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Abstract

In this paper, we consider the problem of discovering can-
didate precursors to anomalies in a set of time sequenced
data. Typical scenarios involving time sequential data in-
clude dynamical systems and general monitoring systems.
In such scenarios, a precursor could be any event that fre-
quently precedes a given event of interest. Anomalies are
rare but significant events in time series data and identify-
ing precursors to anomalies is vital in proactive management.
In this work, an inverse reinforcement learning (IRL) based
method is formulated to succinctly represent the nominal
behavior and identify sequences that preceded the anoma-
lous events. A preliminary evaluation is performed on flight
recorded data identifying challenges and future directions for
application.

1 Introduction

In many applications including finance, study of natu-
ral calamities and extreme weather, network security [1]
etc., finding precursors to an event of interest (a phe-
nomenon) is a task of high importance. The knowledge
about precursors to these phenomena can be vital to
proactive management of risk. If precursor events could
be identied, appropriate alarming mechanisms can be
designed to either prevent or at least minimize the dele-
terious consequences of the phenomenon. Anomalous
events are rare but significant events which in many
cases, lead to an abnormal behavior or a risky situa-
tion. In such cases, it is important to analyze and iden-
tify precursors that lead to anomalies for proactive risk
management. This paper considers anomalies in time
sequenced data and attempts to discover candidate pre-
cursors to the anomalous events.

2 Discovering Precursors to Anomalies

In this section, an algorithm using inverse reinforcement
learning is proposed to identify candidate precursors to
anomalies in time series data. The section proceeds by
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introducing some background in inverse reinforcement
learning, using its solution to perform value function es-
timation and using the optimal value function, discover
precursors.

2.1 Inverse Reinforcement Learning The goal of
inverse reinforcement learning (IRL) is to determine
the underlying reward function using observed behavior
of the agent making decisions in a Markov Decision
Process (MDP). A finite MDP is a tuple (S, A, Psq,
~v and R(s)) where S is a state space with n states, A
is an action space with k actions, {P; .} are the state
transition probabilities corresponding to an action a at
state s, v € [0, 1) is the discount factor, R(s) € R is the
underlying reward function. A policy 7 can be defined
as any map 7 : S — A and the corresponding value
function at any state s; can be given by

(2.1) V™(s1) = E[R(s1) + YR(s2) + ¥*R(s3) + ...|]

where the expectation is over the distribution of state
sequences (s, Sa, S3, ...) following the policy 7 starting
from s;.

Given the setting above, the goal of standard re-
inforcement learning is to determine a policy 7* that
maximizes V7 (s) among all policies for all s € S. When
the agent’s reward function is known, this task can be
achieved using existing techniques for value function es-
timation [2]. However, in several situations, the agent’s
behavior is not completely known, i.e., the reward func-
tion cannot be defined easily. In such situations, the
expert’s observed behavior can be used to either recon-
struct the underlying reward function as in the case of
inverse reinforcement learning [3] or construct optimal
policies directly as in the case of apprenticeship learning
[4].

Assuming availability of sampled trajectories (rele-
vant to the problem involving time series in this paper),
the IRL problem can be posed as in [3]. The sampled
trajectories can be considered as demonstrations of both
the expert and non-expert acting in the MDP. Using the
trajectories, the value functions of the expert and non-
expert policies can be determined as follows. Let the
unknown reward function be parameterized as

(2.2) R(s) = a101(8) + aapa(s) + .. + agda(s)



where the ¢; represent the features of the reward
function. The expert value function following policy
TE at state s; can be given by

(2.3) V7E(s1) = E[R(s1) + vR(s2) + ...|n]

= Ela1¢1(s1) + aaga(s1) + .. + aaga(s1)
+ya1di(s2) + yaoda(s2) + .. + yaada(s2) + ..|7Eg]

= Elai(¢1(s1) +7¢1(s2) +..) +az(p2(s1) +7v¢2(s2) +..)
+ o+ aa(@als1) +70als2) + - )[mE]

= a1 E[(é1(s1) +v¢1(s2) +..)|[7E]+
+ a2 E[(¢2(s1) + v¢2(s2) + -.)|7E]
+ ...+ agE[(da(s1) + va(s2) + ..)|7E]

= 1A + a2 + ..+ aghd

where A; represent the feature expectations, i.e., the
value function if the reward function is composed of
¢i(s) only. After calculating the feature expecta-
tions knowing the state sequences, the value function
can be defined as a function of the unknown a =
[a1, g, .., ag]T as follows.

d
(2.4) Ve (O’.) = Z Oéi)\i

Similarly, by knowing the sequence of states (trajecto-
ries) for J sub-expert/non-optimal policies, the V7 (ax)
can be calculated. The objective of IRL is to deter-
mine the coefficients «; so that V™2(a) > V7 () for
j = 1,2,..J. A linear programming problem can be
solved for «; as follows

J
(2.5) mainzcj
j=1
Vi (a) —Vyre ((X) — Cj <0
(2.6)  subject toq ¢; >0,5=1,2,..,J

|ai| < 1,1 = 1717"7d

2.2 Value Function Estimation The IRL problem
gives an optimal a which gives a model of the underly-
ing expert’s reward function. The reward function can
then be used to determine the expert’s value function
using a regular reinforcement learning algorithm. Any
of the methods described in [2] such as dynamic pro-
gramming, monte carlo or temporal difference depend-
ing on availability of the system model, ability to sample

etc. In this paper, considering sample time series from
a policy as monte carlo samples, the value function is
approximated as follows. For each policy m; including
the expert policy 7w, a sample trajectory is used to
identify the state sequences and using the reward func-
tion obtained above, the values of every state in S is
updated. This is repeated for several trajectories from
the selected policy and the average returns are stored
as state values.

2.3 Precursor identification The value function of
the expert policy mg obtained above can be used to
compare a non-expert behavior to identify a possible
precursor sequence. V™2 can be thought of as the
expert’s value function and any action that is greedy
with respect to the expert’s value function gives the
optimal policy 7. [2]. Let the greedy action at s be
a*(s) and the corresponding value be V7 (s). In our
problem involving time series, the time sequence and
the physics of the problem can be used to restrict the
state space for searching optimal actions in some cases.
A given test time series can be analyzed as follows.
Using the state sequences of the test data and the
obtained reward function, the state values V™test can
be estimated. By comparing the V™t with V7= we
can indirectly evaluate the actions taken by the agent
in the test trajectory. Let

(2.7) AV = VTest(g) — V7= (s)

and if AV <0, then it would mean that a sub-optimal
action has been taken by the agent executing the test
policy and by comparing over the state sequence, we
can identify a sequence of bad actions by the agent.
As defined earlier, an optimal action is one that cor-
responds to a nominal time series while a non-optimal
action would correspond to an anomalous sequence as
defined in the IRL problem. It should however be noted
that the test policy is evaluated just based on one time
series and hence not an expectation. However, the goal
is to identify the level of sub-optimality in the state se-
quences specifically executed by the test trajectory to
identify the precursor and not for the policy in general.
This assumption needs to be analyzed more in detail
and will be considered in the future. Further, if the
action space is well defined, instead of comparing the
value functions as above, the actions of the test agent
can be directly compared against the optimal actions of
the expert and precursors can be identified by noting
their difference.

3 Application to Flight Anomalies

In this section, the IRL based precursor discovery al-
gorithm is evaluated on flight time series data sets ob-



tained from a FOQA (Flight Operations Quality As-
surance) archive. Typical FOQA parameters consist
of both continuous and discrete (categorical) data from
the avionics, propulsion system, control surfaces, land-
ing gear, the cockpit switch positions, and other critical
systems. Each flight record can have up to 500 param-
eters in the form of time sequences and are sampled at
1 Hz.

Flight anomalies are of significant interest within
the NASA System-wide Safety and Assurance Technolo-
gies (SSAT) project to assess the health of large com-
mercial fleets of aircraft. In this paper, flights that
violated exceedance thresholds on computed air-speed
are considered as operational anomalies. A specific ex-
ceedance defined as computed air-speed above a cer-
tain threshold (in knots) at an altitude of 1000 feet is
considered an operationally significant high-energy ap-
proach. The goal of this study is to discover precursors
to such high-energy approach flights [5] for use in proac-
tive flight management. The data set consists of about
20000 nominal flights (flights that did not violate the
exceedance and considered optimal with respect to the
exceedance) and about 250 anomalous flights.

3.1 Discovery of candidate precursor sequences
The FOQA raw data consists of more than 400 parame-
ters recorded as time sequences during the flight. How-
ever, to overcome the curse of dimensionality in solving
the Markov decision process in the IRL, the FOQA data
is abstracted to represent the various events happening
in a flight using a high level parameter such as the air-
craft energy. With the given definition of an anomaly,
the flight data is considered as a sample from an expert
policy (7g) if it doesn’t flag the exceedance or a sample
from a non-expert policy (r;) if it flags the exceedance.
A reward function R(s) can be defined as a linear com-
bination of several Gaussian functions defined with re-
spect to the states s. It has to be noted that the state
definition is given by s = [E D]T where E represents
the kinetic energy of the aircraft while D represents the
distance in nautical miles to touchdown. The reward
function R(s) can be represented as in equation (2.2)
where ¢; could represent Gaussian functions with mean
1; and spread o; and d represents the total number of
Gaussian functions in the state space. Using the re-
ward function with unknown coefficients «; the value
function of each trajectory is calculated and the IRL
problem is solved as in section 2.1. The optimal value
of a gives a model of the underlying reward function
that when used to solve the associated MDP, results in
maximum possibility of avoiding the given exceedance.
The model hyper-parameters including d, u;, o; are de-
termined based on cross-validating the learned model

on a hold-out data set. Following section 2.1, the AV
for a given test flight is calculated. A negative value for
AV indicates that the given test flight performs inferior
to the optimal policy 7, and a negative rate of AV indi-
cates a sequential inferior behavior. These two features
are used in defining precursor candidates for the given
test flight. It should be noted that the problem in hand
uses FOQA data that only records the state of the flight
and no explicit information about the intentions/actions
of the agent (a pilot) is available and hence we were re-
stricted to comparing the value functions as mentioned
in section 2.3

Using the identified precursor sequences of a given
test flight in terms of the states s, the FOQA historical
data can be used to identify the flight parameters that
are abnormal. The identified precursor sequence points
to a section of the flight prior to the adverse event where
interesting precursor events can be discovered. By mod-
eling a nominal distribution of the FOQA parameters,
any abnormality can be detected by comparison against
the nominal. The identified abnormal parameters may
contain information about possible factors that lead to
the adverse event. This is algorithmically analyzed and
validated by a domain expert.

4 Results and Discussion

In this section, a high-energy approach flight is analyzed
for precursors from 35 nautical miles until touchdown.
Figure 1 shows the evolution of the fight in terms of
the parameters reported by the algorithm as candidate
precursors. The blue shaded region represents the nom-
inal distribution of that parameter (99 percentile of the
non-exceedance flights) The green shaded regions of the
figure represent the sequence of precursors (a precursor
window) as identified by comparing the flight’s state
values to V™.

It can be observed from Figure 1 that the computed
air-speed of the flight is high compared to the nominal
distribution of the non-exceedance flights indicating
that the test flight is indeed an example of a high-energy
approach. Further, out of the 56 chosen parameters
from the FOQA list, only 11 were listed as possible
precursor parameters as these parameters were out
of the nominal distribution in the precursor window.
The algorithm also reported ground speed which is
correlated with the computed air-speed, vertical speed,
stabilizer position, engine speed, flight director specified
speed etc. However, a close look at the discrete
parameters reported by the algorithm gives a clear
picture of the actions responsible for the anomalies,
i.e., the landing gear has been deployed a little earlier
compared to nominal flights and the flaps were deployed
very late causing the aircraft to slow down late leading
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Figure 1: Figure showing the test flight trajectory (black curve) along with the precursor window (green region)
as identified by the IRL algorithm. The nominal distribution of the continuous parameters such as computed
air-speed, engine RPM, stabilizer position, vertical speed and ground speed are shown in blue - light blue region
represents 0 - 99 percentile while dark blue region represents 25 - 75 percentiles. The nominal distribution of
discrete variables including landing gear, flaps, auto speed control are shown by blue curve with markers indicating

the probability of the variable having a value of 1.

to the exceedance (In the discrete plots, the marked
blue curve represents the probability that a nominal
discrete event takes a value of 1). Both these factors
were validated by domain experts as probable precursors
to the high speed exceedance. The initial high computed
air-speed followed by a lack of optimal action (which is
to deploy landing gear and flaps on time) in this case
can be concluded as a valid precursor for flights violating
the high-speed exceedance at 1000 feet altitude.

5 Conclusions

In this paper, a novel method to discover precursors to
anomalies has been formulated using inverse reinforce-
ment learning. It is argued that a value function of a
non-expert, if compared against the optimal value func-
tion of an expert, can be used to identify instances of
a “bad” or sub-optimal actions/situations in time se-
ries data. A high dimensional FOQA time series data
has been abstracted and used for preliminary evalua-
tion of the algorithm. The results indicate that the al-
gorithm indeed finds the precursors that were validated
by a domain expert. Although the analysis on a cou-
ple of flights gave us promising results, the algorithm is
at infancy and requires extensive validation for which
data sets with ground truth information about the pre-
cursors and anomalies are required. Also, for precursor
identification, an appropriate performance metric will

be identified for evaluation of this algorithm in future.
Finally, some of the underlying hypotheses/assumptions
of the algorithm will be tested in future.
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