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16.1 Introduction

Composite materials are high-performance engineering materials increasingly used
by the aerospace industry in part because of their high strength-to-weight ratios. Fa-
tigue damage represents one of the most important sources of concern for in-service
performance, which has led to growing research interest in industry and academia.
Influenced by a long-standing understanding of the principles of metal fatigue, the
initial treatment for fatigue behavior in composites was similar to metallic structures
[1], and as a consequence, numerous models were formulated as extensions of metal
fatigue theories [2]. However, unlike metals, fatigue damage in composites com-
prises multiple simultaneous internal fracture mechanisms such as matrix micro-
cracks, delamination, fiber breakage, etc., that ultimately lead to significant
changes in the macroscale mechanical properties of the material over its lifespan
[3,4]. This multivariate damage process leads to uncertainty in assessment of current
and future material properties. This stemsin part from the material heterogeneity and
an incompl ete knowledge about the physics behind the evolution and interaction of
damage mechanisms. Fatigue damage predictions using deterministic models in
absence of any ground truth information about the current degradation state are
not expected to provide much accurate information about the state of health of the
material.

However, real-time measurements of the structural performance are now possible
through state-of-the-art structural health monitoring (SHM) techniques, and a large
amount of response data can be readily acquired and further analyzed to assess various
health-related properties of structures. Therefore, a more suitable approach for fatigue
damage prediction is through the use of monitored response of the structure to update a
given damage model so as to make more accurate predictions that also account for
uncertainty. Development of such SHM-based damage prognostics approach is the
core objective of this chapter.
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Damage prognostics is concerned with predicting the future health state of engi-
neering systems or components given current degree of wear or damage, and, based
on that, estimating the remaining time beyond which the system is expected not to
perform its intended function within desired specifications. This estimated remaining
time is referred to as the remaining useful life (RUL). Algorithms that estimate RUL
make use of the information coming from damage models and SHM data to propagate
the estimated health state into the future and as output provide an estimate of time
where the component no longer meets its desired functionality.

Over the last years the topic of fatigue damage prognostics has slowly gained
interest [5e 9] athough the focus has been predominantly on fatigue crack growth
in metals. In this chapter a model-based prognostics framework is proposed to predict
a seguence of damage states of composite laminates subjected to fatigue loading.
Damage states as well as model parameters of the underlying damage modd are
sequentialy updated and predicted based on available SHM data. The proposed
methodology is implemented and demonstrated using data for microcrack density
and stiffness reduction in carbon fiber reinforced plastic (CFRP) cross-ply laminates
from run-to-failure tensione tension fatigue experiments.

16.2 FRundamentals

Prognostics aims at determining the end of life (EOL) and RUL of components or
systems given the information about the current degree of wear or damage, the
component’s load history, and the anticipated future load and environmenta condi-
tions. In prognostics the EOL is defined as the limiting time when an asset is expected
to depart from the serviceability conditions. RUL isthe period of remaining time from
the current time (or time of prediction) until estimated EOL .

Prognostics can be seen asanatural extension of SHM in the sensethat the predictions
of RUL and EOL are frequently updated using datafrom a sensing system. It israther a
sequential processof updatee predicte reassesswherethe user isnot only concerned with
detecting, isolating, and sizing a fault mode, but also with (1) predicting the remaining
time before the failure occurs, and (2) quantifying the uncertainty in the prediction,
that can be further used for risk assessment and rational decision-making. Henceforth,
prognostics requires periodic SHM measurements to reassess and improve the quality
of the predictionsof EOL and RUL astime goesby. After abrief overview of prognostics
solutions in aerospace structures the following sections briefly discuss various aspects
involved in design of a prognostics health management (PHM) system.

16.2.1 PHM for aerospace structures

Aerospace structures are a class of lightweight structures used for aircrafts and space-
crafts which are normally subjected to cyclic loads. Preventing fatigue damage failure
resulting from cyclic loads requires damage monitoring and inspection, and thus
scheduled maintenance to be done over the vehicle's operational life, which notably
increases the direct operating costs[10]. One of the major issues for aircraft operators,
as well as for aircraft assemblers, is to reduce the direct operating costs without
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compromising the safety. Within this scenario, damage prognostics emerges as a
rational approach as it enables cost-effective risk-based maintenance schedules based
on predictions of the RUL [11]. Future damage predictions can be obtained with
quantified uncertainty and are based on knowledge about current damage state of
the structure using SHM.

In the SHM literature, there are a growing number of articles dealing with prognos-
tics solutions for aerospace structures. For example, a prognostics framework was
presented in application to fatigue degradation of a composite wing from an unmanned
aeria vehicle [12]. SHM data were obtained through in-flight tests as well as through
on-ground inspections, and predictions were performed to obtain both local and
component-level measures of damage. The Joint Strike Fighter Autonomic Logistics
[13] is another example of application of the PHM sciences to the aircraft industry,
where the prognostics architecture is conceived to be applied at the level of the entire
vehicle (system level) through the integration of subsystem prognostics reasoners for
different components: structures, engines, communication systems, etc. In the helicop-
ter industry, damage prognostics has acquired considerable significance for health
maintenance. A remarkable example of this category is the health and usage moni-
toring systems for main rotor and gearbox components on large rotorcrafts, which
has been shown capable of considerably reducing the fatal hull loss [14], while
increasing the rotor component life by about 15% [15].

The aforementioned examples represent just a few of the different prognostics
approaches that are encountered in the literature on application to aerospace structures.
However, athough some of these prognostics approaches have successfully made the
transition from research to practice, damage prognostics till requires more research
efforts and further development, and needs to be justified by significant impact on
safety and economy overal when applied to aerospace composite structures.

16.2.2 Design for prognostics

The design of a prognostics system is of paramount importance to ascertain that the
prognostic solution meets expectations. For example, reduction of life cycle cost,
safety improvement, or an optimization of uptime to better guarantee mission avail-
ahility, arejust few examples of goalsto be accomplished by the prognostics solution.
In a general sense the design process needs to be considered as part of a systems
engineering process. Design process can be conceptually partitioned into three stages:
analysis, concept, and synthesis, as Fig. 16.1 illustrates.

During the analysis phase, requirements for the overall system are established
based on a set of predefined goals and the end use of prognostics [17]. Next the
prognostics functionality is defined during the concept phase. In this phase, func-
tional needs and constraints are determined to drive potential solutions to the sys-
tem in presence of any faulty behavior. Key concepts at this phase are observability
of fault modes and assessment of prediction performance, which are both further
explained in Sections 16.2.2.1 and 16.2.2.2. Finally the functional needs are encap-
sulated in appropriate physics-based models that characterize the system fault
propagation as well as the system final failure. During this phase, suitable ago-
rithms are developed to efficiently predict the future faulty behavior of the system.
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Figure 16.1 Schematic description for the design process of a PHM solution [16]. FMECA,
failure mode, effects and criticality anaysis.

The majority of this chapter is dedicated to delineating the models and algorithms
one can use in the context of composite materials.

16.2.2.1 Observability of fault modes

Using suitable sensors that can interrogate the system health state and assess in rea
time any change in fault severity are of paramount importance. Because damage
predictions are sequentialy updated from periodica measurements, the higher the
accuracy expected from prognostics, the better the quality required for the information
obtained from the sensing system. However, this information comes at the expense of
more targeted sensing and significant computational requirements. Complex systems
subjected to a variety of fault modes (cracks, voids, delamination, corrosion, etc.)
that often require dedicated sensors and sensor networks for detection as no one sensor
type can typically provide sufficient information to cover all fault modes. The choice
of the sensing method is typically guided by the feature or set of features to be moni-
tored. For example, weight loss or power demand sensors onboard airspace systems
resultsin adifferent sensor choice than for monitoring vibrationsin buildings or corro-
sion in bridge structures [18].

Sensor |ocations are chosen such that the expected type of damage produces observ-
able and statistically significant effects in features derived from the measurements at
these locations, which is often determined through numerical simulations or physical
tests. Low-level loca response caused by damage (eg, cracks opening and closing)
must be separated from large-amplitude globa response, such as that caused by
aerodynamic loads on aircrafts, by determining required sensitivity and dynamic range
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through analysis or experimentation. There are several methods for optimal placement
of sensors that consider maximum information quality (see for example Ref. [19]).

16.2.2.2 Prognostic performance metrics

Once a component or subsystem is being monitored using an appropriate sensor
system the next requirement for an efficient prognostics framework resides in quanti-
fying the prediction performance. Decisions based on poor and/or late predictions may
increase the risk of system failure, whereas wrong predictions of falure (fase
positives) trigger unnecessary maintenance actions with unavoidable cost increase.

A detailed discussion about deriving prognostics requirements from top level
system goals was proposed by Saxena et a. [20]. These requirements are generaly
specified in terms of prediction performance that prognostics must satisfy for a desired
level of safety or cost benefit. A variety of prognostics performance evaluation metrics
have been defined in the literature, like prediction horizon (PH), ael accuracy
measure, and relative accuracy measures [21,22]. As described by Saxena et al. [23]
prognostics performance can be summarized by three main attributes, namely:

correctness, which is related to the prediction accuracy when compared with
observed outcomes;

timeliness, which accounts for how fast an algorithm produces the output as
compared to the rate of upcoming outcomes from the system; and

confidence, which deal swith the uncertainty in a prognostics output, typically from
a prognostics agorithm.

Among the metrics proposed by Saxenaet d. [21,22] the PH and theae | accuracy
measures are widely used in prognostics and also adopted for thiswork. The PH serves
to determine the maximum early warning capability that a prediction algorithm can
provide with a user-defined confidence level denoted by a. Typicaly, a graphica
representation using a straight line with negative slope serves to illustrate the “true
RUL,” that decreases linearly as time progresses. The predicted probability density
functions (PDFs) of RUL are plotted against time of prediction using error bars (eg,
by 5e 95% error bars) as Fig. 16.2 (left panel) shows.
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Figure 16.2 Illustrations of (left) PH and (right) a! | prognostics metrics.
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Ideally the median of the RUL predictions should stay on the dotted line (RUL*)
that represents the true RUL, or, at least, stay within the accuracy regions specified
by a. By means of this representation the PH can be directly determined as shown
in Fig. 16.2 (left). The PH metric can be further parameterized by a parameter b
(thus denoted by PH, 1) that specifies the minimum acceptable probability of overlap
between the predicted RUL and the a accuracy bands delimited by the dashed linesin
Fig. 16.2 (left). Both a and b are scaling parameters for the prognostics which should
be fixed considering the application scenario.

For the ae | accuracy metric a straight line with a negative slope is also used to
represent the true RUL. Predicted PDFs of RUL are plotted against time of predic-
tion (which istermed as | in the original paper by Saxena et al. [22]) using error
bars. Asin Fig. 16.2 (left), accurate predictions should lie on this line as long as
they are sequentially updated with SHM data. In this case the accuracy region is
determined by parameter a, which represents a percentage of the true RUL so
that it denotes the notion that accuracy of prediction becomes more critical as
EOL approaches. See Fig. 16.2 (right) for illustration. In this case, two confidence
regions are employed by adopting 0< a; < a, < 1, so that each predicted RUL
can be validated depending on whether or not it belongs to any of the a; or a,
regions.

16.2.3 Fundamentals of model-based prognostics

A complete and rigorous prognostics solution hinges on the availability of several
elements, that include a model for system health evolution, a quantifiable criterion
for what congtitutes failure, and a method to deal with underlying uncertainties.
Typically, itisaccomplished in three stepsthat are addressed in this section: (1) current
state estimation, (2) future state prediction, and (3) RUL estimation. In order to carry
out the steps above, a generic time-dependent, statee space modeling framework is
presented first.

16.2.3.1 Satee space system modeling

Let us consider a generic component or subsystem whose health state is expected to
evolve as follows:

Xn ¥4 gni 1;Un; qPP Vp [16.1]

where g&p 1; Un; qP: R* & Rv & R/ R is a possibly nonlinear function of the
system state x, , R™ that may depend on a set of ng (uncertain) model parameters
g. Q 3 R%, dongwithasetu,, R™ of input parameters to the system (loadings,
environmental conditions, operating conditions, etc.). Theterm v, , R™ refersto the
model error, which represents the difference between the actual system state x,, and the
state predicted by the hypothesized model g(Xn 1, Un, Q).

In addition, it is assumed that measurements of the system hedlth state can be
obtained during operation and that, at a certain time, n, the measured system state,
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Yn, Can be expressed as a function of the latent state, x,, by means of the following
measurement equation:

Y YaXn P Wy [16.2]

where wy, is the measurement error. It is also assumed that the error terms v,, and wp,
from Eqgs. [16.1] and [16.2] are random variables instead of deterministic fixed-valued
variables, and that they are distributed following specified probability models. Based
on these probability models the PDFs for the state transition equation and observation
equation are prescribed. For example, when errors vy, and wy, are model ed as zero-mean
Gaussian distributions, which is supported by the principle of maximum information
entropy [24]. The state transition equation and the observation equation defined in Egs.
[16.1] and [16.2], respectively, can be expressed as Gaussian distributions as follows:
I

X1
pa(njxm ]_,Un,qpl/élwpﬂ]XJSVan%exp ' %a(n' inl:;- a(n' an

n [16.3]
|

X1 '
POy niXn; APYa 20 BYjSy, jb 2 exp ! %ayn! xnB &y, ! Xnb [16.4]

Wn

where Xph g&n 1;un;gR and Sy, R*&™ and S, , R*¢™ are the covariance
matrices of the model error and the measurement error, respectively. Egs. [16.3] and
[16.4] congtitute the stochastic equations for the overal system response, and play a
major role in the proposed model-based prognostics framework.

16.2.3.2 Sequential state estimation

Once the system has been mathematically described using the stochastic system
equations given above the first step for prognostics is to recursively update the joint
PDF of the system health state x,, along with model parameters g at every timen a
new measurement is collected.

To this end, let us define an augmented state z, ¥4 &p; qP, Z3 R™* & R repre-
senting the overall system response including model parameters q, Q. Thus, given
a sequence of measurements up to time n, namely yon “%{YoY1.- ¥Yn 1.Yn}, the
goal is to estimate the posterior probability of the up-to-date sequence of states zp.
n¥a{z0,21,. ,Zn 1,Zn}, expressed by the conditional PDF p(zo:njyo:n). Thisis accom-
plished by Bayes theorem as follows:

o PYnznP&oniyYon 1P
P&y njZn&o0:nj Yo 1F8Zo:n
Z

P&o:njYonP Y4

[16.5]
f pYnizn&njzn 1PP&o:n 1jYorn 1P
| (P Z T

last update
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where
P&njzn 1PV P&XnjXn 1; AnP PAInjdnt 1P [16.6]
(TR 2 AR
Eq: 16:3
PO niZnPYa POy yj Xn; dnP [16.7]
| (T Z TR
Eq: 16:4

As observed in Eq. [16.3], model parameters q,, are assumed to evolve by some
unknown random process that is independent of the system state, x,. It should be
noted that model parameters are essentially not dependent on time, and hence
p(gnjan 1) impliesan “artificial” evolution given the nondynamic nature of g. A fol-
lowed solution to obtain a model for p(qnjqn 1) is to add an independent random
perturbation x, to the set of updated parameters at time n! 1 before evolving to
the next predicted state at time n [25,26]; i€, qn Yadn 1P X, Whereby the PDF
p(gnjan 1) is prescribed. For example, if x, is assumed to follow a zero-mean
Gaussian, thus:

" #
PAnjdm 1PYaN dn 1; Sy, [16.8]

Observe that by this method, an additional source of uncertainty is artificially intro-
duced to the model parameters leading to a loss of information about q (ie, larger
spread bands) over time that ultimately influences the precision of the state estimation.
To sequentialy reduce this additional uncertainty, severa methods have been pro-
posed in the literature [26e 28], with the most popular being those that impose
some kind of shrinkage over Sy as long as new data are collected [26]. An efficient
method of this class has been proposed by Daigle and Goebel [29], which is adopted
in this work by its simplicity and efficiency.

16.2.3.3 Sampling method for sequential state estimation

The sequential state estimation methodology presented above is anaytically intrac-

table except some especial cases using both linear models and Gaussian uncertainties.

For the genera case of nonlinear models and/or non-Gaussian uncertainties,

sampling-based algorithms like particle filters (PFs) [30,31] have been shown to

effici entlynappré)ximame the updating PDF p(zﬂ;njyo-ts,) by means of a set of N discrete
N

N
particles zf’;ﬁ v with associated weights ugp v By PF the required PDF is

approximated as:
%

: X ap$ ab
pP&Z0:njYo:nPZ upd zon! zy, [16.9]

i
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wheredisthe Dirac delta. In practice, it is not possible to obtain samples directly from
P(Zo:niYo:n) as it is seldom known exactly, hence a common solution is to generate
samples from an importance density PDF q(zo:njyo:n) Which is easier to simulate,
leading to the sequential importance sampling (SIS) approach. To compensate for the
difference between the importance density and the true posterior density the unnor-
malized weights are defined as follows:

$ %

a g O
bnp%W [16.10]
q ZO;n O:n

ap
where uED% bN s | ¥21,. N. There is a vast literature dealing with optimal
ivon
selection strategies for the importance density PDF [30,32]; however, in most of
the practical applications the importance density is conveniently chosen so that
it admits a sample procedure by adopting A(zo:njYo:n) ¥4q(Zo:niYo:nt 1), hence it
can be factorized in aform similar to that of the updating PDF, ie, q(zo:njyo:nt 1) ¥4
d(znzn )aZon 1jYont 1). Thus, by substituting Eq. [16.5] into Eq. [16.10],
the unnormaized importance weight for the ith particle at time n can be
rewritten as:

0, 0, 0,
p$zg':’§/ % p$za sb AJp$y aDA)
: on 1 n |1 non
% s & 9% $ & Y [16.11]

TS gl
4 Zoy 1&on 1 q Zn & 1
|

ap

Upig

In addition the PDF q(z4jzn 1) in Eq. [16.11] istypically chosen to coincide with
the state transition equation p(z,jzn 1) [25] defined in Eq. [16.6], asit is straightfor-
ward to evaluate. In this case, Eq. [16.11] simplifies to:

ap ap ga Yo
b f Uy 1P Yn&lP [16.12]

and the resulting agorithm is commonly known as a “bootstrap filter,” after the
celebrated paper by Gordon et d. [25]. A pseudocode implementation for the PF is
given as Algorithm 2 in Section 16.4, in the context of the prognostics example in
composites. Algorithm 2 includes a systematic resampling step [30] to limit the
well-known degeneracy problem.*

1 During resampling, particles are either dropped or reproduced that may result in a loss of diversity of the
particle paths [30]. If necessary, a control step of degeneracy by quantifying the effective sample size
(ESS) may be incorporated before the resampling.
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16.2.3.4 Future state prediction

Having estimated the current health state of the system at time n by means of the
methodology explained above the next step for prognostics is to predict the future
states of the system ‘-steps forward in time in absence of new observations, ie,
P(znp :jyo:n), With * > 1. This distribution can be obtained by the total probability
theorem as:

. R . .
P&np jYonP Y2 P&npjZnnpt 1&nnp 1 1YonFZnnp 1 1
ZII
R [16.13]
Ya p&ztjze 1P P&njYonFdZnnp 1 1
Z tynpl

where it uses the fact that p(znp:jznnp 1 1) %pP(Znp ‘jzZp1 1), * > 1, as Eq. [16.]]
defines aMarkov model of order one and also by the assumption that the observations
are conditionally independent given the states. Replacing p(znjyo:n) in thelast equation
by its PF approximation, an approximation to the PDF p(znp:jyo:n) is obtained as
follows:

2w ! ap%
p&np jZonPZ pézijzy 1P Uﬁpd Zon! Zy, dZonper 1
Z twnp1 ivi
. ”orp [16.14]
m g .
Va udP p 71 &8P p&zjzy 1F0Zop 1np 1 1
ival z tanp 2

Observe that Eq. [16.14] corresponds to a weighted sum of integrals that can be

readily simulated %y drawing one conditionad sample sequence zgg’ Lnp Ya

z‘gg’l; 22;2;. ;z‘:; from each of the N multidimensional integrals in Eq. [16.14]

using recursively the state transition equation (recal Eq. [16.6]): ie, first sample
zgkf’ 1 using the aforer@ntio %estep transition equation conditional on the initial

state, z,, ie, zﬁr',D WP Znpi E,”’ ; then sam%/le the succeeding state conditional on
0

the previous sample, ie, zﬁg’ SWP Znpo ‘2;’ , ; finally, repeat the same process until
the target timenp * is reached.

16.2.3.5 RUL prediction

To obtain the EOL and RUL based on the predicted future state of the system given by
p&znp « jYo:nPthe definition of a useful domain for the predicted states isfirst required.
Let U3 Z bethe nonempty subset of authorized states of the system, whereas the com-
plementary subset, U %Z\U corresponds to the subset of states where system failure
occurs. Without loss of generality the useful domain can be delimited by means of a
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set of ne constrainsf cy; Cy; . ; cn 9, Where each one represents a function that maps a
given point z in the joint state-parameter space to the Boolean domain {0,1}, ie,
¢:Z/ Bh {01}, such that ¢&P¥00 z, U;j%1;. ;n.. In other words,
z ., U when any of the constraints are violated.

Using the PF approach defined above the EOL predicted at time n can be obtained
for theith particle trgjectory asthe earliest timet' nwhen the event ztEjp . U occurs.
In mathematical terms:

0,
aby, n A $ EDA)]_ o}
EOLSP%sinf t, N:t' n” lgp % Y%l [16.15]

where I"U# is an indicator function for the region U that assigns a value of 1 when

z. U and 0 otherwise. The RUL predicted at time n for the ith particle can be
obtained using EOLgpas

RULZPY,EOLEP! n [16.16]

Fig. 16.3 provides a schematic illustration to exemplify the trgjectory of the ith par-
ticle of az-state of dimension two (for ease of representation) along with theindication
of EOL3P and RULS",

By repeating the process for each particlei ¥4 1,. ,N, an approximation to the PDF
of EOL at time n can be obtained as:

XN $ %
PSEOL njyonPz udh EOL,! EOLSP [16.17]
Vil
¢1(2)=0 u
u N c(2)=0
\irst—passage
Ny y  paint
° o\ °
we © o Y 0
Zns | Zote
20 o ) \\
" EOLY=n+t '.
0 _ 1
RUL, =1 |
Z

Figure 16.3 Two-dimensionad illustration of the ith particle trgjectory to EOL. A sequence of

samples in the Z-space, ie, zﬁp; z‘:pl; . ;z‘:; . are represented using solids disks. Two

constraint functions { ¢,(2),cx(2)} are represented.
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Correspondingly the PDF of RUL , can be approximated as:

X $ %
PARUL njYoPZ ud® RUL,! RULSP [16.18]
ival

An agorithmic description of the prognostics procedureis provided as Algorithm 1.
Algorithm 1: PF-based prognogtics algorithm.

n $ % _ Oy
1. inputs: z§°1/4 xﬁp; qﬁ" ;uﬁID ! updated particles at time n. Use eg,
|1
Algorithm 2 given further below.
2. Define U3 Z, {[useful domain}]
3. for i%1to N do
4.t) n
apy _ap
oA ap ap%
6. Evauate E$OI;? 0
7. whilelg, z~ %0do
8. Predict utap %ap%
9. Sample g, W P Grp 18
ap ap, _ap %
Xip1W P Xtp 18 ; Op 1 Ut
10. t) tp1
ap, an:% $ ap an:%
1L z Y% X .0 ) Zpr¥e Xip 15 Otp 1
12. end while
13. EOLEP) t
RULSP1LEOLSP! n
14. end for

16.3 Damage prognosticsin composite materials

Anticipating the occurrence and growth of damage states in the material in future is of
crucial importance for determining the remaining time for which the structure is
desired to perform per specifications. To this end, first the relevant damage modes
are identified and suitable models for damage evolution are developed. This enables
predictions of future damage states that are sequentially updated using the information
from sensors. In this section a physics-based modeling framework is presented for
damage evolution in composites and a discussion about selecting damage thresholds
is provided. Additionally, the connection between proposed damage models and the
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model -based prognostics framework, as discussed in Section 16.2.3, isexamined at the
end of this section.

16.3.1 Damage propagation model

The progression of fatigue damage in composites involves a progressive or sudden
change of the macroscale mechanical properties, such as stiffness or strength, as a
consequence of different fracture modes that evolve at the microscale level during
the lifespan of the structure [4]. Through decades of investigation, numerous fatigue
models have been proposed in the literature [2]. A vast majority of them are
deterministic semiempirical formulations often customized for specific material
configuration under specific testing/loading conditions. The publications that have
incorporated uncertainty in fatigue modeling have primarily used Markov chain
models and other stochastic models for fatigue damage evolution [33]. These
approaches suffer from the fact that models used therein often lack physical meaning
and are purely empirica in nature. One of the most widely used models for metallic
structures is Paris law [34] that relates a crack’s length growth rate to the range of
applied stress intensity factor primarily because it is better associated with the physics
of the damage growth process. However, in contrast to metals, composites under fatigue
loading exhibit growing density of multiple interlaminar and intralaminar microcracks
[35] instead of a single crack growth. Due to its simple formulation and associated
physical interpretation of damage, Paris law is till a preferred choice for compodte
materials and the modified Paris law [36] emerged as the best suited mode for fatigue
in composites. A description of the mode is given as follows:

g%%Nbeﬁ [16.19]

where A and a arefitting parametersand r isthe microcrack’s density that increases as
fatigue cycles, n, evolve. Theterm DG isthe energy release rate (ERR), and represents
the energy released due to the formation of anew crack between two existing cracks at
a specific stress amplitude: DG %2 Gjs ! Gjs,,,,» Which can be calculated as [37]:

Ds2h 1 |1(

DG V. !
“2rtqy E{@rb E(&P

[16.20]

In the last equation, Dsy is the increment in applied axial tension, and h and tgg are
the laminate and 90 degree sublaminate half-thickness, respectively. The term Eﬁ& =}
asafunction of r, isthe effective laminate Y oung’ s modul us due to the current damage
state which can be calculated using a suitable damage mechanics model such as those
presented in Section 16.3.2. It follows that closed-form solutions for r ¥4r (n) are
rarely available as DG involves complex expressions for damage mechanics models.
To overcome this drawback the resulting differential equation can be solved by
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approximating the derivative using the “unit-time” finite difference approach,
assuming that damage evolves cycle-to-cycle as:

rn ]/4rn! 1p Aa:)Ga' n! 1'4:? [1621]

16.3.2 Micro- to macroscale damage model

To accurately represent the relation E{ ¥4 E(& bin Eq. [16.20], severa families of
damage mechanics models have been proposed in the literature [38]. These models
are based on first principles of admissible ply stress fields in the presence of damage,
and can be roughly classified into (1) analytical models, (2) semianalytical models, and
(3) computational models. Among them, computational and semianaytical models
have been shown to be promising, however, they are computationally prohibitive in
a filtering-based prognostics approach as large amounts of model evaluations are
required. Surrogate models may alleviate that problem by adopting data-driven tech-
nigques. A more detailed discussion of such techniques is beyond the scope of this
chapter and the focus is instead on a set of analytical models. Depending on the level
of assumptions adopted to model the stressfield in the presence of damage, they can be
classified (from simpler to more complex) into shear lag models [39], variational
models [40], and crack opening displacement (COD)-based models [41]. Among
them the shear lag models are simpler and have received significant attention in the
literature [38]. The main modeling assumption in shear lag modelsisthat, at the matrix
crack locations, the axial load is transferred to uncracked plies by the axial shear
stresses actiqg a the interfiaces. These models are usually, restricted to cross-ply

laminates or f » =90, =f » layups, wheref ! 90'; 90 isthe ply-angle of the
2 2

outer sublaminates (see Fig. 16.4). However, it should be noted that the prognostics
methodology presented in this chapter is not restricted to the above class of models
and is applicable to any other suitable damage model class. In this work the classica
shear lag model [39,42] is chosen to represent the relation between microcrack density
(as the microscale damage variable), and relative stiffness decrease (as macroscale
damage manifestation). The classical shear lag model provides reasonably accurate
results and is shown to be less sensitive to the noise in data, as presented in a study
[43]. From this standpoint, matrix microcracking is selected as dominant fracture
mode for the early stages of damage accumulation asit is the precursor of more severe
damage modes, as will be shown in the subsequent sections [35].

16.3.2.1 Siffnessreduction model

Following the unifying formulation by [44] for shear lag models the effective longitu-
dina Young's modulus, E)(< can be calculated as afunction of the crack spacing in the
90 degree layers as follows:

Exo .

Bl Va2 gt

= [16.22]
1
1p aﬁR I
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Figure16.4 Pand (a): Schematic view of afiber reinforced plastic (FRP) composite laminate of
six pliesand stacking sequence given by #29=f 9=f 9+ Panel (b): Illustration of one of the plies
with indicaﬂon of materiaﬁ and laminate directions. Pand (c): Illustration for microscopic

damagein f» =90,,=f » laminate along with basic geometrical parameters.

where Ey g isthe initial longitudinal Y oung’s modulus of the undamaged |aminate and
] Yat- | is the half crack-spacing normalized by the 90 degree sublaminate thickness,
Wh|ch can be expressed asafunction of r as: | ¥4 51— 2” . Thefunction, R&R known asthe
average stress perturbation function, is defined as:

# 2 #
RI ¥ tanh X [16.23]

where x isthe shear lag parameter that can be obtained for the classical shear lag model
[39,42] as follows:

1 1
2YyGyg —p —— 16.24
X" %1 Go3 Ezp| T [16.24]

X
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h i
The superscript (f ) denotes “ property of the f » -sublaminates’ (see Fig. 16.4 for
2
further details), and | Yatstgg. The term a in Eq. [16.22] is a function of the laminate
mechanical and geometrical properti% as follows:

0

b & b
afp E |
avi—2 %1 gHE j§ 1! ”ﬂngy [16.25]
| Ex apb r%z 2

For the sake of clearness the termsinvolved in Egs. [16.22]e [16.25] are described
in more detail in Table 16.1.

Table 16.1 Nomenclature of the terms used for shear lag analysis.
Nominal values of ply and main geometry parameters are further
provided in Table 16.4 in the context of a numerical example

Laminate
E. Longitudinal Y oung’s modulus
E¢ Effective long. Young's modulus
h Laminate half-thickness
Sublaminate
Exa i Longitudinal Young's modulus
E? P Transverse Y oung’s modulus
nifyp In-plane Poisson ratio
Ggyp In-plane shear modulus
ngp Out-of-plane shear modulus
too ]r?onqo +sublaminate half-thickness
tf f n sublaminate thickness
t Ply thickness
Ply
E; Longitudinal Young's modulus
E; Transverse Y oung's modulus
Mo In-plane Poisson ratio
N3 Out-of-plane Poisson ratio
G In-plane shear modulus
Gy Out-of-plane shear modulus
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16.3.3 Selecting prognostics targets for fatigue in composites

Given a structure there are several structural elements and locations that can
develop faults and are potential targets for prognostics. However, carrying out prog-
nostics for all such elements can be prohibitive because of the computational cost.
Therefore, a common approach is to prioritize more critical locations or identify
“hot spots” that can be closely monitored. Additionally, prognostics rely on the
capability of SHM to detect and localize fault location before predictions of fault
growth can be made. Another key aspect to define is the damage magnitude
threshold that must be used to define a structure’s EOL, which is not necessarily
the failure threshold. A suitable balance must be established in defining this
threshold between using a very conservative threshold, at the expense of giving
away useful remaining life; and a very aggressive threshold, resulting in potential
structural failures. Such thresholds are typically defined over quantities that have
a direct physical relation to failure criteria. A natural way to select a target for fa-
tigue in composites would be by focusing on the reduction of effective strength dur-
ing the life cycle, so that failure would occur when strength reduces below the
maximum applied stress levels. However, given that strength cannot be measured
nondestructively, other measurable properties such as degradation in materials
Young's modulus are preferred for prognostics. Therefore, EOL for composite
materials is proposed to be defined based on stiffness degradation criteria. Further-
more, it must be noted that establishing prognostics thresholds for fatigue degrada-
tion in composites is a complex task because damage progression heavily depends
on factors like laminate stacking sequence, ply properties, and loading conditions.
The choice of a suitable threshold generally depends on the application end use
and the type of material used, and should be carefully examined when designing
a prognostic system.

16.3.3.1 Competing damage modes

As mentioned in Section 16.3.2, it is generally accepted in the literature that matrix
microcracking is the dominant fracture mode for the early stages of the fatigue pro-
cess. Experimental observations [45] show that matrix microcracks density in
off-axis plies asymptotically tends to an upper bounded value corresponding to a
spacing of aspect ratio unity termed as characteristic damage state [ 3,46]. In addition
to the characteristic damage state, damage progression may exceed other subcritical
damage states before ultimate failure, corresponding, for instance, with the onset of
local delaminations” [36] and fiber breakage [46,47]. These damage states define
tolerance limits that can be chosen as damage thresholds for prognostics in compos-
ites. However, establishing a deterministic damage progression path to these subcrit-
ical statesis not an easy task because of the uncertainty that arises in the growth and
interactions of internal fracture modesfrom different scales. The aim of thissectionis
not to address this question in depth but to provide a concise overview and discussion

2 Local delaminations are small interlaminar fractures growing from the tips of matrix cracks.
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Table 16.2 Selection of models for ERR due to local delamination
induced by microcracks

Author Classification Energy releaserate, G_p
T
Takeda One-dimensional EPAET b 1oEP02 . :
X X X 1 I

etal. [48] (shear lag) L 2tESX @(p’%gﬁl! dbth explarall i3

. n ] EP® 2$c°aobl cd! db/o
Nairn and Two-dimensional | Catep —Dsx ===

Hu [36] (variational) =

on this matter along with a summary of the methodology as used by the authors in
Ref. [43]. Before going in details of the procedure a brief overview of main contri-
butions addressing the interaction between damage modes is shown below.

16.3.3.2

This section addresses the case where alocal delamination with length 2d has grown
from the tips of matrix microcracks. It was shown in Ref. [48] that the effects of local
delamination may vary depending on the stacking sequence used in alaminate. Here
the discussion isfocused on cross-ply laminates sinceit iswidely used in the literature
and aso the numerical example presented later is based on this layup.

Table 16.2 highlights the main contributions to the formulation of term DG for
the Eq. [16.19] under mixed-mode crack and delamination in cross-ply laminates.®
The function c®as well as the terms C; and Cz are given in the Appendix. The term
X is given in the Eq. [16.24], and gy represents the unitary axial deformation of the
laminate subjected to the increase in applied tension DSy %4Symax ! Sxmin-

It is important to note that measuring local delamination by nondestructive evalu-
ation techniquesis till difficult, if not impossible, overall because local delaminations
are dispersed widely in the laminate [45,49]. Therefore, a prognostics methodology
that considers local delaminations needs further research in addition to requiring
mature sensing technology capable of measurements of local delamination distributed
over alarge areain real time.

Interaction of cracks and local delamination

16.3.3.3 Global delamination

Global delamination is a damage mode consisting of interlaminar cracks arising
between adjacent plies. The presence of global delaminations in composite structures
typicaly carries other concomitant damage modes such as microcracks and local
delamination [45,50]. For cross-ply laminates, globa delamination may typicaly

3 Certain formulations based on the COD approach by Gudmundson and Weilin [41] can also be considered
to model the interaction between cracks and local-delamination [49]. Because of space limitation, they are
not included here.
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Table 163 Models of ERR for edge delamination. The terms EX"'P

and Ef?edgepare the effective stiffness measured at the center and
edge of alaminate specimen, respectively. Therest of termsinvolved
in these equations are grouped in Table 16.1

Author Classification Energy release rate Ggp

O'Brien et d. [54] No interaction with cracks &hdExo! E(P

Nairn [53] Interaction with cracks $sz0/9$ centerb aedgepoo
h = E I E

be expected at the fina stage of the fatigue damage process, coinciding when loca
delaminations induce a damage so severe that the catastrophic failure can occur at
any time (even before the onset of global delamination) [48]. On the other hand, matrix
microcracks might induce global delamination areas in quasiisotropic and angle-ply
laminates so that they are located at the free-edges of the laminate, and they can appear
at earlier stages of the fatigue process [45,50]. Thus, in the latter cases, delamination
onset and growth should be predicted in parallel to matrix microcracks.

To account for the global delamination within the formulation of ERR, different
models are available in the literature. Table 16.3 gives an overview of two of the
most referred models for the ERR accounting for global delamination. The reader
is dso referred to the work of Hosoi et a. [51,52] for a detailed study about the
interaction between microcracks and edge delamination based on the energy model
of Nairn et al. [53].

16.3.3.4 Balance of energies

Based on a balance of energies between different plausible damage modes (namely,
transverse cracks, local delamination, and globa delamination), one can address the
question of whether the next increment in fatigue damage will be through another
transverse crack or a different damage mode induced by the existing microcracks [ 36].
See Fig. 16.5, where the concept of balance of energies between plausible dam-
age modes is illustrated through a case study for a [0,/904]s cross-ply laminate
taken from the composites data set from NASA Ames Prognostics Data Reposi-
tory [55].

In Fig. 16.5 theterms TC, LD, and GD refer to transverse cracks, loca delamina-
tion, and global delamination, respectively. Among the possibilities presented in
Tables 16.2 and 16.3 the models by Nairn and Hu [36] and T.K. O'Brien et a. [54]
have been chosen to obtain the LD and GD curves. The square markers are to denote
the points where a change in the dominant fracture mode is expected. Observe that
initially the release of energy for transverse cracks is larger than that of the rest of
damage modes, then matrix microcracks are expected to accumulate at a faster rate
at earlier cycles. Observe also that the point where TC and LD curves intersect defines
a critical value for the matrix microcracks density, because from this point, loca
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Figure 16.5 ERR term as a function of the matrix crack density for different damage modes.
The square markers delimit the points where a change in the dominant fracture mode is
expected.

Figure extracted from Chiachio J, et a. An energy-based prognostics framework to predict
fatigue damage evolution in composites. In; Annual conference of the prognostics and health
management society. New Orleans LA: Prognostics and Health Management Society; 2013.

delaminations are more likely to appear than another matrix microcrack hence defining
saturation stage for microcracks. Results dso show that until the fina stage of the
process the local delamination mode releases more strain energy than the global delam-
ination mode. Therefore, global delamination onset is expected at the very late stage of
the fatigue damage process. These conclusions agree well with the experimental
evidence obtained for cross-ply laminates reported in Jamison [45] and aso with
the data set from Saxena et al. [55].

Based on this reasoning, prognostics threshol ds can be established by predicting the
position of these reference points as the fatigue process continues. Notice that the
energy term DG depends on model parameters which are sequentialy updated as
new data arrives, as will be shown in the next section. Hence, the intersection points
defining the thresholds dynamically shift their position until a convergence stage, as
was reported in Chiachio et al. [43].

For this work the progression of damage is studied by focusing on the matrix
microcracks density and the stiffness loss induced by the microcracking. In both
cases, non-destructive evaluation (NDE) measurements are possible using today’s
sensing technology. The saturation stage of microcracks along with a limiting value
for stiffness loss are selected as microscale and macroscale damage thresholds,
respectively. Microscale damage thresholds based on more severe damage modes
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(local delamination and global delamination) would also be possible provided that
online measurements can be obtained, however, it is at the expense of greater uncer-
tainty because of the complex interactions between damage modes.

16.3.4 Model-based damage prognostics in composites

Having defined the model for damage propagation forward in time, the next step isto
develop a method for sequentially estimating the damage state as long as new SHM
data are collected. As a previous step a probability-based description of the determin-
istic models described in Section 16.3.2 is first required.

Asdiscussed in Section 16.3.2 the progression of damageis studied at every cyclen

by focusing on the matrix(microcrack’s density, r,, and the normalized effective
stiffness defined as Dy, Y4 Eio so that the following joint state transition equation of
two components g ¥4[g1,go] can be defined as follows:

X1, Yar,Ya glc’i n 1 qbp Vi, [16.26]
| Rz
Eq: 16:21

Xo, ¥aDp Y4 g2l n;qPp o, [16.27]
Wi i
Eq: 16:22

In the last equation, subscripts 1 and 2 denote the corresponding damage subsys-
tems. matrix microcrack density and relative stiffness reduction, respectively.
Observe that the three main elements defining a stochastic damage statee space
model can be identified in Egs. [16.26] and [16.27]: (1) the system output
Xn ¥a[r nDn] . R?, (2) the forward model of damage evolution g ¥4[g1,92], and (3)
the corresponding model error vector v ¥a%;,; Vo, +, R2. It isimportant to remark
that the model errors v, and vo, are stochastically independent even though the
models corresponding to the damage subsystems, namely g; and g,, are mathemat-
icaly related, as shown in Section 16.3.2. This means that the covariance operator
Sy, is a diagona matrix, ie, Sy, Vadiag®s ;si, B where s, and s,,, are the
corresponding standard deviations of the errors vy, and vy, respectively. Therefore,
the stochastic damage model of the overall system can be readily expressed as a
product of univariate Gaussians, as.

P&XnjXnt 1; QPYa pADnjr n; AR pjr oy 1;gP [16.28]

where

!
| .
PA njr 15 qPYa exp ! &n! 91y ;9

2
ps Vin 2s Vin

[16.29]
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|
. Dn! g, qEF
pajnjrn;qp%pj#gév—exp p En 29322 n: 9 [16.30]
2;n

V2

Next, let y, ¥a%, ;y2,th Y, b.+. R2 be the measurements to the system
response, thus the following measurement equation, as that defined in Eq. [16.2], is
added to the discrete statee space model to account for the measurement error term

wh, R

$ %1 X1
. . e 1
PYniXn; AnPYs @D Su,j “exp | 53! xaP ! xaP [16.31]

Wh

The measurements of each subsystem (microcracks density and relative stiffness
decrease) are considered as stochastically independent, thus Sy, ¥4 diagsg, ;s3,, B
where sy,,, and sy, are the standard deviations of the corresponding messUrement
errors wy, and wop,, respectively. Finally, the measurement eguation can be readily
defined as:

g %$ go %
POYnjXn; AnbY2p by &, p By [16.32]
where
0/(21
% b Ir
p bg P?%*GXP% - [16.33]
W:ln
vl

o b v p@—exp% DZLZDn £ [16.34

The PDF of theinitial damage state xg together with the PDFsfor the state transition
equation and the measurement equation as stated in Eqs. [16.28] and [16.32], provide a
complete statistical description of the overall system and play a mgor role in the
filtering-based prognostics methodology explained above.

In the last equations the model parameters, g, are selected among the complete set
of mechanical and geometrical parameters describing Egs. [16.19]e [16.24] through
aglobal sensitivity analysis based on variances following the methodol ogy proposed
by Saltelli et al. [56]. The ply properties { E;, Ep, t} along with the Paris’ law fitting
parameter a emerged as sensitive parameters to the model output uncertainty [57], so
they are selected for sequential updating as shown below. Furthermore, the standard
deviations of the model errors v, and v, are added as candidates for updating since
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they are uncertain a priori, thereby resulting in the model parameter vector,
q ¥ada; Eq; Eo;t; Sy, Sv,, P RS. The probabilistic information of parameters is
specified in the next section.

16.4 Prognostics example

In this section the prognostic framework discussed above is applied to fatigue load
testing data from a run-to-failure experiment in cross-ply [0o/904]s graphitee epoxy
laminates. The tests were conducted under load-controlled tensione tension cyclic
loading with a maximum applied load of 31.13 kN, afrequency f %5 Hz, and a stress
ratio R¥0.14 (relation between the minimum and maximum stress for each cycle)
[55,57,58]. A set of 12 piezoelectric discs (or piezoelectric PZT-material sensors)
was used to monitor the effects of matrix microcracks density and delamination, along
with a set of triaxia strain gauges to measure the normalized effective stiffness.
Additionally, periodic X-ray images were taken to assess internal damage and this
information was used to map the effects observed in sensor data to actual damage.
The mapping between PZT raw data and microcrack density from X-ray images
was carried out by manually observing and quantifying the damage and using signal
processing to extract damage relevant features from PZT data. Detailed methodology
can befound in Larrosaand Chang [59]. Damage data used in this example correspond
to laminate L1S19 from the fatigue data set [55] (the reader is referred to Table A.1
from Refs [57,60] for further insight).

Algorithm 2: Systematic importance resampling (SIR) particle filter.

1L Atn%0h$ % $ % $ %
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Results for sequential state estimation along with multistep ahead prediction for
both microcrack density and normalized effective stiffness are shown at three different
time (cycle) positionsin Fig. 16.6. Microcrack density is expressed in cracks per mm
and normalized effective stiffnessis dimensionless. Note that at the beginning of each
plot (Ieft side before the multistep ahead prediction of states) the collected data up to
cycle n¥%{1,4,8} & 10* are plotted along with the sequence of filtered states, which
are obtained using Algorithm 2 with N %5000 particles. For this example, the SIR
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Figure 16.6 Sequentia state estimation for matrix microcracks density (right panels), and

normalized effective stiffness (left panels) up to acertain cyclen, wheren %1 & 10% 4 & 10%,
and 8 & 10* The multistep ahead predicted damage states are represented using dashed gray
linesfor the 5! 95% probability bands and solid gray linesfor the 25! 75% probability bands.
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version of the SIS algorithm is adopted. Initial values for the damage states are
Xo ¥a(r 0,Dg), where r g ¥40.1 crackmm and Do % 1 (dimensionless). The standard
deviation of the measurement error parameters are set to Syin ¥20.05 cracks mm
and sypn ¥20.01. Chosen prior PDFs for model parameters q ¥2{q1,0p,. e} are
specified in Table 16.4. The diagonal elements of the covariance matrix Sy, (recall
Eq. [16.8]) are appropriately selected through initia test runs and set to 0.5% of the
5e 95th band of the prior PDFs for the jth component of g.

Updated damage states are further forward propagated into the future to compute
the EOL and RUL following the methodology described in Section 16.2.3.4. The
useful domain is defined here as U Y4 f& ; Db, ¥; 0:418+& %, 0:875¢3 R2.

The results of RUL estimates together with their quantified uncertainty by the
25! 75% probability bands are plotted against time in Fig. 16.7, where two cones of
accuracy at 10% and 20% of true RUL, denoted as RUL*, are drawn to help evaluate
the prediction accuracy and precision. Observe that the RUL prediction is appreciably
inaccurate within the first stage of the fatigue process, that corresponds to the initia
parameter tuning period, ie, length of time required for SHM data to train the model
parameters. Moving forward beyond this period the prediction performance noticeably
improves with increasing cycles. As fatigue cycles evolve, not only the prediction
means improve (values closer to RUL* ling) but aso the prediction spread gets
narrower. This visualization alows assessment of how prediction performance

Table16.4 Nominal valuesand prior uncertainty of modd parameters
used in calculations. The rest of parametersin damage mechanics
models (Egs. [16.22] and [16.23]) can be obtained using the classical
laminate plate theory [61e 63]. The nominal values for fitting
parameter s have been defined through initial fitting tests

Nominal

Type Parameter | value Units COV(%) | Prior PDF
Mechanical | E; 127.55 GPa 10 Log N

E, 841 GPa 10 Log N

G 6.20 GPa d Not applicable

N> 0.31 d d Not applicable

Go3 2.82 GPa d Not applicable

t 15& 10 % | m 10 Log N
Fitting a 18 d 20 Log N

A 10' 4 d d Not applicable
Error Sv1 d #Cracks/ d U(0.5,1.5)

(m & cycle)
Sz d d d U(0.001,0.003)
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Figure 16.7 RUL versus fatigue cycles plot to assess lifetime prediction performance for
composites under fatigue aging. Two cones of accuracy at 10% and 20% of true RUL are
represented to hel p evaluating prognostics performance. Darker dashed lines represent the cone
of accuracy at 10%. The true RUL, denoted as RUL*, is represented using black dotted line.

changes over time in terms of correctness (accuracy and precision). Also, by means of
the prognostics horizon (PH), it is possible to assess how quickly performance
convergeswithin desired accuracy levels. In this example the PH for 0.2 as a-accuracy
is PH ¥ 8$10% 1$10° v47.9%10 cycles. Observe also that from cycle n ¥ 5$10% the
estimated mean values for the RUL (labeled by the circles in Fig. 16.7) move away
from the RUL* line and they progressively leave the accuracy cone as fatigue cycles
evolve. However, the median RUL estimates (labeled by the squares) remain within
the accuracy region during all the process. An explanation for this observation is
provided in view of the asymptotic behavior of the damage process for both, micro-
crack density and normalized stiffness decrease (see Fig. 16.6). Indeed, from cycle
n ¥ 5$10%, the model produces a large amount of predicted samples that aready lie
within the failure domain U at the instant of prediction n. This leads to an increasing
higher density of predicted RUL , outcomes concentrated at cycle n aswell as a distri-
bution tail of RUL,, corresponding to cycles higher than n. As a consequence the mean
predicted RUL values have a positive shift with respect to the RUL* vaues because
of such a distribution tail, whereas the median RUL estimates remain closer to the
RUL* line.

It must be noted that observations like these are situation specific and this example
only illustrates how prognostic results must be interpreted especialy considering
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uncertainty in the predictions. A brief discussion about interpreting such behaviors can
befoundin Saxenaet al. [21] and may be related to the difficulty of obtaining adequate
amount of measurements to account for behaviors when the damage process has
reached asymptotic growth behavior.

16.5 Concluding remarks

Prognostic information about a component fault/damage can be a valuable resource in
determining an appropriate course of action to avoid failures. Potential of prognostics
in positively contributing to safety and improving life cycle costsis equally relevant to
existing legacy systems and new system designs. Legacy systems adopt additional
sensing and processing with a potentialy high price of retrofitting and additional
validation and/or certification costs to gain extended system life and safety factor.
New system designs can significantly reduce these costs if prognostics and health
management are adopted early in the design to facilitate a more optima sensor
placement for observability and coverage. This, however, requiresintegration of health
management design into the systems engineering process. Depending on the system
design and how SHM is integrated into that design, there are severa approaches that
can be taken to implement a prognogtic system. This chapter presented a novel
model-based prognostics framework to make predictions of EOL and RUL of compos-
ites under fatigue conditions and estimate the uncertainty associated with these predic-
tions. This is done by fusing the experimental information and models available at
different levels of granularity by means of the Bayes' theorem and total probability
theorem. The vdidity of this framework was demonstrated on SHM data collected
from a tensione tension fatigue experiment using a carbon fiber reinforced plagtic
cross-ply laminate. The results have demongtrated that anticipating the EOL of compos-
ites subjected to fatigue conditions is possible provided that measurements of damage
can be sequentially collected.

References

[1] Vasiliev VV, Morozov EV. Mechanics and analysis of composite materials. 2001.

[2] Degrieck J, Pagpegem WV. Fatigue damage modeling of fibre-reinforced composite
materials: review. Appl Mech Rev 2001;54(4).

[3] Refsnider KL, Talug A. Anadysis of fatigue damage in composite laminates. Int J Fatigue
1980;2(1):3e 11.

[4] Jamison RD, et d. Characterization and analysis of damage mechanisms in
tension-tension fatigue of graphite/epoxy laminates. In: Effects of defects in composite
materials. ASTM; 1984. p. 21e 55.

[5] Myétyri E, Pulkkinen U, Simola K. Application of stochastic filtering for lifetime
prediction. Reliab Eng Syst Saf 2006;91(2):200e 8.

[6] Cadini F, Zio E, Avram D. Monte Carlo-based filtering for fatigue crack growth
estimation. Probab Eng Mech 2009;24(3):367e 73.



474

Structural Health Monitoring (SHM) in Aerospace Structures

(8]
(9]

[10]
[11]
[12]

[13]

[14]
[19]

[16]
[17]

(18]
[19]
[20]
[21]
[22]
(23]
[24]
[29]

[26]

[27]
(28]

[29]

Zio E, Maio FD. Fatigue crack growth estimation by relevance vector machine. Expert
Syst Appl 2012;39(12):10681e 92.

An D, Choi JH, Kim NH. Prognostics 101: atutoria for particle filter-based prognostics
algorithm using matlab. Reliab Eng Syst Saf 2013;115:161e 9.

Gobbato M, Kosmatka JB, Conte JP. A recursive Bayesian approach for fatigue damage
prognosis: an experimental validation at the reliability component level. Mech Syst Signal
Process 2014;45(2):448e 67.

Boller C, Buderath M. Fatigue in aerostructuresd where structural health monitoring can
contribute to a complex subject. Philos Trans R Soc A 2007;365:561e 87.

Farrar CR, Lieven NAJ. Damage prognosis. the future of structural health monitoring.
Philos Trans R Soc A Math Phys Eng Sci 2007;365(1851):623e 32.

Gobbato M, et a. A reliability-based framework for fatigue damage prognosis of
composite aircraft structures. Probab Eng Mech 2012;29:176e 88.

Henley S, Hess A, FilaL. The joint strike fighter (JSF) PHM and the autonomic logistic
concept: potential impact on aging aircraft problems. In: The RTO applied vehicle
technology panel (AVT) Specialists meeting; 2001 [Manchester, UK].

McColl J. Humsin the eraof CAA, JAA, EASA and ICAO. In: AIAC Conference; 2005
[Melbourne].

Silverman H. T-HUMS-AH64 lead the fleet (LTF) summary and glimpse at hermes 450
MT- HUMS. In: AIAC conference; 2005 [Melbourne].

NASA. PHM design process. NASA: Prognostics Center of Excellence; 2012.
Rajamani R, et a. Developing IVHM requirements for aerospace systems. In: SAE
AeroTech congress and exhibition. Montreal, Canada: SAE; 2013.

Sikorska JZ, Hodkiewicz M, MaL. Prognostic modelling options for remaining useful life
estimation by industry. Reliab Eng Syst Saf 2011;25:1803e 36.

Papadimitriou C, Beck JL, Au SK. Entropy-based optimal sensor location for structural
model updating. J Vib Control 2000;6(12):89e 110.

Saxena A, et al. Requirement flowdown for prognogtics health management. In: AIAA
Infotech@A erospace; 2012 [Garden Grove, CA].

Saxena, et a. Metricsfor offline evaluation of prognostic performance. Int JPrognostics
Health Manag 2010;1(1):20.

Saxena A, et a. Metrics for evaluating performance of prognostic techniques. In: IEEE
international conference on prognostics and health management; 2008 [Denver, CO].
Saxena A, Shankararaman S, Goebd K. Performance evaluation for fleet-based and
unit-based prognostic methods. In: European Conference of the Prognostics and Health
Management Society; 2014 [Nantes, France].

Jaynes ET. Probability theory: the logic of science. Cambridge University Press; 2003.
Gordon NJ, Sadmond DJ, Smith AFM. Nove approach to nonlinear/non-Gaussian
Bayesian state estimation. |EEE-Proceedings-F 1993;140:107e 13.

LiuJ, West M. Combined parameter and state estimation in simulation-based filtering. In:
Doucet A, Freitas N, Gordon N, editors. Sequential Monte Carlo methods in practice,
statistics for engineering and information science. New Y ork: Springer; 2001.

KantasN, et a. An overview of sequential Monte Carlo methods for parameter estimation
in general state-space models. In: 15th IFAC symposium on system identification; 2009.
Storvik G. Particle filters for state-space models with the presence of unknown static
parameters. |EEE Trans Signal Process 2002;50(2):281e 9.

Daigle M, Goebd K. Mode-based prognostics with concurrent damage progression
processes. |EEE Trans Syst Man, Cybern Syst 2013;43(3):535e 46.



An energy-based prognostic framework to predict evolution of damage 475

(30]

(31]

(32]
(33]
[34]
(39]
[36]
[37]
(38]
(39]
[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]

[49]

(50]

Arulampalam MS; et al. A tutoria on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. |[EEE Trans Signa Process 2002;50(2):174e 88.

Doucet A, Freitas ND, Gordon N. An introduction to sequential Monte Carlo methods. In:
Doucet A, Freitas ND, Gordon N, editors. Sequential Monte Carlo methods in practice.
New York: Springer; 2001. p. 3e 14.

Doucet A, Freitas ND, Gordon N. Sequential Monte Carlo methods in practice.
New York: Springer Verlag; 2001.

Bogdanoff JL, Kozin F. Probabilistic models of comulative damage. John Wiley &
Sons; 1985.

Paris PF, Gomez MP, Anderson W. A rationa analytic theory of fatigue. Trend Eng 1961,
13:9e 14.

Abrate S. Matrix cracking in laminated composites: a review. Compos Eng 1991;1(6):
337e 53.

Nairn JA, Hu S. The initiation and growth of delaminations induced by matrix
microcracks in laminated composites. Int J Fract 1992;57(1):1e 24.

Nairn JA. The strain energy release rate of composite microcracking: a variational
approach. J Compos Mater 1989;23(11):1106e 29.

TargaR, Singh CV. Damage and failure of composite materials. Cambridge University
Press; 2012.

Garrett K, Bailey J. Multiple transverse fracture in 90 cross-ply laminates of a glass
fibre-reinforced polyester. J Mater Sci 1977;12(1):157e 68.

Hashin Z. Analysis of cracked laminates: a variational approach. Mech Mater 1985;4(2):
121e 36.

Gudmundson P, Weilin Z. An analytic model for thermoelastic properties of composite
laminates containing transverse matrix cracks. Int J Solids Struct 1993;30(23):
3211e 31.

Manders PW, et a. Statistical analysis of multiple fracture in 0/90/0 glass fibre/epoxy
resin laminates. J Mater Sci 1983;18(10):2876e 89.

Chiachio J, et al. An energy-based prognostics framework to predict fatigue damage
evolution in composites. In: Annua conference of the prognostics and health
management society. New Orleans LA: Prognostics and Heath Management
Society; 2013.

Joffe R, Varna J. Analytical modeling of stiffness reduction in symmetric and balanced
laminates due to cracks in 90 layers. Compos Sci Technol 1999;59(11):1641e 52.
Jamison RD. The role of microdamage in tensile failure of graphite/epoxy laminates.
Compos Sci Technol 1985;24(2):83e 99.

Beaumont PWR, Dimant RA, Shercliff HR. Failure processes in composite materias:
getting physical. J Mater Sci 2006;41(20):6526e 46.

Lee JW, Allen DH, Harris CE. Internal state variable approach for predicting stiffness
reductions in fibrous laminated composites with matrix cracks. J Compos Mater 1989;
23(12):1273e 91.

Takeda N, Ogihara S. Initiation and growth of delamination from the tips of transverse
cracks in CFRP cross-ply laminates. Compos Sci Technol 1994;52(3):309e 18.
Schmutzler H, et a. Degradation monitoring of impact damaged carbon fibre reinforced
polymers under fatigue loading with pulse phase thermography. Compos Part B Eng
2014;59:221e 9.

Nairn JA. Matrix microcracking in composites. In: Targa R, Manson JAE, editors.
Polymer matrix composites. Amsterdam: Elsevier Science; 2000. p. 403e 32.



476

Structural Health Monitoring (SHM) in Aerospace Structures

(51]

[52]
(53]
[54]
[55]
[56]
(57]
(58]

[59]

[60]

[61]
[62]
[63]

Hosoi A, et a. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over
108 cycles (initiation and propagation of delamination considering interaction with
transverse cracks). Int J Fatigue 2010;32(1):29e 36.

Hosoi A, et al. Quantitative evaluation of fatigue damage growth in CFRP laminates that
changes due to applied stress level. Int J Fatigue 2011;33(6):781e 7.

Nairn JA. Fracture mechanics of composites with residual thermal stresses. J Appl Mech
1997,64:804e 15.

O'Brien TK, Rigamonti M, Zanotti C. Tension fatigue analysis and life prediction for
composite laminates. Int J fatigue 1989;11(6):379 93.

Saxena A, et al. CFRP composites dataset. 2013.

Sdtelli A, et al. Global sensitivity anaysis: the primer. Wiley-Interscience; 2008.
Chiachio J, et d. Bayesian model class selection and parameter estimation for fatigue
damage progression in composites. Int J Fatigue 2015;70:361e 73.

Saxena A, et d. Acceerated aging experiments for prognostics of damage growth in
composites materials. In: International workshop on structural health monitoring; 2011.
Larrosa C, Chang F-K. Red time in-situ damage classification, quantification and diag-
nosis for composite structures. In: 19th international congress on sound and vibration;
2012.

Chiachio M, et a. An efficient smulation framework for prognostics of asymptotic
processes- a case study in composite materids. In: European Conference of the
Prognostics and Health Management Society. Nantes, France: PHM Society; 2014.

Tsai SW. Theory of composites design. Think Composites; 1992.

Tsai SW. Strength and life of composites. USA: Stanford University; 2008.

Tsai SW, Wu EM. A genera theory of strength for anisotropic materials. JCompos Mater
1971;5(1):58.

Appendix: Nomenclature and basic relations

Expressions for cdband its first derivate c@pare given by:
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where a3 %4 !2. 7! . The Eq. [16.35] applies

when % > 1. Otherwise, Eq. [16.36] should be considered. The terms p and q are

relations of the ply properties and the stacking sequence defined by p ¥4 (Cy! C4)Cs,
q%C,Cs. The parameters C;, i:1,. ,4, are known functions of the laminate
properties defined as:

C 1/4Eil é [16.37]
| 2( N3, |2
Cv b3 £ [16.38]
C3 Y4dlp |p"3| b 12l p s#i [16.39]
60E,
Ca 1/4! 1 '_( [16.40]
3 Gz G2

where | is the ply-thickness ratio | Yatptgy. Notice that DG p depends on the
magnitude d ! dB which expresses the separation between the tips of two growing
delaminations starting from the tips of the matrix microcracks. With no loss of gen-
erdity, thermal stresses are not considered for the formulation of ERR in Tables 16.2
and 16.3, asthe data used for thiswork, and also in most of the fatigue experiments, are
collected in a temperature-controlled environment.



This page intentionally left blank



This page intentionally left blank



WOODHEAD PUBLISHING SERIES IN COMPOSITES SCIENCE AND ENGINEERING

Over the last twenty years the area of Structural Health Monitoring (SHM) has
experienced spectacular progress. The widespread adoption of SHM could both
significantly improve safety and reduce maintenance and repair expenses, estimated
to be about a quarter of an aircraft fleet's operating costs. The SHM field encompasses
trans-disciplinary areas including smart materials, sensors and actuators, damage
diagnosis and prognosis, signal and image processing algorithms, wireless intelligent
sensing, data fusion and energy harvesting. This book focuses on how SHM techniques
are applied to aircraft structures with particular emphasis on composite materials.

The book is divided into four main parts. The first part provides an overview of SHM
technologies for damage detection, diagnosis and prognosis in aerospace structures.
Part Two moves on to analyse smart materials for SHM in aerospace structures, such
as piezoelectric materials, optical fibers and flexoelectricity. This part also includes
two vibration-based energy harvesting techniques for powering wireless sensors
based on piezoelectric electromechanical coupling and diamagnetic levitation
concepts. Part Three explores innovative SHM technologies for damage diagnosis in
aerospace structures. Chapters within this section include sparse array and phase array
techniques for damage detection. The final section of the volume details innovative
SHM technologies for damage prognosis in aerospace structures.

Structural Health Monitoring (SHM) in Aerospace Structures will be a key reference for
researchers working within this industry, academic and government research agencies
developing new systems for the SHM of aerospace structures and materials scientists.

Prof. Fuh-Gwo Yuan is Samuel P. Langley Distinguished Professor in the Mechanical

and Aerospace Engineering Department of North Carolina State University, Raleigh,
and National Institute of Aerospace, Hampton, Virginia, USA.

ISBN 978-0-08-100148-6

WODDHEAD
PUBLISHING
An imprint of Elsevier » elsevier.com
9"780081"001486




