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16.1 Introduct ion

Composite materials are high-performance engineering materials increasingly used
by the aerospace industry in part because of their high strength-to-weight ratios. Fa-
tigue damage represents one of the most important sources of concern for in-service
performance, which has led to growing research interest in industry and academia.
Influenced by a long-standing understanding of the principles of metal fatigue, the
initial treatment for fatiguebehavior in compositeswassimilar to metallic structures
[1], and asaconsequence, numerousmodelswere formulated asextensionsof metal
fatigue theories [2]. However, unlike metals, fatigue damage in composites com-
prises multiple simultaneous internal fracture mechanisms such as matrix micro-
cracks, delamination, fiber breakage, etc., that ultimately lead to significant
changes in the macroscale mechanical properties of the material over its lifespan
[3,4]. Thismultivariatedamageprocess leads to uncertainty in assessment of current
and futurematerial properties. Thisstemsin part from thematerial heterogeneity and
an incomplete knowledge about the physics behind the evolution and interaction of
damage mechanisms. Fatigue damage predictions using deterministic models in
absence of any ground truth information about the current degradation state are
not expected to provide much accurate information about the state of health of the
material.

However, real-time measurements of the structural performance are now possible
through state-of-the-art structural health monitoring (SHM) techniques, and a large
amount of responsedatacan bereadily acquired and further analyzed to assessvarious
health-related properties of structures. Therefore, a more suitable approach for fatigue
damageprediction isthrough theuseof monitored responseof thestructureto updatea
given damage model so as to make more accurate predictions that also account for
uncertainty. Development of such SHM-based damage prognostics approach is the
core objective of this chapter.
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Damage prognostics is concerned with predicting the future health state of engi-
neering systems or components given current degree of wear or damage, and, based
on that, estimating the remaining time beyond which the system is expected not to
perform its intended function within desired specifications. This estimated remaining
time is referred to as the remaining useful life (RUL). Algorithms that estimate RUL
makeuseof the information coming from damagemodelsand SHM data to propagate
the estimated health state into the future and as output provide an estimate of time
where the component no longer meets its desired functionality.

Over the last years the topic of fatigue damage prognostics has slowly gained
interest [5e 9] although the focus has been predominantly on fatigue crack growth
in metals. In this chapter amodel-based prognostics framework is proposed to predict
a sequence of damage states of composite laminates subjected to fatigue loading.
Damage states as well as model parameters of the underlying damage model are
sequentially updated and predicted based on available SHM data. The proposed
methodology is implemented and demonstrated using data for microcrack density
and stiffness reduction in carbon fiber reinforced plastic (CFRP) cross-ply laminates
from run-to-failure tensione tension fatigue experiments.

16.2 Fundamentals

Prognostics aims at determining the end of life (EOL) and RUL of components or
systems given the information about the current degree of wear or damage, the
component’s load history, and the anticipated future load and environmental condi-
tions. In prognostics theEOL isdefined as the limiting timewhen an asset isexpected
to depart from theserviceability conditions. RUL is theperiod of remaining timefrom
the current time (or time of prediction) until estimated EOL.

Prognosticscanbeseenasanatural extensionof SHM inthesensethat thepredictions
of RUL and EOL are frequently updated using datafrom asensing system. It is rather a
sequential processof updatee predicte reassesswheretheuser isnot only concernedwith
detecting, isolating, and sizing a fault mode, but also with (1) predicting the remaining
time before the failure occurs, and (2) quantifying the uncertainty in the prediction,
that can be further used for risk assessment and rational decision-making. Henceforth,
prognostics requires periodic SHM measurements to reassess and improve the quality
of thepredictionsof EOL andRUL astimegoesby. After abrief overview of prognostics
solutions in aerospace structures the following sections briefly discuss various aspects
involved in design of a prognostics health management (PHM) system.

16.2.1 PHM for aerospace structures

Aerospace structures are a class of lightweight structuresused for aircrafts and space-
craftswhich arenormally subjected to cyclic loads. Preventing fatigue damage failure
resulting from cyclic loads requires damage monitoring and inspection, and thus
scheduled maintenance to be done over the vehicle’s operational life, which notably
increases thedirect operating costs [10]. Oneof themajor issues for aircraft operators,
as well as for aircraft assemblers, is to reduce the direct operating costs without
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compromising the safety. Within this scenario, damage prognostics emerges as a
rational approach as it enables cost-effective risk-based maintenance schedules based
on predictions of the RUL [11]. Future damage predictions can be obtained with
quantified uncertainty and are based on knowledge about current damage state of
the structure using SHM.

In theSHM literature, thereareagrowing number of articlesdealing with prognos-
tics solutions for aerospace structures. For example, a prognostics framework was
presented in application to fatiguedegradation of acompositewing from an unmanned
aerial vehicle [12]. SHM data were obtained through in-flight tests as well as through
on-ground inspections, and predictions were performed to obtain both local and
component-level measures of damage. The Joint Strike Fighter Autonomic Logistics
[13] is another example of application of the PHM sciences to the aircraft industry,
where the prognostics architecture is conceived to be applied at the level of the entire
vehicle (system level) through the integration of subsystem prognostics reasoners for
different components: structures, engines, communication systems, etc. In thehelicop-
ter industry, damage prognostics has acquired considerable significance for health
maintenance. A remarkable example of this category is the health and usage moni-
toring systems for main rotor and gearbox components on large rotorcrafts, which
has been shown capable of considerably reducing the fatal hull loss [14], while
increasing the rotor component life by about 15% [15].

The aforementioned examples represent just a few of the different prognostics
approachesthat areencountered in theliteratureon application to aerospacestructures.
However, although some of these prognostics approaches have successfully made the
transition from research to practice, damage prognostics still requires more research
efforts and further development, and needs to be justified by significant impact on
safety and economy overall when applied to aerospace composite structures.

16.2.2 Design for prognost ics

The design of a prognostics system is of paramount importance to ascertain that the
prognostic solution meets expectations. For example, reduction of life cycle cost,
safety improvement, or an optimization of uptime to better guarantee mission avail-
ability, are just few examplesof goals to beaccomplished by theprognosticssolution.
In a general sense the design process needs to be considered as part of a systems
engineering process. Design processcan beconceptually partitioned into three stages:
analysis, concept, and synthesis, as Fig. 16.1 illustrates.

During the analysis phase, requirements for the overall system are established
based on a set of predefined goals and the end use of prognostics [17]. Next the
prognostics functionality is defined during the concept phase. In this phase, func-
tional needs and constraints are determined to drive potential solutions to the sys-
tem in presence of any faulty behavior. Key concepts at this phase are observability
of fault modes and assessment of prediction performance, which are both further
explained in Sections 16.2.2.1 and 16.2.2.2. Finally the functional needs are encap-
sulated in appropriate physics-based models that characterize the system fault
propagation as well as the system final failure. During this phase, suitable algo-
rithms are developed to efficiently predict the future faulty behavior of the system.
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The majority of this chapter is dedicated to delineating the models and algorithms
one can use in the context of composite materials.

16.2.2.1 Observability of fault modes

Using suitable sensors that can interrogate the system health state and assess in real
time any change in fault severity are of paramount importance. Because damage
predictions are sequentially updated from periodical measurements, the higher the
accuracy expected from prognostics, thebetter thequality required for theinformation
obtained from the sensing system. However, this information comes at the expense of
more targeted sensing and significant computational requirements. Complex systems
subjected to a variety of fault modes (cracks, voids, delamination, corrosion, etc.)
that often requirededicated sensorsand sensor networksfor detection asno onesensor
type can typically provide sufficient information to cover all fault modes. The choice
of the sensing method is typically guided by the feature or set of features to be moni-
tored. For example, weight loss or power demand sensors onboard airspace systems
results in adifferent sensor choicethan for monitoring vibrationsin buildingsor corro-
sion in bridge structures [18].

Sensor locationsarechosen such that theexpected typeof damageproducesobserv-
able and statistically significant effects in features derived from the measurements at
these locations, which is often determined through numerical simulations or physical
tests. Low-level local response caused by damage (eg, cracks opening and closing)
must be separated from large-amplitude global response, such as that caused by
aerodynamic loadson aircrafts, by determining required sensitivity and dynamic range
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Figure 16.1 Schematic description for the design process of a PHM solution [16]. FMECA,
failure mode, effects and criticality analysis.
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through analysisor experimentation. Thereareseveral methodsfor optimal placement
of sensors that consider maximum information quality (see for example Ref. [19]).

16.2.2.2 Prognost ic performance metrics

Once a component or subsystem is being monitored using an appropriate sensor
system the next requirement for an efficient prognostics framework resides in quanti-
fying theprediction performance. Decisionsbased on poor and/or latepredictionsmay
increase the risk of system failure, whereas wrong predictions of failure (false
positives) trigger unnecessary maintenance actions with unavoidable cost increase.

A detailed discussion about deriving prognostics requirements from top level
system goals was proposed by Saxena et al. [20]. These requirements are generally
specified in termsof prediction performancethat prognosticsmust satisfy for adesired
level of safety or cost benefit. A variety of prognosticsperformanceevaluation metrics
have been defined in the literature, like prediction horizon (PH), ae l accuracy
measure, and relative accuracy measures [21,22]. As described by Saxena et al. [23]
prognostics performance can be summarized by three main attributes, namely:

correctness, which is related to the prediction accuracy when compared with
observed outcomes;

timeliness, which accounts for how fast an algorithm produces the output as
compared to the rate of upcoming outcomes from the system; and

confidence, which dealswith theuncertainty in aprognosticsoutput, typically from
a prognostics algorithm.

Among themetricsproposed by Saxenaet al. [21,22] thePH and theae l accuracy
measuresarewidely used in prognosticsand also adopted for thiswork. ThePH serves
to determine the maximum early warning capability that a prediction algorithm can
provide with a user-defined confidence level denoted by a. Typically, a graphical
representation using a straight line with negative slope serves to illustrate the “true
RUL,” that decreases linearly as time progresses. The predicted probability density
functions (PDFs) of RUL are plotted against time of prediction using error bars (eg,
by 5e 95% error bars) as Fig. 16.2 (left panel) shows.
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Figure 16.2 Illustrations of (left) PH and (right) a! l prognostics metrics.
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Ideally the median of the RUL predictions should stay on the dotted line (RUL*)
that represents the true RUL, or, at least, stay within the accuracy regions specified
by a. By means of this representation the PH can be directly determined as shown
in Fig. 16.2 (left). The PH metric can be further parameterized by a parameter b
(thus denoted by PHa,b) that specifies the minimum acceptable probability of overlap
between thepredicted RUL and thea accuracy bandsdelimited by the dashed lines in
Fig. 16.2 (left). Both a and b are scaling parameters for the prognostics which should
be fixed considering the application scenario.

For the ae l accuracy metric a straight line with a negative slope is also used to
represent the true RUL. Predicted PDFs of RUL are plotted against time of predic-
tion (which is termed as l in the original paper by Saxena et al. [22]) using error
bars. As in Fig. 16.2 (left), accurate predictions should lie on this line as long as
they are sequentially updated with SHM data. In this case the accuracy region is
determined by parameter a, which represents a percentage of the true RUL so
that it denotes the notion that accuracy of prediction becomes more critical as
EOL approaches. See Fig. 16.2 (right) for illustration. In this case, two confidence
regions are employed by adopting 0 < a1 < a2 < 1, so that each predicted RUL
can be validated depending on whether or not it belongs to any of the a1 or a2
regions.

16.2.3 Fundamentals of model-based prognost ics

A complete and rigorous prognostics solution hinges on the availability of several
elements, that include a model for system health evolution, a quantifiable criterion
for what constitutes failure, and a method to deal with underlying uncertainties.
Typically, it isaccomplished in threestepsthat areaddressed in thissection: (1) current
state estimation, (2) future state prediction, and (3) RUL estimation. In order to carry
out the steps above, a generic time-dependent, statee space modeling framework is
presented first.

16.2.3.1 Statee space system modeling

Let us consider a generic component or subsystem whose health state is expected to
evolve as follows:

xn ¼ gðxn! 1; un; qÞþ vn [16.1]

where gðxn! 1; un; qÞ: Rnx & Rnu & Rnq/ Rnx is a possibly nonlinear function of the
system state xn ˛ Rnx that may depend on a set of nq (uncertain) model parameters
q ˛ Q 3 Rnq, along with a set un ˛ Rnu of input parameters to the system (loadings,
environmental conditions, operating conditions, etc.). The term vn ˛ Rnx refers to the
model error, which representsthedifferencebetween theactual system statexn and the
state predicted by the hypothesized model g(xn! 1, un, q).

In addition, it is assumed that measurements of the system health state can be
obtained during operation and that, at a certain time, n, the measured system state,
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yn, can be expressed as a function of the latent state, xn, by means of the following
measurement equation:

yn ¼ xn þ wn [16.2]

where wn is the measurement error. It is also assumed that the error terms vn and wn
from Eqs. [16.1] and [16.2] are random variables instead of deterministic fixed-valued
variables, and that they are distributed following specified probability models. Based
on theseprobability models thePDFs for thestate transition equation and observation
equation areprescribed. For example, when errorsvn and wn aremodeled aszero-mean
Gaussian distributions, which is supported by the principle of maximum information
entropy [24]. Thestatetransition equation and theobservation equation defined in Eqs.
[16.1] and [16.2], respectively, can be expressed as Gaussian distributions as follows:

pðxnjxn! 1; un; qÞ¼ ðð2pÞnx jSvn jÞ
! 1

2 exp

 

!
1
2
ðxn ! xnÞT

X! 1

vn

ðxn ! xnÞ

!

[16.3]

pðynjxn; qÞ¼ ðð2pÞnx jSwnjÞ
! 1

2 exp

 

!
1
2
ðyn ! xnÞT

X! 1

wn

ðyn ! xnÞ

!

[16.4]

where xn h gðxn! 1; un; qÞ, and Svn ˛ Rnx&nx and Swn ˛ Rnx&nx are the covariance
matrices of the model error and the measurement error, respectively. Eqs. [16.3] and
[16.4] constitute the stochastic equations for the overall system response, and play a
major role in the proposed model-based prognostics framework.

16.2.3.2 Sequent ial state est imat ion

Once the system has been mathematically described using the stochastic system
equations given above the first step for prognostics is to recursively update the joint
PDF of the system health state xn along with model parameters q at every time n a
new measurement is collected.

To this end, let us define an augmented state zn ¼ ðxn; qÞ̨ Z3 Rnx & Rnq repre-
senting the overall system response including model parameters q ˛ Q . Thus, given
a sequence of measurements up to time n, namely y0:n ¼ { y0,y1,. ,yn! 1,yn} , the
goal is to estimate the posterior probability of the up-to-date sequence of states z0:

n ¼ { z0,z1,. ,zn! 1,zn} , expressed by the conditional PDF p(z0:njy0:n). This is accom-
plished by Bayes’ theorem as follows:

pðz0:njy0:nÞ ¼
pðynjznÞpðz0:njy0:n! 1ÞR

Z
pðynjznÞpðz0:njy0:n! 1Þdz0:n

f pðynjznÞpðznjzn! 1Þpðz0:n! 1jy0:n! 1Þ
| fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

last update

[16.5]
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where

pðznjzn! 1Þ¼ pðxnjxn! 1; qnÞ
| fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Eq: 16:3

pðqnjqn! 1Þ [16.6]

pðynjznÞ¼ pðynjxn; qnÞ
| fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Eq: 16:4

[16.7]

As observed in Eq. [16.3], model parameters qn are assumed to evolve by some
unknown random process that is independent of the system state, xn. It should be
noted that model parameters are essentially not dependent on time, and hence
p(qnjqn! 1) impliesan “artificial” evolution given thenondynamic natureof q. A fol-
lowed solution to obtain a model for p(qnjqn! 1) is to add an independent random
perturbation xn to the set of updated parameters at time n ! 1 before evolving to
the next predicted state at time n [25,26]; ie, qn ¼ qn! 1 þ xn, whereby the PDF
p(qnjqn! 1) is prescribed. For example, if xn is assumed to follow a zero-mean
Gaussian, thus:

pðqnjqn! 1Þ¼ N
"
qn! 1; Sxn

#
[16.8]

Observe that by thismethod, an additional sourceof uncertainty isartificially intro-
duced to the model parameters leading to a loss of information about q (ie, larger
spread bands) over timethat ultimately influences theprecision of thestateestimation.
To sequentially reduce this additional uncertainty, several methods have been pro-
posed in the literature [26e 28], with the most popular being those that impose
some kind of shrinkage over Sxn as long as new data are collected [26]. An efficient
method of this class has been proposed by Daigle and Goebel [29], which is adopted
in this work by its simplicity and efficiency.

16.2.3.3 Sampling method for sequent ial state est imat ion

The sequential state estimation methodology presented above is analytically intrac-
tableexcept some especial cases using both linear modelsand Gaussian uncertainties.
For the general case of nonlinear models and/or non-Gaussian uncertainties,
sampling-based algorithms like particle filters (PFs) [30,31] have been shown to
efficiently approximate the updating PDF p(z0:njy0:n) by means of a set of N discrete

particles zðiÞ
0:n

on N

i¼1
with associated weights uðiÞ

n

on N

i¼1
. By PF the required PDF is

approximated as:

pðz0:njy0:nÞz
XN

i¼1

u ðiÞ
n d

$
z0:n ! zðiÞ

0:n

%
[16.9]
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whered is theDirac delta. In practice, it isnot possibleto obtain samplesdirectly from
p(z0:njy0:n) as it is seldom known exactly, hence a common solution is to generate
samples from an importance density PDF q(z0:njy0:n) which is easier to simulate,
leading to the sequential importance sampling (SIS) approach. To compensate for the
difference between the importance density and the true posterior density the unnor-
malized weights are defined as follows:

bu ðiÞ
n ¼

p
$

zðiÞ
0:n

&
&
&y0:n

%

q
$

zðiÞ
0:n

&
&
&y0:n

% [16.10]

where uðiÞ
n ¼ bu

ðiÞ

nP N

i¼1bu
ðiÞ

n

, i ¼ 1,. ,N. There is a vast literature dealing with optimal

selection strategies for the importance density PDF [30,32]; however, in most of
the practical applications the importance density is conveniently chosen so that
it admits a sample procedure by adopting q(z0:njy0:n) ¼ q(z0:njy0:n! 1), hence it
can be factorized in a form similar to that of the updating PDF, ie, q(z0:njy0:n! 1) ¼
q(znjzn! 1)q(z0:n! 1jy0:n! 1). Thus, by substituting Eq. [16.5] into Eq. [16.10],
the unnormalized importance weight for the ith particle at time n can be
rewritten as:

bu ðiÞ
n f

p
$

zðiÞ
0:n

&
&
&y0:n! 1

%

q
$

zðiÞ
0:n! 1

&
&
&y0:n! 1

%

| fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
u ðiÞ

n! 1

p
$

zðiÞ
n

&
&
&zðiÞ

n! 1

%
p
$

yn

&
&
&zðiÞ

n

%

q
$

zðiÞ
n

&
&
&zðiÞ

n! 1

% [16.11]

In addition the PDF q(znjzn! 1) in Eq. [16.11] is typically chosen to coincide with
the state transition equation p(znjzn! 1) [25] defined in Eq. [16.6], as it is straightfor-
ward to evaluate. In this case, Eq. [16.11] simplifies to:

bu ðiÞ
n f u ðiÞ

n! 1p
$

yn

&
&
&zðiÞ

n

%
[16.12]

and the resulting algorithm is commonly known as a “bootstrap filter,” after the
celebrated paper by Gordon et al. [25]. A pseudocode implementation for the PF is
given as Algorithm 2 in Section 16.4, in the context of the prognostics example in
composites. Algorithm 2 includes a systematic resampling step [30] to limit the
well-known degeneracy problem.1

1 During resampling, particles are either dropped or reproduced that may result in a loss of diversity of the
particle paths [30]. If necessary, a control step of degeneracy by quantifying the effective sample size
(ESS) may be incorporated before the resampling.
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16.2.3.4 Future state predict ion

Having estimated the current health state of the system at time n by means of the
methodology explained above the next step for prognostics is to predict the future
states of the system ‘ -steps forward in time in absence of new observations, ie,
p(znþ ‘ jy0:n), with ‘ > 1. This distribution can be obtained by the total probability
theorem as:

pðznþ ‘ jy0:nÞ ¼
R

Z
pðznþ ‘ jzn:nþ ‘ ! 1Þpðzn:nþ ‘ ! 1jy0:nÞdzn:nþ ‘ ! 1

¼
R

Z

"
Ynþ ‘

t¼nþ 1

pðzt jzt! 1Þ

#

pðznjy0:nÞdzn:nþ ‘ ! 1

[16.13]

where it uses the fact that p(znþ ‘ jzn:nþ ‘ ! 1) ¼ p(zn þ ‘ jznþ ‘ ! 1), ‘ > 1, as Eq. [16.1]
definesaMarkov model of order oneand also by theassumption that theobservations
areconditionally independent given thestates. Replacing p(znjy0:n) in thelast equation
by its PF approximation, an approximation to the PDF p(znþ ‘ jy0:n) is obtained as
follows:

pðznþ ‘ jz0:nÞz

Z

Z

"
Ynþ ‘

t¼nþ 1

pðzt jzt! 1Þ

#
XN

i¼1

uðiÞ
n d

$
z0:n ! zðiÞ

0:n

%
dzn:nþ ‘ ! 1

¼
PN

i¼1
uðiÞ

n

Z

Z
p
$

znþ 1

&
&
&zðiÞ

n

% Ynþ ‘

t¼nþ 2

pðzt jzt! 1Þdznþ 1:nþ ‘ ! 1

[16.14]

Observe that Eq. [16.14] corresponds to a weighted sum of integrals that can be

readily simulated by drawing one conditional sample sequence zðiÞ
nþ 1:nþ ‘ ¼

zðiÞ
nþ 1; zðiÞ

nþ 2; . ; zðiÞ
nþ ‘

on
from each of the N multidimensional integrals in Eq. [16.14]

using recursively the state transition equation (recall Eq. [16.6]): ie, first sample

zðiÞ
nþ 1 using the aforementioned one-step transition equation conditional on the initial

state, zn, ie, zðiÞ
nþ 1w p

$
znþ 1

&
&
&zðiÞ

n

%
; then sample the succeeding state conditional on

the previous sample, ie, zðiÞ
nþ 2w p

$
znþ 2

&
&
&zðiÞ

nþ 1

%
; finally, repeat the same process until

the target time n þ ‘ is reached.

16.2.3.5 RUL predict ion

To obtain theEOL and RUL based on thepredicted futurestateof thesystem given by
pðznþ ‘ jy0:nÞthe definition of a useful domain for the predicted states is first required.
Let U3 Z bethenonempty subset of authorized statesof thesystem, whereasthecom-
plementary subset, U ¼Z\U corresponds to the subset of states where system failure
occurs. Without loss of generality the useful domain can be delimited by means of a
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set of nc constrains f c1; c2; . ; cncg, where each one represents a function that maps a
given point z in the joint state-parameter space to the Boolean domain { 0,1} , ie,
cj:Z / B h { 0,1} , such that cjðzÞ¼ 00 z ˛ U; j ¼ 1; . ; nc. In other words,
z ˛ U when any of the constraints are violated.

Using the PF approach defined above the EOL predicted at time n can be obtained
for the ith particle trajectory as theearliest time t ' n when theevent zðiÞ

t ˛ U occurs.
In mathematical terms:

EOLðiÞ
n ¼ inf

n
t ˛ N : t ' n ^ IðUÞ

$
zðiÞ

t

%
¼ 1

o
[16.15]

where I "
U

# is an indicator function for the region U that assigns a value of 1 when

z ˛ U and 0 otherwise. The RUL predicted at time n for the ith particle can be

obtained using EOLðiÞ
n as:

RULðiÞ
n ¼ EOLðiÞ

n ! n [16.16]

Fig. 16.3 providesaschematic illustration to exemplify the trajectory of the ith par-
ticleof az-stateof dimension two (for easeof representation) along with theindication
of EOLðiÞ

n and RULðiÞ
n .

By repeating theprocessfor each particle i ¼ 1,. ,N, an approximation to thePDF
of EOL at time n can be obtained as:

pðEOLnjy0:nÞz
XN

i¼1

u ðiÞ
n d

$
EOLn ! EOLðiÞ

n

%
[16.17]
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Figure 16.3 Two-dimensional illustration of the ith particle trajectory to EOL. A sequence of
samples in the Z-space, ie, zðiÞ

n ; zðiÞ
nþ 1; . ; zðiÞ

nþ ‘ are represented using solids disks. Two
constraint functions { c1(z),c2(z)} are represented.
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Correspondingly the PDF of RULn can be approximated as:

pðRULnjy0:nÞz
XN

i¼1

uðiÞ
n d

$
RULn ! RULðiÞ

n

%
[16.18]

An algorithmic description of theprognosticsprocedureisprovided asAlgorithm 1.
Algor ithm 1: PF-based prognostics algorithm.

1. inputs: zðiÞ
n ¼

$n
xðiÞ

n ; qðiÞ
n

%
; uðiÞ

n

oN

i¼1
, updated particles at time n. Use eg,

Algorithm 2 given further below.
2. Define U3 Z, { [useful domain} ]
3. for i ¼ 1 to N do
4. t ) n

5. zðiÞ
t ) zðiÞ

n

6. Evaluate EOLðiÞ
n

$
zðiÞ

t

%

7. while IðUÞ

$
zðiÞ

t

%
¼ 0 do

8. Predict ut

9. Sample qðiÞ
tþ 1w p

$
qtþ 1

&
&
&qðiÞ

t

%

xðiÞ
tþ 1w p

$
xtþ 1

&
&
&xðiÞ

t ; qðiÞ
tþ 1; ut

%

10. t ) t þ 1

11. zt ¼
$

xðiÞ
t ; qðiÞ

t

%
) ztþ 1 ¼

$
xðiÞ

tþ 1; qðiÞ
tþ 1

%

12. end while

13. EOLðiÞ
n ) t

RULðiÞ
n ¼ EOLðiÞ

n ! n

14. end for

16.3 Damage prognost ics in composite materials

Anticipating theoccurrenceand growth of damagestates in thematerial in future isof
crucial importance for determining the remaining time for which the structure is
desired to perform per specifications. To this end, first the relevant damage modes
are identified and suitable models for damage evolution are developed. This enables
predictionsof futuredamagestates that aresequentially updated using the information
from sensors. In this section a physics-based modeling framework is presented for
damage evolution in composites and a discussion about selecting damage thresholds
is provided. Additionally, the connection between proposed damage models and the
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model-based prognosticsframework, asdiscussed in Section 16.2.3, isexamined at the
end of this section.

16.3.1 Damage propagat ion model

The progression of fatigue damage in composites involves a progressive or sudden
change of the macroscale mechanical properties, such as stiffness or strength, as a
consequence of different fracture modes that evolve at the microscale level during
the lifespan of the structure [4]. Through decades of investigation, numerous fatigue
models have been proposed in the literature [2]. A vast majority of them are
deterministic semiempirical formulations often customized for specific material
configuration under specific testing/loading conditions. The publications that have
incorporated uncertainty in fatigue modeling have primarily used Markov chain
models and other stochastic models for fatigue damage evolution [33]. These
approaches suffer from the fact that models used therein often lack physical meaning
and are purely empirical in nature. One of the most widely used models for metallic
structures is Paris’ law [34] that relates a crack’s length growth rate to the range of
applied stress intensity factor primarily because it is better associated with the physics
of thedamagegrowth process. However, in contrast to metals, compositesunder fatigue
loading exhibit growing density of multiple interlaminar and intralaminar microcracks
[35] instead of a single crack growth. Due to its simple formulation and associated
physical interpretation of damage, Paris’ law is still a preferred choice for composite
materials and the modified Paris’ law [36] emerged as the best suited model for fatigue
in composites. A description of the model is given as follows:

dr
dn

¼ AðDGÞa [16.19]

whereA and a arefitting parametersand r is themicrocrack’sdensity that increasesas
fatiguecycles, n, evolve. Theterm DG istheenergy releaserate(ERR), and represents
theenergy released dueto the formation of anew crack between two existing cracksat
a specific stress amplitude: DG ¼ Gjsmax

! Gjsmin
, which can be calculated as [37]:

DG ¼
Ds2

xh
2r t90

'
1

E(
xð2r Þ

!
1

E(
xðr Þ

(
[16.20]

In the last equation, Dsx is the increment in applied axial tension, and h and t90 are
the laminate and 90 degree sublaminate half-thickness, respectively. The term E(

xðr Þ,
asafunction of r , istheeffectivelaminateYoung’smodulusdueto thecurrent damage
state which can be calculated using a suitable damage mechanics model such as those
presented in Section 16.3.2. It follows that closed-form solutions for r ¼ r (n) are
rarely available as DG involves complex expressions for damage mechanics models.
To overcome this drawback the resulting differential equation can be solved by
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approximating the derivative using the “unit-time” finite difference approach,
assuming that damage evolves cycle-to-cycle as:

r n ¼ r n! 1 þ AðDGðr n! 1ÞÞa [16.21]

16.3.2 Micro- to macroscale damage model

To accurately represent the relation E(
x ¼ E(

xðr Þin Eq. [16.20], several families of
damage mechanics models have been proposed in the literature [38]. These models
are based on first principles of admissible ply stress fields in the presence of damage,
and can beroughly classified into (1) analytical models, (2) semianalytical models, and
(3) computational models. Among them, computational and semianalytical models
have been shown to be promising, however, they are computationally prohibitive in
a filtering-based prognostics approach as large amounts of model evaluations are
required. Surrogate models may alleviate that problem by adopting data-driven tech-
niques. A more detailed discussion of such techniques is beyond the scope of this
chapter and the focus is instead on a set of analytical models. Depending on the level
of assumptionsadopted to model thestressfield in thepresenceof damage, they can be
classified (from simpler to more complex) into shear lag models [39], variational
models [40], and crack opening displacement (COD)-based models [41]. Among
them the shear lag models are simpler and have received significant attention in the
literature[38]. Themain modeling assumption in shear lag modelsisthat, at thematrix
crack locations, the axial load is transferred to uncracked plies by the axial shear
stresses acting at the interfaces. These models are usually restricted to cross-ply

laminates or
h
f nf

2
=90n90=f nf

2

i
layups, where f ˛

)
! 90

)
; 90

) *
is the ply-angle of the

outer sublaminates (see Fig. 16.4). However, it should be noted that the prognostics
methodology presented in this chapter is not restricted to the above class of models
and is applicable to any other suitable damage model class. In this work the classical
shear lag model [39,42] ischosen to represent therelation between microcrack density
(as the microscale damage variable), and relative stiffness decrease (as macroscale
damage manifestation). The classical shear lag model provides reasonably accurate
results and is shown to be less sensitive to the noise in data, as presented in a study
[43]. From this standpoint, matrix microcracking is selected as dominant fracture
mode for theearly stagesof damageaccumulation as it is theprecursor of moresevere
damage modes, as will be shown in the subsequent sections [35].

16.3.2.1 St if fness reduct ion model

Following theunifying formulation by [44] for shear lag models theeffective longitu-
dinal Young’smodulus, E(

x , can becalculated asafunction of thecrack spacing in the
90 degree layers as follows:

E(
x ¼

Ex;0

1 þ a 1
2l

R
"
l
# [16.22]
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whereEx,0 is the initial longitudinal Young’smodulusof theundamaged laminateand
l ¼ l

t90
is the half crack-spacing normalized by the 90 degree sublaminate thickness,

which can beexpressed asafunction of r as: l ¼ 1
2r t90

. Thefunction, RðlÞ, known asthe
average stress perturbation function, is defined as:

R
"
l
#

¼
2
x

tanh
"
xl

#
[16.23]

wherex istheshear lag parameter that can beobtained for theclassical shear lag model
[39,42] as follows:

x2 ¼ G23

 
1
E2

þ
1

l Eðf Þ
x

!

[16.24]
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Figure16.4 Panel (a): Schematic view of afiber reinforced plastic (FRP) compositelaminateof
six pliesand stacking sequencegiven by ½f o
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laminate along with basic geometrical parameters.
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Thesuperscript (f ) denotes “property of the
h
f nf

2

i
-sublaminates” (seeFig. 16.4 for

further details), and l ¼ tf t90. The term a in Eq. [16.22] is a function of the laminate
mechanical and geometrical properties as follows:

a ¼
E2

l E1

0

B
B
@1 ! nðf Þ

xy

nðf Þ
xy

l Eðf Þ
y

þ n12

E2

1
l Eðf Þ

y

þ 1
E1

1

C
C
A

1 ! n12nðf Þ
xy

1 ! n2
12

E2

E1

[16.25]

For the sake of clearness the terms involved in Eqs. [16.22]e [16.25] are described
in more detail in Table 16.1.

Table 16.1 Nomenclature of the terms used for shear lag analysis.
Nominal values of ply and main geometry parameters are further
provided in Table 16.4 in the context of a numer ical example

Laminate
Ex Longitudinal Young’s modulus

E(
x Effective long. Young’s modulus

h Laminate half-thickness

Sublaminate
Eðf Þ

x Longitudinal Young’s modulus

Eðf Þ
y Transverse Young’s modulus

nðf Þ
xy In-plane Poisson ratio

Gðf Þ
xy In-plane shear modulus

Gðf Þ
xz Out-of-plane shear modulus

t90 ½90n90+sublaminate half-thickness

tf
h
f nf

2

i
sublaminate thickness

t Ply thickness

Ply
E1 Longitudinal Young’s modulus

E1 Transverse Young’s modulus

n12 In-plane Poisson ratio

n23 Out-of-plane Poisson ratio

G12 In-plane shear modulus

G23 Out-of-plane shear modulus
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16.3.3 Select ing prognost ics targets for fat igue in composites

Given a structure there are several structural elements and locations that can
develop faultsand are potential targets for prognostics. However, carrying out prog-
nostics for all such elements can be prohibitive because of the computational cost.
Therefore, a common approach is to prioritize more critical locations or identify
“hot spots” that can be closely monitored. Additionally, prognostics rely on the
capability of SHM to detect and localize fault location before predictions of fault
growth can be made. Another key aspect to define is the damage magnitude
threshold that must be used to define a structure’s EOL, which is not necessarily
the failure threshold. A suitable balance must be established in defining this
threshold between using a very conservative threshold, at the expense of giving
away useful remaining life; and a very aggressive threshold, resulting in potential
structural failures. Such thresholds are typically defined over quantities that have
a direct physical relation to failure criteria. A natural way to select a target for fa-
tigue in composites would be by focusing on the reduction of effective strength dur-
ing the life cycle, so that failure would occur when strength reduces below the
maximum applied stress levels. However, given that strength cannot be measured
nondestructively, other measurable properties such as degradation in materials
Young’s modulus are preferred for prognostics. Therefore, EOL for composite
materials is proposed to be defined based on stiffness degradation criteria. Further-
more, it must be noted that establishing prognostics thresholds for fatigue degrada-
tion in composites is a complex task because damage progression heavily depends
on factors like laminate stacking sequence, ply properties, and loading conditions.
The choice of a suitable threshold generally depends on the application end use
and the type of material used, and should be carefully examined when designing
a prognostic system.

16.3.3.1 Compet ing damage modes

As mentioned in Section 16.3.2, it is generally accepted in the literature that matrix
microcracking is the dominant fracture mode for the early stages of the fatigue pro-
cess. Experimental observations [45] show that matrix microcracks density in
off-axis plies asymptotically tends to an upper bounded value corresponding to a
spacing of aspect ratio unity termed ascharacteristic damagestate [3,46]. In addition
to the characteristic damage state, damage progression may exceed other subcritical
damage states before ultimate failure, corresponding, for instance, with the onset of
local delaminations2 [36] and fiber breakage [46,47]. These damage states define
tolerance limits that can be chosen as damage thresholds for prognostics in compos-
ites. However, establishing adeterministic damageprogression path to thesesubcrit-
ical states is not an easy task because of theuncertainty that arises in the growth and
interactionsof internal fracturemodesfrom different scales. Theaim of thissection is
not to addressthisquestion in depth but to provideaconciseoverview and discussion

2 Local delaminations are small interlaminar fractures growing from the tips of matrix cracks.
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on this matter along with a summary of the methodology as used by the authors in
Ref. [43]. Before going in details of the procedure a brief overview of main contri-
butions addressing the interaction between damage modes is shown below.

16.3.3.2 Interact ion of cracks and local delaminat ion

This section addresses the case where a local delamination with length 2d has grown
from the tips of matrix microcracks. It was shown in Ref. [48] that the effectsof local
delamination may vary depending on the stacking sequence used in a laminate. Here
thediscussion is focused on cross-ply laminatessince it iswidely used in the literature
and also the numerical example presented later is based on this layup.

Table 16.2 highlights the main contributions to the formulation of term DG for
the Eq. [16.19] under mixed-mode crack and delamination in cross-ply laminates.3

The function c0 as well as the terms C1 and C3 are given in the Appendix. The term
x is given in the Eq. [16.24], and ε0 represents the unitary axial deformation of the
laminate subjected to the increase in applied tension Dsx ¼ sx;max ! sx;min.

It is important to note that measuring local delamination by nondestructive evalu-
ation techniques isstill difficult, if not impossible, overall because local delaminations
are dispersed widely in the laminate [45,49]. Therefore, a prognostics methodology
that considers local delaminations needs further research in addition to requiring
maturesensing technology capable of measurementsof local delamination distributed
over a large area in real time.

16.3.3.3 Global delaminat ion

Global delamination is a damage mode consisting of interlaminar cracks arising
between adjacent plies. The presence of global delaminations in composite structures
typically carries other concomitant damage modes such as microcracks and local
delamination [45,50]. For cross-ply laminates, global delamination may typically

Table 16.2 Selection of models for ERR due to local delamination
induced by microcracks
Author Classification Energy release rate, GLD

Takeda
et al. [48]

One-dimensional
(shear lag)

t90Eð90Þ
x ðtSEðSÞ

x þ t90Eð90Þ
x Þε2

0

2tSEðSÞ
x x

 

1 ! 4

ðexp½x
2l

ð1! dÞ+þ exp½! x

2l
ð1! dÞ+Þ2

!

Nairn and
Hu [36]

Two-dimensional
(variational)

C3t90

'
Eð90Þ

x

Eðf Þ
x

Dsx

( 2$
c0ð0Þ! c0ðl! dÞ

2

%

3 Certain formulationsbased on theCOD approach by Gudmundson and Weilin [41] can also beconsidered
to model the interaction between cracksand local-delamination [49]. Becauseof space limitation, they are
not included here.
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be expected at the final stage of the fatigue damage process, coinciding when local
delaminations induce a damage so severe that the catastrophic failure can occur at
any time(even beforetheonset of global delamination) [48]. On theother hand, matrix
microcracks might induce global delamination areas in quasiisotropic and angle-ply
laminatesso that they arelocated at thefree-edgesof thelaminate, and they can appear
at earlier stages of the fatigue process [45,50]. Thus, in the latter cases, delamination
onset and growth should be predicted in parallel to matrix microcracks.

To account for the global delamination within the formulation of ERR, different
models are available in the literature. Table 16.3 gives an overview of two of the
most referred models for the ERR accounting for global delamination. The reader
is also referred to the work of Hosoi et al. [51,52] for a detailed study about the
interaction between microcracks and edge delamination based on the energy model
of Nairn et al. [53].

16.3.3.4 Balance of energies

Based on a balance of energies between different plausible damage modes (namely,
transverse cracks, local delamination, and global delamination), one can address the
question of whether the next increment in fatigue damage will be through another
transversecrack or adifferent damagemode induced by theexisting microcracks [36].
See Fig. 16.5, where the concept of balance of energies between plausible dam-
age modes is illustrated through a case study for a [02/904]S cross-ply laminate
taken from the composites data set from NASA Ames Prognostics Data Reposi-
tory [55].

In Fig. 16.5 the terms TC, LD, and GD refer to transverse cracks, local delamina-
tion, and global delamination, respectively. Among the possibilities presented in
Tables 16.2 and 16.3 the models by Nairn and Hu [36] and T.K. O’Brien et al. [54]
have been chosen to obtain the LD and GD curves. The square markers are to denote
the points where a change in the dominant fracture mode is expected. Observe that
initially the release of energy for transverse cracks is larger than that of the rest of
damage modes, then matrix microcracks are expected to accumulate at a faster rate
at earlier cycles. Observealso that thepoint whereTC and LD curves intersect defines
a critical value for the matrix microcracks density, because from this point, local

Table 16.3 Models of ERR for edge delamination. The terms EðcenterÞ
x

and EðedgeÞ
x are the effective stiffness measured at the center and

edgeof a laminatespecimen, respectively. Therest of termsinvolved
in these equations are grouped in Table 16.1

Author Classification Energy release rate GGD

O’Brien et al. [54] No interaction with cracks ε2
0hðEx;0 ! E(

xÞ

Nairn [53] Interaction with cracks
h
$

Dsx

E(
x

%2$
EðcenterÞ

x ! EðedgeÞ
x

%
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delaminationsaremorelikely to appear than another matrix microcrack hencedefining
saturation stage for microcracks. Results also show that until the final stage of the
processthelocal delamination modereleasesmorestrain energy than theglobal delam-
ination mode. Therefore, global delamination onset isexpected at thevery latestageof
the fatigue damage process. These conclusions agree well with the experimental
evidence obtained for cross-ply laminates reported in Jamison [45] and also with
the data set from Saxena et al. [55].

Based on thisreasoning, prognosticsthresholdscan beestablished by predicting the
position of these reference points as the fatigue process continues. Notice that the
energy term DG depends on model parameters which are sequentially updated as
new data arrives, as will be shown in the next section. Hence, the intersection points
defining the thresholds dynamically shift their position until a convergence stage, as
was reported in Chiachío et al. [43].

For this work the progression of damage is studied by focusing on the matrix
microcracks density and the stiffness loss induced by the microcracking. In both
cases, non-destructive evaluation (NDE) measurements are possible using today’s
sensing technology. The saturation stage of microcracks along with a limiting value
for stiffness loss are selected as microscale and macroscale damage thresholds,
respectively. Microscale damage thresholds based on more severe damage modes
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Figure 16.5 ERR term as a function of the matrix crack density for different damage modes.
The square markers delimit the points where a change in the dominant fracture mode is
expected.
Figure extracted from Chiachío J, et al. An energy-based prognostics framework to predict
fatigue damage evolution in composites. In: Annual conference of the prognostics and health
management society. New Orleans LA: Prognostics and Health Management Society; 2013.
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(local delamination and global delamination) would also be possible provided that
online measurements can be obtained, however, it is at the expense of greater uncer-
tainty because of the complex interactions between damage modes.

16.3.4 Model-based damage prognost ics in composites

Having defined the model for damage propagation forward in time, the next step is to
develop a method for sequentially estimating the damage state as long as new SHM
data are collected. As a previous step a probability-based description of the determin-
istic models described in Section 16.3.2 is first required.

Asdiscussed in Section 16.3.2 theprogression of damageisstudied at every cyclen
by focusing on the matrix microcrack’s density, r n, and the normalized effective
stiffness defined as Dn ¼

E(
x

Ex;0
, so that the following joint state transition equation of

two components g ¼ [g1,g2] can be defined as follows:

x1n ¼ r n ¼ g1ðr n! 1; qÞ
| fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Eq: 16:21

þ v1n [16.26]

x2n ¼ Dn ¼ g2ðr n; qÞ
| fflfflfflfflffl{zfflfflfflfflffl}
Eq: 16:22

þ v2n [16.27]

In the last equation, subscripts 1 and 2 denote the corresponding damage subsys-
tems: matrix microcrack density and relative stiffness reduction, respectively.
Observe that the three main elements defining a stochastic damage statee space
model can be identified in Eqs. [16.26] and [16.27]: (1) the system output
xn ¼ [r n,Dn] ˛ R2, (2) the forward model of damage evolution g ¼ [g1,g2], and (3)
the corresponding model error vector vn ¼ ½v1n; v2n+˛ R2. It is important to remark
that the model errors v1n and v2n are stochastically independent even though the
models corresponding to the damage subsystems, namely g1 and g2, are mathemat-
ically related, as shown in Section 16.3.2. This means that the covariance operator
Svn is a diagonal matrix, ie, Svn ¼ diagðs2

v1;n
; s2

v2;n
Þ, where sv1;n and sv2;n are the

corresponding standard deviations of the errors v1n and v2n, respectively. Therefore,
the stochastic damage model of the overall system can be readily expressed as a
product of univariate Gaussians, as:

pðxnjxn! 1; qÞ¼ pðDnjr n; qÞpðr njr n! 1; qÞ [16.28]

where

pðr njr n! 1; qÞ¼
1

ffiffiffiffiffiffi
2p

p
sv1;n

exp

 

!
ðr n ! g1ðr n! 1; qÞÞ2

2s2
v1;n

!

[16.29]
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pðDnjr n; qÞ¼
1

ffiffiffiffiffiffi
2p

p
sv2;n

exp

 

!
ðDn ! g2ðr n; qÞÞ2

2s2
v2;n

!

[16.30]

Next, let yn ¼ ½y1n; y2n+h ½br n; bDn+˛ R2 be the measurements to the system
response, thus the following measurement equation, as that defined in Eq. [16.2], is
added to the discrete statee space model to account for the measurement error term
wn ˛ R2:

pðynjxn; qnÞ¼
$

ð2p Þ2jSwn j
%! 1

2
exp

 

!
1
2
ðyn ! xnÞT

X! 1

wn

ðyn ! xnÞ

!

[16.31]

The measurements of each subsystem (microcracks density and relative stiffness
decrease) are considered as stochastically independent, thus Swn ¼ diagðs2

w1;n
; s2

w2;n
Þ,

where sw1;n and sw2;n are the standard deviations of the corresponding measurement
errors w1n and w2n, respectively. Finally, the measurement equation can be readily
defined as:

pðynjxn; qnÞ¼ p
$

br n

&
&
&r n

%
p
$

bDn

&
&
&Dn

%
[16.32]

where

p
$

br n

&
&
&r n

%
¼

1
ffiffiffiffiffiffi
2p

p
sw1;n

exp

0

B
@!

$
br n ! r n
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2s2
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1

C
A [16.33]

p
$

bDn

&
&
&Dn

%
¼

1
ffiffiffiffiffiffi
2p

p
sw2;n

exp

0

B
B
@!

$
bDn ! Dn

%2

2s2
w2;n

1

C
C
A [16.34]

ThePDF of theinitial damagestatex0 together with thePDFsfor thestatetransition
equation and themeasurement equation asstated in Eqs. [16.28] and [16.32], providea
complete statistical description of the overall system and play a major role in the
filtering-based prognostics methodology explained above.

In thelast equationsthemodel parameters, q, areselected among thecompleteset
of mechanical and geometrical parameters describing Eqs. [16.19]e [16.24] through
aglobal sensitivity analysisbased on variances following themethodology proposed
by Saltelli et al. [56]. The ply properties { E1, E2, t} along with the Paris’ law fitting
parameter a emerged assensitiveparameters to themodel output uncertainty [57], so
they are selected for sequential updating as shown below. Furthermore, the standard
deviations of the model errorsv1n and v2n are added as candidates for updating since
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they are uncertain a priori, thereby resulting in the model parameter vector,
q ¼ ða; E1; E2; t; sv1;n; sv2;nÞ˛ R6. The probabilistic information of parameters is
specified in the next section.

16.4 Prognost ics example

In this section the prognostic framework discussed above is applied to fatigue load
testing data from a run-to-failure experiment in cross-ply [02/904]S graphitee epoxy
laminates. The tests were conducted under load-controlled tensione tension cyclic
loading with a maximum applied load of 31.13 kN, a frequency f ¼ 5 Hz, and astress
ratio R¼ 0.14 (relation between the minimum and maximum stress for each cycle)
[55,57,58]. A set of 12 piezoelectric discs (or piezoelectric PZT-material sensors)
wasused to monitor theeffectsof matrix microcracksdensity and delamination, along
with a set of triaxial strain gauges to measure the normalized effective stiffness.
Additionally, periodic X-ray images were taken to assess internal damage and this
information was used to map the effects observed in sensor data to actual damage.
The mapping between PZT raw data and microcrack density from X-ray images
was carried out by manually observing and quantifying the damage and using signal
processing to extract damage relevant features from PZT data. Detailed methodology
can befound in Larrosaand Chang [59]. Damagedataused in thisexamplecorrespond
to laminate L1S19 from the fatigue data set [55] (the reader is referred to Table A.1
from Refs [57,60] for further insight).

Algor ithm 2: Systematic importance resampling (SIR) particle filter.
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Results for sequential state estimation along with multistep ahead prediction for
both microcrack density and normalized effectivestiffnessareshown at threedifferent
time (cycle) positions in Fig. 16.6. Microcrack density is expressed in cracks per mm
and normalized effective stiffness isdimensionless. Note that at thebeginning of each
plot (left side before the multistep ahead prediction of states) the collected data up to
cycle n ¼ { 1,4,8} & 104 are plotted along with the sequence of filtered states, which
are obtained using Algorithm 2 with N ¼ 5000 particles. For this example, the SIR
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Figure 16.6 Sequential state estimation for matrix microcracks density (right panels), and
normalized effectivestiffness(left panels) up to acertain cyclen, wheren ¼ 1 & 104, 4 & 104,
and 8 & 104. The multistep ahead predicted damage states are represented using dashed gray
lines for the5! 95% probability bands and solid gray lines for the25! 75% probability bands.
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version of the SIS algorithm is adopted. Initial values for the damage states are
x0 ¼ (r 0,D0), where r 0 ¼ 0.1 cracks/mm and D0 ¼ 1 (dimensionless). The standard
deviation of the measurement error parameters are set to sw1,n ¼ 0.05 cracksmm
and sw2,n ¼ 0.01. Chosen prior PDFs for model parameters q ¼ {q1,q2,. ,q6} are
specified in Table 16.4. The diagonal elements of the covariance matrix Sx0;j

(recall
Eq. [16.8]) are appropriately selected through initial test runs and set to 0.5% of the
5e 95th band of the prior PDFs for the jth component of q.

Updated damage states are further forward propagated into the future to compute
the EOL and RUL following the methodology described in Section 16.2.3.4. The
useful domain is defined here as U ¼ f ðr ; DÞ˛ ½0; 0:418+& ½1; 0:875+g3 R2.

The results of RUL estimates together with their quantified uncertainty by the
25! 75% probability bands are plotted against time in Fig. 16.7, where two cones of
accuracy at 10% and 20% of true RUL, denoted as RUL* , are drawn to help evaluate
the prediction accuracy and precision. Observe that theRUL prediction isappreciably
inaccurate within the first stage of the fatigue process, that corresponds to the initial
parameter tuning period, ie, length of time required for SHM data to train the model
parameters. Moving forward beyond thisperiod theprediction performancenoticeably
improves with increasing cycles. As fatigue cycles evolve, not only the prediction
means improve (values closer to RUL* line) but also the prediction spread gets
narrower. This visualization allows assessment of how prediction performance

Table16.4 Nominal valuesand pr ior uncer tainty of model parameters
used in calculations. The rest of parameters in damage mechanics
models (Eqs. [16.22] and [16.23]) can beobtained using theclassical
laminate plate theory [61e 63]. The nominal values for fitting
parameters have been defined through initial fitting tests

Type Parameter
Nominal
value Units COV(%) Prior PDF

Mechanical E1 127.55 GPa 10 Log N

E2 8.41 GPa 10 Log N

G12 6.20 GPa d Not applicable

n12 0.31 d d Not applicable

G23 2.82 GPa d Not applicable

t 1.5 & 10! 4 m 10 Log N

Fitting a 1.8 d 20 Log N

A 10! 4 d d Not applicable

Error sv1 d #Cracks/
(m & cycle)

d U(0.5,1.5)

sv2 d d d U(0.001,0.003)
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changesover time in termsof correctness (accuracy and precision). Also, by meansof
the prognostics horizon (PH), it is possible to assess how quickly performance
convergeswithin desired accuracy levels. In thisexamplethePH for 0.2 asa-accuracy
is PH ¼ 8$104! 1$103 ¼ 7.9$104 cycles. Observe also that from cycle n ¼ 5$104 the
estimated mean values for the RUL (labeled by the circles in Fig. 16.7) move away
from the RUL* line and they progressively leave the accuracy cone as fatigue cycles
evolve. However, the median RUL estimates (labeled by the squares) remain within
the accuracy region during all the process. An explanation for this observation is
provided in view of the asymptotic behavior of the damage process for both, micro-
crack density and normalized stiffness decrease (see Fig. 16.6). Indeed, from cycle
n ¼ 5$104, the model produces a large amount of predicted samples that already lie
within the failure domain U at the instant of prediction n. This leads to an increasing
higher density of predicted RULn outcomesconcentrated at cyclen aswell asa distri-
bution tail of RULn corresponding to cycleshigher than n. Asaconsequencethemean
predicted RUL values have a positive shift with respect to the RUL* values because
of such a distribution tail, whereas the median RUL estimates remain closer to the
RUL* line.

It must be noted that observations like these are situation specific and thisexample
only illustrates how prognostic results must be interpreted especially considering
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Figure 16.7 RUL versus fatigue cycles plot to assess lifetime prediction performance for
composites under fatigue aging. Two cones of accuracy at 10% and 20% of true RUL are
represented to help evaluating prognosticsperformance. Darker dashed linesrepresent thecone
of accuracy at 10%. The true RUL, denoted as RUL* , is represented using black dotted line.
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uncertainty in thepredictions. A brief discussion about interpreting such behaviorscan
befound in Saxenaet al. [21] and may berelated to thedifficulty of obtaining adequate
amount of measurements to account for behaviors when the damage process has
reached asymptotic growth behavior.

16.5 Concluding remarks

Prognostic information about acomponent fault/damagecan beavaluable resource in
determining an appropriate course of action to avoid failures. Potential of prognostics
in positively contributing to safety and improving lifecyclecosts isequally relevant to
existing legacy systems and new system designs. Legacy systems adopt additional
sensing and processing with a potentially high price of retrofitting and additional
validation and/or certification costs to gain extended system life and safety factor.
New system designs can significantly reduce these costs if prognostics and health
management are adopted early in the design to facilitate a more optimal sensor
placement for observability and coverage. This, however, requires integration of health
management design into the systems engineering process. Depending on the system
design and how SHM is integrated into that design, there are several approaches that
can be taken to implement a prognostic system. This chapter presented a novel
model-based prognostics framework to makepredictionsof EOL and RUL of compos-
itesunder fatigue conditionsand estimate the uncertainty associated with these predic-
tions. This is done by fusing the experimental information and models available at
different levels of granularity by means of the Bayes’ theorem and total probability
theorem. The validity of this framework was demonstrated on SHM data collected
from a tensione tension fatigue experiment using a carbon fiber reinforced plastic
cross-ply laminate. Theresultshavedemonstrated that anticipating theEOL of compos-
ites subjected to fatigue conditions is possible provided that measurements of damage
can be sequentially collected.
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Appendix: Nomenclature and basic relat ions

Expressions for cðlÞand its first derivate c0ðlÞare given by:
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where a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! p
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ffiffiffiffiffiffiffiffiffiffiffiffi
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4 ! q
qr

and a2 ¼
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4 ! q
qr

. The Eq. [16.35] applies

when 4q
p2 > 1. Otherwise, Eq. [16.36] should be considered. The terms p and q are

relations of the ply properties and the stacking sequence defined by p ¼ (C2! C4)C3,
q ¼ C1C3. The parameters Ci, i:1,. ,4, are known functions of the laminate
properties defined as:
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[16.40]

where l is the ply-thickness ratio l ¼ t0t90. Notice that DGLD depends on the
magnitude ðl ! dÞ, which expresses the separation between the tips of two growing
delaminations starting from the tips of the matrix microcracks. With no loss of gen-
erality, thermal stresses are not considered for the formulation of ERR in Tables 16.2
and 16.3, asthedataused for thiswork, and also in most of thefatigueexperiments, are
collected in a temperature-controlled environment.
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