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ABSTRACT 

The space shuttle main engine (SSME) is part of the 
Main Propnlsion System (MPS) which is an extremely 
complex system containing several sub-systems and 
components, each of which must work precisely in order 
to achieve a successful mission. A critical component 
under study is the flow control valve (FCV) which 
controls the pressure of the gaseous hydrogen between the 
SSME and the external fuel tank. The FCV has received 
added attention since a Space Shuttle Mission in 
November 2008, where it was discovered during the 
mission that an anomaly had occurred in one of the three 
FCV's. Subsequent inspection revealed that one FCV 
cracked during ascent. This type of fault is of high 
criticality because it can lead to potentially catastrophic 
gaseous hydrogen leakage. A supervised learning method 
known as Virtual Sensors (VS), and an unsupervised 
learning method known as the Inductive Monitoring 
System (IMS) were used to detect anomalies related to the 
FCV in the MPS. Both algorithms identify the time of the 
anomaly in a multi-dimensional time series of 
temperatures, pressures, and control signals related to the 
FCV. This discovery corroborates the results of the 
inspection and also reveals the time at which the anomaly 
likely occurred. The methods were applied to data 
obtained from the March 2009 launch of Space Shuttle 
Discovery to determine whether an anomaly occurred in 
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the same sub-system. According to our models, the FCV 
SUb-system showed nominal behavior during ascent. 

INTRODUCTION 

Anomaly detection in complex engineered systems is 
particularly challenging because, in general, these systems 
can operate as feedback-control systems and can behave in a 
highly non-linear fashion. The feedback-control systems pose 
a particular challenge because the control system is designed 
to compensate for a disturbance in the system. This 
compensation can mask the underlying disturbance unless an 
appropriate set ofsensors is in place. For our purposes 
herein, we assume that the data generating process under 
study has a set of sensors that are appropriately placed to 
discover useful anomalies. 

In the case of the Main Propulsion System ofthe Space 
Shuttle, we consider the data generating process to be those 
parts of the engine that are related to the flow control valve. 
After discussion with several experts, we were provided with 
thirteen parameters related to pressure, temperature, throttle, 
and the control signals to each FeV for each of the three 
SSMEs for over 80 flights of the Space Shuttle. The specific 
parameters provided include the SSME Main Combustion 
Chamber Pressure, the SSME Gaseous Hydrogen Outlet 
Pressure, and the SSME Gaseous Hydrogen Outlet 
Temperature. We were also given the Pressurization Disc 
Pressure and included in our analysis. Thus. at each time step 
we have a lO-dimensional multivariate time series for 
analysis I. The input parameters that were provided are the 
binary commands to the flow control valves on each engine 
and the outputs are continuous measurements. 

, For each of the three engines, we had two ~ £:ld me ~ sensors upstream 
of the FCVs plus one pressure sensor do...~~;f:llll! =:fold FCVs external tank 
interface. 
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There has been considerable research in the area of 
systems health management on the Space Shuttle Main 
Engine in the area of optical plume anomaly detection [1-3], 
anomaly detection [4], and prognostics [5]. There is also a 
vast literature on monitoring and condition-based 
maintenance ofaircraft and rotorcraft engines which is 
reviewed in [6]. This demonstrates the ability to detect 
anomalies in the MPS using a purely data-driven approach. 

This is organized as follows. We begin with a discussion 
ofthe propulsion sub-system and the anomaly which we are 
studying followed by a discussion ofthe rapid and resilient 
analysis methodology we followed. The subsequent section 
describes the anomaly detection algorithms we used along 
with an extensive compilation ofresults on real data sets. We 
conclude with a discussion ofnext steps in our fmal section. 

Fig. 1. This shows the GH2 

pressurization lines on the SSME and 

the direction of flow of the hydrogen. 


The flow control valves are located at positions 

LV-56, LV-57, and LV-58 in the system 


PROPULSION SUB-SYSTEM AND THE ANOMALY 

The flow control valve (FCV) is a component in the main 
propulsion system of the space shuttle. The main propulsion 
system consists of three Space Shuttle Main Engines 
(SSME), the orbiter MPS propellant management system 
(including the three Flow Control Valves) followed by the 
external tank, in order ofrepressurant flow. The MPS also 
contains the helium sub-system, four ascent thrust vector 
control units, and six SSME hydraulic servo-actuators [7]. 
The FCVs under study herein control the flow of gaseous 
hydrogen (GH2) from the main engines to the external fuel 
tank [8]. The FCVs are like binary switches, having an on 
and an off (high flowllow flow) positions to regulate the 
gaseous hydrogen. Typically, one FCV cycles about 15 times 
during normal operations. The position of the FCV in the 
larger MPS system is shown in Figure 1. These valves 
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regulate the flow of the GH2 to the External Fuel Tank 
maintaining the liquid H2 tank ullage pressure in a prescribed 
pressure band. 

As discussed in a NASA document on the matter [8], 
"During space shuttle Endeavour's STS-126 mission in 
November 2008, flight controllers identified that GH2 was 
flowing/rom one o/the shuttles engines at a higher than 
normal rate. To compensate, the other two gaseous hydrogen 
flow control valves reduced the amount 0/their flow and 
there were no issues during launch. After landing, the main 
propulsion system was inspected and engineers discovered 
the GHzflow control valve poppet on the suspect line was 
cracked and a small piece was missing. The poppet on the 
valve acts like a pop-up on a sprinkler to let the GHzflow. " 
Figure 2 shows the cracked Flow Control Valve with a 
section of the poppet shown liberated. This crack allowed 
additional GH2 through the valve and could have led to a 
potential safety issue because the broken material can 
penetrate the fuel lines or cause other issues downstream 
from the FCV. The purpose ofour research was to determine 
ifautomated algorithms could detect the failure and 
potentially identify a precursor to the failure on STS-126. In 
addition to that flight, we tested our methods across a large 
number ofprevious missions to see ifwe could detect similar 
anomalies in the FCV or related sub-systems. 

Fig. 2. The arrow indicates where the 

hreak occurred in the poppet of the 


Flow Control Valve on one of the SSMEs 

during the mission STS-126 of 


Space Shuttle Endeavor. The break resulted 

in increased flow of gaseous hydrogen but 


did not result in an issue during launch 


EXTREME PROGRAMMING MEETS DATA MINING 


The data mining analysis needed to be performed quickly 
and efficiently since the results would be used in support ofa 
Flight Readiness Review of the Space Shuttle Mission 
STS-119. We thus needed to adopt a methodology that would 
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minimize the errors that can arise during a rapid analysis 
environment while maximizing our ability to cross-check and 
differentiate the discovery of true anomalies from errors in 
data preparation, other artifacts, and sensor issues. 

Various software engineering methodologies have been 
developed to write robust code under a variety of 
circumstances, depending on the domain and the criticality of 
the system. One key methodology, known as Agile 
Programming, emphasizes the development ofsoftware with 
rapid prototyping and an emphasis on simplicity ofdesign. A 
particular methodology in the area of Agile Programming, is 
known as Extreme Programming [9]. We adapted some key 
ideas from Extreme Programming to help us rapidly generate 
meaningful results for the Shuttle Program Office which we 
outline below. 

Rather than giving an in-depth overview of the Extreme 
Programming methodology, we will give a summary ofkey 
points in the methodology and discuss how they were 
adapted to fit our needs. It is our hope that other teams 
interested in rapid design and deployment ofdata mining 
techniques will find this discussion beneficial. 

Extreme Programming can be divided in to the following 
four rules and practices [10]: 

• Planning 
During the planning stage ofthe activity, we 
discussed and developed several strategies for 
manipulating the data sets so that they could be 
represented as multivariate time series with 
evenly spaced sample points. Because the data 
setsfrom the SSME that we were given are 
sampled at non-uniform time intervals, they 
needed to be standardized into a single time 
frame for analysis. Two individuals in the team 
took responsibility to develop code 
independently to enable rapid verification and 
validation ofresults in the testing phase ofthe 
methodology. In this phase, we also discussed 
the algorithms that would be used in the 
analysis and their suitability for this type of 
data. A key point ofinterest was the ability of 
the algorithms to peiform anomaly detection for 
streams ofboth continuous and discrete signals. 
We also discussed a plan for iterating our work 
so that we would each be able to build upon 
another team's success once appropriate testing 
was completed. 

• Designing 
As in Extreme Programming, the design phase 
ofour projectfocused significantly on 
simplicity, both in terms ofalgorithm and code 
complexity, but also in terms ofthe 
interpretability ofresults. Some methods, such 
as One-Class Support Vector Machines [1 I] 
have been used in a variety ofsettings, but it can 

be difficult to interpret the reasons why an 
anomaly is tagged as such. Forflight-critical 
systems, this turns out to be as important as the 
discovery ofthe anomaly itself, since it can 
indicate a potential root-cause ofthe problem, 
thereby enabling a fault diagnosis and 
prognostic capability. We also developed spike 
solutions as described in [10] in order to study 
the data processing techniques that would be 
appropriatefor the non-uniform time sampled 
data. After several designs and subsequent unit 
tests, we concluded that the best methodto 
address the sampling issue would be to use a 
"sample-and-hold" interpolation method in 
which a given value in a time series is held until 
a new value is observed. This decision was 
based on the engineering design ofthe SSME, jn 
which all signals are assumed to be constant 
unless a change is recorded. We also refrained 
from adding fUnctionality to our code too early 
to reduce complexity and improve the success of 
our unit tests. 

• Coding 
Our anomaly detection algorithms have been 
tested by us and others over many years [4]. 
However, the appropriate parameter settings 
and the methods used for data pre-processing 
were critical for the success ofthis project. 
Thus, we communicated with the Shuttle 
Program Office and other representatives 
regularly in order to ensure that our work was 
consistent with their needs. As in Extreme 
Programming, we coded in pairs, although the 
partners did not sit together. Instead, code was 
developed simultaneously along with unit testing 
code in order to ensure that our results were 
consistent and reproducible. 

• Testing 
A key component ofthe Extreme Programming 
methodology is the testing phase. We adhered to 
these testing standards rigorously. All code was 
unit tested and passed unit tests before release 
to other team members. When we uncovered a 
bug in the software, we developed new tests and 
checked our work against those tests before 
releasing to other team members. This 
procedure helped us isolate errors in the code 
and also helped us understand and interpret the 
data we were given. The data sets covered 
nearly 100 flights ofthe 5 orbiters over a 20 
yearperiod with about 20 parameters in allper 
flight. This massive ~volume ofhighly complex 
engineering data necessitated a strong unit 
testing approach. In fact. it was this need that 
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Table 1. Sample IMS Data Vector 

ME-1 MCC ME-l MCC ME-3MCC MPSE1 MPSE2 MPSE3 MPSGH2 

Pres (Avg) Pres (Avg) Pres (Avg) GH;! Pres GH;! Pres GH2 Pres Pres Disc 
Outlet Pres Outlet Pres Outlet Pres Pres 

2660 2760 2750 2260 2440 2400 210 

drove us to adopt the Extreme Programming 
methodology which proved to suit our needs 
well. 

The methodology described above stands in sharp contrast 
to the waterfall development process given by Royce [12]. 
This development process moves sequentially from 
requirements to design, to implementation, to verification, 
and fmally, maintenance. It is clear that this process can be 
valuable for much larger activities, however, it is not suited 
for the iterative nature of the application of data mining 
techniques to real-world problems, particularly in situations 
where rapid results are required with high confidence. Other 
data mining methodologies, such as CRiSP-OM [13] allow 
for the iterative process ofdata mining but do not focus as 
much on unit-testing and the design and coding process. The 
methodology that we discuss herein does not depend on the 
nature of the algorithms used assuming that there is an 
iterative process for deployment and testing. As such, the 
multiple anomaly detection algorithms given below were 
chosen to verify and validate the results in parallel and are a 
set ofalgorithms that we deemed appropriate for this task. 
Other algorithms could be easily deployed in this 
methodology such as one class support vector machines [11]. 

The system architecture that we developed for this 
application consists ofa data layer followed by anomaly 
detection algorithms. These algorithms were run in parallel 
on many,ofthe tests we performed. The extreme 
programming framework discussed above was invaluable in 
ensuring that the algorithms and results co~d be easily 
verified and validated. 

ANOMALY DETECTION ALGORITHMS· 

The main idea discussed herein is to use automated 
algorithms to identify anomalies in time series that contain 
both continuous and binary data streams. We approach the 
problem using two methods that have been established in the 
literature: the Inductive Monitoring System [14] and Virtual 
Sensors [15, 16]. Pre-processing steps such as Principal 
Component Analysis (PCA) and Singular Value 
Decomposition (SVD) were not used due to the fact that the 
individual parameters become linearly combined into basis 
vectors, hindering the algorithms' ability to diagnose the 
parameter(s) that detected the fault. We also tested a third 

algorithm known as Orca [17] which gave similar results to 
IMS and do not present those results herein for the sake of 
brevity. There are numerous other anomaly detection 
schemes which could be tested on this data. However, the 
purpose of the study was to validate established methods on 
this system. 

Inductive Monitoring System 
The Inductive Monitoring System (IMS) is a 

distance-based anomaly detection tool that uses an 
unsupervised data-driven technique called clustering to 
extract models ofnominal system operation from archived 
data. The basic data structure used for distance-based 
analysis is a vector of concurrent parameter values seen in 
Table 1. For the FCV analysis, we formed vectors from a 
sub-set of$e continuous observed variables as specified in 
Table I. IMS treats vectors containing N normalized values 
as points in an N-dimensional vector space, using an 
appropriate metric to calculate distance between these points. 
The familiar Euclidean distance metric has proven effective 
in many applications, and was used in the FCV analysis. 
Z-Score normalization, scaling each parameter to zero mean 
and unit standard deviation, was applied to each FCV data 
value used in the IMS vectors. 

The underlying premise ofdistance-based anomaly 
detection is that anomalous data points will fall a significant 
distance away from typical, nominal data points. The IMS 
learning process uses a dynamic clustering algorithm to 
delimit areas of the vector space containing data points 
collected during normal system operation. These areas, called 
nominal operating regions, are defined by N-dimensional 
hyper-boxes specifying the upper and lower boundary value 
for each point contained in the region (see Table 2). IMS 
considers all data vectors that fall within these hyper-boxes 
as representative ofnormal system behavior, thus 
generalizing from examples of nominal behavior presented in 
the training data sets. The collection ofnominal operating 
regions representing the behavior of a given system as 
derived from a training data set is called an IMS knowledge 
base. 

To construct an IMS knowledge base, archived training 
data collected during normal system operation is formatted 
into input vectors. Typically, vector parameter values 
represent a single time slice of time series operations data. 
This was the case with the FCV analysis. Mean and standard 
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Table 2. Sample IMS Nominal Operadng Region 

ME-I MCC ME-2 MCC ME-3 MCC MPS El MPSE2 MPSE3 MPSGH2 

Pres (Avg) Pres (Avg) Pres (Avg) GH1 Pres GH2 Pres GH2 Pres Pres Disc 
Outlet Pres Outlet Pres Outlet Pres Pres 

lligh 2670 2762 2760 2287 2448 2412 217 
Low 2655 2748 2747 2255 2432 2397 209 

deviation values are calculated for each vector parameter in 
the training data set to use for Z-Score normalization. The 
input vectors are normalized and fed, in temporal sequence, 
to the IMS learning algorithm that constructs the nominal 
operating regions. The IMS leaming algorithm is provided in 
detail on our collaborative website known as dashlink 
<http://dashlink.arc.nasa.gov>. After processing all ofthe 
training data, the learning algorithm outputs a knowledge 
base containing multiple nominal operating regions which 
together contain all of the points presented in the training 
data. The number of nominal operating regions produced will 
depend on the nature of the training data and the leaming 
parameters used with the IMS routine. 

After an IMS knowledge base is constructed, it is used to 
analyze new data to determine if the new data exhibits 
behavior similar to system operations during collection of the 
nominal training data. For each new data vector processed, 
IMS outputs a scalar distance from nominal score, indicating 
how far that data vector falls from the closest nominal 
operating region cluster. A larger distance score indicates a 
more unusual, or anomalous, input vector as compared to the 
nominal data used to train IMS. Large distance scores often 
indicate a system failure or degradation. IMS also produces a 
measure of how far each individual parameter in the new 
vector falls from the closest cluster along its particular 
dimension. This can indicate which parameters have been 
affected by the system anomaly, and thus provide insight into 
which system components may be operating incorrectly. 

Virtual Sensors 
In contrast to Inductive Monitoring System's one-class 

modeling method described above, Virtual Sensors is a 
supervised algorithm in which the value of a specific 
parameter (or set ofparameters) is predicted given all data 
available up to that point in time. In the current application, 
we do not consider a forecasting model where the Virtual 
Sensor predicts events at times beyond the current time. Such 
forecasting methods have been discussed extensively in [18]. 

Thus, in the Virtual Sensors paradigm, we create a 
statistical estimator of a specific output variable as a function 
of other observed variables. We assume that we do not have a 
physical model that ties the output variable to the observed 
variables. Thus, we choose a non-parametric model to 
approximate the function. In the simplest form, the Virtual 

Sensor delivers a point estimate which can be compared with 
the observed signal to form an error signal: 

In the simplest case, this signal is monitored and 
an alarm is sounded ifthe error exceeds a 
pre-defined threshold which can be calculated 
using an assumed nominal data set. In the 
examples shown herein for a constant threshold, 
we computed the standard deviation ofthe error 
signal across an entire nominal flight and set the 
threshold equal to ± 3 standard deviations about 
zero to fall within a 99% confidence interval [l9] 
(see <http://dashlink.arc.nasa.gov> for more 
information regarding this method). 

In many data generating processes, such as the 55MB, 
there are different regimes of behavior which have transient 
characteristics that make adaptive modeling difficult. For 
example, in the 55MB, when the engine throttle changes, 
there can be a brief period (lasting from 1-10 seconds) of 
transients, where the system has not yet settled down to a 
quiescent point. Similarly, at start-up, there are transients that 
are difficult to model using adaptive methods. Such transients 
often generate error signals that exceed any fIXed threshold 
specified relative to and entire nominal flight, thereby 
increasing the false-alarm rate. 

In order to address these issues, we approached the 
problem by calculating multiple models from various samples 
and use the distribution of the estimates to produce an 
average estimate as well as an uncertainty level that can be 
used as a dynamic threshold. This is done by choosing to 
model the first and second moments of the probability 
distribution function so that the mean of the distribution gives 
the point estimate and the variance of the distribution gives 
the uncertainty in that estimate. We used a two-step approach 
to building the non-parametric model to obtain an estimate of 
the uncertainty in the prediction. The first step is to build a 
set ofbagged predictors from a sample of the training data as 
defined by Leo Breiman [20]. Using the base model ofa 
decision tree, we built an ensemble ofN point predictive trees 
(where N is 100) and estimated the mean and standard 
deviation for the error using standard formulae. 

The second step that is taken is to perform bootstrap 
sampling again across another sample of training data for the 
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Table 3. Summary IMS Scores for Endeavor 

STS-89 STS-88 STS-99 STS-97 STS-I00 STS·I08 STS-l11 STS-113 STS-118 STS-123 STS-126 

0.1514 2.8891 0.0663 0.1504 0.0530 0.0895 0.0293 0.0203 0.0341 0.0210 2.0173 

bagged predictors. This approach treats each bagged 
predictor as a single estimator (rather than an ensemble) and 
averages over 100 additional bootstrap samples. The fmal 
estimate of uncertainty is given by computing the average 
variance ofeach model and taking the square root to obtain a 
standard deviation. This yields an uncertainty measure across 
bagged predictors, and due to model averaging, is robust to 
small changes in the data generating process, noise, and other 
perturbations in the system. Using this approach, we are able 
to obtain an estimate of model uncertainty for each time. The 
adaptive threshold is set at 3 times the estimated model 
uncertainty. When the error signal exceeds this value, an 
anomaly event is recorded. The three sigma threshold is a 
standard measure of deviation from the mean assuming that 
the residuals are independent and identically distributed 
nOIDlal random variables. Using standard probability tables, 
this corresponds to representing over 99% of the expected 
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Fig. 3. This shows the output of IMS for 

ST8-U3 (top), which is known to be a nominal flight 


and STS-126 (bottom), which had the fimure. 

The horizontal line at 5 indleates a 3-sigma threshold 


calculated from ST8-123's IMS scores. The scores 

for both flights show transient etTects early in the 


launch sequence that subsequently drop to a low value 

once the flight has become stable. However, 


after approximately 93.6 seconds tn STS-126, 

IMS shows that an anomaly occurred and 


persisted through the remainder of the flight 


residuals. Higher multiples of the empirical standard 
deviation would increase the width of the detection threshold, 
thereby reducing the false positive rate but potentially hurting 
the true positive rate. These thresholds can be chosen based 
on the application. It is critical that the VS algorithm be 
trained on a wide variety of nominal data sets in order to 
obtain a representative estimate ofexpected variation from 
the mean. Indeed, this requirement is nearly universal for 
most data-driven methods. 

I so 
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I ;2: 
I 

S1"5-126 FCV Pressures IMS Analysis 

~ &0 
Q,.' Il 30 i'iO !<O 120 lS0 180 2102.4(l 

-ME'l MCC: 1'IM;t14>.o:o\ Time cSec) 

Fig. 4. This shows the contribution of 

each input variable to the IMS anomaly score. 


Notice that the MPS E2 GH2 Outlet Pressure sensor 

is the main driver of the anomaly score 


RESULTS 

We present tests of these methods on real data from the 
Space Shuttle Main Engine for the Inductive Monitoring 
System and Virtual Sensors with and without adaptive 
thresholds. These results corroborate and have been 
corroborated by inspections of the Flow Control Valves in 
the Space Shuttle Main Engine [8]. 

Results for the Inductive Monitoring System 
Table 4 shows the sensors used along with the training and 

testing flights that were analyzed using !MS. STS-123 was 
confirmed by domain experts to exhibit nominal behavior 
during flight and valve inspection, while STS-126was found 
to experience the faulty valve. In Figure 3, the IMS scores 
indicate a few short bursts ofanomalous behavior on 
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Fig. 5. This shows the IMS scores for STS-119. 

The dotted Hne is a threshold calculated from the 


IMS scores from STS-120. There does not 

appear to he any anomalous trends outside 


the early transient periods in the launch 


Table 4A. This shows the ffights used to build 

and test the models described herein 


Training FHghts Testing FHghts 

STS-89 STS-118 

STS-88 STS-123 

STS-99 STS-126 

STS-97 

STS-IOO 

STS-I08 

STS-Ill 

STS-113 

STS-123 during engine transient states due to throttle 
changes while the vehicle is traveling through max Q 
(approximately 25 to 56 seconds). After the transients 
subside the scores stabilize for the rest of the flight indicating 
normal behavior. Figure 3 also shows similar anomalous 
behavior on STS-126 during the transient period, although 
after stabilizing the scores rise again around 93.6 seconds and 
continue to hold high for the remainder of the flight. Upon 
further examination of the contributing sensors scores in 
Figure 4 the MPS E2 GH2 Outlet Pressure sensor appears to 
exhibit the same anomalous trend as well as being the 

principle contributor to the overall anomaly score. When 
examining the sensor traces identified by IMS a drop in 
pressure was observed at 93.6 seconds with no corresponding 
change in throttle or valve control command. Domain experts 
believe this behavior is indicative of the valve failure. IMS 
was also applied to telemetered data from the STS-119. For 
this analysis previous flights of Discovery were used for 
algorithm training (see Table 5). Figure 5 shows the IMS 
scores for STS-119 with a threshold calculated from a 
holdout flight. As before there are some anomalous trends 
during the transient phase offlight, however the remainder of 
the flight behaves nominally with minimal false alarms. 

To compare how anomalous the identified faulty flight 
was compared t6 other flights with the same valve 
configuration, IMS was applied to all 11 flights in a 
hold-one-out train apd test approach. In this approach each 
flight was allowed to cycle as the testing flight while using 
the IMS model learned from the remaining 10 flights. The 
mean IMS anomaly score was calculated for each flight to 
produce a summary IMS score that can be found in Table 3. 
As expected, STS-126 exhibited a significantly high IMS 

Table 4. 

Table 4B~ The left column shows identified sensors used 

for each algorithm. The right column denotes which 

algorithm was used with the corresponding sensor. 


Virtual Sensors used the sensor noted In bold* 

as the target. The Inductive Monitoring System 


does not have an output target, so all items identified as 

IMS were included as inputs 


Sensors Algorithm 

ME-I MCC Pressure (Avg) IMS, VS 

ME-2 MCC Pressure (Avg) IMS, VS 

ME-3 MCC Pressure (Avg) IMS, VS 

MPS GHz Pressurization Disc Press IMS, VS 

MPS EI GHzPress Outlet Press IMS 

MPS E2 GHzPress Outlet Press· IMS, VS 

MPS E3 GHl Press Outlet Press IMS 

MPS EI GH;: Press Outlet Temp VS 

MPS E2 GH1 Press Outlet Temp VS 

MPS E3 GHzPress Outlet Temp VS 

MPS GHz Press FCV I (L V56) a Pwr VS 

MPS GH;: Press FCV 2 (LV51) a Pwr VS 

MPS GH1 Press FCV 3 (LV58) CI Pwr VS 

SSME Throttle VS 
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Fig. 6. The output of the Virtual Sensors prediction 

error for STS-123 in the top panel and STS-126 


is shown the lower paneL STS-123 shows 

nominal behavior for the entire mission 

except for a transient early in the flight. 

STS-126 shows transient behavior in the 


early part of the flight but then at 93.6 seconds, 

it shows a persistent anomaly for the remainder 


of the flight. The results shown are for 

a fixed anomaly threshold 


summary score, however, STS-88 was found to have a higher 
anomaly score. Upon further examination of STS-88 the 
MPS E3 GH2 Outlet Pressure sensor was operating 
approximately 250 PSIA above the remaining flights normal 
pressure ranges. These findings were presented to the domain 
experts at KSC who identified this anomaly as one where 
S8ME 3 was running under a different engine configuration 
and was expected to be running at a higher chamber pressure. 
Even though this particular anomaly did not turn out to be 
significant, IMS demonstrated the ability to flag unusual 
behavior while also verifying nominal behavior with lower 
summary scores . 

. Virtual Sensors 
Table 4 shows the sensors used for both input and target as 

well as the training and testing flights that were analyzed 
with VS. The same set oftraining and testing flishts were 
used as in the IMS analysis, however additional temperature, 
valve commands, and throttle sensors were used as input. 
Figure 6 shows the V8 scores with the fixed 3-sigina 
threshold calculated from STS-123 and applied to 8T8-123 
and STS-126. Both flights exhibit threshold exceedances 
during transient periods, however they reach a stable state 
after 60 seconds. While STS-123 remains stable for the 
remainder of the flight, ST8-126 reveals a persistent anomaly 
beginning at 93.6 seconds and continuing on to the 
end-of-flight. Figure 7 demonstrates the adaptive threshold 
computed from the bagged models on STS-123. The transient 

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011 

CTT'O ···2'O"3"O·-''±'o'S'Cr··6'O····7'O ... g'o':io" 100 
Time (Seconds) 

Fig. 7. The Virtual Sensors algorithm with the adaptive 

threshold for the initial 100 seconds of the flights 


for STS-123 (top) and STS-126 (bottom). 

Threshold crossings are indicated by dark circles. 


The periods of high uncertainty correspond to 

the initial start-up phase and command throttle changes. 

The uncertainty estimates are discovered automatically 


in the algorithm. Note that the model uncertainty 

is high for three time segments in the flights 


resulting in the errors for both flights staying 

well within the bounds for these segments. 


However in STS-126, even with the adaptive threshold, 

the estimated error crosses the bounds at 93.6 seconds 


and persists for the remainder of the flight 


Fig. 8. This figure shows the full flight VS scores 

for STS-119. The estimate error stays 


well within the adaptive threshold bounds 

throughout the entire flight. 


Only a few false alarms are present 

during the transient periods 
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Table 5. This table shows the flights used to buDd and test 
the models for analysis of STS-119 

Training Flights Testing FUghts 

STS-S2 STS-120 

STS-85 STS-124 

STS-9l STS-1l9 

STS-95 

STS-96 

STS-I03 

STS-92 

STS-I02 

STS-I05 

STS-114 

STS-121 

STS-116 

periods are given higher thresholds due to higher variance 
across the assorted models. The advantages are that fewer 
false alarms are observed with this thresholding method and 
that a smoother signal is produced due to multi-model 
estimate averaging. Figure 7 also shows the same adaptive 
threshold method for STS-126. Again the transient periods 
are given higher thresholds and therefore only a few false 
alarms are reported. It is also important to note that the 
threshold continues to preserve the fault at 93.6 seconds on 
until the end. This technique was used to analyze STS-119 as 
well. Figure 8 shows the VS scores using the adaptive 
threshold method. Only a small set of threshold crossing can 
be observed, however the majority of the flight is 
well-behaved and within the threshold regime. 

CONCLUSIONS 

Herein we have discussed the analysis methodology and 
algorithms used for detecting anomalies in the Flow Control 
Valve in the Main Propulsion System of the Space Shuttle. 
The methodology is an adaptation of Extreme Programming, 
which offers a framework for rapid, robust, and repeatable 
development which was essential due to the rapid response 
required by our team. We presented the results oftwo key 
algorithms, the Inductive Monitoring System, and Virtual 
Sensors, and showed that these algorithms detected 
anomalies in data from the November 2008 launch of Space 
Shuttle Endeavor (STS-126). The Inductive Monitoring 
System provides a one-class modeling approach for anomaly 
detection by learning the past nominal behavior ofthe data 

generating process and then comparing the currently 
observed values against a library ofclusters ofnominal 
behavior. This algorithm identifies the anomaly and also 
sheds light on the source of the anomaly which was 
previously corroborated by independent physical inspection. 
The Virtual Sensors algorithm builds an internal predictive 
model of nominal behavior and compares the predictions 
with the actual values. Significantly large residuals are 
flagged as anomalies. We showed methods for calculating 
fixed and adaptive thresholds for the Virtual Sensors 
algorithm. The next steps in this research program include 
building models to enable prognostics on these systems. 
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