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Abstract

We develop an algorithm for automatic discovery of precur-

sors in time series data (ADOPT). In a time series setting, a

precursor may be considered as any event that precedes and

increases the likelihood of an adverse event. In a multivari-

ate time series data, there are exponential number of events

which makes a brute force search intractable. ADOPT works

by breaking down the problem into two steps - (1) inferring

a model of the nominal time series (data without adverse

event) by considering the nominal data to be generated by a

hidden expert and (2) using the expert’s model as a bench-

mark to evaluate the adverse time series to identify subopti-

mal events as precursors. For step (1), we use a Markov De-

cision Process (MDP) framework where value functions and

Bellman’s optimality are used to infer the expert’s actions.

For step (2), we define a precursor score to evaluate a given

instant of a time series by comparing its utility with that of

the expert. Thus, the search for precursors is transformed

to a search for sub-optimal action sequences in ADOPT. As

an application case study, we use ADOPT to discover pre-

cursors to go-around events in commercial flights using real

aviation data.

1 Introduction

A precursor may be a pattern or a signature that occurs
prior to the adverse event and is associated with an
increased likelihood of the adverse event occurring in the
future. Precursors are important because adverse events
are costly; A flight crash, for example, may kill hundreds
of people and cost millions of dollars. A natural disaster
such as an earthquake or a tsunami may wipe out an
entire city. Adverse events are usually sporadic and
have different patterns of failure, making precursors
a valuable knowledge base [1] to study and forecast
adverse events. The importance of precursor analysis
cannot be overemphasized in many domains such as
natural calamities [2], extreme weather [3], finance [4],
network security [5], etc.

The motivation behind this work is to improve avia-
tion safety by finding precursors to aviation safety inci-

∗UARC/Nasa Ames Research Center, Moffett Field, CA.
†SGT Inc./Nasa Ames Research Center, Moffett Field, CA.
‡Nasa Ames Research Center, Moffett Field, CA.

dents. For example, an analyst investigating an incident
may identify precursors such as inappropriate wind con-
ditions, unstable descent because of high aircraft speed
etc. [6] prior to the incident. Although such events
may be identified from recorded data, the process is
time consuming. Further, human experts cannot pro-
cess high dimensional data quickly and efficiently, of-
ten finding simple and previously “known” precursors,
missing precursors defined by a combination of several
variables. The goal of this work is to develop a scalable
data mining algorithm to assist the precursor discovery
process.

The problem of precursor mining from time series
data is not common in the literature and a direct
algorithm does not exist. However one can find frequent
patterns (or rules) in the adverse time series data
[7, 8, 9] that can be identified as precursors or find
events that have a causal relationship [10, 11, 12] to
the adverse event. For high-dimensional data and
continuous variables, such methods are often limited
because of the exponential growth in the number of
rules [13, 14]. Further, adversities may occur in different
patterns that make frequency based mining ineffective
as the precursor rule may not have sufficient support to
be detected. Another approach to extract precursors
in time series [5] is by discretizing the time series
and ranking the events based on Granger causality
criterion. The method once again may be limited to low
dimensions or to time series with binary events or spikes.
Motifs (time series features) [3] that discriminate the
adverse and nominal time series data may be considered
as precursors but suffer the same drawbacks as that of
frequency based mining.

A notable limitation with the above methods is the
following. A precursor may appear in the nominal data
as well and usually followed by some corrective actions.
The frequency based rule mining methods consider these
events as false positives (belonging to the nominal data)
and discard such events. The reason is that an event is
evaluated based on its “hard” label that says whether
the event belongs to the nominal or adverse data.
Our contribution is the development of the algorithm
ADOPT - Automatic Discovery Of Precursors in
Time series, that takes a model-based approach and



uses “soft” information to identify precursors. Instead
of searching for precursor events from a set (that
grows exponentially with dimension and length of time
series), ADOPT converts the problem into a search for
suboptimal actions in the adverse time series. By doing
so, we naturally find actions that increase the risk of the
adverse event. We assume a Markov Decision Process
(MDP) where value functions naturally capture long
temporal consequences of decision making. This is a
key feature of ADOPT, as a precursor may be an event
that happened not just one step prior but several steps
prior to the adverse event. In contrast to the rule
mining methods, our approach can detect an event as
a precursor although it may occur in the nominal data.
This is because an event is evaluated using “soft” labels;
i.e., based on rewards and values, instead of using the
“hard” label that indicates if the event is present in the
nominal data or the adverse data. Further, by modeling
the value function in a parametric form, we hope to
achieve better scalability to operate with continuous
and high-dimensional data. The parametric model may
also offer better generalization performance.

The remainder of the paper is organized as fol-
lows. Section 2 formally introduces the precursor dis-
covery problem and describes the steps involved in the
ADOPT algorithm. Section 3 discusses the application
of ADOPT to find precursors to an aviation safety in-
cident using real aviation data followed by concluding
remarks in Section 4.

2 Methodology

Let the adverse event in consideration be denoted by
EA. Consider a database D = {Xi, Yi}Di=1 where Xi

represents a time series record and Yi represents a label
taking binary values corresponding to Xi being nominal
or adverse. Xi is nominal (and Yi = 0) if EA does
not occur in its episode. Let the databases containing
nominal records and adverse records be denoted by N
and N respectively. Then the number of nominal and
adverse records in D can be denoted by |N | and |N |
(D = |N |+ |N |) respectively. A time series record X is
a collection of time-indexed observations of d variables
and of episode length1 L, i.e.,

X =


x1(1) x1(2) . x1(L)
x2(1) x2(2) . x2(L)
. . . .

xd(1) xd(2) . xd(L)



1In the adverse time series, the adverse event occurs at the

(L + 1)th time step and we consider data corresponding to the
past L time steps.

For instance, X may be a flight where d sensory
variables2 such as velocity, altitude, etc. are measured
at regular sampling intervals. The nominal records are
episodes that do not have an adverse event, whereas
adverse records are episodes that have the adverse event.

We make the following assumptions in ADOPT -
(1) The labels Yi are available, (2) the data is available
in a time series format with uniform sampling, (3)
there is a hidden expert who makes decisions at every
instant of the nominal time series and (4) the expert’s
behavior is optimal in the context of avoiding the
adverse event. The third assumption is true without the
loss of generality to problems where there is no explicit
decision making in the data, e.g. earthquake monitoring
data. In such cases, the expert may be modeled as
the stochastic process that generates the nominal time
series data. The adverse time series on the other hand is
generated by a different process favouring the adversity.
We define a precursor in terms of expert decision making
as follows.

Definition 2.1. Precursor: A precursor PEA
= (pk, k)

to an adverse event EA is an inferior decision at time
k (prior to EA) that is associated with an increased
likelihood of the adverse event.

It should be noted that the precursor is an event in the
time series whose label is unknown.

2.1 ADOPT Overview The ADOPT algorithm
(see Figure 1 for ADOPT framework) approaches the
precursor discovery problem from a decision making
perspective. The time series data is considered to be
sampled from an MDP where a hidden agent makes a
decision at every instant in time and the quality of deci-
sions correlate with the outcome of the time series; i.e.,
the nominal time series contains evidence on how an
expert agent would make decisions so that an adverse
event is avoided. The adverse time series on the other
hand, contains evidence on how a non-expert makes sub-
optimal decisions that increase the likelihood of the ad-
verse event. This requires a definition of optimality in
decision making. We infer this using time series data as
follows.

First we determine the underlying reward function
of the expert using an inverse reinforcement learning
(IRL) algorithm in Section 2.2.1 where nominal and ad-
verse time series data are used as trajectory demonstra-
tions of the expert and non-expert respectively. Using
the reward function and considering nominal time se-
ries as Monte Carlo samples of the expert policy, we

2Sensory variables are also referred to as time series variables
and state variables in this paper.
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Figure 1: ADOPT framework showing the steps involved in the precursor discovery process.

model the expert’s value function using reinforcement
learning (RL) in Section 2.2.2. The reward function
represents an instantaneous consequence of a decision
while the value function indicates a consequence that is
long-term. The reward model and value model of the
expert is used in the precursor discovery step, where
for a given time series (test data), we determine a pre-
cursor strength for every instant of the time series by
comparing the decision made at that instant to that of
an optimal agent. Every time instant of the adverse
time series correspond to a decision made by a subop-
timal agent. For each of these instants, there exist an
optimal action that may reduce the likelihood of the
adverse event, which can be identified using Bellman’s
optimality. The value function is used to compare the
suboptimality of a non-expert’s action against that of
an expert and a precursor strength is obtained. Finally,
by fixing a suitable threshold for the precursor strength,
precursors are identified in Section 2.3 in an unsuper-
vised manner.

2.2 Modeling Expert’s Behavior

2.2.1 Estimating Expert’s Reward function us-
ing Inverse Reinforcement Learning (IRL) The
goal of inverse reinforcement learning (IRL) is to de-
termine the underlying reward function using observed
behavior of the agent making decisions in a Markov De-
cision Process (MDP).

Following a setup similar to [15], an MDP is a
tuple (S, A, Ps,a, γ, R) where S is a continuous
state space with d state variables. Every state s ∈ S

can be represented by a vector in Rd as [s1, s2, .., sd]T .
Similarly, A is a continuous action space with l action
variables. {Ps,a} (or Pss′ if actions are undefined) are
the state transition probabilities corresponding to an
action a at state s. γ ∈ [0, 1) represents the discount
factor and R : S → R is the underlying reward function.
A policy π can be defined as any map π : S 7→ A
specifying an action a at every state s. The value
function of a policy π evaluated at a state s1 can be
given by

(2.1) V π(s0) = Eπ[R(s0) + γR(s1) + ...+ γLR(sL)|π]

where the expectation is over the distribution of state
sequences (s0, s1, s2, ..., sL); si ∈ Rd generated by fol-
lowing the policy π starting from s0 [15, 16]. Assuming
availability of sampled trajectories (time series collec-
tions in N and N ), the IRL problem can be posed as
in [15]. The sampled trajectories can be considered as
demonstrations of both the expert and non-expert act-
ing in the MDP. For infinite dimension problems (i.e.,
with continuous state variables as in our case), the un-
known reward function can be parameterized [15] as

(2.2) R(s;α) = α1φ1(s) + α2φ2(s) + ..+ αmφm(s),

where α = [α1 α2 ... αm]T is the unknown param-
eter vector, φi(s); i = 1, 2, ..,m represent the basis func-
tions of the reward model. The expert’s value function
determined using the parametric reward, following pol-



icy πE at state s0 can be given by

V πE (s0;α) = E[R(s0) + γR(s1) + ...+ γLR(sL)|πE ]

= E[

m∑
i=1

αiφi(s0) + ...

+γL
m∑
i=1

αiφi(sL)|πE ]

= E[

m∑
i=1

{αi
L∑
j=0

γjφi(sj)}|πE ]

=

m∑
i=1

αiE[

L∑
j=0

γjφi(sj)|πE ]

=

m∑
i=1

αiλi(2.3)

where λi = E[
∑L
j=0 γ

jφi(sj)|πE ] represent the feature
expectations; i.e., the value function if the reward func-
tion is composed of φi(s) only. Similarly, by knowing
the sequence of states (trajectories) for non-expert/non-
optimal policies, the V πadv (s0;α) can be calculated in
terms of α. Our objective is to determine the coeffi-
cients αi so that Es0 [V πE (s0;α)] ≥ Es0 [V πadv (s0;α)];
i.e., to have the expert’s state values to be higher than
that of a non-expert. By doing so, the estimated model
assigns a higher value for the actions taken in the nom-
inal time series and lowers the value for suboptimal ac-
tions taken in the adverse time series. A linear program-
ming problem [15] can be solved for α as follows

(2.4) min
α
{Es0 [V πadv (s0;α)]− Es0 [V πE (s0;α)]}

(2.5) s.t. |αi| ≤ 1, i = 1, 1, ..,m

The estimated reward model is given as follows

(2.6) R̂(s) = fR(s;α∗) =

m∑
i=1

α∗
i φi(s),

where α∗ is the optimal solution of the above linear
programming problem. By having a parameterized
model for the expert’s reward function, we expect
the model to generalize well and scale better to high
dimensional problems. Using the flight labels Y that
correspond to a flight being nominal or adverse, cross
validation can be performed by having a hold-out set
and the model hyper-parameters can be optimized.
Using a generalizing reward model, the expert’s value
function can be estimated as follows.

2.2.2 Estimating Expert’s Value Function us-
ing Reinforcement Learning (RL) In ADOPT, a
model of the expert’s value function3 is estimated us-
ing the estimated reward model and the nominal time
series data. We consider the collection of nominal time
series as Monte Carlo samples from the expert’s policy
(πE) and determine the value function using the Monte
Carlo (MC) method [16]. This fits well in our setup
as the MC method requires only the policy demonstra-
tions (time series data in our case) without any prior
knowledge of the environment’s dynamics [16] such as a
full transition probability matrix. A parametric model
of the value function can be developed as follows. For
every sample of the expert’s policy πE , i.e., for every
episode in N , the first visit Monte Carlo return Ret(s)
for each state s is determined using the estimated re-
ward model R̂(s). For every labeled pair (si, Ret(si)),
a regression model V̂ πE (s; θ) parameterized by θ can be
built by solving the following optimization problem

(2.7) min
θ

1

Ns

Ns∑
i=1

‖Ret(si)− V̂ πE (si; θ)‖2 +
µ

2
‖θ‖2,

(2.8) V̂ πE (s) = fV (s; θ∗)

where Ns and µ represent the number of labeled
data samples and regularization coefficient respectively.
Standard parametric models such as linear regression,
artificial neural networks, etc. can be used to approxi-
mate the value function. The suitability of function ap-
proximation models and its convergence properties are
well analyzed in literature [16, 17]. In addition to mak-
ing value estimation feasible for continuous and high-
dimensional state spaces, function approximation also
improves the generalization of the value function model
to unseen state spaces.

2.2.3 Precursors as Suboptimal Decision
Events As mentioned earlier, the adverse time series
is considered a demonstration by a non-expert whereas
the nominal time series is considered a demonstration
by an expert who makes optimal decisions to avoid
the adverse event. For precursor discovery, we look for
prior events in the adverse time series where there is
a deviation from the nominal behavior. The analysis

3Since the paper considers time series in a general sense where

action variables are not always easy to identify, the term ‘value
function’ refers to the state value function in this paper. For the
case where action variables are well defined, the algorithm can

be modified where state value function can be replaced by state-
action value function [16].



begins by asking the following question
(2.9)
“For every instant sk of the adverse time series
X̄, what is the expert’s optimal action and how
suboptimal is the action taken by the non-expert in
X̄?”

The first part of the question involves finding the opti-
mal action made by the expert, which can be determined
using the expert’s value function and Bellman’s optimal-
ity principle [16], while the second part of the question
involves finding a means to compare actions. With ac-
cess to the optimal value function (V πE (s)), starting
from state sk, one can search for all possible actions
(or state transitions) from sk and identify the one that
corresponds to the maximum V πE (sk+1) [16]. By doing
the above search, the best action to avoid the adverse
event can be identified for every instant of the adverse
time series. This answers the first part of the question
in (2.9).

In the second part of the question, we are interested
in evaluating the actions executed by the non-expert in
the adverse time series. For this, the difference between
the values corresponding to the optimal action and the
suboptimal action is used. When the difference is large,
the action taken by the non-expert favors the adverse
event more. Thus, at every instant of the adverse series,
(1) the value corresponding to the executed suboptimal
action can be determined, (2) an optimal action and the
corresponding value function using Bellman’s optimality
can be determined, and (3) the drop in value can
be determined. The drop in value is considered for
subsequent calculation of the the precursor strength.
Some implementation details of ADOPT are discussed
in the following section.

2.3 Discovering Precursors using ADOPT In
this subsection, specifics on evaluating a test time
series for precursors are discussed. In order to handle
the situation where an action set A is unknown (not
observed in data) or undefined (no clear decision maker
such as in earthquake monitoring data, where only the
magnitude of the quake is monitored without any notion
of actions), ADOPT defines an abstracted action as
follows4.

Definition 2.2. Abstracted Actions: An abstracted
action at time k is defined as an action aabstk that
transitions a state of an MDP from sk to sk+1 following
the same transition probability of the original MDP.

4A simple abstraction could be a ∈
{increase, maintain, decrease} for a given state variable. In

cases where actions are well defined and observed, our method
proceeds with the known actions of the system.

Let the set of possible abstracted actions at state sk be
denoted by a restricted action space AskR .

Definition 2.3. Reachable States: Reachable states
from a state sk include states obtained by taking all
possible abstracted actions aabstk ∈ Ask at state sk. The
set of reachable states from sk can be denoted by SskR .

With knowledge of the state transition probabilities in
time series data, Pss′ , it is relatively easier to define
SskR than AskR . The concepts of abstracted actions
and reachable states help in converting the behavior of
time series data into actionable sequences where each
action can be considered as a candidate precursor. A
loss in utility and precursor index can be defined to
quantitatively evaluate the candidates.

Definition 2.4. Loss in Expected Utility: The Loss
in Expected Utility (LiEU) at an instant k in a time
series episode can be defined as the loss in utility by
taking an action ak as against an optimal action a∗k, i.e.,
LiEUk = E{U(sk, a

∗
k)}−E{U(sk, ak)}, where U(sk, ak)

represents the utility of taking action ak at state sk and
E{.} is an expectation operator.

In terms of value function, LiEU can be expressed as

LiEUk = E{U(sk, a
∗
k)} − E{U(sk, ak)}

= R(sk) + V πE (s∗k+1)−R(sk)− V πE (sk+1)

= V πE (s∗k+1)− V πE (sk+1),(2.10)

where s∗k+1 represents the state obtained by taking an
optimal action a∗k. The LiEU can be thought of as a
score to measure the level of sub-optimality of an action
ak with respect to an optimal action a∗k at a given state
sk.

Definition 2.5. Precursor Index: A precursor index
(PI) at an instant k in a time series episode can be
defined as the weighted average of the LiEU score and
the relative instantaneous utility (the state reward) Rk.

The precursor index is given by

(2.11) PIk = w1LiEUk + w2(1−Rk),

where w1 + w2 = 1, w1 and w2 are the weights trading
off the “long-term” expected utility (state value) and
the “immediate” utility (state reward). The precursors
to an adverse event could have an influence on the
adverse-event both over “long-term” as well as “short-
term” in the trajectory. The importance of “long-term”
versus “short-term” could be adjusted using the weight
parameters. It should be noted that both LiEU and
R are normalized to lie between 0 and 1 for a given
test flight. The ADOPT algorithm can be summarized
below.



2.3.1 ADOPT Algorithm The pseudocode of
ADOPT is shown in Algorithm 1. The algorithm be-
gins by taking time series data corresponding to nomi-
nal and adverse events. The expert’s reward model R̂(s)
is estimated using IRL while the expert’s value model
V̂ πE (s) is estimated using RL. These models are given
as inputs along with a test trajectory XT ∈ N to the
precursor analysis function in Step 3. For each state
transition sk to sk+1 in the test trajectory5 XT , the
utility V Tk of the suboptimal action (or state transition)

at k is determined using the expert’s value model V̂ πE

evaluated at (sk+1). The reason for evaluating at sk+1

is to determine the utility of the transition from sk to
sk+1. Using the data history (or Pss′ if known), the
set of reachable states SskR is determined. This repre-
sents the set of all possible states the agent can achieve
including the optimal state s∗k+1 as well as the trajec-
tory’s next state sk+1. The values corresponding to all
such transitions V SR

k using the expert’s value model is
determined. Using Bellman’s optimality, the state tran-
sition (or action) corresponding to the maximum value
V ∗
k is identified. The loss in utility LiEUk of the state

transition sk to sk+1 can be compared to an optimal
transition sk to s∗k+1 and is calculated as the difference
between the values of the two transitions. The LiEUk
is weighted averaged with the instantaneous reward RTk
and a precursor index PIk is calculated for every state
transition. A threshold6 δP that sets the strength of
identified precursors is defined, using which the set of
precursors PEA

for the episode XT is obtained.
The main computational component of ADOPT

algorithm is the calculation of the value trajectories
corresponding to the nominal and adverse time series (as
in equation (2.3)) and the feature expectations λi; i =
1, 2, ..,m. Roughly, the runtime scales in the order of
the number of basis functions m and the length of time
series L, but independent of the dimension of the time
series. Although the number of basis functions typically
increase with dimension, if the intrinsic dimension of the
data is low, then ADOPT can efficiently handle it. As
the value trajectory for each time series record can be
determined independently, it is straightforward to use
distributed processing when dealing with a large number
of time series records. Another means to scale the
algorithm to large data sets is to update the parametric
models sequentially by processing time series records
one by one or in chunks.

5T as a subscript or superscript indicates the test trajectory.
6If the threshold is set to be low, then we expect the algorithm

to find many weak precursors and possibly with a high false

positive rate. On the other hand, if δP is set to be very high,
we expect that some precursors may be missed.

Algorithm 1: ADOPT Pseudocode

Data: Time series data from nominal database
N and adverse database N .

Result: Precursors PEA
corresponding to

Xa ∈ N .
Step 1. Estimation of Expert’s Reward
function
Input : Time series data from nominal

database N and adverse database N .
for j ← 1 to |N | do

V nomj (s0;α)←
∑d
i=1 αiλ

j
i ;

end

for j ← 1 to |N | do
V advj (s0;α)←

∑d
i=1 αiλ

j
i ;

end
V πE (α)← mean(V nomj (s0;α)), j = 1, 2, ..., |N |;
V πadv (α)← mean(V advj (s0;α)), j = 1, 2, ..., |N |;
α∗ ← arg min

α
{V πadv (α)− V πE (α)} subject to

|αi| ≤ 1, i = 1, 1, ..,m ;
Output: Expert’s Reward model

R̂(s) = fR(α∗).
Step 2. Estimation of Expert’s Value
function
Input : Expert’s demonstration Xi,

i = 1, 2, ..., |N |, Expert’s Reward
model R̂(s).

for i← 1 to |N | do
for k ← 1 to Li do

Ret(sk)← E{
∑Li

p=k γ
p−1R̂(sp)};

end

end
θ∗ ←
arg min

θ

1
Ns

∑Ns

i=1 ‖Ret(si)− V̂ πE (si; θ)‖2 + µ
2 ‖θ‖

2;

Output: Expert’s value model V̂ πE (s) = fV (θ∗).
Step 3. Discovery of Precursors
Input : Expert’s reward model R̂(s), Expert’s

value model V̂ πE (s), test trajectory
XT ∈ N .

for k ← 1 to LT do

V Tk ← V̂ πE (sk+1);
Determine SskR using state transition matrix
Pss′ ;

V SR

k (si)← V̂ πE (si),∀si ∈ SskR ;
Perform Bellman’s optimality principle
(greedy search), V ∗

k = maxsi{V S
sk
R };

LiEUk ← V ∗
k − V Tk ;

RTk ← R̂(sk);

PIk ← w1LiEUk + w2(1−RTk );

end
PEA

← {PIk|PIk > δP };
Output: PIk and PEA

.



3 Aviation Safety Application

In this section we discuss application of ADOPT al-
gorithm to discover precursors to go-arounds7 using
aviation data. Each data record is in the form of a
time series consisting of aircraft trajectory data (lati-
tude, longitude, altitude, ground speed), landing air-
port data (runway configuration, counts and rates of
departure and arrival, total air and taxi delays, me-
teorological data). Additionally, features derived from
radar track and weather data such as the headwind
components, altitude in feet above ground level (AGL),
horizontal/vertical distance between aircraft, and the
corresponding closing rates to the nearest aircraft were
included. The number of variables in each time series
record is 41 with an average length in the order of about
250 time steps. With about 1000 flight records, our data
matrix is sized 41x250000.

About 500 go-around flights and 500 nominal (no
go-around) flights were selected from the database of
flights landed at Dallas Ft. Worth International Air-
port. From this, about 400 flights from each set were
used for training ADOPT’s reward function using IRL
(in Section 2.2.1). The remaining 100 flights in each
set were used for tuning the model hyper-parameters
based on cross-validation. We used gaussian functions
as the basis functions for the reward model which re-
quire tuning of hyper-parameters such as the number
of basis functions (m) and the spread of the gaussian
functions8. The hyper-parameters were tuned based on
cross validation and evaluated using the hold-out set. In
our experiments we normalized the data to lie between
0 and 1. We used a grid search and identified that a
total of 5000 gaussian functions with a spread of 0.05
worked best. For the value estimation step (in Section
2.2.2), we used a linear regression model to estimate the
expert’s value function. Using the estimated models, we
proceed to the precursor discovery step (in Section 2.3)
and the procedure outlined in Section 2.3.1 is followed.
We parallelized the algorithm and used several cluster
nodes to speed up the cross-validation and training in
both the IRL step and value estimation step.

Our cross-validation in the IRL step ensures that
we have a model that generalizes well. As the precursor
discovery is unsupervised (a priori labels for precursors
unknown), we validate our base model (model of the
expert) using labels of the adverse events (Yi). We note
that the training and generalization (on unseen data)
errors are -55.42 and -10.32 respectively. The errors
correspond to equation (2.4) and a lower value indicates

7A go-around is defined as a flight path executed by an aircraft
after an aborted landing attempt to avoid losing safety.

8All gaussian functions have the same spread.

Figure 2: Energy Mis-Management Scenario case:
Flight variables of interest along with ADOPT’s pre-
cursor index (PI) are plotted against time before the
go-around event. Negative values for closing rates cor-
respond with converging aircrafts. The shaded regions
corresponds to a nominal data distribution (10 to 90
percentile). The ‘O’ indicates when the aircraft crossed
over the outer marker which is approximately 5 mi be-
fore the runway threshold. The ‘X’ represents when the
aircraft was closest to 1,000 ft above ground at which
flights are required to be stable on final approach.

a better model. More importantly, the errors being
negative means that the model assigns a higher value to
the expert demonstration compared to the non-expert
which is desirable. With this model, we proceed to the
unsupervised precursor discovery step. From a separate
set of unseen flight data, we selected two go-around
flights9 and two nominal flights for analysis by ADOPT.
A former commercial airline captain was utilized as a
subject matter expert (SME) and asked to analyze these
flights. The analysis is compared qualitatively with the
precursors identified by ADOPT.

3.1 Analysis of Go-Around Flights

3.1.1 Energy Mis-Management Scenario The
flight in this example (see Figure 2) executed a go-
around because of high speed prior to landing. It can be
seen that between 160 and 130 seconds and around 50
seconds prior to the go-around, the PI value is increasing
significantly and at the same time there is a significantly
high ground speed above the shaded band (nominal data
distribution) indicating a possible precursor to the go-
around. The SME confirmed that the flight’s high speed
around the two markers (outer marker and 1000 ft al-

9It takes a couple of hours for a human expert to fully review
a given flight for precursors



Figure 3: Potential Overtake Scenario case 1: Flight
variables of interest along with ADOPT’s PI values are
plotted against time before the go-around. Please follow
caption from Figure 2 for easy interpretation.

titude marker) could be a main reason behind the go-
around. ADOPT was able to identify these points and
even time instants prior to these as precursors.

3.1.2 Potential Overtake Scenario The flight in
this example (see Figure 3) executed a go-around be-
cause of the presence of another flight in the front caus-
ing a potential overtake scenario (possible conflict in
landing sequence). It can be seen that between 270 and
210 seconds prior to go-around, and around the outer
marker, there is an increasingly high PI value. This cor-
responds to the region where the horizontal distance to
the nearest aircraft is lower than nominal and the verti-
cal closing rate to the nearest aircraft is negative while
also dipping below the nominal values indicating that
there may be an unsafe overtake situation. To avoid
this, the flight performed a go-around. The SME con-
firmed the precursors and the time instances.

It should be noted that the SME analysis was done
completely independent of ADOPT’s results.

3.2 Analysis of Nominal Flights Looking for pre-
cursors in a nominal flight (flight without a go-around)
is meaningless as we know that the adverse event did
not occur (from available label Yi = 0). However, the
nominal flight may have a precursor whose risk is mit-
igated quickly prior to flight landing. Such examples
give insights into the expert’s corrective actions. For
instance, ADOPT is used to analyze a flight that had a
high speed and/or altitude from about 800 to 300 sec-
onds prior to landing (see Figure 4). However, the speed
and altitude are reduced satisfactorily prior to the 1000
ft altitude marker (by when the aircraft must achieve

Figure 4: Nominal Flight 1 with a precursor but risk
mitigated which avoided a go-around. Please follow
caption from Figure 2 for easy interpretation.

Figure 5: Nominal Flight 2 with no precursor. Please
follow caption from Figure 2 for easy interpretation.

nominal speed and altitude to prevent a go-around) and
thus the flight lands without a go-around. The PI score
of ADOPT explains this scenario well. Around the same
time when the speed and/or altitude is high, the pre-
cursor score is also high indicating precursors but subse-
quently the PI score reduced indicating a corrective ac-
tion by the pilot. In another example of a nominal flight
(see Figure 5), the aircraft speed and altitude always lies
within the nominal region and correspondingly, the PI
score is always lower than the threshold indicating an
absence of precursor alarms.

Although ADOPT’s results are promising, the
above evaluations do not give a complete picture on the
performance of ADOPT. Both false alarms and missed
detections are to be expected from ADOPT as precur-
sors are detected based on the precursor index crossing
a threshold. Similar to unsupervised learning methods
such as clustering or anomaly detection, the thresh-
old can only be set to discover precursors for a given
strength. Setting the threshold too low may have sev-
eral false positives while setting it too high may have
a high missed detection. Unless one has ground truth
labels for precursor events, finding an optimal threshold



is not possible. The aviation data analyzed here has no
ground truth and constructing the ground truth labels
for precursors is not a trivial task. Thus we report qual-
itative results. The quality of the underlying decision
model (reward model) has been evaluated quantitatively
using a hold out set and the error rates are as reported
in the beginning of Section 3. It should be noted that
no benchmark precursor data (data that has labels for
precursors to an adverse event) exist in the literature
and so a quantitative evaluation or a baseline compar-
ison cannot be made at this time. We are working on
creating a benchmark data set for precursor discovery
and further evaluations will be done in the future.

4 Conclusions

In summary, we developed ADOPT, a scalable algo-
rithm to discover precursors in multivariate time series
data. ADOPT takes a model-based approach and cap-
tures the underlying behavior of the time series using
value functions. We demonstrated ADOPT’s working
using real aviation data where ADOPT’s results are
promising. Our future work includes constructing an ar-
tificial benchmark data set that has ground truth labels
for precursors and performing a quantitative evaluation
of ADOPT.
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