
1 23



1 23

Your article is protected by copyright and all
rights are held exclusively by Springer-Verlag
London (outside the USA) . This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.



Innovations Syst Softw Eng
DOI 10.1007/s11334-013-0212-0

SI: SwHM

Software health management: a necessity for safety critical
systems

Ashok N. Srivastava · Johann Schumann

Received: 7 February 2012 / Accepted: 29 April 2013
© Springer-Verlag London (outside the USA) 2013

Abstract As software and software intensive systems are
becoming increasingly ubiquitous, the impact of failures can
be tremendous. In some industries such as aerospace, medical
devices, or automotive, such failures can cost lives or endan-
ger mission success. Software faults can arise due to the inter-
action between the software, the hardware, and the operating
environment. Unanticipated environmental changes lead to
software anomalies that may have significant impact on the
overall success of the mission. Latent coding errors can at
any time during system operation trigger faults despite the
fact that usually a significant effort has been expended in
verification and validation (V&V) of the software system.
Nevertheless, it is becoming increasingly more apparent that
pre-deployment V&V is not enough to guarantee that a com-
plex software system meets all safety, security, and reliabil-
ity requirements. Software Health Management (SWHM) is
a new field that is concerned with the development of tools
and technologies to enable automated detection, diagnosis,
prediction, and mitigation of adverse events due to software
anomalies, while the system is in operation. The prognos-
tic capability of the SWHM to detect and diagnose failures
before they happen will yield safer and more dependable
systems for the future. This paper addresses the motivation,
needs, and requirements of software health management as
a new discipline and motivates the need for SWHM in safety
critical applications.

A. N. Srivastava
NASA Ames Research Center, Moffett Field, CA, USA
e-mail: ashok.srivastava@nasa.gov

J. Schumann (B)
SGT, Inc., NASA Ames, Moffett Field, CA, USA
e-mail: Johann.M.Schumann@nasa.gov

Keywords Software Health Management · IVHM ·
Verification and validation · Safety-critical software

1 Introduction

Modern society relies on hardware and software intensive
systems, many of which are safety-critical systems like air-
craft, automobiles, medical equipment, and nuclear facilities.
In many of these systems, a sudden problem in the software
can lead to catastrophic failures with potential loss of life. To
ensure the safety of these complex systems they undergo sig-
nificant verification and validation procedures throughout the
design cycle for potential failure modes. These procedures
have given society unprecedented access to highly reliable
and fault tolerant systems. For example, typical modern jet
aircraft engines have very few faults even after 100,000 h of
operation. Although the engine is highly reliable, engineers
continue to monitor sensor readings and other information
from the engines and are developing prognostic techniques to
estimate the remaining useful life of the engine components
and subsystems. These prognostic systems rely on much cru-
cial information, including real-time sensor readings from
different parts of the engine, fleet-wide performance com-
parisons with other engines of similar make and model, and
advanced physics models that are representative of the evo-
lution of the engine performance as a function of time. These
steps are taken because the engine is a safety-critical element
of the aircraft and also because any degradation in engine
performance can lead to increased maintenance costs.

Although software plays a systemic role in the operation,
performance, and safety profile of an aircraft, in most imple-
mentations it is treated qualitatively differently than hard-
ware components of similar importance in an aircraft. In
the case of software, it undergoes significant and extensive

123

Author's personal copy



A. N. Srivastava, J. Schumann

verification and validation before implementation, but few
safeguards are in place to detect, diagnose, and predict the
effects of an adverse event due to software on an aircraft. This
mismatch between the two approaches is a primary motivator
for this paper.

Software is often treated differently in the sense that
automatic detection, diagnosis, prognosis and mitigation of
adverse events due to software is not a common practice.
A recent book by the National Research Council on software
dependability says that software must be treated as a sys-
tem component, and that “dependability is not an intrinsic
property of software. The committee strongly endorses the
perspective of systems engineering, which views the soft-
ware as one engineered artifact in a larger system of many
components, some engineered and some given, and views
the pursuit of dependability as a balancing of costs and ben-
efits and a prioritization of risks. A software component that
may be dependable in the context of one system might not
be dependable in the context of another” [26]. As part of this
system engineering perspective, it is critical to develop tech-
niques to monitor the health of the software in its operating
environment.

Assuming that appropriate fault detection and isolation
technologies are available, anomalies occurring in the soft-
ware such as the flight control system can be detected and
isolated to continued safe operation. In some cases, it is pos-
sible to detect faults as they are developing. The ultimate
goal of prognostics, or the ability to estimate the remaining
useful life of the software system, is generally not part of
these technologies.

For hardware platforms, Integrated Vehicle Health Man-
agement (IVHM) systems are being developed to detect
adverse events during the operation of a system, diagnose
the root-cause of the problem, and then estimate the sever-
ity of the event on the overall mission of system. In many
cases, IVHM technologies are developed to improve the
safety of the overall system. However, they can also be used to
reduce maintenance costs by enabling condition-based main-
tenance which is a maintenance paradigm where components
or subsystems undergo repairs only when those repairs are
needed (e.g., [27,40]). This is in contrast to scheduled main-
tenance, where repairs are made regardless of the health of
the component. Condition-based maintenance can be more
cost effective without sacrificing safety by reducing unnec-
essary maintenance activities. A health management system
consists typically of both hardware and software, working
together to determine the current state of health of the host
system. 1 An IVHM system monitors the health of the host
system through the use of sensors, physics-based models, and

1 In this article, we refer to the host system as the system, which is
undergoing health management. The host system may comprise hard-
ware, software, or a combination thereof.

data-driven methods to detect, diagnose, predict, and subse-
quently mitigate the adverse events due to a problem of the
system. These steps are defined as follows:

Detection The task of fault detection is to determine
whether or not the current state of the host system is operat-
ing in an off-nominal condition. This task is difficult because
if the host system undergoes complex mode changes dur-
ing its operation, the characterization of nominal and off-
nominal operation requires either a data-driven or physics-
based model that accounts for all nominal operational modes.

Diagnosis Because most system faults manifest them-
selves in multiple ways, it is critical to determine the root-
cause of the problem. Thus, the diagnosis system must be
able to distinguish between potentially hundreds of com-
peting root-causes of the detected problem. For example,
low oil pressure and vibration could point to many differ-
ent problems if looked at separately. Only when considered
in combination a worn-out engine bearing can be diagnosed.
Depending on the application, diagnosis must be done rapidly
in order to enable the estimation of remaining useful life and
subsequent mitigation of the adverse event. A critical issue in
diagnosis is differentiating between a sensor fault and a fault
in the system being sensed. In some real-world scenarios, it
has become evident that sensor redundancy is not sufficient
to enable this differentiation and that a model of the system
may be essential for disambiguation of adverse events.

Prognosis An actual fault in the system can, even if cor-
rectly detected and diagnosed, lead to a safety-hazard. For
example, a broken cog in a rotocraft engine can lead to a
fatal crash. Prognostic technology uses the available data
and models to estimate the remaining useful life of the sys-
tem. Thus, the actual occurrence of the fault can be avoided
because the part can be replaced before it reaches the end of
its useful life.

Mitigation Once a fault has been detected and diagnosed,
depending on the amount of remaining useful life, an IVHM
system could attempt to mitigate this failure to ensure unin-
terrupted and safe operation. Depending on the severity of
the fault and the estimated remaining useful life, this may
involve partially automated procedures.

Health management for electrical and mechanical systems
is state-of-the-art and is under active research and devel-
opment in many aerospace and military applications [55].
NASA, the Air Force, and numerous companies such as Boe-
ing, Lockheed Martin, GM, and others from many industrial
sectors invest in health management technologies. Even in
most modern automobiles, some degree of health manage-
ment systems can be found. For example, the notorious check
engine light is the output of a relatively simple engine health
management system.

An obvious question arises: if these technologies are being
researched, developed, and implemented for hardware sys-
tems, why are there no health management systems for

123

Author's personal copy



Software health management

software? Software is ubiquitous and will become even more
prevalent in coming decades. Should we not have a warning
indicating Please save, your favorite OS will be crashing
within 2min with a probability of 95%? Although such func-
tionality would be convenient and would avoid much nui-
sance, the need is much more apparent in safety-critical areas.
In practically all safety-critical systems (aircraft, nuclear and
medical devices, business applications), software plays a
prominent role, and this role will become even more impor-
tant in the future. Because errors in such software can lead
to catastrophic failures which can cost human life, develop-
ers often expend an extreme amount of effort in developing
and certifying highly reliable software. Nevertheless, such
software can still have bugs and errors as demonstrated by
many examples. So, why can’t we simply “hook up” the soft-
ware to an IVHM system and use that to detect, diagnose,
predict, and mitigate the software problems? Unfortunately,
this problem cannot be solved so easily for several reasons
including the fact that the nature of the sensors, underlying
dynamics of the system, and other properties are significantly
different. In this paper we will discuss the issues with build-
ing such a system and present requirements and approaches
toward developing a Software Health Management (SWHM)
system.

Before we begin discussing the details of software health
management and the issues surrounding this new subject, one
may question whether the ability to provide patches and mon-
itor systems over the Internet constitutes Software Health
Management. While such technologies exist and are fairly
routinely used, there are some key differences in the schemes.
For one, not every software application is connected to a net-
work. Additionally, the Internet-based patching and monitor-
ing system does not detect, isolate, and predict the impending
consequences of an error, nor does it automatically generate a
patch. Instead, data are collected about machine performance
from the computers under service. These data are analyzed
in a semi-automated fashion and then humans primarily gen-
erate patches for dissemination back to the machines. The
concept of software health management is distinctly differ-
ent: the SWHM system automatically detects, diagnoses, pre-
dicts, and mitigates adverse events due to software errors or
errors due to correct operation of software with incorrect
environmental information.

The remainder of the paper is structured as follows: in
Sect. 2, we discuss software and software related problems
in aeronautical, automotive, and medical domains to help
provide motivation and case material for discussion in the
paper. Section 3 describes software health management as a
new discipline and lays out the requirements of the field.
We define the notions of detection, diagnosis, prognosis,
and mitigation in the context of SWHM. In Sect. 4, we dis-
cuss similarities and differences between IVHM and SWHM
requirements and functionality. We compare and contrast

these two areas and discuss ways in which lessons learned
from IVHM research can benefit SWHM. A large number of
computer science approaches for the detection, removal, and
handling of software problems during operation exist. Such
techniques range from simple exception handling to fault-
tolerant computing to runtime verification and self-healing
software, just to mention a few. Although these techniques
are useful and important, they do not comprise SWHM, as
we demonstrate in Sect. 5. In Sect. 6 we discuss key issues
like self-reference (does a SWHM system monitor itself?), as
well as software development, V&V, and certification ques-
tions. Finally, Sect. 7 concludes and discusses the potential
impact of SWHM on complex systems in safety-critical areas
and everyday applications.

2 Software and software-related problems

Software and software-related problems are pervasive in
modern computer systems. Peter Neumann has assembled
a relatively comprehensive list of “Risks to the Public in the
Use of Computer Systems and Related Technology” [43].
Each item from the list is demarcated with numerous sym-
bols indicating whether the issue can lead to loss of life, loss
of resources, whether the issue resulted due to intentional
or unintentional misuse, and a number of other factors. We
summarize a few key examples from the fields of aeronau-
tics, the automotive industry, medicine, and military systems
to discuss some of the key issues that have arisen related to
software. The list is long and pervasive thereby motivating
many of the technologies discussed in this paper. However,
we do not claim that all of these issues could have been
resolved with high certainty with an appropriate Software
Health Management system, since that would require further
detailed analysis of the specific incident.

2.1 Software problems in aircraft

Aerospace systems are certainly software intensive—over
half of the the cost of a modern aircraft is due to software
development [62]. However, the use of software far exceeds
just the code running on a single aircraft. The proposed new
airspace operations system, known as NextGen [26], will be
an extremely software intensive system, and has been called
the most complex dynamical system to ever be developed.
In this section we highlight some key issues that have arisen
either on a single aircraft or in the management of the air-
craft in the Global Airspace to show the type and severity of
the issues that have arisen in the recent past due to software
problems. The list below is certainly not exhaustive but repre-
sents a few issues that particularly motivate the development
of new software health management technologies.

123

Author's personal copy



A. N. Srivastava, J. Schumann

2.1.1 British Airways flight 027: error in Terrain Collision
and Avoidance system

In June 1999, due to an error in the Terrain Collision and
Avoidance System (TCAS) on an aircraft, two Boeing 747
jets came within 600 feet of collision over a remote region of
China. Fortunately, the error did not result in fatalities, but the
source of the incident points to a significant issue that may be
possible to address through the use of appropriate Software
Health Management techniques. It is important to note that
the software in the system has obviously undergone extensive
verification and validation. However, due to an unexpected
change in environmental variables, the TCAS system was
forced into a mode that could have lead to catastrophic loss
of life.

In this incident, a British Airways Boeing 747 and another
Korean Air Cargo Boeing 747 were flying in opposite direc-
tions in the same airspace with the British Airways flight
2000 feet above the Korean Air Cargo flight. Greenwell and
Knight [23] provide an excellent description of the incident
as follows, “The TCAS unit installed on the Korean Air jet
indicated traffic 400 feet below and approaching head on
and shortly thereafter instructed the pilot to climb to avoid
the oncoming traffic. In reality, there were no other aircraft
in the vicinity of the Korean Air jet except for the British
Airways flight 2,000 feet above, and the TCAS unit’s indi-
cation and climb instruction were erroneous. The pilot had
no way of knowing this, however, as he was operating in
a region of airspace without air traffic control service and
the cloud layer severely limited his visibility, and thus he
followed the climb instruction issued by TCAS. The Korean
Air pilot reported that the vertical separation between his air-
craft and the phantom aircraft indicated by TCAS decreased
to zero before increasing, and before reaching zero TCAS
instructed him to increase his rate of climb. The pilot com-
plied and pitched his aircraft further, unknowingly placing
it on a collision course with British Airways flight 027,
which was now closing in rapidly from above. . .”. The pri-
mary source of the problem was determined to be due to
damaged circuitry in the TCAS system on the Korean jet-
liner, which lead to multiple problems in the estimation
of the altitude of the British Airways aircraft. The TCAS
system, in essence, made correct decisions based on incor-
rect information coming from part of its circuitry. A soft-
ware health management system would be valuable in such
a situation, because it would be able to check consistency
of the incoming sensor data (the altitude information in
this case) and can determine if the current signal values
might cause the software system to take actions, which are
inconsistent with the overall safety profile of the vehicle.
However, low quality and reliability of these checks could
cause additional problems as discussed in the following
example.

2.1.2 Northwest flight 255: monitoring system disabled

A critical aspect of any health management system (HMS),
whether it be for software or hardware components, is the
fact that the HMS must be engaged in order for it to provide
safety value. In the accident described here a warning system
was disabled for unknown reasons. Neumann reports that
“. . . the same pilots had intentionally disconnected the alarm
on another MD-80 two days before raises suspicions.” [43].
Quoting from the NTSB report [8], the “evidence indicated
that the flaps and slats were in the up/retract position and had
not been deployed for takeoff. Neither pilot recited the items
of the taxi checklist. Stall warnings were annunciated but
an aural takeoff warning was not annunciated by the central
aural warning system (CAWS). It was confirmed that 28 Volt
DC power was not provided to the CAWS power supply #2.
The reason for the loss of electrical power was traced to
a circuit breaker but no malfunction of the circuit breaker
was found.” This unfortunate loss points us to an important
aspect of a SWHM system: what would check the status of
the HMS itself, i.e., who checks the checker? The flight ended
tragically in the loss of all crew and passengers except for a
four year old girl.

2.1.3 F-22 Raptors experience multiple computer crashes

The first test flight of the F-22 Raptor in 1992 ended in a
crash at Edwards Air Force base, fortunately without loss of
life. The cause of the crash was determined to be due to an
error in the flight control software that “failed to prevent a
pilot-induced oscillation” [18]. The first crash of an F-22 in
production also points to an issue in the flight control system,
which is due to unanticipated environmental conditions: “A
problem with a flight-control system caused an F/A-22 Rap-
tor to crash on the runway at Nellis AFB, NV, on Dec. 20,
according to a US Air Force report released 08 June 2005.
The malfunction of the flight-control system was caused by
a brief power interruption to the aircraft’s three rate-sensor
assemblies, which caused them to fail. The assemblies mea-
sure angular acceleration in all three axes: pitch, roll, and
yaw. With three failed assemblies, the F/A-22 is not able to
fly, investigators said.” [21].

Later, “while attempting its first overseas deployment to
the Kadena Air Base in Okinawa, Japan, on 11 February
2007, a group of six F-22 Raptors flying from Hickam AFB,
Hawaii experienced multiple computer crashes coincident
with their crossing of the 180th meridian of longitude (the
International Date Line). The computer failures included at
least navigation (completely lost) and communication. The
fighters were able to return to Hawaii by following their
tankers in good weather. The error was fixed within 48 h and
the F-22s continued their journey to Kadena.” [29].

123

Author's personal copy



Software health management

2.1.4 A380: exploded engine

When one of the four engines exploded during flight of a
Qantas Airbus A-380 2 not only the engine, but also sev-
eral other subsystems were affected. Among others, sev-
eral wing tanks had been pierced by debris and hydraulic
power was lost. The pilots had to manually sort through “lit-
erally hundreds of diagnostic messages”2 in order to find
out what happened. In addition, several diagnostic messages
contradicted each other or did not make sense, given the
overall state of the aircraft. For example, one message sug-
gested to pump fuel from one galley to another to better
balance the aircraft. However, the fuel pumps did not work
due the loss of hydraulic power. A health management sys-
tem, which can perform reasoning across subsystems would
not have displayed such a diagnostic message, as it was
known that there was no hydraulic power. Luckily, the air-
craft was flying stable and the pilots had the opportunity
to spend several hours on this diagnostics list before they
landed.

2.2 Software problems in satellites and spacecraft

2.2.1 Mars Polar Lander: mission lost due to spurious
sensor signals

On December 3, 1999, a robotic spacecraft known as the
Mars Polar Lander (MPL) was beginning descent into the
Martian atmosphere when mission control lost all contact
with the craft. An assessment was performed by the Mars
Program Independent Assessment Team which concluded
that “the most probable cause of the failure was the genera-
tion of spurious signals when the lander legs were deployed
during descent. The spurious signals gave a false indication
that the spacecraft had landed, resulting in a premature shut-
down of the engines and the destruction of the lander when
it crashed on Mars.” [61] The interpretation of the signals
from the lander legs was likely performed in software that
had been rigorously tested. Although the software had been
tested, it behaved unexpectedly due to unanticipated spuri-
ous signals. This incident shows that complex software can
react in unanticipated ways even after passing verification
and validation.

2.2.2 Mars rover Spirit

A short time after landing on Mars, the rover Spirit encoun-
tered a “reboot loop”, where a fault during the booting
process caused the system to reboot again. More than 60

2 http://www.aerosocietychannel.com/aerospace-insight/2010/12/
exclusive-qantas-qf32-flight-from-the-cockpit/.

reboots per day made any operations of the rover impossi-
ble. According to reports [37,59], a problem in the EEP-
ROM, which is used on board as a file system for interme-
diate data storage over time was at fault. When this mem-
ory storage was filled up, “the boot process failed while try-
ing to read the file system” [2]. A software patch solved
the problem and the mission continued. The software for
Spirit (and Opportunity) had been developed according to
highest reliability standards and rigorous V&V had been
performed [48]. Even during flight (before landing), a 10-
day test was successfully performed. However, the prob-
lem only materialized at Martian day (Sol) 18 [2]. This
example shows how, despite careful testing, hard to detect
errors can still remain in the software. Furthermore, this
example shows that certain kinds of software related fail-
ures could be detected by monitoring before the actual fault
occurs.

2.2.3 LCROSS: excessive fuel burn

In 2009, the Lunar Crater Observation and Sensing Satellite
(LCROSS) experienced a significant fuel drain because of a
fault in which LCROSS’ attitude control system switched to
a navigation system that expended extra fuel [3]. The fault
was due to a problem in the Inertial Measurement Unit (IMU)
and an incorrect persistence counter that caused the the nav-
igation to switch to a star-tracker mode. This mode had a
sub-optimal dead-band setting which led to an excessive fuel
burn. In all, LCROSS was sent with about 306 kg of fuel
but lost about 140 kg of fuel due to the error. Had the fuel
margins been slightly smaller this mission could have been
significantly compromised due to this error. A SWHM sys-
tem may have been able to detect this fault and mitigate it to
avoid the excessive fuel burn.

2.3 Automotive industry

In recent years, the amount of software used in cars has
increased tremendously [11]. Modern cars have dozens of
interacting processors, which control many highly safety-
critical components like brakes, suspension, and engine con-
trol. Software problems can endanger lives and can cause
costly recalls, like the recent recall of defective brakes
on Toyota Prius Hybrids [58]. Another software problem,
described in [15] concerned automatic cruise control, where
under specific circumstances the full throttle was applied sud-
denly due to a sudden internal mode change in the software.
In fact, about 40 % of all factory recalls and stalls are due to
electrical and electronic problems, which include software
[1,57] and it is to be expected that with the growing com-
plexity (in particular for electric and hybrid cars), the number
of software-related problems will increase.

123

Author's personal copy

http://www.aerosocietychannel.com/aerospace-insight/2010/12/exclusive-qantas-qf32-flight-from-the-cockpit/
http://www.aerosocietychannel.com/aerospace-insight/2010/12/exclusive-qantas-qf32-flight-from-the-cockpit/


A. N. Srivastava, J. Schumann

2.4 Medical industry

The medical industry has also experienced significant issues
due to software related problems. For example, a software
problem in the Therac-25 led to five deaths when the machine
erroneously gave radiation levels nearly 100 times the appro-
priate amount [35]. The machine injured six patients between
1985 and 1987 and lead to the death of two individuals. The
safety issues regarding this machine are related to numerous
software design, coding, testing, and verification and valida-
tion issues. The causal factors of the accidents include, “over-
confidence in software, confusing reliability with safety, lack
of defensive design, failure to eliminate root causes, compla-
cency, unrealistic risk assessments, inadequate investigations
of accident reports, inadequate software engineering prac-
tices, software reuse,” and other problems [34].

At first glance, this appears to be an excellent candidate
for a SWHM system. However, it violates a key assumption
that the software has been designed and built and passed rig-
orous verification and validation procedures. The article by
Leveson [34] clearly indicates that this system had not under-
gone an appropriate verification and validation procedure for
a safety critical system.

2.5 Security-related software problems

Software security assurance is critical to economic, national,
and homeland security. Although a vast number of security
vulnerability and hacks are reported and cause substantial
economical damage (e.g., due to identity theft, credit card
fraud), the safety and security-related areas have been kept
quite separate. With software controlling more and more
safety-critical systems and those controllers are increasingly
accessible through the net, incidents, where breaches in soft-
ware security actually created problems with a (physical)
system have increased. Probably the most relevant exam-
ple is Stuxnet [12,49]. This highly sophisticated worm,
which targets a specific Siemens industrial control software.
It is suspected that Stuxnet targeted the enrichment cen-
trifuges in Iranian uranium enrichment facilities and caused
physical damage to those devices. With the advent of net-
worked engine controllers and on-board entertainment sys-
tems in modern cars, malicious software attacks (“Car-
hacking”, [38]) can gain remote access to cars, disable cars,
and might even tamper with safety-related components like
the engine or brakes. Here again, software, which can be
remotely accessed, is controlling safety-critical hardware
systems.

Malicious intrusion or providing of fake data can get a
complex software system into severe problems. For example,
it is strongly suspected that the U.S. RQ-170 Sentinel UAS
(Unmanned Air System) that was lost over Iran, was captured
using GPS spoofing [47]. In this case, the UAS was provided

with faked GPS signals, causing the on-board software to
guide the plane to an Iranian airport.

Although the safety-critical software components have
been designed and validated properly for safety require-
ments, malicious attacks can disable or change the software
in such a way that safety and performance of the overall sys-
tem can be compromised. Typically such a situation can be
detected as a deviation from nominal behavior [39]. Promis-
ing results on test examples from the Top 10 malware list [53]
reported in [39] makes SWHM a candidate for the detection
of security events.

3 Software health management as a new discipline

In the cases described in the previous section, preventive
measures have been taken to avoid the problems mentioned.
However, there are several critical commonalities among
these examples. Each system had gone through rigorous ver-
ification and validation testing at multiple steps during the
design and implementation process. The errors were due to
changes in environmental factors that were unanticipated by
the designer. There could have been a number of reasons for
that. Design and implementation of the software might have
been built upon assumptions that are have been violated in
this situation. Also hardware failures, to which the software
does not respond correctly can be seen as an environmen-
tal factor. Last but not least, the system might have been
operated in an unanticipated physical environment (e.g., out-
side the usual temperature ranges, in a dusty atmosphere, or
in unexpected high winds). Our point is, while traditionally
these errors can be caught and corrected after an incident
occurs (sometimes after long manual analysis), we need to
develop technologies that can diagnose, predict, and mitigate
the effects which occur due to faulty software and hardware
interactions as soon as they arise, or even before they arise.
Of course, SWHM is not meant to replace V&V. We assume
that the software has already gone through an extensive and
rigorous V&V procedure and due diligence has been done
to remove as many software errors as possible. Even then,
faults can occur due to undetected logical or implementation
errors, due to unexpected hardware-software interactions, or
due to unexpected situations in the environment. If we want
the SWHM system to properly detect and mitigate such prob-
lems (and possibly predict them), the SWHM system must
be able to dynamically monitor the software system and the
related hardware (e.g., sensors). This has to happen, while
the software is in operation, for example during the flight,
and without disturbing the normal operation of the software
under scrutiny. In Fig. 1 we show a schematic architecture of
a software health management system, which monitors the
health of an aircraft control system. The SWHM has to moni-
tor the input and output signals of the software controller, the

123

Author's personal copy



Software health management

P
ilo

t

SWHM
Executive

SWHM
Model

Controller
Aircraft

SWHM

Software

Fig. 1 Example for a high-level architecture of a software health man-
agement system: the top row shows a typical (feedback) aircraft control
architecture. Pilot inputs are mixed with the aircraft sensor feedback
signals and fed into the aircraft controller, which is implemented as a
piece of software. The software health management system will obtain
information from the software system itself, the hardware (aircraft), and
by monitoring the inputs and outputs of the software (dashed lines).
Using its SWHM model, the software health management executive is
continuously trying to detect and isolate faults in the monitored system
and, if necessary, will issue mitigation or recovery actions (double line)
to the controller

behavior of the aircraft and the pilot action, and then com-
pares these signals to an internal model of the system. The
architecture shown here is very similar to the standard state
estimation model used in control theory. A key difference,
however, is that this system must monitor mixed (continuous,
discrete, and categorical) signals and also compare them with
the output of a model which is a high level abstraction of the
system.

The SWHM model shown in Fig. 1 is an abstraction of
the host system. Thus, it does not contain details of the sys-
tem dynamics or state equations. However, it may contain
information about the host software itself, about the software
environment, and about the operating system. Such informa-
tion will be on different levels of abstraction and can be dis-
crete or continuous. A typical low level piece of information
might be the validity or quality of a signal or the occur-
rence of a “division-by-zero” error. A higher abstracted view
could trace the software’s timing, stack, or memory usage.
On another level, information like CPU load, the length of
message queues, or free space in the file system might be
used to identify of faults and potentially for prognostics. An
almost full file system and active processes that write to the
file system could serve as a indicator that there might be prob-
lems in the near future, a scenario that is somewhat similar
to the example presented in Sect. 2.2.2.

3.1 Detecting problems with software sensors

Sensors produce data about a specific component of the host
system and enable anomaly detection. The sensor readings
can be discrete, categorical, or continuous measurements.
Continuous sensor readings are often evaluated based on a
predefined envelope of safe operation. If the readings fall
outside the envelope of safe operation (a so-called red-line

condition) the system may be in a fault state. In some cases,
particularly for aerospace applications and other safety crit-
ical systems, redundant sensors are deployed and a voting
scheme is used to enable differentiation from sensor faults
and faults in the host system.

The SWHM system must detect and identify anomalies in
the software execution. These could be triggered errors (e.g.,
division-by-zero), unexpectedly high memory requirements,
unexpected bad numerical accuracy, or the software system
making a logical choice, which may be correct, but not the
best one for the overall system. The SWHM system must have
the capability to monitor the software during its execution.
We thus speak of software sensors, which continuously watch
the execution of the software and report data to the SWHM
system. The SWHM must also receive data from a multitude
of environmental and hardware sensors, as software failures
often occur due to the interaction between SW and hardware
and unanticipated environmental variables (e.g., turbulence,
icing). The concept of an SWHM system can be extended
to also deal with problems in the computer hardware (e.g.,
radiation hit) and anomalies caused by malicious code.

For a SWHM system, the sensors could record data as it
passes between software methods, the inputs from the host
system and the outputs to the host system, and data regard-
ing the state of health of the host system itself. The SWHM
sensors must therefore capture enough information to assess
the state of health of the host system because an error or
unanticipated event in the host system can potentially lead
to a software anomaly. In this case, differentiation between a
sensor fault and a fault in the software that is being sensed can
be extremely difficult to address, because we cannot directly
apply the notion of sensor redundancy.

Recently, researchers at Vanderbilt University [17] have
developed a model [based on the CORBA Component Model
(CCM)] for software, which expresses small software mod-
ules as components with inputs, outputs, measured (or
sensed) parameters, and the system state. This component
model allows complex software systems to be visualized to
assess the best locations to sense messages for sensing fail-
ures in the software.

Traditional sensors suffer from additive sensor noise
which could be due to underlying physical noise sources and
can have known distributions. In the case of software, how-
ever, the sensors will not have an additive source of noise.
However, if the output of a software sensor is a function of
data that is processed from traditional sensors, the software
sensor will also contain the same noise signal. The procedure
for anomaly detection with software sensors can directly fol-
low methods used for detecting anomalies in traditional sen-
sor data. These methods include envelope detection for sin-
gle sensors or more complex anomaly detection methods for
multivariate heterogeneous (i.e., both discrete and continu-
ous measurements) signals [7,25,54].

123

Author's personal copy



A. N. Srivastava, J. Schumann

Many prominent system failures have been attributed to
sensor failures and the interaction between failed sensors
and the software. The accident of the Mars Polar Lander
(Sect. 2.2.1) is thought to be due to spurious signals, which
occurred during the deployment of the landing gear at high
altitude. An appropriate SWHM system should detect that
although one set of sensors from the landing gear may indi-
cate that the gear are deployed and the landing feet have
touched ground, additional information about the short dura-
tion of this signal and cross checks with other sensors of
the spacecraft, like the radar altimeter, would have ruled out
that MPL has already touched ground, and thus would have
avoided premature engine shutdown.

3.2 Diagnosis and disambiguation algorithms

Detection of the anomaly is usually not sufficient to make
an accurate prediction of the consequences of a particular
anomaly and to fix the problem. Here, the SWHM must be
able to diagnose the symptoms and find the cause of the
problem, or most likely cause(s) of the failure. Since the
diagnosis component is necessarily model-based and needs
to contain knowledge about the underlying combined hard-
ware/software system, all requirements that need to be ful-
filled for a traditional system diagnosis system are valid
here as well. In particular, the identification should return
a rank-ordered list of potential causes of the anomaly, and
also should provide a measure of confidence for each diag-
nosis. In more complex situations, the health management
system would need to identify faults in both hardware and
software.

A critical element of a health management system is its
disambiguation algorithm. Such algorithms take sensor data
from potentially multiple sources in the host system along
with the output of anomaly detection algorithms and pro-
duce a list of potential sources of the fault. In almost all
cases, these algorithms are passive, meaning that they do not
have the ability to actively query the host system to help dis-
ambiguate faults. These algorithms often have an underlying
abstracted physical model of the host system to help per-
form diagnosis and disambiguation. For a SWHM system,
the challenge is to develop a rigorous model of the host sys-
tem to enable model-based diagnosis methods. Techniques
based on both model-driven and data-driven techniques are
also possible and would resemble the methods used for tra-
ditional hardware based diagnosis systems. The diagnosis
system may benefit from a simulation that is running in par-
allel to the real software system, which takes the same data as
the input but simulates the behavior of the software system to
help in fault identification and isolation. Diagnosis systems
like HyDE [41] use such an approach. Instead of simulating
the full physical system, simplified, abstracted models are
used for fault detection and diagnosis. Such simulation-based

approaches are powerful for hybrid systems with continuous
(e.g., physics-based) and discrete components [42], but they
require substantial computational resources, which are often
not available for embedded control applications.

The challenge for correct fault disambiguation can be
seen, for example, in the Terrain Collision Avoidance Sys-
tem anomaly in Sect. 2.1.1. Here, the SWHM would need to
identify the fact that an error had occurred in the damaged
circuitry and disambiguate that fault from the event that an
actual collision was imminent.

3.3 Prediction algorithms

A major motivation for the development of IVHM systems
lie in the fact that they could predict the remaining useful life
of a component or subsystem. This allows the operator to be
much more flexible in maintenance schedules: for example,
a jet engine would only need to be replaced the estimated
remaining useful life is less than some predefined threshold.
In a traditional maintenance regime, the engine is replaced
according to a schedule based on operational factors regard-
less of its actual state. For software, no notion of prognosis
in general exists. The only exceptions are performance prog-
nosis for computer systems or networks (e.g., based upon
queuing theory) and general software risk models (e.g., [9]).
All software fault handling technologies are backwards ori-
ented, i.e., they react on faults that already have happened or
are imminent.

A critical issue is the development of methods to assess
the severity and criticality of an error due to software. Many
ideas of reliability theory, such as mean-time-to-failure, need
to be translated into this new domain. These include real-time
estimation of time before failure and the severity of the fail-
ure on the software and hardware systems. For example, in
the case of a stack-overflow, one could imagine an estima-
tion of the time to failure as being a function of the number
of pushes that occur on the stack. For any finite stack, the
number of operations before failure can easily be calculated.
Of course, the difficult part of the problem is the estimation
of the number of times the push will occur due to the exter-
nal environment. Other examples of simple software errors
that could be modeled for prognostics include memory leaks
which can lead to slow but an unbounded increase in memory
usage, or an overflow in the hard drive.

It is imaginable that failures such as the ones on the Spirit
Mars rover (Sect. 2.2.2), where the on-board memory file
system was filled within 18 days and causing a reboot cycle,
could be predicted (and mitigated) by a SWHM system.

As with any prediction, the estimation of the certainty in
the prediction is key. Note that this estimation must not solely
be a function of the known environmental variables. If we
were to base our predictions and certainty estimates just on
the known environmental variables, we would not anticipate

123

Author's personal copy



Software health management

any faults, because we would assume that the environmental
variables all stay within their nominal operations.

It is useful to compare and contrast our view of SWHM
with the area of software reliability engineering in which
software is made more reliable while having an emphasis
on reducing cost and complexity of design and implementa-
tion. The software reliability engineering approach puts sets
development objectives with related reliability metrics that
the team must meet during the design and production cycle
to ensure implementation efficiency and reliability. While
these are worthy goals for development of a complex soft-
ware system, the concept of SWHM differs from this because
it assumes that the software has already undergone exten-
sive testing but for unanticipated reasons develops a fault.
This situation emphasizes real-time fault identification and
disambiguation and decision making using in-situ software
sensors and advanced diagnostic and prognostic techniques.
Even software developed using rigorous software reliability
engineering methods can develop faults. The SWHM system
should identify and mitigate such faults.

3.4 Mitigating the effects of an error

If a problem has been detected and it is determined by the
SWHM system to be indicative of a substantial error, mit-
igation strategies need to be employed that depend on the
application domain. For example, in the case of the medical
equipment described above, an appropriate mitigation strat-
egy may be to simply shutdown the machine if the radiation
output level is too high. This decision could be made in real-
time and would need to be validated to see if it produces
any unwanted side-effects. However, for other systems, such
as those on an aircraft, it may not be appropriate to simply
shut down the system. In those cases, one could consider
automatically generating a patch to help avoid a catastrophic
problem until the plane has landed. All state information from
the sensors, as well as the history of the system state could
be recorded to help analysts reproduce the results.

The composition of the existing software and hardware
architecture along with the addition of the new patch must
undergo some verification and validation process. Technolo-
gies to perform such rapid verification and validation must
be developed that would ensure the integrity of the resulting
system. In some cases, the solution may be chosen from a
predetermined set of validated solutions. However, care must
be taken in this case because the system, by definition, is run-
ning in an off nominal condition.

4 SWHM is not IVHM

When considered from a system perspective, a software
system is quite different from a hardware system. The

mathematical and theoretical background upon which a phys-
ical (hardware) system is developed is very mature and has
been developed over the course of several hundred years.
Together with the theoretical foundations, a century old
wealth of knowledge and experience is available for the
development of such a system. On the other hand, Soft-
ware Engineering as a discipline is very young and so has
been studied far less. Thus, the design of a reliable, complex
mechanical system, e.g., a combustion engine, seems to be
much more accessible than for a software system.

One of the most striking differences between software and
hardware is the discrete nature of software systems. Software
is usually based upon logic and theory of (discrete) com-
putation; everything is represented and handled in form of
discrete (e.g., binary) elements. Even if a continuous oper-
ation is to be performed by software, all values have to be
discretized (e.g., to 32 or 64 bit floating-point numbers) and
the calculations itself are sequences of discrete operations on
bits.

On the other hand, physical systems work in a continuous
domain, unless we go down to quantum mechanics: materials
can bend, wheels can slip. This difference to software systems
manifests itself in many aspects: for the description and mod-
eling of physical systems, usually differential or difference
equations are used. Sets of differential equations describe
the possible behaviors of the system over time. This enables
the developer to analyze the system and its properties using
well-established mathematical theories.

Stability and sensitivity analysis for linear and non-linear
systems is a mature field. In many applications, e.g., aircraft
design, linear differential equations are sufficient to describe
the system behavior. Drawing from a wealth of theory, impor-
tant safety guarantees (e.g., phase and gain margin for sta-
bility) can be formally derived. Even in the non-linear case,
formal theorems about stability can be proven, although the
underlying mathematical theory is more demanding.

Another, but not less important and powerful approach to
describing physical systems is based upon statistical models.
A variety of different approaches, e.g., Bayesian or frequen-
tist, enable a data-driven and physics-based analysis.

The theoretical background for software systems is based
upon mathematical methods, in particular discrete mathe-
matics (like graph theory or Petri Nets), automata theory,
formal systems and languages, mathematical logic, and sta-
tistics (e.g., Markov processes). With this wealth of math-
ematical foundations, strong properties about the (discrete)
behavior of software systems can be proven in a formal way.

5 SWHM and other techniques

After discussing the main functionality of a SWHM system,
one could argue that SWHM is just “dynamic bug fixing”

123

Author's personal copy



A. N. Srivastava, J. Schumann

and as such, a part of traditional V&V. Indeed, finding an
error or fault in a software and fixing it is a major part
of all V&V activities. However, the aim of V&V, namely
to ensure that a piece of software is free of errors and
behaves as required, is substantially different from the goals
of SWHM: here, not only the software and its failures are
under consideration but also the surrounding hardware and
environment as well as the interaction between software
and hardware. Also, traditional V&V is supposed to be per-
formed before the system is deployed rather than during its
operation.

In this section, we will look at several software engineer-
ing approaches, which can be considered to be in the vicin-
ity of SWHM. We will see that each of these approaches
can perform certain functionality within an SWHM sys-
tem, but in isolation are not a software health management
system.

5.1 Remote software upgrade

A very common and effective technique to fix software prob-
lems after the initial deployment of the system are sys-
tem upgrades or patches, which are provided by the soft-
ware vendor and are loaded and installed on the system via
some (remote) installation procedure. Pretty much all com-
mon operating systems and non-critical software applications
nowadays feature remote update capabilities. However, this
technique requires human effort for detecting and identify-
ing the failure, and for providing the actual changes in the
software.

Additionally, software upgrade can produce its own set of
problems, because it can introduce inconsistencies into the
software, could be prone to adverse attacks, or open up new
software failures. For example, a software upgrade for a Boe-
ing 777 flight computer “could result in anomalies in the fly-
by-wire primary flight control, autopilot, auto-throttle, pilot
display, and auto-brake systems, which could result in high
pilot workload, deviation from the intended flight path, and
possible loss of control of the air plane” [19]. This FAA emer-
gency advisory requested that the previous software version
to be installed again.

5.2 Automatic software reconfiguration

Automatic software reconfiguration techniques try to auto-
matically change the configuration of a software system in
order to mitigate a problem. A wealth of different approaches
have been developed to make sure that a consistent state after
the reconfiguration is retained and that no problematic tran-
sient effects occur. These techniques, however, only cover a
part of the requirements set up for SWHM, as they focus on
fault removal.

5.3 Autonomic computing

Autonomic computing has some interesting parallels with the
proposed SWHM system described in this paper. This para-
digm features self-management for the purpose of improv-
ing the efficiency and reliability of a complex computer sys-
tem. The approach, detailed in [60] includes capabilities for
self configuration, self healing, self optimization, and self-
protection. These elements require similar characteristics to
those proposed for the SWHM. The SWHM system is pro-
posed for highly-complex, safety critical, real-time systems.
These systems require a very high level of consistency in
their operation and must adapt to highly variable environmen-
tal conditions. In contrast a typical parallel and distributed
computing system may not have the same constraints and
operational conditions as those developed for safety-critical
systems. However, it is critical for a SWHM implementation
to take advantage of the advances made in the Autonomic
Computing area.

5.4 Fault-tolerant computing

Fault tolerant computing provides techniques and infra-
structure (in hardware and software) to enable the software
system to reliably operate in the presence of faults. Typically
fault tolerant applications can be found in highly safety crit-
ical components, like a control computer for an aircraft or
a rocket. Here, multiple computer systems, often even with
software developed in different languages and by different
groups, are performing the same calculations continuously.
An additional piece of highly reliable hardware then analyzes
the results, and, if not all computers produce the same result,
tries to find the most reliable result by, e.g., using a voting
scheme.

Although field of fault tolerant computing is very mature,
still it does not provide all the necessary properties, which
we require for SWHM. Typically, the check if the redundant
system is working correctly is restricted to the result of the
computation (e.g., the calculated attitude of the spacecraft).
In contrast, SWHM needs to take into account numerous
different properties to yield a conclusion on the health of the
software. In case a discrepancy is detected in such a fault
tolerant system, most often a binary decision (fault, no-fault)
is made and rather drastic mitigation methods (e.g., turn off
the faulty computer) are taken.

Perhaps the most important difference between fault tol-
erant computing and SWHM lies in the missing prognostic
capabilities of fault tolerant systems. Such systems only react
to occurring faults and take appropriate measures; SWHM
tries to use its prognostic capabilities to predict certain classes
of potential failures even before they occur.

Although there are differences between SWHM as an
emerging discipline and fault tolerant computing, an

123

Author's personal copy



Software health management

eventual SWHM system must incorporate the signals from
fault tolerant systems and use them in order to improve the
overall health state assessment of the system. For example,
in a situation where there is software and hardware sen-
sor redundancy, it is critical that the SWHM system rea-
son appropriately about the health state of the system given
the inconsistent information. The ability to actively query
the underlying system in order to disambiguate true faults
from candidate faults can improve the overall effectiveness of
SWHM systems while taking advantage of the fault tolerant
technology already included on many operational systems.

Fault tolerant systems that use voting schemes to over-
come conflicting information can be very beneficial to and
can benefit from software health management systems that
have an active querying capability. In this case, true faults
may be disambiguated because the HM system may be able
to issue several different queries to help reduce the ambigu-
ity set and increase the likelihood of identifying the correct
course of action.

5.5 Runtime verification

Traditional software development processes require that all
verification and validation activities are carried out before
software deployment. Some properties, however, cannot be
verified at this time, due to the complexity of an a priori val-
idation approach, or since the property depends on informa-
tion not available during development time. Runtime Verifi-
cation (RV) addresses this problem by monitoring properties
of the software system while it is running and by report-
ing property violations. Whereas early approaches entirely
focused on the discrete portion of the software and were
based on the aspect-oriented programming paradigm [20],
or code instrumentation (e.g., [24]) for the dynamic check
of properties, the field has widened and matured consid-
erably. Techniques described in the proceedings of recent
conferences on Runtime Verification [5,32,46] deal—among
others—with hybrid systems (e.g., [10,52]) and the detection
of security-related events [39] using model-checking, sto-
chastic, and machine-learning based approaches for a mul-
titude of sequential, concurrent, and highly parallel applica-
tions.

Thus, RV is providing technology very close to SWHM.
In fact, many approaches lend themselves to be used syn-
ergistically in the realm of SWHM, where runtime verifica-
tion methods for monitoring and detection of off-nominal
events can be combined with diagnostic reasoning, root-
cause analysis, and mitigation techniques. In particular, for
the detection of violations in complex temporal properties,
RV techniques has a big advantage over traditional FDIR
approaches, which often use a highly simplified notion of
time.

6 Key issues of SWHM

The development of a SWHM system will have an impact on
the entire software design, implementation, and verification
and validation process. The SWHM system will assume that
the validation steps have been completed and that there are
no design or coding errors.

However, there are a number of more subtle issues, which,
when addressed properly can substantially help to increase
safety and reliability while reducing effort and cost of the
software development.

First of all, SWHM should seamlessly work together with
traditional V&V tasks. If traditional V&V can reliably show
or prove that certain properties of the software cannot be vio-
lated, then the SWHM does not have to monitor these specific
properties. Furthermore, this knowledge substantially helps
the SWHM system with the task of fault identification. If,
for example, the implementation of a navigation subroutine
could be proven not to produce numerically invalid results
(“not-a-number”, NaN), then any occurrence of a NaN can
be immediately attributed to the incoming sensor signals and
no further analysis of this piece of code has to be performed
by the SWHM system.

Since SWHM is being proposed as a separate discipline it
can be seen to augment verification and validation. Due to the
high complexity of SWHM, it is still vital to find and remove
as many errors as possible during the pre-deployment V&V
period, but SWHM can produce an additional layer of safety
and reliability for the overall system.

6.1 Verification and validation

Although it is possible that the gain in safety and reliability
due to a SWHM system may be significant, it comes at a price.
The overall system will be more complex and its safety prop-
erties can only be safe and reliable to the extent of the SWHM
system. A poorly designed or malfunctioning SWHM sys-
tem can produce false alarms (“false positives”) or can miss
important failures occurring in the software (“false nega-
tives”). A false alarm occurs if the SWHM system reports a
failure, whereas the monitored system is working flawlessly.
A continuously lit “Check Engine” light in the car can be such
a nuisance signal. Although false alarms are not primarily a
safety concern they can severely impede the system opera-
tion by performing unnecessary fixes and reconfigurations.
Moreover, they can lead to a situation where operators ignore
the output of the system, thereby leading to other potentially
significant problems. If the SWHM (or a monitoring system
in general) is turned off because of repeated nuisance alarms,
real hazards can occur, as discussed in Sect. 2.1.2, where the
pilots supposedly disabled the monitoring system.

Thus, a SWHM system must be designed carefully to
avoid false alarms and the implementation of the SWHM

123

Author's personal copy



A. N. Srivastava, J. Schumann

itself has to undergo rigorous V&V as errors in the SWHM
will not only deliver unreliable results but can cause severe
problems in the software to be monitored. Therefore, the
SWHM system must be verified and validated to a level of
safety and reliability that is at least as high as that for the
monitored system.

The literature contains only few papers on V&V of health
management systems. For example, Lindsey and Pecheur
[36] describe the use of a model checker for the analysis
of Livingston IVHM models. The model checker automat-
ically explores the entire state space of the IVHM model
and checks properties (e.g., diagnosability), which are formu-
lated in a temporal logic language. Darwiche [14] describes
approaches for sensitivity and completeness analysis for
IVHM models specified as Bayesian Networks. In general,
V&V (and much more so certification) has to address the
following two areas: verification/validation on the SWHM
model level and code V&V of the actual implementation.

6.1.1 Model V&V

In model-based verification and validation, the model con-
tains all information about the software (its structure, behav-
ior, requirements), the hardware, and their interaction. The
SWHM system performs reasoning based on information
from hardware and software sensors and other available
information to determine the health state of the software.
The SWHM system may identify the most likely cause of a
failure or make a prediction on the remaining useful life of
the system. Thus, V&V has to make sure that the model is
adequate for the given domain and SWHM requirements and
that it is as complete and consistent as possible. Incomplete
models can result in undetected failures; inconsistent models
can lead to false alarms.

Besides testing and exhaustive approaches (e.g., [36]),
techniques will have to be developed for model analysis
and V&V. In particular, as the SWHM models span soft-
ware and hardware models, and will, in most cases, describe
systems on different levels of abstraction, this task will be
challenging.

The adequacy of the modeling approach and the reason-
ing method must be demonstrated. Depending on the SWHM
algorithms, this task can be easy or challenging; theoreti-
cal results about the reasoning method (e.g., on complete-
ness, soundness, decidability, complexity) must be taken into
account.

6.1.2 Code-level V&V

Even in such cases where the model and the reasoning algo-
rithm has been fully verified, no guarantees can be provided
yet, because the model and the SWHM system must be

implemented as a piece of software. Thus, “code-level
V&V”, the V&V of the actual implementation has to be per-
formed. Here, the SWHM is treated like a regular piece of
software, which has to be tested and validated. In most cases,
this will include testing according to tight code coverage cri-
teria, e.g., the MCDC (Modified Condition Decision Cov-
erage) as required by the DO-178B standard [50,51], worst
case execution time analysis, stack and memory analysis, etc.

Software Health Management (SWHM) algorithms can
contain algorithmic elements, for which current standards
do not provide any guidance, for example search during rea-
soning, non-determinate algorithms, or traversal of large and
complicated data structures. V&V guidelines and processes
must be developed for such algorithmic elements.

Any SWHM has to take inputs from a multitude of differ-
ent sources (hardware, sensors, software sensors, operating
system, etc.) and potentially interact with the host system
on multiple levels. The resulting architecture of a SWHM
can therefore be rather complicated, requiring careful V&V.
Specifically tailored architectures like the one described in
Sect. 3.1 [17] can substantially reduce the effort for SWHM
integration.

Certification of safety-critical software is an important and
usually a very costly and time consuming process, because
it has to be demonstrated to certification authorities (e.g., the
FAA for US civil aviation) that the software has been devel-
oped according to a given software standard (e.g., DO-178C
for civil aviation [51]) and that the SW obeys the required
safety requirements.

Software Health Management (SWHM) can not (and
should not) lessen the burden of software certification. As
mentioned above, SWHM requires that traditional V&V has
been performed and as SWHM does not intend to replace
V&V. On the other hand, the SWHM system, as a piece
of safety-critical software itself, will have to undergo the
scrutiny of certification. Unless suitable V&V techniques for
SWHM are available, certification might not be possible.

6.2 Applied SWHM

In its primary application, SWHM will provide an additional
layer of safety and reliability for safety-critical software sys-
tems. The SWHM detects software-related faults, performs
diagnosis for root cause analysis, and triggers, if applicable,
appropriate mitigation actions. Everything is done in close to
real-time while the aircraft is flying. In principle, SWHM can
have a much broader applicability beyond a single software
system. Like system IVHM does not only perform detec-
tion, diagnosis, and prognosis but is increasingly used for
condition-based maintenance [56]. This maintenance process
takes advantage of the fact that the IVHM system pro-
vides concise knowledge about the current state and material

123

Author's personal copy



Software health management

condition of each subsystem. Therefore, repairs or replace-
ments need to be carried out, when a component is defective
or has reached its safe end of life, rather than in fixed intervals.
Condition-based maintenance has demonstrated its capabil-
ity to dramatically reduce maintenance costs and to lower
environmental impacts.

The use of SWHM across multiple individual software
systems on one aircraft or an entire fleet of aircraft can have
its benefits. SWHM data assembled across multiple systems
can be used to improve quality and reliability of the health
management model by, for example, reducing the number
of false alarms. Additionally, such data can be used to opti-
mize the overall software and hardware system. In contrast to
most log-file based approaches, a SWHM system would be
drastically the amount of data to be collected and distributed
among the individual systems.

6.3 Current research in SWHM

Whereas IVHM is a mature field, research on the specific
topic of software health management is still in its infancy. In
addition to topics related to runtime verification (discussed
in Sect. 5.5), the two workshops on Software Health Man-
agement held during the Conference on Space Mission Chal-
lenges for Information Technology (SMC-IT) in 2009 [30]
and 2011 [31] give an overview of some of recent approaches
toward this topic. Obviously, monitoring of the software,
while it is in operation is an important topic of research. Zhao
et al. [63] extends the notion of runtime monitors for runtime
verification to explore possible fault states of the software in
advance (see also [16]). This technique can support prognos-
tics in SWHM. The dynamic monitoring of highly reliable
and redundant software poses its own challenges. Goodlow
and Pike [22] analyzes a software problem in the Space Shut-
tle, which was caused by a Byzantine problem and discusses
techniques for monitoring ultra-reliable systems [44]. Their
tool for the monitoring of embedded systems (Copilot) is
presented in this issue.

Other SWHM research focuses on specific software archi-
tectures that are particularly amenable for SWHM (e.g.,
[17]). Some research describes SWHM in architectures that
conform to the ARINC 653 standard [6] while others discuss
the automated generation of fault trees [33]. Fault trees can
also serve as the basis to construct a Bayesian Health Man-
agement model as discussed in [13]. Pizka and Panas [45]
describes a process-oriented approach to regularly check on
the health of a (large) software system. Here, the goal is that
regular (non-automated) health checks improve the techni-
cal condition of the software and has a positive economic
effectiveness. Research on SWHM has also found its way
in the development of safety-critical medical systems (e.g.,
pacemakers) [28] and the military [4].

7 Conclusions

Software health management is a discipline that must be
developed to address inevitable problems in software inten-
sive systems that have already undergone verification and
validation. The field is new and the problems are significant.
A mathematical theory of software failure needs to be devel-
oped which allows for the development of provably correct
algorithms for detecting, diagnosing, predicting, and miti-
gating the adverse events of software issues.

Acknowledgments The authors would like to thank Eric Cooper,
Paul Miner, Robert Mah, Claudia Meyer, Serdar Uckun, Gabor Karsai,
and the NASA partners working on software health management. The
authors would also like to thank the reviewers for valuable comments.
This article was written under the support of the NASA Aviation Safety
Program Integrated Vehicle Health Management project and NASA’s
OSMA SARP project “Advanced tools and techniques for V&V of
IVHM systems”. This paper is a substantially revised and extended
version of a paper presented at SMC-IT 2011.

References

1. ADAC: Pannenstatistik (Wikipedia Germany) (2008). http://de.
wikipedia.org/wiki/Pannenstatistik

2. Adler M (2006) The planetary society blog: spirit Sol 18 Anomaly.
http://www.planetary.org/blog/article/00000702/

3. Andrews D (2011) Managing the bad day. NASA Acad Shar Knowl
44:5–10

4. Associates B (2009) Run-time verification and validation for
safety-critical flight control systems. Air Force SBIR/STTR,
AF04-246 https://www.afsbirsttr.com/Publications/Documents/
Innovation-121109-BarronAssociates-AF04-246.pdf

5. Barringer H, Falcone Y, Finkbeiner B, Havelund K, Lee I, Pace
GJ, Rosu G, Sokolsky O, Tillmann N (eds) (2010) Runtime
verification—first international conference, RV 2010, 2010. Pro-
ceedings, Lecture Notes in Computer Science, vol 6418. Springer,
Berlin

6. Barry M, Horvath G (2009) Goal-based flight software health man-
agement services (extended abstract). In: Karsai [30]. http://www.
isis.vanderbilt.edu/workshops/smc-it-2009-shm

7. Bay SD, Schwabacher M (2003) Mining distance-based outliers in
near linear time with randomization and a simple pruning rule. In:
Proceedings of the ninth ACM SIGKDD international conference
on knowledge discovery and data mining. ACM, New york

8. Board NTS (1989) NTSB identification DCA97MA058,
Korean Airlines LTD. http://www.ntsb.gov/ntsb/brief.asp?
ev_id=20001213X31759&key=1

9. Boehm B (2007) Software risk management: principles and prac-
tices. In: Selby RW (ed) Software engineering: Barry W. Boehm’s
lifetime contributions to software. Wiley, London

10. Chakarov A, Sankaranarayanan S, Fainekos GE (2012) Combining
time and frequency domain specifications for periodic signals. In:
Khurshid and Sen [32], pp 294–309

11. Charette R (2009) This car runs on code. http://spectrum.ieee.org/
green-tech/advanced-cars/this-car-runs-on-code

12. Cherry S (2012) How stuxnet is rewriting the cyberterrorism play-
book. IEEE Spectrum. http://spectrum.ieee.org/podcast/telecom/
security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook

13. Codetta-Raiteri D, Portinale L, Guiotto A, Yushstein Y (2012)
Evaluation of anomaly and failure scenarios involving an
exploration rover: a Bayesian network approach. In: Proceedings of

123

Author's personal copy

http://de.wikipedia.org/wiki/Pannenstatistik
http://de.wikipedia.org/wiki/Pannenstatistik
http://www.planetary.org/blog/article/00000702/
https://www.afsbirsttr.com/Publications/Documents/Innovation-121109-BarronAssociates-AF04-246.pdf
https://www.afsbirsttr.com/Publications/Documents/Innovation-121109-BarronAssociates-AF04-246.pdf
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.ntsb.gov/ntsb/brief.asp?ev_id=20001213X31759&key=1
http://www.ntsb.gov/ntsb/brief.asp?ev_id=20001213X31759&key=1
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook


A. N. Srivastava, J. Schumann

the 11th international symposium on artificial intelligence, robot-
ics, and automation in space (iSAIRAS-2012)

14. Darwiche A (2009) Modeling and reasoning with Bayesian net-
works. Cambridge University Press, Cambridge

15. Degani A (2004) Taming HAL: designing interfaces beyond 2001.
Palgrave Macmillan, New York

16. Dong W, Leucker M, Schallhart C (2008) Impartial anticipations in
runtime verification. In: 6th International symposium on automated
technology for verification and analysis (ATVA’08), no. 5311 in
LNCS. Springer, Berlin

17. Dubey A, Karsai G, Kereskenyi R, Mahadevan M (2010) A real-
time component framework: experience with CCM and ARINC-
653. In: IEEE international symposium on object-oriented real-
time, distributed computing

18. F-22: F-22 Raptor stealthfighter (1992). http://www.f-22raptor.
com/index_airframe.php1992

19. FAA: Airworthiness directive 2005–18-51 (2005). http://rgl.faa.
gov/Regulatory_and_Guidance_Library

20. Filman RE, Elrad T, Clarke S, Aksit M (2004) Aspect-oriented
software development. Addison-Wesley, Reading

21. GlobalSecurity.org: F-22 Raptor (2004). http://www.
globalsecurity.org/military/systems/aircraft/f-22-testfly.htm

22. Goodlow A, Pike L (2009) Toward monitoring fault-tolerant
embedded systems (extended abstract). In: Karsai [30]. http://
www.isis.vanderbilt.edu/workshops/smc-it-2009-shm

23. Greenwell WS, Knight JC (2003) What should aviation safety inci-
dents teach us? Technical Report. University of Virginia

24. Havelund K, Roşu G (2001) Monitoring Java programs with Java
PathExplorer. In: Proceeding of the first workshop on runtime ver-
ification. Electronic notes in theoretical computer science, vol.
55(2). Elsevier, Amsterdam

25. Iverson DL (2004) Inductive system health monitoring. In: Pro-
ceedings of the 2004 international conference on artificial intelli-
gence (IC-AI’04), CSREA Press

26. Jackson D, Thomas M, Millett LI (2007) Software for dependable
systems: sufficient evidence? National Academy Press, Washing-
ton

27. Jardine A, Lin D, Banjevic D (2006) A review on machinery
diagnostics and prognostics implementing condition-based main-
tenance. Mech Syst Signal Process 20(7):1483–1510

28. Jee E, Wang S, Kim JK, Lee J, Sokolsky O, Lee I (2010) A safety-
assured development approach for real-time software. In: RTCSA.
IEEE Computer Society, pp 133–142

29. Johnson D (2007) Raptors arrive at Kadena. http://www.af.mil/
news/story.asp?storyID=123041567

30. Karsai G (ed) (2009) 1st international workshop on software health
management (SHM 2009). ISIS, Vanderbilt University. http://
www.isis.vanderbilt.edu/workshops/smc-it-2009-shm

31. Karsai G (ed) (2011) 2nd international workshop on software health
management (SHM 2011). ISIS, Vanderbilt University. http://
www.isis.vanderbilt.edu/workshops/smc-it-2011-shm

32. Khurshid S, Sen K (eds) (2012) Runtime verification—second
international conference, RV 2011, San Francisco, September 27–
30, 2011. Revised selected papers, Lecture Notes in Computer Sci-
ence, vol 7186. Springer, Berlin

33. Kurtoglu T, Lutz R, Patterson-Hine A (2009) Using auto-generated
diagnostic trees for optimized fault handling (extended abstract).
In: Karsai [30]. http://www.isis.vanderbilt.edu/workshops/smc-it-
2009-shm

34. Leveson N (1995) Safeware system safety and computers. Addison-
Wesley, Reading

35. Leveson N, Turner CS (1993) An investigation of the Therac-25
accidents. IEEE Comput 26(1):18–41

36. Lindsey AE, Pecheur C (2004) Simulation-based verification of
autonomous controllers via Livingstone Pathfinder. In: Jensen K,

Podelski A (eds) Proceedings TACAS 2004, Lecture Notes in Com-
puter Science, vol 2988. Springer, Berlin, pp 357–371

37. Mars Spirit Wiki (2005) Mars spirit software problem. http://c2.
com/cgi/wiki?MarsSpiritSoftwareProblem

38. Melone L (2012) Car-hacking: remote access and other
security issues. Computer World. http://www.computerworld.
com/s/article/9229919/Car_hacking_Remote_access_and_other_
security_issues

39. Milea NA, Khoo SC, Lo D, Pop C (2011) Nort: runtime anomaly-
based monitoring of malicious behavior for windows. In: Proceed-
ings of runtime verification (RV 2011), LNCS, vol 7186. Springer,
Berlin, pp 115–130

40. Mobley R (2004) Condition based maintenance. In: Davies A (ed)
Handbook of condition monitoring: techniques and methodologies.
Chapman & Hall, London, pp 35–54

41. Narasimhan S (2007) Automated diagnosis of physical systems.
In: International conference on accelerator and large experimental
physics control systems (ICALEPCS ’07)

42. Narasimhan S, Brownston L (2007) HyDE—a general framework
for Stochastic and Hybrid model-based diagnosis. In: 18th interna-
tional workshop on principles of diagnosis (DX ’07)

43. Neumann P (2009) Illustrative risks to the public in the use of
computer systems and related technology. http://www.csl.sri.com/
users/neumann/illustrative.html

44. Pike L, Niller S, Wegmann N (2012) Runtime verification for ultra-
critical systems. In: Khurshid and Sen [32], pp 310–324

45. Pizka M, Panas T (2009) Establishing economic effectiveness
through software health management (extended abstract). In: Kar-
sai [30]. http://www.isis.vanderbilt.edu/workshops/smc-it-2009-
shm

46. Qadeer S (ed) (2012) Runtime verification 2012 (RV’12). pre-
proceedings, Springer LNCS, Berlin. http://rv2012.ku.edu.tr/
accepted-papers/ (to be published)

47. Rawnsley A (2011) Iran’s alleged drone hack: tough, but possible.
Wired

48. Regan P, Hamilton S (2004) NASA’s mission reliable. IEEE Com-
put 37(1):59–68

49. Richardson J (2011) Stuxnet as cyberwarfare: applying the law of
war to the virtual battlefield. Soc Sci Res Netw. http://ssrn.com/
abstract=1892888 or doi:10.2139/ssrn.1892888

50. RTCA: DO-178B: software considerations in airborne systems and
equipment certification (1992). http://www.rtca.org

51. RTCA: DO-178C/ED-12C: software considerations in airborne
systems and equipment certification (2012). http://www.rtca.org

52. Sistla AP, Zefran M, Feng Y (2012) Runtime monitoring of sto-
chastic cyber-physical systems with hybrid state. In: Khurshid and
Sen [32], pp 276–293

53. Sophos: top 10 malware (2008). http://www.sophos.com/security/
top-10/

54. Srivastava AN, Das S (2009) Detection and prognostics on low
dimensional systems. IEEE Trans Syst Man Cybern Part C 39(1)

55. Srivastava AN, Meyer C, Mah R (2009) Integrated vehicle health
management technical plan. Technical report, NASA

56. Stephenson D (2006) The airplane doctors. Boeing Frontiers
5(1):36–41. http://www.boeing.com/news/frontiers/archive/2006/
august/ts_sf09.pdf

57. Süddeutsche Zeitung S (2010) Bevor es zu spät ist: Rückrufe
in der Automobilbranche. http://www.sueddeutsche.de/automobil/
13/503237/text/

58. Toyota: Toyota Prius recall—update ABS software (2010). http://
www.toyota.com/recall/abs.html?srchid=K610_p280864979

59. Wikipedia: Mars Rover spirit (2005) http://en.wikipedia.org/wiki/
Spirit_rover

60. Wikipedia: autonomic computing (2012) http://en.wikipedia.org/
wiki/Autonomic_computing

123

Author's personal copy

http://www.f-22raptor.com/index_airframe.php1992
http://www.f-22raptor.com/index_airframe.php1992
http://rgl.faa.gov/Regulatory_and_Guidance_Library
http://rgl.faa.gov/Regulatory_and_Guidance_Library
http://www.globalsecurity.org/military/systems/aircraft/f-22-testfly.htm
http://www.globalsecurity.org/military/systems/aircraft/f-22-testfly.htm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.af.mil/news/story.asp?storyID=123041567
http://www.af.mil/news/story.asp?storyID=123041567
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2011-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2011-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://c2.com/cgi/wiki?MarsSpiritSoftwareProblem
http://c2.com/cgi/wiki?MarsSpiritSoftwareProblem
http://www.computerworld.com/s/article/9229919/Car_hacking_Remote_access_and_other_security_issues
http://www.computerworld.com/s/article/9229919/Car_hacking_Remote_access_and_other_security_issues
http://www.computerworld.com/s/article/9229919/Car_hacking_Remote_access_and_other_security_issues
http://www.csl.sri.com/users/neumann/illustrative.html
http://www.csl.sri.com/users/neumann/illustrative.html
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://rv2012.ku.edu.tr/accepted-papers/
http://rv2012.ku.edu.tr/accepted-papers/
http://ssrn.com/abstract=1892888
http://ssrn.com/abstract=1892888
http://dx.doi.org/10.2139/ssrn.1892888
http://www.rtca.org
http://www.rtca.org
http://www.sophos.com/security/top-10/
http://www.sophos.com/security/top-10/
http://www.boeing.com/news/frontiers/archive/2006/august/ts_sf09.pdf
http://www.boeing.com/news/frontiers/archive/2006/august/ts_sf09.pdf
http://www.sueddeutsche.de/automobil/13/503237/text/
http://www.sueddeutsche.de/automobil/13/503237/text/
http://www.toyota.com/recall/abs.html?srchid=K610_p280864979
http://www.toyota.com/recall/abs.html?srchid=K610_p280864979
http://en.wikipedia.org/wiki/Spirit_rover
http://en.wikipedia.org/wiki/Spirit_rover
http://en.wikipedia.org/wiki/Autonomic_computing
http://en.wikipedia.org/wiki/Autonomic_computing


Software health management

61. Wilhide P (2000) Mars program assessment report outlines route
to success. http://mars.jpl.nasa.gov/msp98/news/news71.html

62. Winter D (2008) Statement of Mr. Don C. Winter, VP Eng & IT,
boeing phantom works before a hearing on NITRD. Committee on
Science and Technology, U.S. House of Representatives

63. Zhao C, Dong W, Wang J, Sui P, Qi Z (2009) Software active online
monitoring under anticipatory semantics (extended abstract).
In: Karsai [30] http://www.isis.vanderbilt.edu/workshops/smc-it-
2009-shm

123

Author's personal copy

http://mars.jpl.nasa.gov/msp98/news/news71.html
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm

	Software health management: a necessity for safety critical systems
	Abstract 
	1 Introduction
	2 Software and software-related problems
	2.1 Software problems in aircraft
	2.1.1 British Airways flight 027: error in Terrain Collision and Avoidance system
	2.1.2 Northwest flight 255: monitoring system disabled
	2.1.3 F-22 Raptors experience multiple computer crashes
	2.1.4 A380: exploded engine

	2.2 Software problems in satellites and spacecraft
	2.2.1 Mars Polar Lander: mission lost due to spurious sensor signals
	2.2.2 Mars rover Spirit
	2.2.3 LCROSS: excessive fuel burn

	2.3 Automotive industry
	2.4 Medical industry
	2.5 Security-related software problems

	3 Software health management as a new discipline
	3.1 Detecting problems with software sensors
	3.2 Diagnosis and disambiguation algorithms
	3.3 Prediction algorithms
	3.4 Mitigating the effects of an error

	4 SWHM is not IVHM
	5 SWHM and other techniques
	5.1 Remote software upgrade
	5.2 Automatic software reconfiguration
	5.3 Autonomic computing
	5.4 Fault-tolerant computing
	5.5 Runtime verification

	6 Key issues of SWHM
	6.1 Verification and validation
	6.1.1 Model V&V
	6.1.2 Code-level V&V

	6.2 Applied SWHM
	6.3 Current research in SWHM

	7 Conclusions
	Acknowledgments
	References


