
Space Shuttle Main Propulsion System

Anomaly Detection:
A Case Study

Bryan L. Matthews, Ashok N. Srivastava,
David Iverson, Bob Beil & Bill Lane
National Air & Space Administration

ABSTRACT

The space shuttle main engine (SSME) is part of the
Main Propnlsion System (MPS) which is an extremely
complex system containing several sub-systems and
components, each of which must work precisely in order
to achieve a successful mission. A critical component
under study is the flow control valve (FCV) which
controls the pressure of the gaseous hydrogen between the
SSME and the external fuel tank. The FCV has received
added attention since a Space Shuttle Mission in
November 2008, where it was discovered during the
mission that an anomaly had occurred in one of the three
FCV's. Subsequent inspection revealed that one FCV
cracked during ascent. This type of fault is of high
criticality because it can lead to potentially catastrophic
gaseous hydrogen leakage. A supervised learning method
known as Virtual Sensors (VS), and an unsupervised
learning method known as the Inductive Monitoring
System (IMS) were used to detect anomalies related to the
FCV in the MPS. Both algorithms identify the time of the
anomaly in a multi-dimensional time series of
temperatures, pressures, and control signals related to the
FCV. This discovery corroborates the results of the
inspection and also reveals the time at which the anomaly
likely occurred. The methods were applied to data
obtained from the March 2009 launch of Space Shuttle
Discovery to determine whether an anomaly occurred in

Author's Current Address:
B.L. Matthews, A.N. Srivastavay, D. Iversonz, B. Beilx and B. Lane, SOT Inc., NASA
Ames Research Center Moffett Field, CA 94035, USA,

Manuscript received by January 12, 2011. Review was handled by M. DeSanctis.

0885/89851111 $26.00 © 20 II IEEE

the same sub-system. According to our models, the FCV
SUb-system showed nominal behavior during ascent.

INTRODUCTION

Anomaly detection in complex engineered systems is
particularly challenging because, in general, these systems
can operate as feedback-control systems and can behave in a
highly non-linear fashion. The feedback-control systems pose
a particular challenge because the control system is designed
to compensate for a disturbance in the system. This
compensation can mask the underlying disturbance unless an
appropriate set ofsensors is in place. For our purposes
herein, we assume that the data generating process under
study has a set of sensors that are appropriately placed to
discover useful anomalies.

In the case of the Main Propulsion System ofthe Space
Shuttle, we consider the data generating process to be those
parts of the engine that are related to the flow control valve.
After discussion with several experts, we were provided with
thirteen parameters related to pressure, temperature, throttle,
and the control signals to each FeV for each of the three
SSMEs for over 80 flights of the Space Shuttle. The specific
parameters provided include the SSME Main Combustion
Chamber Pressure, the SSME Gaseous Hydrogen Outlet
Pressure, and the SSME Gaseous Hydrogen Outlet
Temperature. We were also given the Pressurization Disc
Pressure and included in our analysis. Thus. at each time step
we have a lO-dimensional multivariate time series for
analysis I. The input parameters that were provided are the
binary commands to the flow control valves on each engine
and the outputs are continuous measurements.

, For each of the three engines, we had two ~ £:ld me ~ sensors upstream
of the FCVs plus one pressure sensor do...~~;f:llll! =:fold FCVs external tank
interface.

IEEE A&E SYSTEMS ~l-\GAZJ:'.;t, SEPTEMBER 2011 4

There has been considerable research in the area of
systems health management on the Space Shuttle Main
Engine in the area of optical plume anomaly detection [1-3],
anomaly detection [4], and prognostics [5]. There is also a
vast literature on monitoring and condition-based
maintenance ofaircraft and rotorcraft engines which is
reviewed in [6]. This demonstrates the ability to detect
anomalies in the MPS using a purely data-driven approach.

This is organized as follows. We begin with a discussion
ofthe propulsion sub-system and the anomaly which we are
studying followed by a discussion ofthe rapid and resilient
analysis methodology we followed. The subsequent section
describes the anomaly detection algorithms we used along
with an extensive compilation ofresults on real data sets. We
conclude with a discussion ofnext steps in our fmal section.

Fig. 1. This shows the GH2

pressurization lines on the SSME and

the direction of flow of the hydrogen.

The flow control valves are located at positions

LV-56, LV-57, and LV-58 in the system

PROPULSION SUB-SYSTEM AND THE ANOMALY

The flow control valve (FCV) is a component in the main
propulsion system of the space shuttle. The main propulsion
system consists of three Space Shuttle Main Engines
(SSME), the orbiter MPS propellant management system
(including the three Flow Control Valves) followed by the
external tank, in order ofrepressurant flow. The MPS also
contains the helium sub-system, four ascent thrust vector
control units, and six SSME hydraulic servo-actuators [7].
The FCVs under study herein control the flow of gaseous
hydrogen (GH2) from the main engines to the external fuel
tank [8]. The FCVs are like binary switches, having an on
and an off (high flowllow flow) positions to regulate the
gaseous hydrogen. Typically, one FCV cycles about 15 times
during normal operations. The position of the FCV in the
larger MPS system is shown in Figure 1. These valves

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011

regulate the flow of the GH2 to the External Fuel Tank
maintaining the liquid H2 tank ullage pressure in a prescribed
pressure band.

As discussed in a NASA document on the matter [8],
"During space shuttle Endeavour's STS-126 mission in
November 2008, flight controllers identified that GH2 was
flowing/rom one o/the shuttles engines at a higher than
normal rate. To compensate, the other two gaseous hydrogen
flow control valves reduced the amount 0/their flow and
there were no issues during launch. After landing, the main
propulsion system was inspected and engineers discovered
the GHzflow control valve poppet on the suspect line was
cracked and a small piece was missing. The poppet on the
valve acts like a pop-up on a sprinkler to let the GHzflow. "
Figure 2 shows the cracked Flow Control Valve with a
section of the poppet shown liberated. This crack allowed
additional GH2 through the valve and could have led to a
potential safety issue because the broken material can
penetrate the fuel lines or cause other issues downstream
from the FCV. The purpose ofour research was to determine
ifautomated algorithms could detect the failure and
potentially identify a precursor to the failure on STS-126. In
addition to that flight, we tested our methods across a large
number ofprevious missions to see ifwe could detect similar
anomalies in the FCV or related sub-systems.

Fig. 2. The arrow indicates where the

hreak occurred in the poppet of the

Flow Control Valve on one of the SSMEs

during the mission STS-126 of

Space Shuttle Endeavor. The break resulted

in increased flow of gaseous hydrogen but

did not result in an issue during launch

EXTREME PROGRAMMING MEETS DATA MINING

The data mining analysis needed to be performed quickly
and efficiently since the results would be used in support ofa
Flight Readiness Review of the Space Shuttle Mission
STS-119. We thus needed to adopt a methodology that would

5

minimize the errors that can arise during a rapid analysis
environment while maximizing our ability to cross-check and
differentiate the discovery of true anomalies from errors in
data preparation, other artifacts, and sensor issues.

Various software engineering methodologies have been
developed to write robust code under a variety of
circumstances, depending on the domain and the criticality of
the system. One key methodology, known as Agile
Programming, emphasizes the development ofsoftware with
rapid prototyping and an emphasis on simplicity ofdesign. A
particular methodology in the area of Agile Programming, is
known as Extreme Programming [9]. We adapted some key
ideas from Extreme Programming to help us rapidly generate
meaningful results for the Shuttle Program Office which we
outline below.

Rather than giving an in-depth overview of the Extreme
Programming methodology, we will give a summary ofkey
points in the methodology and discuss how they were
adapted to fit our needs. It is our hope that other teams
interested in rapid design and deployment ofdata mining
techniques will find this discussion beneficial.

Extreme Programming can be divided in to the following
four rules and practices [10]:

• Planning
During the planning stage ofthe activity, we
discussed and developed several strategies for
manipulating the data sets so that they could be
represented as multivariate time series with
evenly spaced sample points. Because the data
setsfrom the SSME that we were given are
sampled at non-uniform time intervals, they
needed to be standardized into a single time
frame for analysis. Two individuals in the team
took responsibility to develop code
independently to enable rapid verification and
validation ofresults in the testing phase ofthe
methodology. In this phase, we also discussed
the algorithms that would be used in the
analysis and their suitability for this type of
data. A key point ofinterest was the ability of
the algorithms to peiform anomaly detection for
streams ofboth continuous and discrete signals.
We also discussed a plan for iterating our work
so that we would each be able to build upon
another team's success once appropriate testing
was completed.

• Designing
As in Extreme Programming, the design phase
ofour projectfocused significantly on
simplicity, both in terms ofalgorithm and code
complexity, but also in terms ofthe
interpretability ofresults. Some methods, such
as One-Class Support Vector Machines [1 I]
have been used in a variety ofsettings, but it can

be difficult to interpret the reasons why an
anomaly is tagged as such. Forflight-critical
systems, this turns out to be as important as the
discovery ofthe anomaly itself, since it can
indicate a potential root-cause ofthe problem,
thereby enabling a fault diagnosis and
prognostic capability. We also developed spike
solutions as described in [10] in order to study
the data processing techniques that would be
appropriatefor the non-uniform time sampled
data. After several designs and subsequent unit
tests, we concluded that the best methodto
address the sampling issue would be to use a
"sample-and-hold" interpolation method in
which a given value in a time series is held until
a new value is observed. This decision was
based on the engineering design ofthe SSME, jn
which all signals are assumed to be constant
unless a change is recorded. We also refrained
from adding fUnctionality to our code too early
to reduce complexity and improve the success of
our unit tests.

• Coding
Our anomaly detection algorithms have been
tested by us and others over many years [4].
However, the appropriate parameter settings
and the methods used for data pre-processing
were critical for the success ofthis project.
Thus, we communicated with the Shuttle
Program Office and other representatives
regularly in order to ensure that our work was
consistent with their needs. As in Extreme
Programming, we coded in pairs, although the
partners did not sit together. Instead, code was
developed simultaneously along with unit testing
code in order to ensure that our results were
consistent and reproducible.

• Testing
A key component ofthe Extreme Programming
methodology is the testing phase. We adhered to
these testing standards rigorously. All code was
unit tested and passed unit tests before release
to other team members. When we uncovered a
bug in the software, we developed new tests and
checked our work against those tests before
releasing to other team members. This
procedure helped us isolate errors in the code
and also helped us understand and interpret the
data we were given. The data sets covered
nearly 100 flights ofthe 5 orbiters over a 20
yearperiod with about 20 parameters in allper
flight. This massive ~volume ofhighly complex
engineering data necessitated a strong unit
testing approach. In fact. it was this need that

IEEE ~-Y:E SYSIEM:S MAGAZINE, SEPTEMBER 2011 6

Table 1. Sample IMS Data Vector

ME-1 MCC ME-l MCC ME-3MCC MPSE1 MPSE2 MPSE3 MPSGH2

Pres (Avg) Pres (Avg) Pres (Avg) GH;! Pres GH;! Pres GH2 Pres Pres Disc
Outlet Pres Outlet Pres Outlet Pres Pres

2660 2760 2750 2260 2440 2400 210

drove us to adopt the Extreme Programming
methodology which proved to suit our needs
well.

The methodology described above stands in sharp contrast
to the waterfall development process given by Royce [12].
This development process moves sequentially from
requirements to design, to implementation, to verification,
and fmally, maintenance. It is clear that this process can be
valuable for much larger activities, however, it is not suited
for the iterative nature of the application of data mining
techniques to real-world problems, particularly in situations
where rapid results are required with high confidence. Other
data mining methodologies, such as CRiSP-OM [13] allow
for the iterative process ofdata mining but do not focus as
much on unit-testing and the design and coding process. The
methodology that we discuss herein does not depend on the
nature of the algorithms used assuming that there is an
iterative process for deployment and testing. As such, the
multiple anomaly detection algorithms given below were
chosen to verify and validate the results in parallel and are a
set ofalgorithms that we deemed appropriate for this task.
Other algorithms could be easily deployed in this
methodology such as one class support vector machines [11].

The system architecture that we developed for this
application consists ofa data layer followed by anomaly
detection algorithms. These algorithms were run in parallel
on many,ofthe tests we performed. The extreme
programming framework discussed above was invaluable in
ensuring that the algorithms and results co~d be easily
verified and validated.

ANOMALY DETECTION ALGORITHMS·

The main idea discussed herein is to use automated
algorithms to identify anomalies in time series that contain
both continuous and binary data streams. We approach the
problem using two methods that have been established in the
literature: the Inductive Monitoring System [14] and Virtual
Sensors [15, 16]. Pre-processing steps such as Principal
Component Analysis (PCA) and Singular Value
Decomposition (SVD) were not used due to the fact that the
individual parameters become linearly combined into basis
vectors, hindering the algorithms' ability to diagnose the
parameter(s) that detected the fault. We also tested a third

algorithm known as Orca [17] which gave similar results to
IMS and do not present those results herein for the sake of
brevity. There are numerous other anomaly detection
schemes which could be tested on this data. However, the
purpose of the study was to validate established methods on
this system.

Inductive Monitoring System
The Inductive Monitoring System (IMS) is a

distance-based anomaly detection tool that uses an
unsupervised data-driven technique called clustering to
extract models ofnominal system operation from archived
data. The basic data structure used for distance-based
analysis is a vector of concurrent parameter values seen in
Table 1. For the FCV analysis, we formed vectors from a
sub-set of$e continuous observed variables as specified in
Table I. IMS treats vectors containing N normalized values
as points in an N-dimensional vector space, using an
appropriate metric to calculate distance between these points.
The familiar Euclidean distance metric has proven effective
in many applications, and was used in the FCV analysis.
Z-Score normalization, scaling each parameter to zero mean
and unit standard deviation, was applied to each FCV data
value used in the IMS vectors.

The underlying premise ofdistance-based anomaly
detection is that anomalous data points will fall a significant
distance away from typical, nominal data points. The IMS
learning process uses a dynamic clustering algorithm to
delimit areas of the vector space containing data points
collected during normal system operation. These areas, called
nominal operating regions, are defined by N-dimensional
hyper-boxes specifying the upper and lower boundary value
for each point contained in the region (see Table 2). IMS
considers all data vectors that fall within these hyper-boxes
as representative ofnormal system behavior, thus
generalizing from examples of nominal behavior presented in
the training data sets. The collection ofnominal operating
regions representing the behavior of a given system as
derived from a training data set is called an IMS knowledge
base.

To construct an IMS knowledge base, archived training
data collected during normal system operation is formatted
into input vectors. Typically, vector parameter values
represent a single time slice of time series operations data.
This was the case with the FCV analysis. Mean and standard

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011 7

Table 2. Sample IMS Nominal Operadng Region

ME-I MCC ME-2 MCC ME-3 MCC MPS El MPSE2 MPSE3 MPSGH2

Pres (Avg) Pres (Avg) Pres (Avg) GH1 Pres GH2 Pres GH2 Pres Pres Disc
Outlet Pres Outlet Pres Outlet Pres Pres

lligh 2670 2762 2760 2287 2448 2412 217
Low 2655 2748 2747 2255 2432 2397 209

deviation values are calculated for each vector parameter in
the training data set to use for Z-Score normalization. The
input vectors are normalized and fed, in temporal sequence,
to the IMS learning algorithm that constructs the nominal
operating regions. The IMS leaming algorithm is provided in
detail on our collaborative website known as dashlink
<http://dashlink.arc.nasa.gov>. After processing all ofthe
training data, the learning algorithm outputs a knowledge
base containing multiple nominal operating regions which
together contain all of the points presented in the training
data. The number of nominal operating regions produced will
depend on the nature of the training data and the leaming
parameters used with the IMS routine.

After an IMS knowledge base is constructed, it is used to
analyze new data to determine if the new data exhibits
behavior similar to system operations during collection of the
nominal training data. For each new data vector processed,
IMS outputs a scalar distance from nominal score, indicating
how far that data vector falls from the closest nominal
operating region cluster. A larger distance score indicates a
more unusual, or anomalous, input vector as compared to the
nominal data used to train IMS. Large distance scores often
indicate a system failure or degradation. IMS also produces a
measure of how far each individual parameter in the new
vector falls from the closest cluster along its particular
dimension. This can indicate which parameters have been
affected by the system anomaly, and thus provide insight into
which system components may be operating incorrectly.

Virtual Sensors
In contrast to Inductive Monitoring System's one-class

modeling method described above, Virtual Sensors is a
supervised algorithm in which the value of a specific
parameter (or set ofparameters) is predicted given all data
available up to that point in time. In the current application,
we do not consider a forecasting model where the Virtual
Sensor predicts events at times beyond the current time. Such
forecasting methods have been discussed extensively in [18].

Thus, in the Virtual Sensors paradigm, we create a
statistical estimator of a specific output variable as a function
of other observed variables. We assume that we do not have a
physical model that ties the output variable to the observed
variables. Thus, we choose a non-parametric model to
approximate the function. In the simplest form, the Virtual

Sensor delivers a point estimate which can be compared with
the observed signal to form an error signal:

In the simplest case, this signal is monitored and
an alarm is sounded ifthe error exceeds a
pre-defined threshold which can be calculated
using an assumed nominal data set. In the
examples shown herein for a constant threshold,
we computed the standard deviation ofthe error
signal across an entire nominal flight and set the
threshold equal to ± 3 standard deviations about
zero to fall within a 99% confidence interval [l9]
(see <http://dashlink.arc.nasa.gov> for more
information regarding this method).

In many data generating processes, such as the 55MB,
there are different regimes of behavior which have transient
characteristics that make adaptive modeling difficult. For
example, in the 55MB, when the engine throttle changes,
there can be a brief period (lasting from 1-10 seconds) of
transients, where the system has not yet settled down to a
quiescent point. Similarly, at start-up, there are transients that
are difficult to model using adaptive methods. Such transients
often generate error signals that exceed any fIXed threshold
specified relative to and entire nominal flight, thereby
increasing the false-alarm rate.

In order to address these issues, we approached the
problem by calculating multiple models from various samples
and use the distribution of the estimates to produce an
average estimate as well as an uncertainty level that can be
used as a dynamic threshold. This is done by choosing to
model the first and second moments of the probability
distribution function so that the mean of the distribution gives
the point estimate and the variance of the distribution gives
the uncertainty in that estimate. We used a two-step approach
to building the non-parametric model to obtain an estimate of
the uncertainty in the prediction. The first step is to build a
set ofbagged predictors from a sample of the training data as
defined by Leo Breiman [20]. Using the base model ofa
decision tree, we built an ensemble ofN point predictive trees
(where N is 100) and estimated the mean and standard
deviation for the error using standard formulae.

The second step that is taken is to perform bootstrap
sampling again across another sample of training data for the

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011

http:http://dashlink.arc.nasa.gov
http:http://dashlink.arc.nasa.gov

Table 3. Summary IMS Scores for Endeavor

STS-89 STS-88 STS-99 STS-97 STS-I00 STS·I08 STS-l11 STS-113 STS-118 STS-123 STS-126

0.1514 2.8891 0.0663 0.1504 0.0530 0.0895 0.0293 0.0203 0.0341 0.0210 2.0173

bagged predictors. This approach treats each bagged
predictor as a single estimator (rather than an ensemble) and
averages over 100 additional bootstrap samples. The fmal
estimate of uncertainty is given by computing the average
variance ofeach model and taking the square root to obtain a
standard deviation. This yields an uncertainty measure across
bagged predictors, and due to model averaging, is robust to
small changes in the data generating process, noise, and other
perturbations in the system. Using this approach, we are able
to obtain an estimate of model uncertainty for each time. The
adaptive threshold is set at 3 times the estimated model
uncertainty. When the error signal exceeds this value, an
anomaly event is recorded. The three sigma threshold is a
standard measure of deviation from the mean assuming that
the residuals are independent and identically distributed
nOIDlal random variables. Using standard probability tables,
this corresponds to representing over 99% of the expected

iii
c:
E
" z
IS .g
~
c:

t!
0

'" ~

'" c:
'5
" z
E ,g
1:
c:

~
0

~

30

25

20
15
10

5

30

25
20
IS
10

5

STS-123

30 60 90 120150180210240270300

Time (Sec)

STS-126

Time (Sec)

Fig. 3. This shows the output of IMS for

ST8-U3 (top), which is known to be a nominal flight

and STS-126 (bottom), which had the fimure.

The horizontal line at 5 indleates a 3-sigma threshold

calculated from ST8-123's IMS scores. The scores

for both flights show transient etTects early in the

launch sequence that subsequently drop to a low value

once the flight has become stable. However,

after approximately 93.6 seconds tn STS-126,

IMS shows that an anomaly occurred and

persisted through the remainder of the flight

residuals. Higher multiples of the empirical standard
deviation would increase the width of the detection threshold,
thereby reducing the false positive rate but potentially hurting
the true positive rate. These thresholds can be chosen based
on the application. It is critical that the VS algorithm be
trained on a wide variety of nominal data sets in order to
obtain a representative estimate ofexpected variation from
the mean. Indeed, this requirement is nearly universal for
most data-driven methods.

I so

S?!<

I ;2:
I

S1"5-126 FCV Pressures IMS Analysis

~ &0
Q,.' Il 30 i'iO !<O 120 lS0 180 2102.4(l

-ME'l MCC: 1'IM;t14>.o:o\ Time cSec)

Fig. 4. This shows the contribution of

each input variable to the IMS anomaly score.

Notice that the MPS E2 GH2 Outlet Pressure sensor

is the main driver of the anomaly score

RESULTS

We present tests of these methods on real data from the
Space Shuttle Main Engine for the Inductive Monitoring
System and Virtual Sensors with and without adaptive
thresholds. These results corroborate and have been
corroborated by inspections of the Flow Control Valves in
the Space Shuttle Main Engine [8].

Results for the Inductive Monitoring System
Table 4 shows the sensors used along with the training and

testing flights that were analyzed using !MS. STS-123 was
confirmed by domain experts to exhibit nominal behavior
during flight and valve inspection, while STS-126was found
to experience the faulty valve. In Figure 3, the IMS scores
indicate a few short bursts ofanomalous behavior on

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011 9

Q)
~
o
u
Ul

Fig. 5. This shows the IMS scores for STS-119.

The dotted Hne is a threshold calculated from the

IMS scores from STS-120. There does not

appear to he any anomalous trends outside

the early transient periods in the launch

Table 4A. This shows the ffights used to build

and test the models described herein

Training FHghts Testing FHghts

STS-89 STS-118

STS-88 STS-123

STS-99 STS-126

STS-97

STS-IOO

STS-I08

STS-Ill

STS-113

STS-123 during engine transient states due to throttle
changes while the vehicle is traveling through max Q
(approximately 25 to 56 seconds). After the transients
subside the scores stabilize for the rest of the flight indicating
normal behavior. Figure 3 also shows similar anomalous
behavior on STS-126 during the transient period, although
after stabilizing the scores rise again around 93.6 seconds and
continue to hold high for the remainder of the flight. Upon
further examination of the contributing sensors scores in
Figure 4 the MPS E2 GH2 Outlet Pressure sensor appears to
exhibit the same anomalous trend as well as being the

principle contributor to the overall anomaly score. When
examining the sensor traces identified by IMS a drop in
pressure was observed at 93.6 seconds with no corresponding
change in throttle or valve control command. Domain experts
believe this behavior is indicative of the valve failure. IMS
was also applied to telemetered data from the STS-119. For
this analysis previous flights of Discovery were used for
algorithm training (see Table 5). Figure 5 shows the IMS
scores for STS-119 with a threshold calculated from a
holdout flight. As before there are some anomalous trends
during the transient phase offlight, however the remainder of
the flight behaves nominally with minimal false alarms.

To compare how anomalous the identified faulty flight
was compared t6 other flights with the same valve
configuration, IMS was applied to all 11 flights in a
hold-one-out train apd test approach. In this approach each
flight was allowed to cycle as the testing flight while using
the IMS model learned from the remaining 10 flights. The
mean IMS anomaly score was calculated for each flight to
produce a summary IMS score that can be found in Table 3.
As expected, STS-126 exhibited a significantly high IMS

Table 4.

Table 4B~ The left column shows identified sensors used

for each algorithm. The right column denotes which

algorithm was used with the corresponding sensor.

Virtual Sensors used the sensor noted In bold*

as the target. The Inductive Monitoring System

does not have an output target, so all items identified as

IMS were included as inputs

Sensors Algorithm

ME-I MCC Pressure (Avg) IMS, VS

ME-2 MCC Pressure (Avg) IMS, VS

ME-3 MCC Pressure (Avg) IMS, VS

MPS GHz Pressurization Disc Press IMS, VS

MPS EI GHzPress Outlet Press IMS

MPS E2 GHzPress Outlet Press· IMS, VS

MPS E3 GHl Press Outlet Press IMS

MPS EI GH;: Press Outlet Temp VS

MPS E2 GH1 Press Outlet Temp VS

MPS E3 GHzPress Outlet Temp VS

MPS GHz Press FCV I (L V56) a Pwr VS

MPS GH;: Press FCV 2 (LV51) a Pwr VS

MPS GH1 Press FCV 3 (LV58) CI Pwr VS

SSME Throttle VS

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011 10

"rr"_......"........... _,
~-..~~~-- .. Ti~~O~(~~~~?~J~)40U~·····5~

Fig. 6. The output of the Virtual Sensors prediction

error for STS-123 in the top panel and STS-126

is shown the lower paneL STS-123 shows

nominal behavior for the entire mission

except for a transient early in the flight.

STS-126 shows transient behavior in the

early part of the flight but then at 93.6 seconds,

it shows a persistent anomaly for the remainder

of the flight. The results shown are for

a fixed anomaly threshold

summary score, however, STS-88 was found to have a higher
anomaly score. Upon further examination of STS-88 the
MPS E3 GH2 Outlet Pressure sensor was operating
approximately 250 PSIA above the remaining flights normal
pressure ranges. These findings were presented to the domain
experts at KSC who identified this anomaly as one where
S8ME 3 was running under a different engine configuration
and was expected to be running at a higher chamber pressure.
Even though this particular anomaly did not turn out to be
significant, IMS demonstrated the ability to flag unusual
behavior while also verifying nominal behavior with lower
summary scores .

. Virtual Sensors
Table 4 shows the sensors used for both input and target as

well as the training and testing flights that were analyzed
with VS. The same set oftraining and testing flishts were
used as in the IMS analysis, however additional temperature,
valve commands, and throttle sensors were used as input.
Figure 6 shows the V8 scores with the fixed 3-sigina
threshold calculated from STS-123 and applied to 8T8-123
and STS-126. Both flights exhibit threshold exceedances
during transient periods, however they reach a stable state
after 60 seconds. While STS-123 remains stable for the
remainder of the flight, ST8-126 reveals a persistent anomaly
beginning at 93.6 seconds and continuing on to the
end-of-flight. Figure 7 demonstrates the adaptive threshold
computed from the bagged models on STS-123. The transient

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011

CTT'O ···2'O"3"O·-''±'o'S'Cr··6'O····7'O ... g'o':io" 100
Time (Seconds)

Fig. 7. The Virtual Sensors algorithm with the adaptive

threshold for the initial 100 seconds of the flights

for STS-123 (top) and STS-126 (bottom).

Threshold crossings are indicated by dark circles.

The periods of high uncertainty correspond to

the initial start-up phase and command throttle changes.

The uncertainty estimates are discovered automatically

in the algorithm. Note that the model uncertainty

is high for three time segments in the flights

resulting in the errors for both flights staying

well within the bounds for these segments.

However in STS-126, even with the adaptive threshold,

the estimated error crosses the bounds at 93.6 seconds

and persists for the remainder of the flight

Fig. 8. This figure shows the full flight VS scores

for STS-119. The estimate error stays

well within the adaptive threshold bounds

throughout the entire flight.

Only a few false alarms are present

during the transient periods

11

Table 5. This table shows the flights used to buDd and test
the models for analysis of STS-119

Training Flights Testing FUghts

STS-S2 STS-120

STS-85 STS-124

STS-9l STS-1l9

STS-95

STS-96

STS-I03

STS-92

STS-I02

STS-I05

STS-114

STS-121

STS-116

periods are given higher thresholds due to higher variance
across the assorted models. The advantages are that fewer
false alarms are observed with this thresholding method and
that a smoother signal is produced due to multi-model
estimate averaging. Figure 7 also shows the same adaptive
threshold method for STS-126. Again the transient periods
are given higher thresholds and therefore only a few false
alarms are reported. It is also important to note that the
threshold continues to preserve the fault at 93.6 seconds on
until the end. This technique was used to analyze STS-119 as
well. Figure 8 shows the VS scores using the adaptive
threshold method. Only a small set of threshold crossing can
be observed, however the majority of the flight is
well-behaved and within the threshold regime.

CONCLUSIONS

Herein we have discussed the analysis methodology and
algorithms used for detecting anomalies in the Flow Control
Valve in the Main Propulsion System of the Space Shuttle.
The methodology is an adaptation of Extreme Programming,
which offers a framework for rapid, robust, and repeatable
development which was essential due to the rapid response
required by our team. We presented the results oftwo key
algorithms, the Inductive Monitoring System, and Virtual
Sensors, and showed that these algorithms detected
anomalies in data from the November 2008 launch of Space
Shuttle Endeavor (STS-126). The Inductive Monitoring
System provides a one-class modeling approach for anomaly
detection by learning the past nominal behavior ofthe data

generating process and then comparing the currently
observed values against a library ofclusters ofnominal
behavior. This algorithm identifies the anomaly and also
sheds light on the source of the anomaly which was
previously corroborated by independent physical inspection.
The Virtual Sensors algorithm builds an internal predictive
model of nominal behavior and compares the predictions
with the actual values. Significantly large residuals are
flagged as anomalies. We showed methods for calculating
fixed and adaptive thresholds for the Virtual Sensors
algorithm. The next steps in this research program include
building models to enable prognostics on these systems.

ACKNOWLtDGMENTS

This research was supported by the Integrated Vehicle
Health Management Project in the NASA Aviation Safety
Program and the NASA Engineering and Safety Cen~er
(NESC). The authors thank Melissa Levy for providing the
pre-processed data.

REFERENCES

[I] A.N. Srivastava and W. Buntine,
Predicting engine parameters using the optical spectrum ofthe
space shuttle main engine exhaust plume,

AIM Conference Proceedings, 1995.

[2] D.A. Benzing and K.W. Whitaker,
Approach to space shuttle main engine health monitoring using
plume spectra,

Journal ofSpacecra/t and Rockets,
Vol. 35, No.6, pp. 830-836, 1998.

[3] G.D. Tejwani. D.S. van Dyke, F.E. Bircher and D.J. Chenevert,
Emission spectra of selected ssme elements and materials,

1992, Technical Report:NASA-RP-1286,
Document ID: 0133990.

[4] M. Schwabacher,
Machine learning for rocket propulsion health monitoring,

SAE Transactions, Vol. 114, No. 1,2005.

[5]-,

A survey ofdata-driven prognostics,

Proceedings ofthe AlAA Infotech, 2005.

[6] I. Tumer and A. Bajwa,

A survey of aircraft engine health monitoring systems,

Proceedings ofthe AIAA, 1999.

[7] Shuttle reference manual,
NASA,

<http:{/spaceflight.na.sa.gov'shuttle/reference/>, 1988.

[8] Gaseous hydrogen flow control "alves.
NASA,

<www.nasa.govipdf?313985main Flow_Valve _Fact.pdf.>,
2009.

IEEE A&E SYS'TEMS MAGAZINE, SEPTEMBER 201 1 12

www.nasa.govipdf?313985main
http:{/spaceflight.na.sa.gov'shuttle/reference

[9] A.A.R. Ieffries and C. Hendrickson,
Extreme Programming~I1IStalled,

Addison-Wesley, 2001.

[10] D. Wells,
Extreme programming: A gentle introduction,

<www.extremeprogramming.org>, 2006.

[11] B. ScMlkop£; I.C. Platt. I.C. Shawe-Taylor, A.I. Smola
and R.C.WiIliamson.
Estimating the support of a high-dimensional distribution.

Neural Comput., Vol. 13, No.7, pp. 1443-1471,2001.

[12] W. Royce,
Managing the development oflarge software systems,

Proceedings ofthe IEEE WESCON, 1970.

[13] Cross industry standard process for data mining,
<www.crisp.dm.org>. 2009.

[14] D.L. Iverson,
Inductive system health monitoring,

Proceedings ofthe 2004 International Conference on

ArtifiCial Intelligence (IC-AI'04),

CSREA Press, Las Vegas, NY, 2004.

[15] A.N. Srivastava, N.C. Oza and I. Strueve,
Virtual sensors: Using data mining techniques to efficiently
estimate remote sensing spectra,

IEEE TrallSactWns on Geoscience and Remote Sensing,
Vol. 43, No.3, 2005.

[16] M.J. Way and A.N. Srivastava,
Novel methods for predicting photometric redshifts from broad
band photometry using virtual sensors,

Submitted to Astrophysical Journal, 2006.

[17] S.D. Bay and M. Schwabacher,
Mining distance-based outliers in near linear time with
randomization and a simple pruning rule.

Proceedings ofThe Ninth ACMSIGKDD International
Conference on Knowledge Discovery and
Data Mining, 2003.

[18] A.N. Srivastava and S. Das,
Detection and pr!)gllostics on low dimensional systems,

IEEE Transactions on Systems Man and Cybernetics,
Part C, Vol. 39, No.1. 2009.

[19] M. Abramowitz and LA. Stegun,
Handbook ofMathematical Functions with Formulas, Graphs,
and Mathematical Tables,

Dover Publications, 1972.

[20) L. Breiman,
Bagging predictors,

Machine Learning, Vol. 24, No.2, pp. 123-140, 1996,
[Online). Available: <citeseer.ist.psu.edulbreiman
96bagging.html>. A

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2011

http:www.crisp.dm.org
http:www.extremeprogramming.org

