of system components to be able to analyze
fault behavior in a complex system; however, in the early design
stages, selection of specific components have not been made and
such detailed models of system components are not available.
Because of this lack of methods to manage risks on early stages
of design, the idea of representing the complex system by only
its intended functionality has been developed. The following
section discusses failure analysis using functional models.

3. FAILURE ANALYSIS AND FUNCTIONAL MODELS
An engineered system is defined as an assemblage of sub-
systems, hardware/software components, and people designed to
perform a set of tasks to satisfy specified functional requirements
and constraints [17]. The traditional approach for designing an
engineered system is to establish a pre-defined set of
requirements based on market studies and best estimate
extrapolations of the current state, and then find the optimal
design to satisfy the requirements [18]. However, these
approaches are inadequate to respond to changes in initial
requirements and uncertain events. This can lead to failure if the
system is faced with significantly different conditions than the
ones predicted. As a system becomes more complex, the
uncertainty in the operating conditions increases. In such system,
implementing a precise failure analysis in early design stage is
vital to study system scenarios.

There are different types of failure analysis techniques for
complex systems [19-27], including quantitative and
probabilistic methods [28, 29], and reliability analysis
techniques applied to design [30, 31], or knowledge-based
approaches such as lessons learned databases and hazard
analyses [32]. Studies have shown that the early design stages
are the best times to catch potential failures and anomalies [33].
However, in the early design phase, decisions about the specific
set of components is not made, and a component model is not
available. The idea of using functional model, instead of
component model, to design a complex system is of increasing
interest. A functional model in systems engineering is a
structured representation of the functions required to meet
system requirements. The purpose of a functional model is to
describe the system behavior and determine vulnerable parts of
the design, resulting in potential system improvement.

Methods have been developed to combine functional
modeling with failure analysis. Stone and Tumer developed the
Function Failure Design Method (FFDM) which was the bridge
between failure analysis and functional modeling. They applied
functional models to represent the system design and identify
possible failure modes for a given function [34, 35]. Grantham
et al. developed the Risk in Early Design method to formulate

functional-failure likelihood. Based on the consequence of
failures, functions are classified as high-risk to low-risk [36, 37].
The idea of providing function-based failure analysis represented
progress in the design of complex systems; however, these
methods limit the designer of the system to only consider one
single-fault impact analysis at a time.

To overcome this restriction and to enable the designer to
investigate the effects of multiple function failures, the Function
Failure Identification and Propagation (FFIP) method was
developed [38-47]. The FFIP method identifies failure
propagation paths by mapping component failure states to
function health. This approach uses a separate behavioral model
simulation to determine fault propagation and fault effect.
Typically, the modeling language Modelica is applied to
simulate failure scenarios [48, 49], however, system models
cannot be automatically constructed from a description of the
functional structure of a system and therefore it may not be
useful in FFIP where multiple designs are investigated.

McIntire et al. have created The Inherent Behavior of
Functional Models (IBFM), a new function failure reasoning
method which generalizes failure behavior directly from
functions. With this method, an engineer can create functional
models to simulate the functional failure propagations a system
may experience early in the design process without a separate
behavioral model [50]. An open access IBFM tool in Python has
been developed by our group at Oregon State University to
simulate the behavior of the system as a hierarchical state
machine. In the IBFM tool, one avoids equation-based physical
behavioral modeling in favor of discrete event based modeling
using a hierarchical state machine. Not only does this allow for
incomplete knowledge of specific system implementation, but it
allows for very fast simulation of a huge number of failure
scenarios due to the lack of time-based differential equation
solvers [50].

 In the presented framework, we apply the IBFM tool to
simulate the fault scenarios for different design topologies. The
following section describes the functional models in detail.

4. SYSTEM REPRESENTATION BY FUNCTIONAL
MODEL
The first step in our proposed method is to study the

requirements and expectations from the system and define the
functions and flow. We use a graph to represent the system
functionality and its interaction with the environment. We
implement the method in Python, to be used in conjunction with
other function-failure analysis tools, such as representing the
graphical model by applying NetworkX [51]. Models as Python
graph objects help users quickly model multiple functional
architectures of their proposed system.

Each graph edge (arrow) represents a flow of material,
energy, or information within the system and each graph node
(rectangle) represents a function that acts on the flows
intersecting it. Figure 2 provides an example of a graph

3 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

representation of a functional model consisting of a single
internal function and three functions.

Fig.2: Graphical representation of a functional model

In this paper, a flow is defined similar to a bond used in the
bond graph approach [50]. As in a bond graph, the flow has a
direction, and uses two variables to define the flow: an effort
variable, and a rate variable. For example, a liquid flow can be
modeled as either a liquid pressure (effort) or a liquid volume
flow rate (rate). The function at one end of the flow controls the
effort state, while the function at the other end controls the flow
rate. In the IBFM approach, effort and rate variables take
qualitative values, such as Zero, Low, Nominal, and High.

Each function consists of a set of modes. Mode definitions
show the different levels of functionality for a function, which
are usually categorized as operational, degraded and failed
modes. Conditions determine how the flows go from one
function to another and basically provide the conditions to
generate the failure paths. Conditions define the transition
between modes, e.g. the transition from a nominal to degraded
state, or from a degraded to failed state. All modes and
conditions are qualitative, rather than quantitative in the IBFM
approach. The conditions that regulate a function transitioning
from one mode to another mode are also flow specific. For
example, the operational mode of the function “Regulate Gas
Pressure” has a “Gas High-Pressure” condition that leads to a
failed mode. The “Gas High-Pressure” condition is only used by
functions that have a “Gas” flow. Functions, flows, modes,
behaviors and conditions are defined to construct a functional
model to be fed to the IBFM tool to simulate all system fault
scenarios.

The Inherent Behavior in Functional Models (IBFM)
module in Python [50] is applied to simulate the fault scenarios.
The IBFM tool is hosted on the Oregon State University Design
Engineering Lab GitHub site at
https://github.com/DesignEngrLab/IBFM. The repository
contains the module ibfm.py, which includes classes defining
each component that make up the program structure:
Experiment, Model, Function, Flow, Mode, and Condition. It
also contains the user guide and example scripts which run
example models demonstrating the simulator [50]. The IBFM

tool simulates the functional effects of single and multiple
simultaneous faults. An exhaustive list of scenarios comprising
fault paths is constructed by single fault, or two or more
simultaneous faults.

The simulation of each fault scenario begins at that nominal
model state, and then changes the mode of one or more functions
to a degraded or failed mode. The end state of each scenario is
recorded for further analysis. The number of unique paths that
have a particular undesired end state is used in the cost-risk
model described in the following session.

5. RESILIENT SCORING FUNCTION
We have developed a cost-risk model to evaluate the

resiliency of different designs (Equation 1). The idea of this
model is rooted in the risk-based utility theory [52]. This model
studies the tradeoffs between the cost of designing a system that
can recover from a failure, versus the cost of designing a system
without a recovery while accepting the inherent risk of failure.
The key element is that the “cost of risk” can be quantified, such
that the trade-off between adding system cost versus accepting
risk can be made. The proposed model is composed of three cost
elements: the baseline cost of the design, the cost of mitigation,
and the cost of risk, given by Eq. (1):

Min (𝐶𝐷 + 𝐶𝑂) + 𝐶𝑀 + ∑ 𝐶𝑅,𝑖𝑝𝑅,𝑖(1 − 𝑝𝑀,𝑖)
𝑁
𝑖=1 (1)

Where:

CD = Baseline cost of the design

CO = Operation cost

CM = Cost of mitigation

CR = Consequential cost of the risk

pR = Probability of risk

pM = Probability of mitigation

1 − 𝑝𝑀,𝑖 = Probability of mitigation failure

N = Number of undesirable end states

CD is the cost of design when there are no strategies to recover
from failure embedded in the design: in other word the design is
not resilient. CM, represents the cost of changing the design to be
able to recover from a particular failure; there are different ways
to change a functional model to design a more resilient system
and in the next session we describe four ways. Independent of
the quality of performance, there is a certain cost to operate a
system, defined as operation cost, CO.

With respect to defining the “cost of risk”, we define a risk
as a triplet of its impact or consequence, its probability of fault
occurrence, and its probably of being mitigated. In Eq. (1), CR is
the impact or consequential cost of the risk; in our approach, it is
quantified as the cost of having a failure and not recovering from

4 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

https://github.com/DesignEngrLab/IBFM

it (in units of dollars). Secondly, pR is the probability of having a
specific undesired end state or fault, and is quantified using the
results of the IBFM fault simulation. It is quantified as the
number of unique scenarios with a particular undesired end state
(or fault) divided by total number of unique scenarios. Lastly, pM
is the probability a resilient design recovers from a failure due to
a mitigation action (a mitigation action is assumed to have a cost
of CM). Probability of mitigation is also calculated from the
IBFM simulation result, by adding the mitigation action as a
function to the functional model and rerunning the simulation. N
is the number of system end states that the system is designed to
consider. Except for the nominal scenario when all functions
perform nominally, other end states are fault scenarios and
undesired. However, an undesired end state does not imply that
a safety hazard is present, it may just reflect an end state that
prevents the system from nominal operation or from completing
a mission. For instance, when designing a car, having a flat tire
is undesirable, but may not be classified as a safety hazard;
however, an engine fire is both an undesirable state and a safety
hazard.

Applying the cost-risk model, the designer specifies the
tradeoff between the resiliency and cost of the design; the cost-
risk model is treated as an objective function in an optimization
framework. In the optimization formulation, the objective is to
minimize total system cost (i.e., Eq. (1)), subject to any system-
level constraints. Treating the search for the best system-level
design as an optimization problem necessitates identifying a
termination condition for the search. In application, the search
would most likely be done by a heuristic or stochastic search
method, given the discrete nature of the functional model
representation of the system. Since these methods cannot be
guaranteed to converge to the optimum in finite time, the search
must be ended based on a heuristic. Termination Conditions for
the proposed framework in Fig.1 can be defined as:
• An upper limit on the number of evaluations (designs) is

reached.
• An upper limit on the number of evaluations of the fitness

function (cost-risk model) is reached.
• The chance of achieving significant changes is very low.
If the design meets one or more of the termination conditions, it
would be selected, otherwise a new design is generated and
evaluated.

6. GENERATE NEW DESIGNS
As noted in Section 5, the cost-risk approach is implemented

as a search problem, in which the objective is to find the lowest
cost design. An issue to address is how to change of modify the
design in a way to produce feasible designs in the search process.
The challenge becomes one of identifying alternate functional
models which are technically feasible, i.e., functional models
which preserve the key system functions and the associated
flows. Therefore, a method is needed to ensure that functional
models evaluated in the search process are technically feasible.
Graph grammars [50] could be implemented to address this issue

and are compatible with the cost-risk approach. In this work, we
define design strategies to generate new design based upon a few
simple rules used by designers of aerospace systems. The design
modification rules can be placed into four categories as follows:

1. Redundancy and Health Management

In this technique, redundancy or health management is added to
the functional model. The redundancy could be the addition of a
redundant function, or it could be added in the form of partial
redundancy. In the case of partial redundancy, we may be able
to fulfill the needed functionality using secondary functions from
a specific component. For example, we may be able to use a
pressure sensing function to also indirectly fulfill a flow rate
sensing function, in the case that the flow rate sensing function
is faulted. Adding redundancy or health management will affect
CM and pM in Eq. 1; the tradeoff will in general be one in which
mitigation cost is added to increase the probability of mitigation
(and thus reduce the cost of risk).

2. Change the order of the functions (change to pR)

Changing the order of functions is another way to generate a new
design at the conceptual level of the design. This change affects
the probability of the risk, pR, by focusing on fault avoidance;
i.e., arranging the functions is such a way that fault propagation
path is changed and thus the probability of a risk is changed.

3. Using unused flows as new inputs (using unused flows as
inputs) (changes CD and pR, or CM and pM)

In this method, any flows that transfer material or energy to the
environment (i.e., are not used by the system directly) are
utilized as additional inputs for other functions where applicable.
This improves the fault avoidance aspect of the design. For
example, one could use waste heat to supplement a heating
function as a mitigation function (CM and pM), or one could lower
the cost of design of a heating function (CD) by coupling waste
heat from a different function with the heating function.

4. Combining functions (or splitting functions)

Two or more functions can be combined (or split) to make a new
design and potentially improve the fault avoidance of a system.
This could affect both CD and pR. whether combining two or
more functions into a single function (or splitting a single
function into two or more functions) improves or worsens the
cost-risk objective function must be determined by the results of
an IBFM simulation. Combining functions may lead to
elimination of a fault path (thus reducing pM), or may make the
new combined function more likely to fail (thus increasing pM).

We can generate an infinite number of functional models
from a single seed functional model. The following section
presents a case study using a monopropellant propulsion system
design to show how the methodology can be applied in a system
design problem.

5 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Fig.3 Functional model for monopropellant propulsion system

6 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

7. CASE STUDY: MONOPROPELLANT PROPULSION
SYSTEM
A monopropellant propulsion system refers to a chemical

propulsion fuel which does not require a separate oxidizer, and
thus can be used in space. Monopropellant designs are typically
used in the aerospace industry because it makes the engine
lighter, less expensive, and more reliable. In this case study, the
monopropellant is hydrogen peroxide (𝐻2𝑂2).

In designing a monopropellant system, outer space
environmental conditions should be considered. With no gravity
assistance, the system should be able to push the propellant
towards the catalyst. The concept for this system design is to
apply expanded gas to push the monopropellant over a catalyst
and produce thrust. This system can be divided into three main
subsystems; gas, propellant, and catalyst.

When there is a command for a change of the aircraft
velocity, the inert gas is heated to expand. The expanded gas is
fed through regulation and control functions to reach the right
quantity, pressure, and temperature. The expanded gas places
pressure on the propellant (hydrogen peroxide) and guides it to
the catalyst. When the propellant passes the catalyst, combustion
occurs and changes the velocity of the aircraft. Figure 3 presents
the detailed functional model of the system.

When the thrust is commanded, if all functions are nominal,
the system performs as expected; however, there are numerous
scenarios in which something can go wrong with one or more
functions and the result is not as expected. This would cause the
engine to provide too much, too little or no thrust. In practice, it
means the aerospace system passes the location, or does not
reach it. In rare catastrophic failures, the system might catch on
fire or explode (i.e. loss of system). To monitor system outputs,
all sault scenarios are simulated by IBFM.

To apply IBFM tool, the first step is to define the functions,
flows, modes and conditions in Python. The advantage of
defining the functions and flows in Python is that the Python
NetworkX tool can be used to represent the functional model
graphically. The following session describes how to develop a
functional model in IBFM tool and simulate all fault scenarios.

7.1. Functions

The monopropellant propulsion system shown in Fig.3
contains 29 functions and 129 modes. One example of how to
define a function for mono propellant propulsion system is as
follows:

function ImportHeat
 mode 1 Operational NominalHeatSource
 mode 2 Degraded LowHeatSource
 mode 3 Degraded HighHeatSource
 mode 4 Failed NoHeatSource

The first line contains the keyword function, followed by the
desired name of the function. The indented lines contain all of
the modes and conditions of the function. Each line describing a

mode begins with the keyword mode, followed by a unique
within-function alphanumeric identifier, followed by the
function health associated with the mode, followed by the name
of the mode. Available mode health states
are Operational, Degraded, and Failed. A single mode in each
function definition may be followed by the keyword default,
which assigns that mode to be the initial mode of the function at
the beginning of simulations.

7.2. Flows

Flows are defined in a single line. The definition always
begins with the keyword flow, followed by the desired name of
the flow, followed by the name of its parent flow type. The top
level flows are Material, Energy, and Signal. All other flows
derive from them.

flow Heat Energy

7.3. Modes

Mode definitions are more complicated, as all of the mode’s
behaviors must be explicitly described. Operational, degraded,
and failed modes are required to be defined for each function. A
simple mode definition example is the nominal gas source mode:

mode NominalGasSource
 InertGas output effort = Nominal

The first line consists of the appropriate keyword, in this
case mode, followed by the desired name of the mode. Each
indented line consists of a single assignment statement. The
expression to the left of the assignment operator = is evaluated
to determine the flow variable(s) being assigned to. The
expression to the right of the assignment operator is evaluated to
determine the state(s) to assign to the flow variable(s). Every
flow in the statement must be referred to using three words: the
flow type name, its direction, either input or output, and its
variable, either effort or rate. More complex behaviors may be
defined by using operators. A single unary operator is used in the
definition of the “NoGasSource” mode:

mode NoGasSource
 InertGas output effort = Zero

This mode definition makes use of a constant state.
Available states are Zero, Low, Nominal, High, and Highest. The
definition of the drifting low pressure sensing mode uses two
unary operators:

mode DriftingLowPressureSensing
 import NominalConductingRegulatedGas
 SignalDesiredPressure output effort =
RegulatedGas input effort --

The first one, the keyword import, copies all of the
statements from the definition of the mode directly following the

7 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

keyword. In this case, the two statements from
the “NominalConductingRegulatedGas” mode are copied into
“DriftingLowPressureSensing”. The second one, the decrement
operator --, decreases the value of the state by one qualitative
level.

7.4. Conditions

Condition definitions are similar to mode definitions. They
name the condition being defined, and explicitly describe the
behavior, but they only include a single behavior statement.
Rather than being an assignment, the statement is a logical test.
For example, the condition to test for a function being exposed
to high temperature is:

condition HighTemperature
 Heat output effort > Nominal

Logical operators may be combined to form more complex
tests. All binary operators are evaluated from left to right, so
parentheses may be required.

Running the IBFM tool, all fault scenarios are produced and
the unique scenarios terminating with particular undesired end
state are tabulated. The final performance of the system is
categorized into different main end states. The designers of the
system decide about what end states the system failures could
cause. In this case study, undesired end states are:

• Pass the Mission Location
• Do Not Reach to Mission Location
• No System Movement
• Loss of the System

7.5. Alternative system designs

The baseline design, shown in Fig.3, represents an early
stage design of the functions that the mono propellant system is
required to perform. In the baseline system, the normal operating
condition assumes that all gas, propellant, and catalyst functions
operate nominally. Any change or distribution will have some
effect on the system; in other words, the initial design is not
designed to be fault tolerant. However, the same set of functional
design requirements can be met by designing different system
topologies representing fault tolerant behavior by employing
various levels of redundancy and reconfigurability. In addition,
the sensor allocation related to the integrated health management
functionality can be made several ways.

In this case study, we analyze the basic baseline design and
compare it to six alternative conceptual system designs. These
alternatives demonstrate different levels of risk mitigation in
different functional areas of the system. The first modification of
the baseline design includes a redundant gas rate sensor, if no
signal is coming from the primary sensor, a secondary sensor can

supply the required information. The second modification of the
baseline design is an identical system with redundant gas
pressure sensor. The third modification of the baseline design
combines the adjusting pressure and rate into one function. The
forth design uses output heat to expand inert gas, in the baseline
the heat is exported from the system and disappear in the space.
The fifth design incorporates the redundant the sensor in
propellant tank. The sixth design applies the output thrust heat to
preheat propellant, the propellant would play the role of cooling
system. The following session presents the results.

8. RESULTS OF THE CASE STUDY

For the monopropellant propulsion system, six candidate
designs are investigated. In each design, the functional model has
been modified to be more resilient to a particular failure or end
state. Table 1 shows all the designs generated by the functional
model modifications.

Table 1: Generated designs for monopropellant propulsion
system

Basic Design The original unaltered system design
Design 1 Redundant gas rate sensor added
Design 2 Redundant gas pressure sensor added

Design 3 Combine adjusting gas pressure and rate into one
function

Design 4 Use output thrust heat to expand inert gas
Design 5 Redundant propellant tank pressure sensor added

Design 6 Use output thrust heat to preheat propellant
(propellant plays the role of cooling material)

All system scenarios have been simulated using the IBFM
tool. The amount of CPU time required to simulate each scenario
increases as the complexity and the number of faults injected to
the model increases. For instance, the time of simulation for
injecting two simultaneous faults is less than the time of
simulation for having three simultaneous faults. In this study, we
investigate injecting up to 3 faults in each one of the functional
models. The classified simulated scenarios for the seed and the
six design topologies is shown in Fig.4. In this histogram, the
number of successful and failed scenarios simulated for each
design is different.

Fig.4: Simulation results for different monopropellant
propulsion system designs

8 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

The probability of risk in each design is applied to the cost-
risk model of Eq. 1. The mitigation cost CM is the cost of adding
to or changing the basic design to make it more resilient to a
particular failure or undesired end state. The operation cost CO
for all candidate design is assumed to remain the same, based on
the assumption that regardless how the system is performing,
there is an on ground system to monitor, control and run the
aircraft. For other design studies, the operating cost may vary by
design concept. It is assumed that the aircraft completes three
missions per year, and for each mission the operation cost is $500
million. The number of failed scenarios versus the total number
of scenarios for each design defines the probability of risk, pR,
for each design. The probability of the mitigation failure, pM , is
the probability of the redundant part does not work when needed,
these probabilities and The costs for having an undesired
performance, CR, are simulated in this study. The total cost

reflects the tradeoff between making a resilient design and the
costs, the lower total cost is the higher rank the design would be.

The results of cost-risk optimization for the monopropellant
system are shown in Table 2. In the table, we tabulate all the
elements of Eq. 1. Since there were only seven designs to
consider, an optimization algorithm was not used; however, an
evolutionary of other stochastic algorithm could be used to
search larger design spaces. As shown the table, Design 6 has
the best tradeoff between resilience and cost; in this design the
propellant acts as a cooling system and the preheating helps
produce thrust. This design was selected because it had the
lowest value of the cost-risk objective function. The next best
design is Design 3, which combines the gas pressure and rate
control into a single function. This may indicate that since both
functions are critical to operation, and a failure of either function
is highly detrimental to the system, it is better to address them
with a single function with a single failure rate.

Table 2: Scoring function for monopropellant propulsion system (costs are simulated in Millions $)

Cost-Risk Model Basic
Design

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Cost of Basic Design CD 100 100 100 95 90 100 80
Mitigation Cost CM 0 10 10 0 0 20 0
Operation Cost CO 1500 1500 1500 1500 1500 1500 1500

Cost of Risk
𝑪𝑹𝒑𝑹(𝟏 − 𝒑𝑴)

45.50 32.20 30.75 34.90 40.70 21.30 35.20

Total Cost 1645.50 1642.25 1640.75 1629.90 1630.70 1641.30 1615.20

Resilient Score Rank 7 Rank 6 Rank 4 Rank2 Rank 3 Rank 5 Rank 1

9. CONCLUSION

This paper presented a framework for resilient design based
upon the evaluation of different designs during the early design
stage. We created a framework to present an initial functional
model of the system and evaluate its potential failure scenarios.
To produce a preference ranking of designs, we developed a cost
risk-model to generate a resilient score for each design. The
central idea is that each design is evaluated based upon the trade-
off between the cost of risk and embedding resiliency into the
design of the system. The design implications of using this
framework for the development of resilient engineered systems
were discussed, with the focus on the functional model
development, failure simulation, and cost-risk analysis to rank
different designs and choose the most resilient one. The method
was applied in the case of mono propellant propulsion system
design. The results show that the presented method is an
applicable engineering resilience analysis and design framework
that can be used for system design.

While we have presented the general framework, future
work is needed to improve the current approach. A primary issue
is that the current approach does not address uncertainty in costs
or failure estimation. This could be addressed by quantifying

such uncertainties with probability distribution functions and
creating a utility function, with the cost-risk equation as the
selection criterion. Another issue is that we have only
demonstrated this approach on a small design space and on a
single system design problem. Graph grammars could be
implemented to help generate a large number of design
alternatives. Finally, visualization of the functional models
generated and the results would be necessary for development of
a tool which implements the proposed method.

ACKNOWLEDGMENTS

This research was funded in part by the National Science

Foundation (project number CMMI 1363509) and NASA Grant
and Cooperative Agreement NNX15AQ90G. The opinions,
findings, conclusions, and recommendations expressed are those
of the authors and do not necessarily reflect the views of the
sponsor.

REFERENCES
[1] Yodo, Nita, and Pingfeng Wang. "Resilience allocation for
early stage design of complex engineered systems." Journal of
Mechanical Design 138.9 (2016): 091402.

9 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

[2] Barlow, Richard E. Engineering reliability. Society for
Industrial and Applied Mathematics, 1998.
[3] Stamatis, Dean H. Failure mode and effect analysis: FMEA
from theory to execution. ASQ Quality Press, 2003.
[4] Taguchi, Genichi, Subir Chowdhury, and Shin Taguchi.
Robust engineering. McGraw-Hill Professional, 2000.
[5] Murphy, Terrence E., et al. "Robust engineering design. NSF
conference, DMII division, January 2004."
[6] Beyer, Hans-Georg, and Bernhard Sendhoff. "Robust
optimization–a comprehensive survey." Computer methods in
applied mechanics and engineering 196.33 (2007): 3190-3218.
[7] Antonsson, Erik K., and Kevin N. Otto. "Imprecision in
engineering design." Journal of Vibration and Acoustics 117.B
(1995): 25-32.
[8] Helton, Jon C. "Uncertainty and sensitivity analysis in the
presence of stochastic and subjective uncertainty." Journal of
Statistical Computation and Simulation 57.1-4 (1997): 3-76.
[9] Chen, Wei, and Kemper Lewis. "Robust design approach for
achieving flexibility in multidisciplinary design." AIAA
journal 37.8 (1999): 982-989.
[10] Saleh, Joseph H., Gregory Mark, and Nicole C. Jordan.
"Flexibility: A Multi-Disciplinary Literature Review and a
Research Agenda for Designing Flexible Engineering Systems."
Journal of Engineering Design 20.3 (2009): 307–323.
[11] Mark, Gregory T. "Incorporating flexibility into system
design: a novel framework and illustrated developments."
Massachusetts Institute of Technology, 2005.
[12] Keshavarzi, Elham, Matthew McIntire, and Christopher
Hoyle. "Dynamic Design Using the Kalman Filter for Flexible
Systems With Epistemic Uncertainty." ASME 2015
International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, 2015.
[13] Saxena, Abhinav, et al. "Automated Contingency
Management for Propulsion Systems." Control Conference
(ECC), 2007 European. IEEE, 2007.
[14] Hollnagel, Erik, David D. Woods, and Nancy
Leveson. Resilience engineering: Concepts and precepts.
Ashgate Publishing, Ltd., 2007.
[15] Li, Junxuan, and Zhimin Xi. "Engineering Recoverability:
A New Indicator of Design for Engineering Resilience." ASME
2014 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, 2014.
[16] Yodo, Nita, and Pingfeng Wang. "Engineering Resilience
Quantification and System Design Implications: A Literature
Survey." Journal of Mechanical Design 138.11 (2016): 111408.

[17] Suh, Nam P. "Axiomatic design theory for
systems." Research in engineering design 10.4 (1998):189-209.
[18] Siddiqi, Afreen, and Olivier L. de Weck. “Modeling
Methods and Conceptual Design Principles for Reconfigurable
Systems.” Journal of Mechanical Design 130.10 (2008):
101102.
[19] Tamilselvan, Prasanna, and Pingfeng Wang. "Failure
diagnosis using deep belief learning based health state
classification." Reliability Engineering & System Safety 115
(2013): 124-135.
[20] Hawkins, P. G., and David J. Woollons. "Failure modes and
effects analysis of complex engineering systems using functional
models." Artificial intelligence in engineering 12.4 (1998): 375-
397.
[21] Li, Wenyuan. Risk assessment of power systems: models,
methods, and applications. John Wiley & Sons, 2014.
[22] Youn, Byeng Dong. Advances in reliability-based design
optimization and probability analysis. Diss. The University of
Iowa, 2001.
[23] Standard, Military. "Procedures for performing a failure
mode, effects and criticality analysis." MIL-STD-1629,
November, AMSC Number N3074 (1980).
[24] Vesely, William E., et al. Fault tree handbook. No.
NUREG-0492. Nuclear Regulatory Commission Washington
DC, 1981.
[25] Zang, T. A., et al. "Needs and Opportunities for Risk-Based
Multidisciplinary Design Technologies for Vehicles." NASA
TM, July (2002).
[26] Backman, B. "Design Innovation and Risk Management: A
Structural Designer's Voyage into Uncertainty." ICASE Series
on Risk-based Design (2000).
[27] Liu, Hu-Chen, Long Liu, and Nan Liu. "Risk evaluation
approaches in failure mode and effects analysis: A literature
review." Expert systems with applications 40.2 (2013): 828-838.
[28] Smith, Natasha, and Sankaran Mahadevan. "Probabilistic
methods for aerospace system conceptual design." Journal of
spacecraft and rockets 40.3 (2003): 411-418.
[29] Greenfield, Michael A. "NASA's use of quantitative risk
assessment for safety upgrades." Space safety, rescue and
quality 1999-2000 (2001): 153-159.
[30] Choi, K. "Advances in Reliability-Based Design
Optimization and Probability Analysis-PART II." ICASE Series
on Risk-based Design (2001).
[31] Xi, Zhimin, and Ren-Jye Yang. "Reliability analysis with
model uncertainty coupling with parameter and experiment
uncertainties: a case study of 2014 verification and validation
challenge problem." Journal of Verification, Validation and
Uncertainty Quantification 1.1 (2016): 011005.

10 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

[32] Ericson, Clifton A. Hazard analysis techniques for system
safety. John Wiley & Sons, 2015.
[33] Mahadevan, Sankaran, Natasha L. Smith, and Thomas A.
Zang. "System risk assessment and allocation in conceptual
design." (2003).
[34] Kurtoglu, Tolga, and Irem Y. Tumer. "Ffip: A framework
for early assessment of functional failures in complex
systems." ICED, Cite des Sciences et de L’industrie, Paris,
France (2007).
[35] Stone, Robert B., Irem Y. Tumer, and Michael E. Stock.
"Linking product functionality to historic failures to improve
failure analysis in design." Research in Engineering
Design 16.1-2 (2005): 96-108.
[36] Lough, Katie Grantham, Robert B. Stone, and Irem Tumer.
"Implementation procedures for the risk in early design (red)
method." J Ind Syst Eng 2.2 (2008): 126-143.
[37] Lough, Katie Grantham, Robert Stone, and Irem Y. Tumer.
"The risk in early design method." Journal of Engineering
Design 20.2 (2009): 155-173.
[38] Jensen, David C., Irem Y. Tumer, and Tolga Kurtoglu.
"Modeling the propagation of failures in software driven
hardware systems to enable risk-informed design." ASME 2008
International Mechanical Engineering Congress and
Exposition. American Society of Mechanical Engineers, 2008.
[39] Jensen, D., Irem Y. Tumer, and Tolga Kurtoglu. "Design of
an electrical power system using a functional failure and flow
state logic reasoning methodology." San Diego, CA (2009).
[40] Jensen, David, Irem Y. Tumer, and Tolga Kurtoglu. "Flow
State Logic (FSL) for analysis of failure propagation in early
design." ASME 2009 International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical
Engineers, 2009.
[41] Krus, Daniel, and Katie Grantham Lough. "Applying
function-based failure propagation in conceptual design." ASME
2007 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, 2007.
[42] Kurtoglu, Tolga, and Irem Y. Tumer. "A graph-based fault
identification and propagation framework for functional design
of complex systems." Journal of mechanical design 130.5
(2008): 051401.
[43] Kurtoglu, Tolga, Irem Y. Tumer, and David C. Jensen. "A
functional failure reasoning methodology for evaluation of
conceptual system architectures." Research in Engineering
Design 21.4 (2010): 209-234.
[44] Papakonstantinou, Nikolaos, et al. "Capturing Interactions
and Emergent Failure Behavior in Complex Engineered Systems
at Multiple Scales." ASME 2011 International Design
Engineering Technical Conferences and Computers and

Information in Engineering Conference. American Society of
Mechanical Engineers, 2011.
[45] Sierla, Seppo, et al. "Early integration of safety to the
mechatronic system design process by the functional failure
identification and propagation framework." Mechatronics 22.2
(2012): 137-151.
[46] Tumer, Irem, and Carol Smidts. "Integrated design-stage
failure analysis of software-driven hardware systems." IEEE
Transactions on Computers 60.8 (2011): 1072-1084.
[47] Coatanéa, Eric, et al. "A framework for building
dimensionless behavioral models to aid in function-based failure
propagation analysis." Journal of Mechanical Design 133.12
(2011): 121001.
[48] de Kleer, Johan, et al. "Fault augmented modelica
models." The 24th International Workshop on Principles of
Diagnosis. 2013.
[49] Minhas, Raj, et al. "Using fault augmented modelica models
for diagnostics." Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund; Sweden. No.
96. Linköping University Electronic Press, 2014.
[50] McIntire, Matthew G. From Functional Modeling to
Optimization: Risk and Safety in the Design Process for Large-
Scale Systems. Diss. 2016.
[51] Clauset, Aaron. "Five Lectures on Networks." (2014).
[52] Van Bossuyt, Douglas, et al. "Risk attitudes in risk-based
design: Considering attitude using utility theory in risk-based
design." Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 26.04 (2012): 393-406.

11 Copyright © 2017 ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/12/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

