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Abstract

In this work we are concerned with the conceptual design of
large-scale diagnostic and health management systems that
use Bayesian networks. While they are potentially powerful,
improperly designed Bayesian networks can result in too high
memory requirements or too long inference times, to they
point where they may not be acceptable for real-time diagno-
sis and health management in resource-bounded systems such
as NASA's aerospace vehicles. We investigate the clique tree
clustering approach to Bayesian network inference, where in-
creasing the size and connectivity of a Bayesian network typ-
ically also increases clique tree size. This paper combines
techniques for analytically characterizing clique tree growth
with bounds on clique tree size imposed by resource con-
straints, thereby aiding the design and optimization of large-
scale Bayesian networks in resource-bounded systems. We
provide both theoretical and experimental results, and illus-
trate our approach using a NASA case study.

Introduction
In this work we take a systems point of view, and consider
situations where a diagnostic process needs to be carefully
designed within an overall computer system architecture.
Such computational considerations come to the forefront in
diagnosis applications where resources are severely limited.
For example, diagnosis plays or could play a key role in
many real-time systems with limited memory resources.
While we assume a Bayesian network approach to di-

agnosis, our work carries over to other model-based ap-
proaches. Bayesian networks provide a well-established
approach to model-based diagnosis and monitoring (An-
dreassen et al. 1987; Shwe et al. 1991; Lerner et al. 2000;
Roychoudhury, Biswas, & Koutsoukos 2006), and clique
tree clustering is an important Bayesian network inference
algorithm (Lauritzen & Spiegelhalter 1988; Andersen et al.
1989). Using the tree clustering approach, a BN's directed
graph is compiled to an undirected graph, a clique tree (Lau-
ritzen & Spiegelhalter 1988). In order to compute marginals
or most probable explanations, evidence is propagated in the
clique tree. The performance of clique tree clustering al-
gorithms depends on the treewidth or the optimal maximal
clique size of a BN's induced clique tree (Dechter & Fattah
2001). Unfortunately, it turns out that maximal clique size
and total clique tree size can be prohibitively large in appli-

cation BNs (Shwe et al. 1991) as well as in relatively small
synthetic BNs (Mengshoel, Wilkins, & Roth 2006).
Early in system design, during conceptual design, there

is a lack of information regarding likely BN topologies and
consequently much is not known with respect to BN infer-
ence times as well as accuracy of diagnostic inference. Ide-
ally, a BN designer would like to carefully investigate im-
portant but dif�cult questions such as the following:

� What is the resource consumption, with respect to time
and space, of different BN models for diagnosis or system
health management?

� What are the resource bounds imposed by different hard-
ware and software platform alternatives?

We address these questions by using and extending high-
level, macroscopic models of clique tree and inference time
growth (Mengshoel, Wilkins, & Roth 2006; Mengshoel
2007). Our growth curves are based on theoretical consid-
erations and on empirical data created through the use of
problem instance generators (Mitchell, Selman, & Levesque
1992; Mengshoel, Wilkins, & Roth 2006; Mengshoel 2007).
In this paper we show how clique tree growth curves, along
with resource bounds, can be used for trade studies during
conceptual design. NASA's next-generation crew launch ve-
hicle is used as a case study (NASA 2005).
We believe this research is signi�cant because resource

constraints are fundamental in computer science and engi-
neering, including in diagnostic and health management al-
gorithms and software. This work enables improvements in
how resource-bounded systems, in particular real-time sys-
tems with embedded health monitoring components, are de-
signed and analyzed.
The remainder of this paper is organized as follows. First,

we introduce a few fundamental concepts and results related
to Bayesian networks. We then brie�y discuss the resource-
bounded nature of system health management applications
of interest to NASA. Next, we present a framework for ana-
lyzing resource bounds and resource consumption, the latter
as a function of parameters that characterize Bayesian net-
works. Finally, we apply our analytical framework in com-
putational experiments.



Preliminaries
A Bayesian network (BN) is a tuple � = (X , E, P ), where
(X , E) is a DAG with associated conditional probability
distributions P = fPr(X1 j �X1

), : : : , Pr(Xn j �Xn
)g.

Here, Pr(X j �X) is the conditional probability distribu-
tion (CPT) for X 2 X given its parents �X . Let �X repre-
sent an instantiation of �X . The independence assumptions
encoded in (X , E) imply the joint probability distribution

Pr(x) =
nY
i=1

Pr(xi j �Xi
); (1)

where Pr(x) = Pr(X1 = x1, : : :, Xn = xn).
There are two broad classes of approaches to Bayesian

network inference: Interpretation and compilation. In inter-
pretation approaches, a Bayesian network is directly used for
inference. In compilation approaches, a Bayesian network
is off-line compiled into a secondary data structure, where
the details depend on the approach being used, and this sec-
ondary data structure is then used for on-line inference. Due
to their high level of predictability and fast execution times,
compilation approaches are especially suitable for resource-
bounded reasoning and real-time systems. Our focus here
is therefore on compilation approaches, and in particular the
arithmetic circuit approach and the clique tree clustering (or
join tree) approach.
Creation of an arithmetic circuit from a Bayesian network

is a relatively recent compilation approach (Park & Dar-
wiche 2004; Chavira & Darwiche 2007). Here, Bayesian
networks are represented as multivariate polynomials, trans-
lated into arithmetic circuits, and thus probabilistic inference
translates into a process of operating on such circuits. These
circuits have a relatively simple structure, but can be used to
answer a wide range of probabilistic queries.
In this paper, though, our main focus is on the clique

tree clustering approach (Lauritzen & Spiegelhalter 1988;
Andersen et al. 1989). A clique tree �000 is constructed from
a BN in the following way by theHugin tree clustering algo-
rithm (Andersen et al. 1989). First, an initial moral graph �0
is constructed by making an undirected copy of � and then
augmenting it as follows. For each node X in �, Hugin
adds to �0 an edge between each pair of nodes in �X if no
such edge already exists in �0. Second, Hugin creates a tri-
angulated graph �00 by adding �ll-in edges to �0 such that no
chordless cycle of length greater than three exists. Third, a
clique tree �000 is created from �00. Hugin uses essentially
the same clique tree �000 for both belief updating (marginals)
and belief revision (most probable explanations).
There are several reasons why we investigate tree cluster-

ing here. First, tree clustering is a theoretically well-founded
approach to exact inference in BNs. The complexity of
other exact BN inference algorithms� including condition-
ing and elimination algorithms � depends on treewidth ��,
which is closely related to tree clustering's optimal maximal
clique size h� since �� = h� � 1 (Lauritzen & Spiegel-
halter 1988; Dechter & Fattah 2001). Second, due to the
use of clique trees for inference, tree clustering is quite pre-
dictable, which is a major advantage in resource-bounded

environments. Third, tree clustering algorithms have been
implemented in several high-quality software systems.
We investigate bipartite BNs, BNs in which the nodesX

are partitioned into root nodesV and leaf nodesC. Bipartite
BNs are sampled using the BPART algorithm (Mengshoel,
Wilkins, & Roth 2006), which is a generalization of an algo-
rithm for randomly generating instances of the satis�ability
problem (Mitchell, Selman, & Levesque 1992). TheBPART
algorithm operates as follows. First, V = jV j root nodes,
each with S states, are created. Second, C = jCj leaf nodes,
also each with S states, are created. For each leaf node, P
parent nodes fX1, . . . ,XP g are picked uniformly at random
without replacement among the V root nodes. In this paper
our main interest is in the structural parameters V ,C, P , and
S, and we do not consider the CPTs constructed by BPART.
Consequently, the signature BPART(V , C, P , S) is used.
The number of BN edges E created is given by E = C � P
and the total number of nodes is N = C + V .
Our key idea is that growth curves provide estimates of re-

source consumption in terms of clique tree size. Such clique
trees do not need to be generated from bipartite BNs, even
though we emphasize them here. Bipartite BNs are impor-
tant in applications. Naive Bayes models, successful in spam
�ltering, are a special case of bipartite BNs with only one
root node. The QMR-DT BN is a bipartite medical BN �
diseases are root nodes and symptoms are leaf nodes (Shwe
et al. 1991). Special inference algorithms have also been
designed for bipartite BNs (Ng & Jordan 2000).
For all BNs, including for bipartite BNs, it is important

but also very dif�cult to understand and predict clique tree
clustering's cycle-generation and �ll-in processes. Further,
these strongly non-linear processes need to be traded off
against resource bounds. We will return to these topics after
�rst introducing our perspective on resource-bounded diag-
nostic reasoning.

Designing Resource-Bounded Reasoners
Diagnosis and system health management in resource-
bounded systems is of great interest to NASA and the
aerospace community. Relevant examples of Bayesian net-
works exist, for example, in process monitoring and control
(Lerner et al. 2000; Roychoudhury, Biswas, & Koutsoukos
2006) and medical diagnosis and monitoring (Andreassen et
al. 1987; Shwe et al. 1991).
As a concrete case study, we will discuss NASA's next-

generation crew launch vehicle (CLV). This vehicle, which
will replace the space shuttle, is currently being developed.
The CLV is likely to include a solid rocket engine; see Fig-
ure 1. Historically, a 91.4% success rate was observed for
world-wide space launches in the time period 1957-2004,
with the propulsion subsystem being the Achilles' heel of
launch vehicles (Chang & Tomei 2005). To ensure the
safety of the crew, it is important to estimate and monitor
the health state of the solid rocket during launch, such that
the crew can escape in a timely fashion if needed.
In a study of space exploration system architectures,

NASA identi�ed (i) key solid rocket failure modes, (ii) their
potential detection methods, and (iii) approximate reaction
times for crew abort (NASA 2005). Failure modes include



Figure 1: From left to right: The Saturn V, the Space Shut-
tle and two candidate designs for the next-generation Crew
Launch Vehicle (CLV).

joint failures, structural failures, thermal failures, and per-
formance failures. A total of 22 key failure modes have been
identi�ed (NASA 2005), however as the system is being de-
veloped this number might change. An interesting question,
which we will return to in the experimental section, is what
the impact would be if the number of failure modes or sen-
sors were increased or decreased. Possible sensors include
traditional cameras, infrared cameras, thermocouples, pres-
sure transducers, burn-through wires, and strain gauges. Re-
action times, which are hard real-time, range from close to 0
seconds for catastrophic failures such as case failure to 130
seconds for less threatening failures such as case insulator
failures (NASA 2005).
Musliner and his coauthors identi�ed three approaches to

real-time AI (Musliner et al. 1995); we investigate what
they call �embedding AI into a real-time system�. In other
words, we make system health management (SHM) a real-
time task or a set of a real-time tasks. We call this embedded
system health management (ESHM).
The ESHM approach is based on real-time tasks and may

also utilize a hard real-time operating system (RTOS). A
prototypical RTOS model has emerged over the last decade
or so: An RTOS typically uses priority-based preemptive
scheduling where each task has a �xed priority. The RTOS
scheduler lets higher-priority tasks interrupt lower-priority
tasks while tasks on the same priority level, if supported,
are executed on a round-robin basis. A periodic RTOS task
� i = (pi, di, wi) has a task period pi, a deadline di, and
a worst-case execution time (WCET) wi. In other words, a
task not only needs to compute correct outputs for all in-
puts, it also needs to do so within its deadline di. For-
mally, let Ti be the random execution time for � i; clearly
Pr(Ti > wi) = 0 needs to hold. Here, Ti accounts for the
different execution paths of � i due to input variations. Dif-
ferent RTOS scheduling algorithms exist. Two approaches
that are amendable to mathematical analysis are known as

earliest deadline �rst (EDF) scheduling and rate-monotonic
(RM) scheduling. Through analysis, and given appropriate
assumptions, one can determine whether all task deadlines
can be met for a given set of tasks under RM or EDF.
Clearly, some AI approaches are suitable for this ESHM

approach, while others are not (Musliner et al. 1995).
Among the real-time task parameters discussed above, a pre-
dictable, bounded worst-case execution time wi is essential.
Clique tree size, along with the application-dependent hard-
ware and software platforms, essentially determine wi. Fur-
ther, once a clique tree has been generated by compilation,
its memory requirement has been determined, which is also
desirable in real-time and resource-bounded systems. All
in all, BN inference using tree clustering provides a solid
foundation for resource-bounded reasoning.
In the conceptual design phase, there is typically a lack of

detailed knowledge about the overall system being designed,
with the implication that a large number of candidate ESHM
BNs exists. Generation of all these BNs and processing
them using clique tree clustering is seldom feasible. At
the same time, given the computational hardness of BN in-
ference (Cooper 1990; Shimony 1994) as well as the ob-
served dif�culty of application BNs (Andreassen et al. 1987;
Shwe et al. 1991; Lerner et al. 2000; Roychoudhury,
Biswas, & Koutsoukos 2006) and synthetic BNs (Meng-
shoel, Wilkins, & Roth 2006) it is clear that a certain amount
of care is well-advised, in particular when the size and con-
nectivity of Bayesian networks increase. This motivates our
discussion of resource bounds and resource consumption in
the following.

Resource Bounds
Memory and time bounds are fundamental in computer sci-
ence, including in SHM algorithms and software. In this
section we develop novel bounds on clique tree size to ex-
press time- and memory-bounds.
Clique tree sizes can be translated into quantities directly

indicating memory usage, once a memory model such as the
following is introduced.
De�nition 1 (Linear memory model) Let � = �000 be a
clique tree with size k(�). A linear memory resource model
for � is given by

rm(�) = a� k(�) bytes + b bytes;
where a 2 N+ and b 2 N are system parameters.
The parameters a and b that determine the amount of pri-

mary memory (RAM) required for processing are system-
dependent. Here is an example.
Example 2 Consider a clique tree �, and suppose that each
clique tree component uses a double data type requiring
a = 8 bytes while the �xed overhead is b = 0 bytes. The
amount of RAM rm needed to accommodate a clique tree
consisting of one clique with h = 24 binary (S = 2) nodes
is then:

rm(�) = a� k(�) + b bytes = 8� Sh bytes =
224 � 8 bytes = 134; 217; 728 bytes = 128MB.



We now introduce memory-induced clique tree bounds
�m(mmax) as follows.
De�nition 3 (Memory-bounded maximal clique tree)
Let � be a set of clique trees, and put �0 = f� j � 2 � and
rm(�) � mmaxg. The memory-bounded maximal clique
tree size �m(mmax), determined by � and the memory
boundmmax, is de�ned as1

�m(mmax) = k

�
argmax

�2�0
rm(�)

�
: (2)

In words, De�nition 3 expresses the idea of picking as
large a clique tree as possible without going beyond the
memory bound mmax. The sizes of the diagnostic BNs we
can develop are constrained by the maximal memory mmax

available to their clique trees.
To be useful for real-time diagnosis and health manage-

ment, not only must an ESHM Bayesian network �t into
memory, it must also support the timely computation of a
diagnosis. To capture this constraint, we introduce the fol-
lowing linear time model.
De�nition 4 (Linear time model) Let � be a clique tree. A
linear WCET time model for � is given by

rt(�) = c� rm(�) ms + d ms;
where c 2 N+ and d 2 N are system parameters.
De�nition 4 expresses the fact that execution time rt(�)

is partly determined by clique tree memory requirements
rm(�), but rt(�) also depends on several hardware- and
software-speci�c factors as re�ected in the parameters c and
d. Hardware-speci�c factors include the processor clock
speed, amount of primary memory, speed of primary mem-
ory, and amount of cache. Software-speci�c factors include
the type of data structures, programming language, com-
piler, and operating system used to implement and deploy
the clique tree clustering system. We leave detailed inves-
tigations of the impact of different hardware and systems
software for future research.
We now introduce the time-induced clique tree bound

�t(tmax) as follows. For simplicity, we consider exactly one
ESHM RTOS task �1 = (p1, d1, w1), and put tmax = w1.
De�nition 5 (Time-bounded maximal clique tree) Let �
be a set of clique trees, and put �0 = f� j � 2 � and
rt(�) � tmaxg. The time-bounded maximal clique tree size
�t(tmax), determined by � and the time bound tmax, is de-
�ned as

�t(tmax) = k

�
argmax

�2�0
rt(�)

�
: (3)

In words, De�nition 5 de�nes the size of the largest clique
tree whose execution time does not exceed tmax.
During conceptual design, tmax and mmax may in fact

not be �xed. The reason for this is that different system
and ESHM design alternatives are in general considered
early in development, which translates into a range of pos-
sible values for tmax andmmax. Consequently, a diagnostic

1If there are multiple candidates for argmax�2� rm(�), we
arbitrarily pick one of them since their size is the same.

system designer may consider subsets fm1; : : : ;mkg and
ft1; : : : ; tng rather than tmax and mmax respectively. Let
m 2 fm1; : : : ;mkg and t 2 ft1; : : : ; tng. Then we have
from (2) and (3) the following joint resource-induced clique
tree bound �(m; t):

�(m; t) = min(�m(m); �t(t)): (4)
Inputting (m; t) 2 fm1; : : : ;mkg�ft1; : : : ; tng into (4) re-
sults in a set of resource-induced clique tree bounds � :=
f�1; �2; : : :g. The advantage of using resource-induced
bounds � on total clique tree size (or, along similar lines,
on arithmetic circuit size) is that they uniformly represent
both memory bounds and time bounds, and can easily be
compared to clique tree growth curves expressing resource
consumption. In the experimental section, we will use a set
f�1; �2; �3g of resource-induced bounds.

Resource Consumption
As the size and connectivity of a BN increases, so does
the consumption of computational resources required for its
processing. Therefore, when embarking on a BN develop-
ment effort, one would like to avoid developing a BN model
that cannot be processed within the resource bounds of a par-
ticular computer system. To avoid this problem, we estimate
resource consumption ahead of time by analytical means.
Here, we discuss an analytical framework for characterizing
clique tree growth (Mengshoel 2007).
In a diagnostic bipartite BNs, the number of root nodes V

represents the number of failure modes, components, or dis-
eases, and the number of leaf nodesC represents the number
of sensors, tests, or symptoms. From a bipartite BN, com-
pilation produces a clique tree consisting of root cliques and
mixed cliques (Mengshoel, Wilkins, & Roth 2006). Root
cliques are cliques with root nodes only, whilemixed cliques
are cliques with both root nodes and leaf nodes.
Based on previous research (Mengshoel, Wilkins, & Roth

2006; Mengshoel 2007), we now provide a qualitative dis-
cussion of the growth of clique trees generated from BPART
BNs in terms of the C=V -ratio. We identify three broad
stages of clique tree growth: The initial growth stage, the
rapid growth stage, and the saturated growth stage. The ini-
tial growth stage, where the C=V -ratio is �low� (for P = 2,
up to approximately C=V � 1), is characterized by �few�
leaf nodes relative to the number of root nodes. There is
consequently a relatively low contribution by root cliques to
the clique tree. This stage is generally dominated by mixed
cliques� indeed asC=V ! 0 there are no root cliques with
more than one root node. During the rapid growth stage,
where the C=V -ratio is �medium� (for P = 2, from approx-
imately C=V � 1), non-trivial root cliques start appearing,
causing dramatic growth in the total size of root cliques on
average. This growth is due to formation of cycles where
�ll-in edges are required in order to triangulate the moral
graph. Because of �ll-in edges, the root cliques gradually
dominate the mixed cliques in terms of their contribution to
total clique tree size. The saturated growth stage, where
the C=V -ratio is �high�, is characterized by a �large� num-
ber of leaf nodes relative to the number of root nodes. As
C=V !1, one root clique with V BN root nodes and size
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Figure 2: Gompertz curves of the form g(x) = g(1)e��e�x = 220e��e�x , where the parameters � and  are varied. Top left:
The curves plotted have the form g(x) = 220e��e

�0:3x
, with � = 5 (red dotted curve), � = 15 (black solid curve), and � = 25

(blue crossed curve). Top right: The curves plotted have the form g(x) = 220e�15e
�x
, with  = 0:1 (red dotted curve),

 = 0:3 (black solid curve), and  = 0:5 (blue crossed curve). Bottom left: Growth rates g0(x) for different g(x) directly
above. Bottom right: Growth rates g0(x) for different g(x) directly above.

SV emerges. The phase of greatest interest to developers
of large-scale BNs is the rapid growth stage, where the size
of induced clique trees quickly transition from feasible to
infeasible for resource-bounded reasoners.
Clique trees are discrete structures, however we here use

continuous growth models in order to simplify mathematical
analysis.

De�nition 6 (Clique tree growth curve) Let gR(x) be the
growth curve for all root cliques and gM (x) the growth
curve for all mixed cliques. The (total) clique tree growth
curve is de�ned as

gT (x) = gR(x) + gM (x):

Restricted growth has been modeled using different sig-
moidal growth curves (�S-curves�), including the logistic,
Gompertz, Complementary Gompertz, and Richards growth
curves (Banks 1994; Lindsey 2004). We emphasize Gom-
pertz growth curves, since they are theoretically plausible
and turn out to give best �t empirically (Mengshoel 2007).

De�nition 7 (Gompertz growth curve ) The Gompertz
growth curve is

g(x) = g(1)e��e
�x
; (5)

where g(1) is the asymptote as x!1.

The independent variable x in (5) is x = C or x = C=V
in this paper. The derivative

g0(x) =
d

dx

�
g(1)e��e

�x
�
= g(1)�e�xe��e

�x
;

which we call the growth rate, shows how Gompertz growth
changes as a function of x.
We now introduce, from related work (Mengshoel 2007),

a Gompertz growth curve for BPART.
Theorem 8 (Total Gompertz growth curve) The total
Gompertz growth curve for clique trees generated from
BPART(V , C, P , S) BNs, where x = C is the independent
parameter, is

gT (x) = S
V e��e

�x
+ xSP+1: (6)

Growth curves are frequently used in medicine, biology,
and sociology (Banks 1994; Lindsey 2004), however our use
of them in designing resource-bounded reasoning systems
is, to our knowledge, novel.
In Figure 2 we investigate how varying the parameters �

and  impacts the shape of Gompertz curves. The factor
gR(1) = SV = 220 is obtained by considering bipar-
tite Bayesian networks with V = 20 binary (so S = 2)
root nodes. Figure 2 also shows how the growth rate g0(x)
changes when � and  are varied.
Let us �rst consider varying � as illustrated to the left in

Figure 2. By increasing �, the x-location of maximal growth
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Figure 3: Gompertz growth curves g20 (top, for V = 20 root
nodes) and g40 (bottom, for V = 40 root nodes) are shown
here, along with sample means, using x = C=V as the inde-
pendent variable. Data from which the curves were created
is shown in Table 1. Straight lines represent upper bounds
on clique tree size and re�ect different resource bounds.

rate g0(x) is increased as well. In other words, the initial
growth stage lasts longer as � increases, and the onset of the
rapid and saturated growth stage are delayed. However, the
maximal value of g0(x) does not change with changing �.
Let us next consider varying  as illustrated to the right in

Figure 2. As  increases, the x-location of maximal growth
rate g0(x) decreases. For example,  = 0:1 has maximal
g0(x) at approximately 28, while  = 0:5 has maximal g0(x)
at approximately 6. In addition, with increasing  the max-
imal value of g0(x) increases. In other words, the initial
growth stage is shorter as  increases, and the rapid and sat-
urated growth stage start for smaller values of x.
It is clear from Figure 2 that Gompertz curves provide

modelling �exibility and power that is potentially useful in
modelling growth in resource consumption of model-based
techniques including BNs. For instance, it can be very useful
to know where a BN or a distribution of BNs is located on
g(x) and g0(x).

Experimental Results
As a concrete case study, we investigate the design of an
ESHM diagnostic system for a next-generation crew launch
vehicle (CLV) (NASA 2005). The identi�ed failure modes

Empirical Gompertz Growth Curves
g�20(x) = 2

20 exp(� exp (2:158) exp (�0:0769x))
g20(x) = 2

20 exp(� exp (2:108) exp (�0:0993x))
g+20(x) = 2

20 exp(� exp (2:113) exp (�0:132x))
g�40(x) = 2

40 exp(� exp (3:288) exp (�0:130x))
g40(x) = 2

40 exp(� exp (3:269) exp (�0:145x))
g+40(x) = 2

40 exp(� exp (3:259) exp (�0:166x))

Table 2: Growth curves constructed from bipartite BNs with
V = 20 and V = 40 root nodes. The underlying data is
summarized in Table 1.

and detection methods can be represented as a bipartite
Bayesian network where the failure modes are root nodes,
and detectors or sensor are leaf nodes. Such a bipartite net-
work could make up a time-slice in a dynamic, time-sliced
Bayesian network, where each time slice contains both dis-
crete and continuous random variables. Our goal is to obtain
high diagnostic accuracy while also keeping clique tree size
(and therefore memory requirement and inference time) be-
low certain bounds. To achieve this, we consider upper and
lower bounds on the number of root and leaf nodes. For-
mally, we introduce the parameters Vmin, Vmax, Cmin, and
Cmax. Vmin represents the minimal number of root nodes
considered for the BN; Vmax is the maximal number of root
nodes. Similarly, Cmin and Cmax are bounds for the leaf
nodes in a bipartite BN.
In experiments re�ecting the current estimate V = 22

CLV failure modes (NASA 2005), we sampled bipartite BNs
using BPART(V , C, 2, 2), using V = Vmin = 20 and
V = Vmax = 40. The results reported here are based on
experiments with a total of 2; 700 BNs, with 1,800 BNs for
Vmin = 20 and 900 BNs for Vmax = 40.
Results are reported in Table 1 and Figure 3. Along the

�gure's x-axis, we use x = C=V as the independent para-
meter. Along the y-axis, we display the empirically deter-
mined Gompertz growth curves for the root cliques:

g(x) = gR(x) = S
V e��e

�x
; (7)

as well as results from the samples. We focus on the root
clique growth curve gR(x) since it dwarfs the mixed clique
growth curve gM (x) for the parameter values of interest
here. In (7), we determined � and  by experimentation.
These two parameters therefore depend on C, V , P , and S
as well as the BNs sampled. To determine a given pair of �
and , an estimation approach based on Lindsey's (Lindsey
2004) was employed � see Figure 4 and elsewhere (Meng-
shoel 2007) for details.
For each value of V we present three growth curves,

namely for minimums g�V (x), for means gV (x), and for
maximums g+V (x). Maximums are conservative estimates
and re�ect, for example, situations in which minimal effort
is available for optimization of the BN's structure in order to
reduce clique tree size.

Figure 3 contains the following curves:
� The growth curves g�20(x), g20(x), and g+20(x) represent



C/V 1 1.5 2 3 4 5 7.5 10 15 20 25
Min, V = 20 584 1264 2312 10304 22016 94208 196608 294912
Mean, V = 20 1204 3221 6683 27292 63245 187580 339838 512953
Max, V = 20 2568 9712 13888 53504 122880 360448 524288 786432
Min, V = 40 54 392 996 15552 123696 907728
Mean, V = 40 150 658 3010 52988 492283 3040530
Max, V = 40 274 1232 9754 165000 2299072 9869824

Table 1: Raw data and sample means for total size of root cliques in cliques trees, generated by varying the C=V -ratio for
V = 20 and V = 40 root nodes. This data was used to create the Gompertz growth curves in Figure 3.

clique tree sizes for the minimal number of failure modes
(or causes) Vmin = 20.

� The growth curves g�40(x), g40(x), and g+40(x) represent
clique tree sizes for the maximal number of failure modes
Vmax = 40.

� A straight line �i 2 � = f�1; �2; �3g represents a
resource-induced clique tree bound, where �i is either a
time-induced bound or a memory-induced bound accord-
ing to (4). Here, �1 = 216, �1 = 218, and �1 = 220.
Table 2 contains empirically determined formulas for the

growth curves. One can consult these curves to determine
which point(s) or area(s) represents a reasonable trade-off
between the various factors. We now give a few examples.
Suppose that a diagnostic system designer wants to inves-

tigate the impact of varying the size of the sensor suite for a
CLV. If the number of sensors C is increased, then C=V in-
creases as well. It is thus interesting to consider the different
impact of large C=V values for V = 20 versus V = 40. For
sake of argument, suppose that x = C=V � 4; i.e. there are
four or more times as many sensors as state variables in a BN
and we study the impact of varying � 2 � = f�1; �2; �3g.
Consulting Figure 3, we easily see that for V = 20, C=V �
4 is not a problem, even for �1 = 216. For V = 40, on
the other hand, �1 is clearly a challenge, even for the most
optimistic curve g�40(x). On the other hand, g40(4) < �3
and thus �3 gives a little bit of a margin, while g40(4) > �2
> g�40(4): Using �2 thus means taking some risk, and one
potentially needs to spend some time optimizing the BN or
the inference algorithm.
We now discuss the growth curve formulas in Table 2.

The biggest difference here, for both V = 20 and V = 40,
is perhaps in the  parameter. This shows not only an ear-
lier maximal growth rate, as re�ected in Figure 2, but also
greater maximal growth rate for g+V (x) compared to those
for g�V (x) and gV (x). In other words, if we are concerned
about conservative estimates of clique tree growth as re-
�ected in g+V (x), and are in or approaching the rapid growth
stage, then this results suggests that clique tree size can in-
crease very dramatically as a result of rather minor increases
in C. This effect is, we believe, relatively easy to see if one
compares the growth curves in Table 2, but rather dif�cult to
catch if one only looks at the data in Table 1.

Conclusion and Future Work
The goal of this paper has been to help bridge the gap be-
tween, on the one hand, diagnostic resource-bounded rea-

soning and, on the other hand, Bayesian network inference
using clique tree clustering. Our conclusion is two-fold.
First, diagnostic reasoning in resource-bounded and real-
time systems is as much about predictability as speed. And
clique tree clustering, being a dynamic programming algo-
rithm, is in fact quite predictable once a particular BN has
been developed and compiled into a static clique tree. A
similar argument holds for the arithmetic circuit approach.

Second, we have discussed the use of growth curves in
trade-off studies during conceptual design, where only infor-
mation about distributions of BNs is available. Conceptual
design presents a chicken-and-egg problem, since in order
to compute clique tree size or inference time one needs to
construct one or more Bayesian networks. However, in or-
der to develop a Bayesian network by hand, one needs to
perform extensive knowledge engineering, which is beyond
the scope of conceptual design, especially for large-scale di-
agnostic BNs.

To tackle the challenge of conceptual design of Bayesian
networks, we have developed a design paradigm utilizing
computational resource bounds along with coarse-grained
growth models based on processing sampled BNs. Our ap-
proach facilitates a better understanding of the trade-offs be-
tween the resource demands of clique trees (or arithmetic
circuits) created from different BNs versus computational
resource bounds. The approach has the potential to lead to
fewer problems due to under-engineered systems during sys-
tem implementation and integration, thus reducing cost and
risk. Since more is known early in design, we potentially
also reduce the chance of over-engineered systems, thereby
potentially reducing their cost and weight, both major con-
cerns in aerospace as well as in other disciplines.

This research can be extended in several directions, of
which we mention a few. First, it would be interesting
to consider in more detail BNs beyond the bipartite model
and more generally extend the class of BNs characterized
using growth curves. Second, it could be useful to study
other model-based approaches, algorithms, and applications
where resource bounds are relevant.
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Gompertz linear form as a function of C/V for V=20
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y = 0.099x + 2.108
R2 = 0.996

y = 0.132x + 2.113
R2 = 0.995

2

1

0

1

2

3

0 5 10 15 20 25 30 35C/V

Gompertz of minimums Gompertz of means
Gompertz of maximums Linear (Gompertz of minimums)
Linear (Gompertz of means) Linear (Gompertz of maximums)

Gompertz linear form as a function of C/V for V=40
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Figure 4: Linear forms summarizing the construction of the
Gompertz growth curves are shown here. The regression
lines provide the parameters � and  used in the Gompertz
growth curves.
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