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Abstract—In this work, we propose a novel method to model time-varying autoregressive impulsive signals, which possess Symmetric 

Alpha Stable distributions. The proposed method is composed of a particle filter, which is capable of estimating the unknown, time-

varying autoregressive coefficients and a Hybrid Monte Carlo method that is used for estimating the unknown statistical parameters of 

the Symmetric Alpha Stable Process. The performance of the proposed method is tested for different parameter values where the time 

variation of the autoregressive coefficients is taken to be as sinusoidal or random jumps. The successful performance of the developed 

method serves as a promising contribution in the modeling of impulsive signals, which are frequently seen in many areas, such as 

teletraffic in computer communications, radar and sonar applications and mobile communications. 

 
Index Terms— α-stable distributions, Bayesian estimation techniques, Markov Chain Monte Carlo, Particle Filtering 

I. INTRODUCTION 

HE necessity to model the impulsive data has led to an increasing attention in the signal processing community since the 
beginning of the last two decades. Until recently, most of the methods developed in the literature were based on the 
assumption that the data can be modeled by Gaussian distributions. However, in many application areas, such as the radar 

and sonar communications, financial time series modeling, telecommunications and teletraffic modeling, the distribution of the 
data does not fit to a Gaussian distribution [1]. Moreover, trying to model an impulsive data with a Gaussian distribution can lead 
to severe disadvantages, since the effects of the outliers are ignored in such a modeling. Additionally, these outliers cause the 
most extreme effects, when the physical nature of the data is considered, such as the cases in seismic, climatologic and 
oceanographic data. A remarkable example for this discussion can be the modeling of oceanic wave heights, where these are 
generally modeled by heavy-tailed distributions [2]. If one used a Gaussian distribution, instead; neglecting the outlier data could 
cause some catastrophic consequences during the process of meteorological predictions, such as the case that was witnessed in 
Holland in 1953, where an increase of 3.5m in the sea level led to the death of approximately 2000 people. Such a rise in water 
level is a remarkable example for an outlier and unfortunately, considering that as an event with low probability caused 
devastating outcomes. 

In order to involve the information coming from the outliers, heavy-tailed modeling is widely used in literature. In general, 
Alpha Stable (α-stable) processes are used to model heavy-tailed distributions [3, 4, 5]. 

Another important issue in the modeling of heavy-tailed data is expressing its temporal dependency. Similar to the Gaussian 
cases, linear and nonlinear parametric temporal modeling of the impulsive data can be expressed in terms of Autoregressive 
(AR), Moving-Average (MA), Autoregressive Moving Average (ARMA) [3, 4, 6] or nonlinear AR models [7]. Among these, AR 
structure is widely used in teletraffic data modeling in computer communications [8].  

Moreover, the time evolution of these data model parameters is also an active research area. According to the observations, 
there is an ongoing debate about the time dependency of the teletraffic data, where it is stated that the AR coefficients may be 
either time-varying or the process is self similar [9]. In another application area, the aforementioned parametric models can be 
used to model communication channels and it is well known that the characteristics, therefore the parametric model of these 
channels can vary over time, especially in wireless communications [10]. 

In literature, although there are different approaches to estimate the parameters of a time-invariant AR α-stable process, such 
as the Iteratively Reweighted Least Squares [7], Generalized Yule-Walker [3] and Markov Chain Monte Carlo (MCMC) based 
methods [11], a very limited number of works have been done to model time-varying AR (TVAR) α-stable process. In [12], 

 
This work is supported partially by TÜBİTAK-CNR project number: 102E027 and partially by Boğaziçi University Scientific Research Fund project number: 

04A201. The first author was supported by NATO-TÜBİTAK A2 fellowship, throughout his research at ISTI-CNR, Italy. 
Deniz Gençağa is with the Department of Electrical and Electronic Engineering, Boğaziçi University, Bebek, 34342, İstanbul, Turkey (e-mail: 

gencagao@boun.edu.tr).  
Ercan E. Kuruoğlu is with ISTI, Area Della Ricerca CNR, via G. Moruzzi 1, 56124, Pisa, Italy (e-mail: ercan.kuruoglu@isti.cnr.it). 
Ayşın Ertüzün is with the Department of Electrical and Electronic Engineering, Boğaziçi University, Bebek, 34342, İstanbul, Turkey (e-mail: 

ertuz@boun.edu.tr). 

Estimation of Time-Varying Autoregressive 
Symmetric Alpha Stable Processes by  

Particle Filters 

Deniz Gençağa, Ercan E. Kuruoğlu, Ayşın Ertüzün 

T 



 2 

Thavaneswaran and Peiris propose a penalized minimum dispersion method in case of a presumably known shape parameter (α) 
of the α-stable process which is taken to be larger than one, i.e. 1α > . 

In the case of a TVAR process with a non-Gaussian driving process, such as a Mixture of Gaussians or Laplacian with known 
statistical parameters, it is observed that the estimation of the unknown TVAR coefficients can be done successfully using 
Particle Filters [13, 14]. Apart from the signal modeling scheme, which is the case discussed so far, particle filters can also 
perform very well in the signal enhancement, where a Gaussian signal is embedded in a Symmetric-α-stable (SαS) noise process 
[15]. In [15] the underlying Gaussian process has a TVAR structure to model a speech signal. 

It should be noted that our method differs from [15] in the sense that a TVAR SαS process is modeled here, i.e. both the 
unknown TVAR coefficients and the statistical parameters (α, σ) of a SαS process are estimated; whereas the main objective in 
[15] is to enhance a Gaussian TVAR signal, which is contaminated by a SαS process. 

In its most general form, particle filters enable us to obtain the optimal Bayesian solution of the systems that can be modeled 
by non-Gaussian and/or nonlinear state-space equations [16, 17]. For such systems, if the signals are non-stationary, particle 
filters can still provide us with the optimal Bayesian solution, since the estimation is performed sequentially. However, other 
Bayesian techniques, such as the Markov Chain Monte Carlo (MCMC) [18], can only be used for stationary signals, since these 
methods have batch processing nature and discard the time information of the signals.  

Motivated by these approaches, a novel method for estimating both the unknown TVAR coefficients and the statistical 
parameters (α, σ) of a SαS process is proposed in this work. The proposed method is composed of two stages, where the TVAR 
coefficients are estimated by a particle filter and the statistical parameters of the driving process are estimated by a Hybrid Monte 
Carlo method. These two stages are used iteratively starting from random values and good convergence results are obtained. 

The rest of the paper is organized as follows: First, the problem is stated formally in Section II with background information on 
α-stable processes. Then, particle filters are introduced in Section III. In Section IV, the proposed method is presented  which is 
followed by the experiments in Section V. Finally, results are discussed in Section VI and the conclusions are drawn in Section 
VII.  

II. TVAR ALPHA STABLE PROCESSES 

A. Alpha Stable Processes 

It is well known that, if we add a large number of random variables of different distributions, the summation variable tends to 
be more Gaussian distributed as the number of terms goes to infinity. This is known as the Central Limit Theorem (CLT). 
Moreover, it is necessary that each added random variable is of finite variance. Otherwise, CLT becomes insufficient and 
Generalized Central Limit Theorem should be used [3]. In this case, the limiting distribution is an α-stable distribution. α-stable 
distributions are defined in terms of their characteristic functions, since their probability density functions (pdf) cannot be 
obtained analytically, except for some limited cases (α=2, β=0 Gaussian; α=1, β=0 Cauchy; α=0.5, β=-1 Pearson) [3, p. 14].The 
characteristic function of α-stable distributions is given as follows: 
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As shown above, an α-stable distribution is defined by four parameters and will be represented by S(α,β,σ,δ), from now on. 
Among these, α and β are known as the shape parameters and they determine the thickness of the tails and the symmetry of the 
distribution, respectively. For example, in our work, SαS are used. As α gets smaller, the distributions become more impulsive. δ 
and σ are known as the measures of the location and the dispersion around it, respectively.  

B. TVAR Alpha Stable Processes 

As mentioned before, the main contribution of this work is the estimation of both the time varying AR coefficients and the 
distribution parameters of a SαS process, which is given in the following form: 
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where, y(t), xk(t) are known as the observation, autoregressive parameters and v(t) is  the driving process, S(α,0,σ,0), respectively. 
In this work, the objective is to estimate the TVAR coefficients, xk(t), which depend on time index t and the statistical parameters 
of the  SαS process, i.e. α and σ. Here, location parameter is taken to be zero and the shape (α) and dispersion (σ) parameters are 
estimated beside the TVAR coefficients. Since the α-stable processes are symmetric, β is also equal to zero. So, the characteristic 
function turns into the following form: 

{ }( ) expt t
α

ϕ σ= −                                                                                (3) 

III. PARTICLE FILTERS 

 
Particle filters are used in order to update sequentially a priori knowledge about some predetermined state variables by using 

the observation data. In general, these state variables are the hidden variables in a non-Gaussian and nonlinear state-space 
modeling system. Such a system can be given by the following equations: 
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where xt and yt represent the hidden state and the observation vectors at current time t, respectively. Here, the process and 
observation noises are denoted by vt and nt , respectively. ft and ht are known as the process and observation functions and in their 
most general case, they are nonlinear. Also, the noise processes in (4) are modeled to be non-Gaussian. Here, the objective is to 
obtain sequentially the a posteriori distribution of the state variables obtained via the observation data gathered up to that time, 
i.e. ( )|0: 1:t tp x y . If both the process and the observation noises are Gaussianly distributed and the corresponding functions ft and ht 

are linear, then the desired a posteriori distribution is also Gaussian and sequentially estimating the mean and variance is 
sufficient instead of the whole pdf. In this situation, the optimal solution can be obtained by the Kalman filter [19]. For this 
condition, (4) is expressed as follows: 

1t t tt

t t t t

= +−

= +

x F x v

y H x n

                                                                                               (5) 

where Ft and Ht are linear operators and the noise distributions are Gaussian. For both (4) and (5), the optimal Bayesian solution 
for the a posteriori pdf is given as follows [16, 17]: 
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In general non-Gaussian situations we may not always have analytical expressions for distributions. Thus, the distributions are 
expressed in terms of samples, to approximate them. These samples are called as the particles. The expression for the a posteriori 
pdf can be given in terms of particles as follows: 
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where i

tw , x0:t
i , δ(.) denote the weight of the ith particle, the ith particle and the Kronecker delta operator, respectively. Then, 

expectations for function g(.) can be obtained by the following equation: 
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where g(.) is a function depending on the estimate [16]. Here, the major problem is to draw samples from an analytically 
inexpressible non-Gaussian distribution and estimate the integral given by (8) using Monte Carlo integration techniques, shown as 
follows: 
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The particles that take place in equations (7) and (9) are drawn by a method known as the “Importance Sampling” [16, 17] and 
the corresponding “Importance Weight” for each of them is denoted by i

tw  as defined as follows: 
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where q(.) function is called as the “Importance Function” and drawing samples from this pdf is easier than that of original 
distribution [16, 17]. However, importance sampling shown in (11), can be used in batch processing techniques and should be 
modified as follows for the sequential applications [16, 17]: 
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But, as a consequence of this sequential modification, a phenomenon, known as  “Degeneracy”, arises as a problem and causes 
the importance weight of each particle, but one, to converge to zero as time evolves [16, 17]. In order to avoid the degeneracy 
problem, “Resampling” is performed as an additional step and by this procedure, particles with high importance weights are 
replicated, while the others are discarded. By doing so, we can approximate the desired pdf in time [16, 17].  

It is well known that the optimal Bayesian estimation of unknown variables, which can be expressed in terms of a state-space 
system, is available through the use of particle filters [16, 17]. Although this method seems to be very effective in its most general 
form (nonlinear and/or Non-Gaussian), it is extremely tedious to obtain the optimal importance function to reach these optimal 
results, except for some special cases [17]. Usually, the designer selects a simpler proposal distribution in such cases to 
approximate the optimal one. Most of the time, the a priori transition density function is used as a proposal density, which can be 
given as follows: 

 

( ) ( )| , |1:0: 1 1
i i i i
t t tt t

q p− −=x x y x x                                                                    (13) 

 
Provided that this proposal distribution is used, the importance weight calculation (12), is reduced to the likelihood evaluation 

at the drawn sample value: 
 

( )( )| ,1
ti i iw w p yt t tt∝ − x θ                                                                     (14) 

 
where θ(t)

 denotes the parameter vector of the observation noise, shown by n(t). This specific particle filtering scheme is known as 
the Bootstrap particle filter [16, 17]. 
 Although using the a priori transition density function simplifies the calculations, it usually performs unsatisfactorily, as a 
result of the resampling stage, after the importance weights are calculated by (14). Usually, the particle population is reduced to a 
few samples after this stage. This is known as the “Depletion of Samples” problem and arises as a consequence of neglecting the 
observation information in the process of sample transition [16, 17]. In literature, there are well known methods developed to 
mitigate this problem by increasing the sample diversity [20, 21]. 
 If the a priori information about the states is not sufficient to construct a good approximation to the optimal importance 
function, one can also model the state transitions in such a way that the observation information is exploited not explicitly, but 
implicitly, by modeling the state transition noise with a Gaussian distribution, possessing a time-varying covariance matrix [13, 
14].  
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IV. THE PROPOSED METHOD 

 
The proposed method is composed of two successive sections, where the TVAR coefficients are estimated by particle filter and 

the statistical parameters α and σ of the SαS process are estimated by a Hybrid Monte Carlo method. 

A. TVAR Estimation by Particle Filtering 

An observed TVAR SαS process can be expressed by the following equation: 
 

 1
T

y nt t tt
= +−y x                                                                            (15) 

 
where yt-1 = [yt-1,..........,yt-K]T and xt = [x1(t),......,xK(t)]T vectors denote the past values of the AR process and the TVAR 
coefficient vector of order K, respectively. Here, the observation (driving) noise is modeled by a SαS process, as shown below: 
 

~ ( , 0, , 0)n St α σ                                                                            (16) 

 
 The objective of this work, is to model an observed TVAR SαS process yt, i.e. to estimate the vector xt and the statistical 
parameters (α and σ), jointly. Motivated by [13, 14], the unknown TVAR coefficients can be modeled as states and together with 
(15), they can be inserted into a state-space representation, as shown below: 
 

1t tt
= +−x x v                                                                              (17.a) 

1
T

y nt t tt
= +−y x                                                                         (17.b) 

 
where (17.a) and (17.b) are called as the state transition and observation equations, respectively. In (17.a), the state transition 
matrix is taken to be the identity matrix. According to this representation, distribution of the state transition (process) noise is 
used in order to draw new samples. In order to take the effect of the observation information into account during the state 
transition (sampling new particles) step, Bootstrap PF is used with the following state transition density: 

 

( ) ( ) ( )| , | ,0: 1 1: 1 1 ( )q pt tt t t t v t
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where ( ) ( ), ( )~t v tp Nv 0 Σ denotes a Gaussian distribution with zero mean and covariance matrix of  ( )v t
Σ . This covariance 

matrix is sequentially estimated from the past data in such a way that the current state estimate is affected more from recent data, 
while the effect of the previous data is reduced by the utilization of a “Forgetting Factor”, namely ξ, as shown below: 
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where ( 1)t−Σ
x

 is a diagonal matrix, whose elements are variances of the particles, corresponding to the related AR coefficient at 

time (t-1) and ξ is a real number between zero and one. 
 Given a state-transition equation, which is modeled by (17.a) with the proposal density function of (18), the importance weight 
of each particle can be calculated by using the likelihood function, given by (14). It is well known that the pdf of a SαS random 
variable, denoted by (16), can be estimated numerically by taking the inverse Fourier Transform of its characteristic function 
which is shown as follows:  
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where 1j = − . In order to calculate the importance weight, pertaining to the ith particle, (14) takes the following form as a result 

of the relationship of (15): 
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Here, the parameter vector is composed of the shape and the dispersion parameters of the SαS process, as shown below:   
 

{ }( ) ( ) ( )
,

t t t
α σ=θ                                                                            (21) 

 
In this work, it is assumed that the statistical parameters α and σ are unknown constant values. Thus, in order to clarify that these 
parameters are not time-varying, their values at time t are shown by upper indices, denoting the algorithmic iteration number. As 

a result of these, the unknown statistical parameter vector, 
( )t
θ , must be estimated, in order to calculate the importance weights 

of the state variables (xt) representing the TVAR coefficients. 
For this purpose, we make use of the heavy-tailed nature of the observation noise: TVAR coefficient estimates, ˆ ( )tx , which are 

found by using random statistical parameters, 
( )t
θ other than their true values, can still be enough to obtain a satisfactory estimate 

of the driving process, namely ˆ( )n t , which is expressed as follows: 

 

ˆ ˆ( ) ( ) ( ) ( )
1 1

T T
n t y t y t n tt tt t
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Thus, the proposed method proceeds as follows: First, random values are drawn from the priors of the statistical parameters, 

which are denoted by α0 and σ0, for the first iteration. Then, by using these values, the particle filtering algorithm, which is 
described above, is run on the observed data and an estimate of the TVAR coefficients is obtained, which is denoted by vector 

)(ˆ tx . Secondly, an estimated waveform for the SαS  driving process (innovations), ˆ( )n t , is obtained by (22). 

After that, a Hybrid Monte Carlo method, which is explained in Section B, is applied on this innovations process estimate ˆ( )n t , 

to find the statistical parameters α(t) and σ(t).  
Then, these new parameter values are given as inputs to the particle filter and the new TVAR coefficients are estimated. This 

procedure is performed iteratively, until both the TVAR coefficients and the statistical parameters converge. 

B. Statistical Parameter Estimation by Hybrid Monte Carlo Method 

Here, the method which is developed by Godsill and Kuruoğlu [11] in order to estimate the dispersion parameter of a heavy-
tailed symmetric α-stable process is generalized in such a way that the shape parameter (α) can also be estimated by an additional 
Metropolis Hastings step. This method exploits the use of the “Positive Stable Law” which can be expressed as follows [4, 11] : 
Let X and λ be independent random variables with the following distributions: 
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n̂ X αλ ′=  is stable with distribution ˆ ~ ( ,0, , 0)n S α σ . Moreover, a Gaussian distribution with ( )2, 2N µ σ  corresponds to 

(2, 0, , )S σ µ  with this notation. So, if we can generate positive stable random variables with distribution 
2
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and multiply by ( )2~ 0,2X N σ , then the multiplication n̂  is distributed by 
2ˆ ~ (0, 2 )n N λσ . So, given λ  and σ, n̂  is 

Gaussianly distributed. Thus, given the values of λ  and σ at a specific time instant t, the likelihood can be obtained at t 

by 2ˆ 0,2nt tN λ σ
 
 
 

. Therefore, the posterior distribution of tλ  is given as follows, which is proportional to the multiplication of 

the likelihood and the prior: 
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The reason of obtaining such a representation will soon be obvious. Let us think that we have gathered a batch of M α-stable 

random variables n̂ , i.e. ˆ ˆ ˆ ˆ, , ...,1 2 M
n n n=  
 n . Under these circumstances, the likelihood of the parameters of this distribution 

cannot be written analytically. However, if we can find N tλ  positive stable random variables for each n̂t , for 1, 2, ...,t M= , we 

can express the likelihood as follows, given the value of σ: 
 

( )
2ˆ1

ˆ , ,
22 1

exp
M nt

tt

p σ α
λσ

 
 − ∑
 

= 
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where , , ...,1 2

T

M
λ λ λ=  
 λ . Here, Gibbs sampling is utilized in order to obtain the posterior pdf’s of the parameters, namely 

, ,α σ λ . The following priors are used: 

 
2

( ) ( , ), ( ) (0, 2)p IG p Uσ η κ α= =                                                            (26) 
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2 4

p St
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where ( , )IG η κ  denotes an Inverted Gamma distribution with parameters η and κ, whereas U(a,b) denotes a Uniform distribution 

between a and b.  
By using these priors, the conditional posterior of σ2 is obtained as follows [11]: 
 

2 ˆ( , , ) ( , )

2ˆ1
/ 2,

12

p IG

M ntM
t t

σ α η κ

η η κ κ
λ

′ ′=
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Conditional posterior of λ is expressed as the multiplication of conditional posterior of each λt: 
 

( ) ( )ˆ ˆ, , , ,
1

nt t

N
p p

t
α σ λ α σ= ∏

=
λ n                                                              (29) 

 

where ( )ˆ, ,nt t
p λ α σ  is given by (24). This conditional posterior can be obtained by using the Rejection Sampling scheme [22] 

as follows: 

Target distribution is shown by ( )ˆ, ,nt t
p λ α σ . This can be expressed by (24), where the effect of tλ  is evaluated at the 

likelihood, i.e. 2ˆ 0,2nt tN λ σ
 
 
 

. So, instead of the posterior, likelihood can be taken as the target distribution. This likelihood is 

bounded from above [11]: 
 

( )2ˆ |0,2
1

exp( 1/ 2)
2ˆ2

nt tN

nt

λ σ
π

≤ −                                                            (30) 

 
Thus, the steps of the rejection sampling can be given as follows [11]: 

1. , 0

2
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2 4
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2. 
1

0, exp( 1/ 2)
2ˆ2

~
nt

u U

π

 
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3. If  ( )2ˆ |0,2nt tu N λ σ>  go to 1. 

 
Finally, the conditional posterior distribution of α is obtained by using Metropolis Hastings algorithm. For this purpose, 
numerical likelihood functions are evaluated as in (20) for each data sample and then multiplied by the prior, as shown below: 
 

( ) ( )
1

ˆ( | , , ) exp exp ( | 0, 2)
1 2

ˆ
t

N
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t
n

α
α σ σ τ α

π
τ τ
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λ n                                 (31) 

 
which corresponds to the multiplication of the likelihood and the prior. In [31], U(α|0,2) denotes the evaluation of α in the 
uniform distribution U(0,2). Here, Random Walk Metropolis Hastings (MH) [22, 23] is utilized, where the proposal density is 
chosen to be a Gaussian. The steps of this MH are given as follows: 
 

1. Draw a new sample: 
2

(0, )Nα α ϕ′ = + , where 
2

ϕ  denotes the variance of the random jumps [22]. 

 
2. Calculate the acceptance ratio: 

  
ˆ( | , , )

min 1,
ˆ( | , , )

p

p

α σ
ρ

α σ

′
=

 
 
 

λ n

λ n
 

 
3. Accept this new α ′  with probability ρ. 
 
After obtaining the necessary conditional posteriors, Gibbs sampling is performed by iterating through the following samplings: 
 

1.  
1 ˆ , ,~

i i ip σ α
 +
 
 
λ nλ                                                                                                                                                           (32.1) 

2.  2 1 ˆ, ,
2( 1)

~ i ii
p σ ασ
 +
 
 

+
λ n                                                                                                                                               (32.2)                                                  

3. ( )1 1 ˆ| , ,
1

~ i ii
p α σα + ++

λ n                                                                                                                                                     (32.3)                                                  

 
After iterating through these, take the average of each parameter as the point estimate, which is calculated after the burn-in period 
[22]: 
 

1 1 1
, ,

1 1 1

i i iL L L

i i iL L L
σ σ α α= = =∑ ∑ ∑

= = =
λ λ                                                          (32.4)                                                                       

 
where L denotes the number of iterations, after the values pertaining to the burn-in period are omitted. 

V. EXPERIMENTS 

A. The Proposed Method 

In this section, performance of the proposed method is shown by computer simulations, where five different experiments are 
performed with the specifications outlined in Table I. 

Synthetic TVAR processes are generated by passing each of the driving processes, whose distributions are given on the second 
column of Table I, through a first order all-pole filter. It should be noted that, (19) takes the following form in case of a first order 
AR model: 
 

1
1

2 2
( ) ( 1)v t x t ξ

σ σ
 

− 
 

= −                                                                         (33) 
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The third, fourth and the fifth columns of Table I show the forgetting factors, total number of particles and the time variation of 
the AR coefficients, respectively. The value of the pole (AR coefficient) changes from 0.99 to 0.95 at t = 500 and varies 
sinusoidally between 0 and 1, for “jump” and “sine” type of indications, respectively. The estimates of both the TVAR 
coefficients and the statistical parameters are shown in Figs. 1 through 5, with their corresponding experiment number. In each 
figure, the first and the fourth iterations of the proposed algorithm are illustrated for the estimated coefficients and the 
parameters. 

B. Artificial State Transition Modeling for the Static Parameters 

 
It is well known that the particle filter is used for modeling dynamic systems, where the state variables do change in time [16, 

17]. In our work, the objective is to estimate both the TVAR coefficients and the static parameters (α and σ), jointly. In order to 
do so, one can also propose to augment the state vector (TVAR coefficient) with the static parameters and model them with an 
artificial transition equation. However, it is also well known that trying to fit an artificial state transition model to a static 
parameter within a particle filtering framework, provides unsatisfactory results [24]. In order to show this situation, the shape 
parameter is also modeled by a state transition equation as shown below. Here, to make things simpler, dispersion parameter is 
assumed to be known. 

 

1

1

1

x x vt tt

t tt

T
y x nt t tt

α α η

= +−

= +−

= +−y

                                                                                 (33) 

 
In this experiment, the variance of the state process vt is chosen as outlined in the previous section, while the variance of the 
second state process noise, namely var(ηt) is taken to be a small constant around 4x10-4. In this scenario, nt is synthetically 
produced by nt~S(1.2,0,1,0). Again a first order AR process is simulated and time variation of the AR coefficient is taken to be as 
a jump at t = 500. The estimations of the TVAR and the shape parameter are shown in Fig. 6. 
 

C. Heavy Tailed Innovations Process Estimation 

 
As outlined in Section IV, in our method, estimates of the unknown TVAR coefficients are used to obtain an approximation to 

the innovations process, by (22). This is performed during each iteration of the algorithm and provides satisfactory estimation of 
the innovations process as iterations evolve in time. In this experiment, the robustness of the AR coefficient estimation for heavy 
tailed innovations is visualized. For this purpose, the likelihood functions of the AR coefficient, which are used to calculate the 
importance weights by (20.b) are plotted at each time instant t, given the observed data values, namely yt and yt-1. In this 
experiment, AR coefficient is taken to be constant at 0.95 and the behavior of the aforementioned likelihood functions for 
different SαS  driving process (innovations) are visualized for three different processes in Figs. 7 through 9, respectively. 

In addition to these, in order to illustrate that one can obtain satisfactory innovations process estimate from (22), the innovations 
process estimate, pertaining to the first iteration of experiment 1 (Fig. 1 (b1).) is shown in Fig. 10. 

VI. DISCUSSION 

 
In this paper, a novel method is proposed to estimate both the TVAR coefficients and the statistical parameters of SαS 

processes. For this purpose, iterative utilization of a particle filter and Hybrid Monte Carlo stages are performed and successful 
results are obtained, as shown in Figs. 1 through 5. In this method, particle filter is used to estimate the TVAR coefficients, while 
a Hybrid Monte Carlo method is utilized for the estimation of the statistical parameters. 

Here, it is also shown that estimating time-varying states can be successfully performed, whereas large variations arise in the 
estimates of the static parameters when the latter ones are also interpreted as time-varying states. This is shown in Fig. 6 and 
coincides with the discussion in [24], where it is stated that modeling the static parameters in a dynamic way (“artificial 
evolution”) causes an “information loss”. To avoid this phenomenon “kernel smoothing of parameters” is proposed in [24]. 

In our case, to estimate the static driving noise parameters, the heavy tailed nature of the signal is exploited and the static 
parameters can also be estimated successfully, as an alternative to those performed in [24]. Here, we make use of a nice behavior 
that is observed in SαS processes. This property can be understood by examining Fig. 1, where it is seen that the quality of the 
TVAR estimate increases suddenly in Fig. 1b. when a high-valued outlier is observed in Fig. 1a. This sounds very logical, since 
an outlier from the tails of a distribution brings us more information compared to that is brought from a sample around the mean 
value. Thus, as the TVAR process becomes more heavy tailed, the probability that an outlier is observed increases, resulting in 
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better estimates regarding to the TVAR coefficients. Even if the value of the observed TVAR process decreases, the quality of 
the estimated TVAR coefficients is not affected considerably.  

This robustness of the TVAR estimates is also visualized in Figs. 7 through 9, where the likelihood functions for three different 
SαS processes are shown, both in 3 dimensional mesh and their corresponding 2 dimensional contour graphs. For the sake of a 
better understanding, a first order AR process having a time-invariant AR coefficient at 0.95 is used. For comparison, three 
different SαS processes are used to generate the AR processes. In Figs. 7, 8 and 9, it is seen that, as the process becomes more 
heavy tailed, the number of outlier data increases and the likelihood functions corresponding to the AR coefficients become well-
shaped, i.e. they become sharper, which leads to a better selection between the samples drawn from the support region of the AR 
coeficients ([-1,1]), during the importance sampling. Moreover, the nature of the state-transition equation (17.a) allows the states, 
which are pulled out to a suitable region by the help of an outlier, remain for a considerable time at that value and does not allow 
it to jump to random values, thanks to the forgetting factor in (19). Additionally, once the effect of the outlier is forgotten, it is 
also harder for the state to jump to another value, as the driving process becomes more heavy-tailed. Here, the possibility of the 
state jump from a well-defined value (AR estimates which are found by outlier data values) increases when data values approach 
to zero and this phenomenon can occur more easily as we go from Fig. 7 to 9. That is why, the quality of the AR coefficient 
estimates decreases as the process becomes less heavy-tailed. However, this behavior can be avoided by increasing the number of 
particles that are used. 

These properties of SαS processes allow us to obtain satisfactory estimates of the innovations process, which is given by (22) 
and lets us the ability to use MCMC methods to find the statistics of the process. The error that is done in the estimation of the 
innovations is very small when compared to the values that the process can take. This is illustrated in Fig. 10, where the error at 
the end of the fourth algorithmic iteration1 is visualized. 

VII. CONCLUSIONS 

 
In this work, a novel method is proposed to estimate both the TVAR coefficients and the statistical parameters of a SαS  

process, jointly. This is a generalization of the case, where the statistical parameters of the SαS  process are assumed to be known 
[25]. 

 The proposed algorithm is composed of two interacting, iterative stages, where, TVAR coefficients are estimated by particle 
filter, while a Hybrid Monte Carlo method is utilized for the estimation of the statistical parameters of the SαS  process. As time 
evolves, the estimation quality of the TVAR coefficients and the statistical parameters increase and successful convergence 
results are observed. It is well known that dynamic modeling can be performed very well by the utilization of the particle filter, 
whereas this method provides very inconsistent estimates when the static parameters are also treated within the particle filtering 
framework [24]. Here, this situation is also shown with an additional simulation, where the static distribution parameter of the 
SαS  process is found to be very oscillatory, while the TVAR coefficient is found successfully. On the other hand, our method is a 
very promising solution to mitigate such problems, when the process has a SαS  distribution.  

It is also shown that, the AR estimation is very robust to the statistical parameter values of the SαS  process, which is a similar 
conclusion stated for the Maximum Likelihood estimation of time-invariant AR α-stable processes [26]. 

In conclusion, the successful performance of the developed method serves as a promising contribution in the modeling of 
impulsive signals, which are frequently seen in many areas, such as teletraffic in computer communications, radar and sonar 
applications and mobile communications.  

Moreover, this work presents various aspects of the behavior of particle filtering algorithms, where α-stable processes are 
involved, and provides material for the examination of such cases in the future. 
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----------------------------- 
1One algorithmic iteration is composed of one particle filtering to find a TVAR estimate sequence plus the MCMC iterations to obtain the statistics to be given 
as input for the next particle filtering 
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TABLE I 
EXPERIMENT CRITERIA 

Experiment 
Number 

Distribution ξ N Change 
Type 

1 ~ (1.1, 0,1.5, 0)n St
 0.9 100 Jump 

2 ~ (1.5, 0,1.5, 0)n St
 0.96 100 Jump 

3 ~ (1.9, 0,1.5, 0)n St
 0.96 500 Jump 

4 ~ (1.1, 0,1.5, 0)n St
 0.9 100 Sine 

5 ~ (1.9, 0,1.5, 0)n St
 0.9 100 Sine 
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Fig.1. Experiment 1: Estimation of piecewise constant AR coefficient and the statistical parameters of  SαS  process with driving process distribution of 

~ (1.1, 0,1.5, 0)n St
, where t denotes time and i denotes MCMC iterations 

a) TVAR process, b1) TVAR coefficient estimate at the end of algorithmic iteration #1, b2) TVAR coefficient estimate at the end of algorithmic iteration #4, c1) 
Shape parameter estimate at the end of algorithmic iteration #1, c2) Shape parameter estimate at the end of algorithmic iteration #4, d1) Dispersion parameter 
estimate at the end of algorithmic iteration #1, d2) Dispersion parameter estimate at the end of algorithmic iteration #4 
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Fig.2. Experiment 2: Estimation of piecewise constant AR coefficient and the statistical parameters of  SαS  process with driving process distribution of 

~ (1.5, 0,1.5, 0)n St
, where t denotes time and i denotes MCMC iterations 

a) TVAR process, b1) TVAR coefficient estimate at the end of algorithmic iteration #1, b2) TVAR coefficient estimate at the end of algorithmic iteration #4, c1) 
Shape parameter estimate at the end of algorithmic iteration #1, c2) Shape parameter estimate at the end of algorithmic iteration #4, d1) Dispersion parameter 
estimate at the end of algorithmic iteration #1, d2) Dispersion parameter estimate at the end of algorithmic iteration #4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 14 

 

 
Fig.3. Experiment 3: Estimation of piecewise constant AR coefficient and the statistical parameters of  SαS  process with driving process distribution of 

~ (1.9, 0,1.5, 0)n St
, where t denotes time and i denotes MCMC iterations 

a) TVAR process, b1) TVAR coefficient estimate at the end of algorithmic iteration #1, b2) TVAR coefficient estimate at the end of algorithmic iteration #4, c1) 
Shape parameter estimate at the end of algorithmic iteration #1, c2) Shape parameter estimate at the end of algorithmic iteration #4, d1) Dispersion parameter 
estimate at the end of algorithmic iteration #1, d2) Dispersion parameter estimate at the end of algorithmic iteration #4 
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Fig.4. Experiment 4: Estimation of sinusoidal AR coefficient and the statistical parameters of  SαS  process with driving process distribution of 

~ (1.1, 0,1.5, 0)n St
, where t denotes time and i denotes MCMC iterations 

a) TVAR process, b1) TVAR coefficient estimate at the end of algorithmic iteration #1, b2) TVAR coefficient estimate at the end of algorithmic iteration #4, c1) 
Shape parameter estimate at the end of algorithmic iteration #1, c2) Shape parameter estimate at the end of algorithmic iteration #4, d1) Dispersion parameter 
estimate at the end of algorithmic iteration #1, d2) Dispersion parameter estimate at the end of algorithmic iteration #4 
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Fig.5. Experiment 5: Estimation of sinusoidal AR coefficient and the statistical parameters of  SαS  process with driving process distribution of 

~ (1.9, 0,1.5, 0)n St
, where t denotes time and i denotes MCMC iterations 

a) TVAR process, b1) TVAR coefficient estimate at the end of algorithmic iteration #1, b2) TVAR coefficient estimate at the end of algorithmic iteration #4, c1) 
Shape parameter estimate at the end of algorithmic iteration #1, c2) Shape parameter estimate at the end of algorithmic iteration #4, d1) Dispersion parameter 
estimate at the end of algorithmic iteration #1, d2) Dispersion parameter estimate at the end of algorithmic iteration #4 
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Fig. 6. Artificial State Transition Modeling for the Static Parameters, a) Estimation of piecewise constant AR coefficient and the statistical parameters of  SαS  
process with driving process distribution of ~ (1.2, 0,1, 0)n St

 within the same particle filtering scheme where t denotes time. 

 
Fig. 7. Importance weights for each data y1:M = Likelihood functions of the AR coefficient at each time instant, i.e. t = 1:M for a synthetically generated time-
invariant, first order AR process, with AR coefficient 0.95, which is driven by a SαS  process with driving process distribution of ~ (0.5, 0,1.5, 0)n St

 

a) Mesh plot, b) Contour plot  
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Fig. 8. Importance weights for each data y1:M = Likelihood functions of the AR coefficient at each time instant, i.e. t = 1:M for a synthetically generated time-
invariant, first order AR process, with AR coefficient 0.95, which is driven by a SαS  process with driving process distribution of ~ (1.5, 0,1.5, 0)n St

 

a) Mesh plot, b) Contour plot  

 
Fig. 9. Importance weights for each data y1:M = Likelihood functions of the AR coefficient at each time instant, i.e. t = 1:M for a synthetically generated time-
invariant, first order AR process, with AR coefficient 0.95, which is driven by a SαS  process with driving process distribution of ~ (2, 0,1.5, 0)n St

 

a) Mesh plot, b) Contour plot  
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Fig. 10. a) Original driving process of Experiment 1: S(1.1,0,1.5,0) versus time, b) Its estimate at the end of the algorithmic iteration #1, c) Difference signal 
between (a) and (b)  


