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Trajectory Clustering and an Application to
Airspace Monitoring

Maxime Gariel, Ashok N. Srivastava, and Eric Feron

Abstract—This paper presents a framework aimed at moni-
toring the behavior of aircraft in a given airspace. Trajectories
that constitute typical operations are determined and learned
using data driven methods. Standard procedures are used by air
traffic controllers (ATC) to guide aircraft, ensure the safety of the
airspace, and to maximize the runway occupancy. Even though
standard procedures are used by ATC, the control of the aircraft
remains with the pilots, leading to a large variability in the flight
patterns observed. Two methods to identify typical operations
and their variability from recorded radar tracks are presented.
This knowledge base is then used to monitor the conformance
of current operations against operations previously identified as
typical. A tool called AirTrajectoryMiner is presented, aiming at
monitoring the instantaneous health of the airspace, in real time.
The airspace is “healthy” when all aircraft are flying according
to the typical operations. A measure of complexity is introduced,
measuring the conformance of current flight to typical flight
patterns. When an aircraft does not conform, the complexity
increases as more attention from ATC is required to ensure a
safe separation between aircraft.

Index Terms—Trajectory Clustering, Air Traffic Management,
Airspace Monitoring, Complexity.

I. INTRODUCTION

TO address the challenges of increase in air traffic volume,
new technologies and procedures are being developed

in the context of NextGen [1] in the US and SESAR [2] in
Europe. Automation is a key element, necessary to achieve the
goals set by those programs. New procedures involving more
accurate navigation are predicted to increase the capacity of
the airspace. Analyzing trajectory records is a key element to
assess the performances and the accuracy of new concepts of
operations. Automated tools are needed to process the large
amount of daily flights and corresponding records. This work
presents two methods to cluster trajectories and identify flights
that followed identical air routes. The first method is based
on the identification of way-points in the trajectories, and the
second method is based on a principal components analysis
of re-sampled trajectories. Operations in the terminal area are
managed by Air Traffic Controllers (ATC) and are not part of
the flight plans. It was therefore decided not to use any flight
plan knowledge or aircraft intent other than the destination
airport. Then using the knowledge gathered from the clustering
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methods, we propose a real time airspace monitoring tool that
evaluates the conformance of current flight to pre-identified
typical trajectories. A measure of airspace complexity based
on this conformance is also proposed with the tool. The overall
method developed in this paper is neither location nor data
specific and can easily be adapted to other data sets since
unsupervised methods are used, and the data is not labeled.
This paper considers radar tracks in a terminal radar approach
control (TRACON). However, the underlying principles may
also be used for other applications, such as a fleet of GPS-
equipped trucks. Since this paper deals with different problems
such as trajectory clustering, airspace monitoring and airspace
complexity, the literature review is spread along the paper at
the beginning of the corresponding section. The remainder of
this paper is organized as follows: The first section presents
the data set used for the study. The second section presents the
trajectory clustering methods, and finally, before the conclud-
ing remarks, the third section introduces AirTrajectoryMiner,
the airspace monitoring tool that detects in real time the
aircraft that do not comply to typical operations. In the paper,
trajectories constituting typical operations will also be refereed
as nominal trajectories.

II. AVAILABLE DATA

The available data 1 consists of records of flight tracks over
the San Francisco bay area, for the first 3 months of 2006.
The records cover the Northern California TRACON (NCT),
that is, a cylinder of radius 80km and height 6,000m centered
at Oakland International Airport (OAK). The NCT contains 3
main airports –– Oakland, San Francisco (SFO) and San Jose
International airports –– as well as many smaller airports. The
NCT is the fourth busiest terminal area in the US [3] with an
average of 133,000 flight instrument operations per month in
2006. The data, made of the position and speed of aircraft,
is organized by flight and also contains meta-data for each
flight that include: type of operation (departure/arrival), origin
and destination airports, aircraft type (business, jet, helicopter,
other, etc), date and time of beginning of record, duration of
the record, etc.

Using the available meta data, visual flight rules (VFR)
traffic is discarded, since it is more unpredictable and does
not follow the same rules as instrument flight rules (IFR)
traffic. The meta data is used to sort trajectories by airport
and operation type, i.e. take off or landing. After a visual
analysis of the flight patterns for the different airports, it was
decided to focus the study on the landings at SFO. It is the

1The complete dataset is available for download https://dashlink.arc.nasa.
gov/data/flight-tracks-northern-california-tracon/

https://dashlink.arc.nasa.gov/data/flight-tracks-northern-california-tracon/
https://dashlink.arc.nasa.gov/data/flight-tracks-northern-california-tracon/
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Fig. 1. Simplified San Francisco airport diagram with take off and landing
directions in the west configuration

Fig. 2. NCT standard traffic patterns, west configuration, image courtesy of
Federal Aviation Administration

busiest airport in the NCT and the arrival tracks present the
most interesting patterns by their numbers and variety. The
most frequent configuration is the “West” configuration, where
aircraft land on runways 28L/R and take off from runways
1L/R. A diagram of SFO is presented in Figure 1, and Figure 2
depicts the NCT traffic patterns typically used in the west
configuration.

In this paper, the axes are set by the radar, located at
(0, 0, 0). The x and y axes define the horizontal plane and z
the vertical direction, positive going upward. To each recorded
flight, corresponds an aircraft i and a trajectory Ti, i = 1 . . . r,
where r is the total number of trajectories of interest in the
dataset. Each trajectory Ti is a ni × 4 matrix, and the line
T li of Ti is the lth radar echo, given by T li = (xli, y

l
i, z

l
i, t

l
i),

where (xli, y
l
i, z

l
i) is the 3 dimensional coordinates of aircraft

i at time tli. The trajectories have different numbers of points
ni, varying from 10 to about 550 points, depending on the
duration of the trajectory. Trajectories with a few data-points
usually correspond to short flights from San Jose International
Airport or Oakland International Airport to SFO. The interval
between points is between 4 and 5 seconds and is given by the
rotational speed of the radar (most likely 4.8 sec). The time
stamp tli is rounded to the nearest second.

III. LITERATURE REVIEW

This section presents a literature review on trajectory clus-
tering algorithms and methods, airspace monitoring and com-
plexity measures in air traffic managment.

A. Trajectory Clustering

The use of positioning devices such as GPS and the collec-
tion of data has increased over the past 15 years leading to
an increasing number of tracking applications. An objective
of tracking is to discover common patterns on the one hand,
and detect outliers on the other hand.

Piciareli et al. [4] presented an on-line trajectory clustering
method for real time video surveillance. Moving objects, such
as pedestrians, are identified in video frames and their trajecto-
ries are compared against existing cluster representatives, that
is, an average of all the trajectories in the cluster. The match
between a trajectory and a cluster is determined using the mean
of the normalized distances of every trajectory point to the
nearest point of the cluster representative. If a match is found,
the cluster representative is updated. If not, a new cluster is
created. In this approach, the cluster representatives evolve
with time. This clustering method was used by Dahlbom
and Niklasson for coastal surveillance but failed to provide
satisfactory results when dealing with real data sets [5] such
as ship trajectories.

Lee et al. [6] presented a partition-and-group framework
for trajectory clustering. Trajectories are partitioned in sub-
trajectories. Sub-trajectories are represented by line segments
and grouped using a distance function. The distance function
incorporates three components that measure the perpendicular
distance, the parallel distance and the angular distance between
the line segments. The clustering algorithm is density based, i.e
clusters are created where the density of points is the highest.
The formulation is powerful but the results are presented on
very noisy data where it is difficult to visually cluster the
trajectories.There exists no well-defined measure to assess the
results of the clustering method. Based on the same distance
measure, Lee et al. [7] present a trajectory outliers detection
procedure. The results are presented on the same noisy datasets
and therefore difficult to evaluate visually.

Vlachos et al. used similarity functions based on the longest
common subsequence (LCS) to discover similar multidimen-
sional trajectories [8]. Their LCS based clustering method
appears to be more efficient than Euclidean distance based
measures and dynamic time warping distance functions, espe-
cially in the presence of noise.

Eckstein proposed an automated flight track taxonomy [9]
. The trajectories are first re-sampled, then clustered using
k-means on a reduced order model. The model reduction is
the truncation of a proper orthogonal decomposition (POD),
also called principal components analysis. The trajectories are
clustered using only the first two modes of the decomposition,
as they capture 95% of the fluctuations of the dataset used.
A result comparison with this method is presented in section
IV-C.

ATAC Corporation developed the Performance Data Anal-
ysis and Reporting System (PDARS)[10] to calculate a range
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of performance measures from radar data. PDARS provides a
comprehensive automated data collection, processing, visual-
ization and analysis platform. The visualization tool (GRADE)
can be used to visualize trajectories that have features in
common, such as the same Standard Terminal Arrival Route.
The identification of the feature derives from the flight plan
and not from the actual flown trajectory. PDARS enables the
grouping of trajectories using metadata (e.g. similarities in the
flight plan). Another system used to analyze aircraft operation
is the Post Operations Evaluation Tools (POET) [11]. The tool
enables the grouping of trajectories using origin, destination or
origin destination pairs. It also provides a tool to automatically
find and analyze flights that contain holding patterns.

B. Airspace Monitoring

Krozel [12] proposed an intent based monitoring where the
aircraft is tracked relative to a filed flight plan, using NavAids
and way-points. The monitoring tasks requires knowledge of
the airspace structure, of the trajectory way-points and of
the intent of the aircraft. It is a powerful tool when the
flights behave according to their flight plan, but when dealing
with arrivals, the sequence of way-points might change, some
might be skipped or added to ensure an optimal separation of
aircraft at the runway threshold and vectoring is often used.
This monitoring method cannot be used. Reynolds et al. [13]
introduced a framework for the development of an automated
conformance monitoring system. The system described in [13]
has two main inputs: the conformance basis, containing target
states and trajectory information, and the observation of a
surveillance system. Those inputs feed models for pilots’
intents, aircraft intents, and aircraft control systems and dy-
namics. Those models provide an expected state vector that
is compared with the observed state vector for conformance
analysis. This structure is further used in [14] to monitor the
conformance of a trajectory to a flight plan. For instance, it
detects if an aircraft does not turn, turns too early or too
late at a way-point. The monitoring is based on intent, and
knowledge of the exact expected trajectory is required. An off-
line trajectory analysis and taxonomy for arrival trajectories
was proposed by Eckstein [9]. The objective of Eckstein is to
analyze the performance of area navigation (RNAV) operations
for NextGen concepts of operations off-line. The method in
[9] uses GPS coordinates of actual way-points to identify and
classify segments of trajectories. This approach can be used
only if aircraft follow RNAV operations, which is not the case
with the data used.

C. Complexity measures in Air Traffic Management

Complexity in air traffic management is a widely studied
topic [15]. A measure of airspace complexity is called dynamic
density [16] and was intended to understand the effect of
changing airspace configuration and traffic controller work-
load. It is a function of the traffic density and the number
of aircraft changing heading, speed or altitude, and, the
separation between aircraft. This measure is a weighted sum
of several parameters and the weights have been determined
using human in the loop experiments. The model was fitted to

the observations of controllers. Delahaye and Puechmorel [17]
propose a measure of complexity based on the Lyapunov
exponents of a time varying vector field that interpolates
aircraft position and velocities. This intrinsic complexity mea-
sure reflects the stability of the traffic configuration. Lee [18]
proposes complexity measure based on the response of the
airspace to a disturbance. Disturbance can be an intruder
aircraft in the airspace and the corresponding measure of
complexity is the deviation required by the other aircraft
to solve all the conflicts. Gariel and Feron [19] proposed
complexity maps based on the degradation of communication,
navigation and surveillance capacities. The degradation results
in a required increase in separation distances creating new
potential conflicts. The complexity measures the difficulty to
steer the traffic from the nominal mode of operation with
initial separation distances to degraded mode of operation with
increased separation distances.

IV. TRAJECTORY CLUSTERING

In this section, two trajectory clustering methods are pre-
sented. After a review of existing trajectory clustering meth-
ods, a technique based on trajectories’ “way-points” is pre-
sented. Then, a technique based on a principal component
analysis of re-sampled and augmented trajectories is intro-
duced.

A. Overview of k-means and DBSCAN Clustering Algorithms

a) Overview of k-means: [20] This paragraph presents
a brief overview of the k-means algorithm. For more details,
the reader is refereed to [21]. Given a set S = (tp1, . . . tp|S|)
of |S| observations (turning points in our case), where each
observation is a d-dimensional real vector, then k-means
clustering aims at partitioning the |S| observations into k
sets, or clusters, (k < |S|), C = {C1, C2, . . . , Ck} so as to
minimize the within-cluster sum of squares:

arg min
C

k∑
i=1

∑
tpj∈Ci

∥∥tpj −mi

∥∥2 (1)

where mi is the mean of Ci. The mean mi of a cluster is
called centroid and is the center of mass of all the elements in
the cluster. The number k of clusters is the only input required
from the user.
Starting with an initial set of k centers m(1)

1 , . . . ,m
(1)
k , which

may be specified randomly or by some heuristic, the algorithm
proceeds by alternating between two steps, also known as
Lloyd Algorithm [22]:

Assignment step: Assign each observation to the cluster
with the closest mean, that is partition the observations ac-
cording to the Voronoi diagram generated by the centroids of
the clusters. Figure 3 presents the results of k-means clustering
and the corresponding Voronoi diagram.

C
(t)
i = {tpj :

∥∥tpj −m
(t)
i

∥∥ ≤ ∥∥tpj −m
(t)
i∗

∥∥,
for all i∗ = 1, . . . , k}

(2)
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Update step: Calculate the new means to be the centroid
of the observations in the cluster.

m
(t+1)
i =

1

|C(t)
i |

∑
tpj∈C

(t)
i

tpj (3)

The algorithm is deemed to have converged when the
assignments no longer change. Since it is a heuristic algorithm,
there is no guarantee that it will converge to the global
optimum, and the result may depend on the initial clusters.
Since the algorithm is usually very fast, it is common to run
it multiple times with different starting conditions and keep
the run that resulted in the minimum value for equation 1.

Fig. 3. Clusters of turnings points and corresponding Voronoi diagram

b) Overview of DBSCAN: This paragraph presents a
brief overview of the DBSCAN algorithm. For more details,
the reader is refereed to [23]. DBSCAN [24] stands for
Density-Based Spatial Clustering of Applications with Noise.
DBSCAN clusters points that are close together (in an ε
neighborhood), and surrounded by sufficiently many points.
DBSCAN requires two parameters: a real,ε, and the minimum
number of points, MinPts, required to form a cluster. The
ε-neighborhood of a point p consists of all the points q s.t
dist(p, q) ≤ ε. If the ε-neighborhood of a point p contains
more than MinPts, a new cluster is started, with p as a
core object. DBSCAN then iteratively collects directly density-
reachable objects from these core objects. An object q is said
to be directly density-reachable from an object p if q is in the
ε-neighborhood of p and p is a core object.

If a core object q of a cluster Ci is added to a cluster Cj ,
Ci and Cj are merged. When no point can be added to any
cluster, the process terminates.

B. Way-point based Trajectory Clustering

This section presents a novel algorithm for aircraft trajectory
clustering. This algorithm takes advantage of aircraft trajectory

properties: aircraft usually fly straight, with a limited number
of turns. This method arises from the current instrument flight
rules procedures. When approaching an airport, aircraft usually
follow published procedures made of a sequence of way-
points. A way-point is characterized by its GPS coordinates
and, sometimes, an altitude indication. The planar localization
of a way-point is very accurate but its vertical component
often looks like “at or above —ft”. Vertical clearances are
delivered by ATC and trajectories’ vertical profiles are then
at the discretion of the pilots. Therefore, this method focuses
on the 2D coordinates of the way-points in the (x, y) plane.
This method is an efficient way to determine the compliance
of flown trajectories with published procedures. Nevertheless,
published procedures cannot be used because of the limited
number of way-points or reporting points located in the
TRACON. In Section V, we further show this by comparing
the results of the trajectory clustering with the published way-
points.

The objective is to identify and group the turning points
into “way-points”. A turning point is a point in the trajectory
where the aircraft changes heading. Then trajectories are
represented by a sequence of way-points. Finally, trajectories
are clustered using the Longest Common Subsequence (LCS).
The algorithm proceeds using the following steps and it is
summarized in Figure 4:

1) Identify the location of the turning points of each
trajectory.

2) Cluster the set of all the turning points of all the trajec-
tories. This clustering task is done using k-means [25],
[21] or DBSCAN [24] (Density-Based Spatial Clustering
of Applications with Noise). Section IV-A gives an
overview of those algorithms. This clustering provides
a finite number of way-points where it has been deter-
mined that aircraft usually turn.

3) Represent each trajectory by its sequence of way-points.
4) Cluster the sequences of way-points using the Se-

quenceMiner algorithm [26], [27]. SequenceMiner pro-
vides us with a representative trajectory for each cluster.

1) Turning Points Identification: The first step is to extract
the location of the turning points of each trajectory. To simplify
the notations, the aircraft index i is omitted in the following
equations. The heading Ψl of an aircraft at time tl can be
estimated by ψl = arctan yl+1−yl−1

xl+1−xl−1 , at each point of the
trajectory, l, l = 2 . . . n − 1, where n is the total number
of points. Since the trajectory is a bit noisy, a low pass filter
is applied:

ψ̃1 = ψ1 (4)

ψ̃l = αψl + (1− α)ψ̃l−1, l = 2 . . . n− 1, (5)

where α is a constant for the filter. On this data, setting
α = 0.4 provided good noise filtering results and not too much
delay. A turning point tp is identified when the heading differ-
ence between two consecutive values of the heading exceed
a threshold: |Ψ̃l − Ψ̃l−1| > Ψc. The threshold was chosen
relatively small in order to capture small heading changes
but not small enough not to capture meaningless heading
changes variations: Ψc = 0.025rad = 1.43◦. This value was
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Fig. 4. Way-point clustering method

set experimentally. The results are not very sensitive to a small
change in Ψc. The number of turning points is trimmed to
avoid long sequences when aircraft are executing large turns:
if two consecutive data-points are determined to be turning
points, then only the first one is kept; if three, only the middle
one, etc.

The trajectory of aircraft i is now represented as a sequence
of turning points Si :

Si = {tp1
i . . . tp

s
i},

where tpsi is the 3D coordinate of the sth turning point of
trajectory i. The first point of the trajectory is labeled as a
turning point. Figure 5 presents a sample of 11 trajectories
and the points identified as turning points.

Denote by S the set of all the turning points for all the
trajectories: S = {S1 . . . Sn}.

The second step is to cluster the set S of turning points.
The following section introduces the two clustering algorithms
used in this paper: k-means [20] and DBSCAN [24].

2) Turning Points Clustering; Creation of Way-points: To
determine the way-points, the turning points are clustered:
a way-point is defined as the planar (x, y) coordinates of
a cluster of turning points. The idea is to create a way-
point where it has been determined that many aircraft turned.
Depending on the number and on the density of available
turning points, two different algorithms are used. When the
spatial distribution of turning points is sparse, k-means is used,
and when the distribution of turning points is dense, DBSCAN
is used.
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Fig. 5. Trajectories and identified turning points

a) Case when the Data is Sparse: When the number of
turning points is small, a density based clustering algorithm
would provide poor results, identifying most of the points as
outliers. Therefore, a distance-based algorithm is used so all
the turning points available are used. A way-point is created
for each cluster produced by k-means. Using cylindrical coor-
dinates, the coordinates of the center of a way-point are given
by (rm, θm). The center is the center of mass of all the points
in the cluster. The coordinates of the corners of the way-points
are given by {(rm + 2stdr, θm + 2stdθ), (rm − 2stdr, θm +
2stdθ), (rm− 2stdr, θm− 2stdθ), (rm + 2stdr, θm− 2stdθ)},
where stdr and stdθ are the standard deviation of the radial
coordinates and angular coordinates of the points in the cluster,
respectively. Figure 6 presents the outcome of clustering the
way-points for one day of trajectories. Each cluster is repre-
sented using a different color/shape combination. The way-
points are represented by pairs of nested polygons on the fig-
ure. The inside polygon corresponds to (rm±stdr, θm±stdθ)
and the outside one to (rm±2stdr, θm±2stdθ). The number
is the label of the cluster.

b) Case when the Data is Dense: When the number
of turning points is large, a large share of the airspace is
covered with turning points. A distance based algorithm such
as k-means provides meaningless clusters for our application.
Figure 3 shows the clusters provided by k-means and the
corresponding Voronoi diagram for the turnings point of
almost 3 months of data (30,000 trajectories).

To overcome this issue, the turning points were clustered
using DBSCAN. DBSCAN is particularly efficient at cluster
data in the presence of noise. Way-points are created using the
convex hull of the clusters resulting from DBSCAN. Figure 7
shows the result of the clustering of the turning points using
DBSCAN. The blue polygons represent the way-points. All
the points identified as outliers, i.e not associated with any
way-point, are not depicted. The parameters used were ε =
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Fig. 6. Result of the clustering of the turning points for one day using
k-means

350m and minPts = 10. The main issue with DBSCAN is
its execution time since its complexity is in O(n log n). Here,
the number of turning points to cluster is n = 118, 179 for
30,000 trajectories.

Fig. 7. Result of the clustering of the turning points for the entire dataset
using DBSCAN. Outliers are not displayed

3) Converting a Trajectory into a Sequence of Way-points:
The way-points have been discovered using the turning points
of the trajectories. Nevertheless, some trajectories might go
over way-points without actually turning. To identify the
sequence of way-points followed by a trajectory, the following
procedure is used for each trajectory: start with an empty
sequence of way-points, and given the set of all way-points,
run the trajectory along its original direction. If one of the

points is located over a way-point, the way-point is added to
the sequence. Each trajectory is now represented as an ordered
sequence of way-points, where the number of way-points is
finite. The next step is to cluster the trajectories determining
the longest common subsequence (LCS) of way-points.

4) Longest Common Subsequence Determination: The se-
quences of way-points are clustered using the longest com-
mon subsequence. The LCS problem is to find the longest
subsequence common to all sequences in a set of sequences.
SequenceMiner [26], [27] is an algorithm that identifies the
LCS and generates clusters of sequences. With this method
it is possible to cluster sequences that do not contain the
same number of elements. When sequences have only a small
number of points, say fewer than 3, this clustering method
does not work well. Therefore, only the sequences containing
more than 4 way-points are kept. The total number of way-
points being small, it is preferable to focus on the way-points
at the beginning of the trajectory: since most aircraft do a final
turn to get aligned with the runway, this turning point does
not bring much information about the trajectory. Therefore, if
the last turning point is in the large brown cluster (Figure 7),
it is removed from the sequence.

Figure 8 presents the results of the clustering process using
k-means and LCS on a low number of trajectories. The dataset
used is the tracks of all the aircraft landing at San Francisco
(SFO) airport on February 10, 2006. Only the trajectories of
that day were used to determine the way-points. Each cluster
is represented by a color. The algorithm identifies the main
flows but a few trajectories seem not to belong to the expected
cluster. The quality of the results is subjective and can only be
visually assessed. Figure 9 presents the results for an initial
set of 30,000 trajectories, using DBSCAN and LCS. Here, the
denomination “Nominal” qualifies the trajectories containing
more than 4 way-points. The colors correspond to the clusters.
The colors differ on Figures 8 and 9 because the indexing of
clusters is random and depends on the order of the data in the
dataset.

Overall, this method presents good clustering results. One
of the main drawbacks of this method is that it only keeps the
trajectories going over the way-points. For instance, consider
two parallel trajectories: one going over the way-points and
the other one slightly off. The latter will be considered as an
outlier even though it is very similar to the first trajectory, re-
sulting in excluding many trajectories. In addition, trajectories
containing large rerouting periods will belong to the clusters
as long as they pass over way-points.

5) Computational Effort: The clustering technique was
implemented in Matlab, except for SequenceMiner that was
implemented in C++. The entire process took about a minute
on a regular workstation. The current main bottleneck was
the waypoint conversion of trajectories into sequences of
waypoints. The code was not optimized for speed, which can
easily be improved using parallel processing and other coding
languages.
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Fig. 8. Results of trajectory clustering for the landings of one day at SFO

Fig. 9. Results of trajectory clustering for 30,000 trajectories

C. Trajectory-based Clustering via Principal Components
Analysis

This method proceeds with the following steps, which are
summarized in a diagram in figure 10:

1) Re-sample the trajectories, to obtain time series of equal
length for each aircraft.

2) Augment the dimensionality of the data. Normalize and
concatenate all the data into a single vector for each
flight.

3) Run a principal components analysis (PCA) and keep
the first 5 principal components (PCs).

4) Cluster using a density-based clustering algorithm.

Fig. 10. Trajectory clustering method based on Principal Components
Analysis

This paper proposes improvements to the approach used by
Eckstein [9] to realize a trajectory taxonomy. In [9], trajec-
tories are first re-sampled, then the principal components are
extracted and finally, the clustering is realized using k-means
on the projections onto the first two principal components.
Figure 11(a) presents the resulting clusters on the principal
components and on the trajectories, using the methods intro-
duced in [9]. The clustering technique proposed in [9] does not
provide results precise enough for our data set and there is no
identification of outliers. Figure 11(b) presents a 3D view of
the projection onto the first three PCs (section IV-C3) so it can
be compared with our method. Eckstein used only the first two
PCs for clustering. The first improvement is to augment the
dimensionality of the data. Then, the PCs are computed and
the projections of the augmented trajectories onto the first five
PCs are clustered using a density based clustering algorithm.
This algorithm presents the advantage of identifying outliers.
Another advantage is that the number of clusters is not set a
priori.

1) Trajectory Resampling: The dataset is well organized
and fairly clean. Trajectories with fewer than 50 points are
removed from the dataset: to be able to use a clustering
algorithm such as DBSCAN, each trajectory must be repre-
sented as a vector. All vectors must have the same number
of elements n, so their distance can be computed. Since
all trajectories do not have the same number of points, re-
sampling is necessary. Trajectories are resampled so that
the total number of points for each trajectory is 50. For
the sole purpose of clustering, fewer than 50 points would
have been enough. Nevertheless, to improve the accuracy of
the airspace monitoring function presented in section V, 50
points were used. The re-sampled trajectory T ′i is given by
T sampi =

{
T li , l = {round(k ni

50 ), k = 1 . . . 50}
}

. During this
operation, the notion of speed that was given by the distance
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Fig. 11. Clustering results using the method presented by Eckstein

between the radar echoes is lost. For example, consider the
trajectories of two aircraft with the exact same flight path,
but one going twice as fast as the other. After re-sampling,
the trajectories will have the exact same points and it will be
impossible to determine that there was a speed difference.

2) Dimensionality Augmentation: To improve the results of
the clustering, the dimensionality of the data was increased.
The added dimensions were added to help the principal com-
ponent analysis differentiating the trajectories. For instance,
some of the added dimensions present symmetry with respect
to a point or a line: In one of the added dimensions, two
trajectories may have the same representation, while their
representations completely differ in another dimension.

• Cartesian position of the aircraft in the re-sampled tra-
jectory: P = [x1i . . . x

50
i y

1
i . . . y

50
i z

1
i . . . z

50
i ]. P is a row

vector with 150 components. This vector is unique to
each trajectory.

• Distance from the center of the TRACON
R = {rli =

√
(xli)

2 + (yli)
2 + (zli)

2, l = 1 . . . 50}.
Provides information about the rate of convergence of
the aircraft toward the center of the TRACON, which
is located close to the airport. This distance presents a
symmetry with respect to the center of the TRACON,
i.e two trajectories that are symmetric with respect to
the center of the TRACON will be represented with the
same vector R.

• Distance from the top left corner: D = {dli =√
(xli − xref )2 + (yli − yref )2 + (zli)

2, l = 1 . . . 50},
where (xref , yref ) are the coordinates of the top left
corner of a square containing the TRACON. The top left
corner has coordinates (xref , yref ) = (−80, 80)km. This
distance presents a symmetry with respect of the diagonal
joining the top left corner (−80, 80) and the bottom right
corner (80,−80), i.e two trajectories that are symmetric
with respect to this diagonal will be represented with the
same vector D.

• Angular position in cylindrical coordinates:
Θ = {θli = arctan(

yli
xl
i

), l = 1 . . . 50}. With only one
dimension, the angular position provides information
about the overall location of the trajectory in the
TRACON, i.e in which quadrant of the circle the
trajectory lies. This information does not present any
symmetry.

• Heading of the aircraft Ψ = {ψli, l = 1 . . . 50}. The com-
putation of the heading was done using the filter of equa-
tion 4 and then re-sampled to 50 points. A constant value
or a slow rate of change indicate a straight trajectory,
while a high variability indicates a curved trajectory. This
vector is unique to each trajectory.

The sine and cosine values of the angular position and
heading are used instead of their actual value to avoid the
discontinuity at 2π. Each augmented trajectory is now rep-
resented by a vector of dimension 450 given by: T augmi =
[P R D cos(Θ) sin(Θ) cos(Ψ) sin(Ψ)]. The ini-
tial vector had dimension 150. The values of each parameter
are normalized between 0 and 1 in order to balance their
importance during the clustering process. It was decided to
add meaningful data such as heading or rate of convergence
toward the center of the TRACON. For instance, two aircraft
on parallel trajectories will fly the same heading, even if the
trajectories are slightly apart from each other. Distance to the
center was chosen to identify trajectories that have particular
patterns such as vectoring and holding pattern: the distance
to the center will present some irregularities as the aircraft
flies back and forth. Such irregularities will be highlighted by
dimensions such as the heading that will change 180◦ while
the position will only change slightly.

3) Principal Components Analysis: A principal compo-
nents analysis [28] is run on matrix that contains all the re-
sampled trajectories. Each trajectory is then projected onto the
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first p principal components and is now represented by a vector
of p values. The choice in the value of p is a trade-off between
computational speed when p is small and accuracy when p gets
larger. There is no need to get a value of p too large since the
first principal components contain most of the information.
Different values of p were tried and p = 5 gave a satisfactory
level of accuracy for this type of data. The added dimensions
increase the range of the projection of the trajectories onto the
principal components. This makes the clustering task easier
as the clusters are “further apart” in the principal components
space.

4) Clustering: The projections of the trajectories onto the
first 5 PCs are clustered using DBSCAN. A density based
clustering algorithm like DBSCAN is preferred to a distance
based algorithm because of the shape of the clusters can be
arbitrary. The other advantage of DBSCAN is the identifica-
tion of outliers. Figure 12(b) presents the resulting clusters.
The axes correspond to the values of the first 3 principal
components. Clusters are clearly differentiated, even if they
are not easy to distinguish on the plot due to the perspective
effect. The resulting clusters of trajectories are visually very
clean (Figure 12(a)). Figure 13 presents the centroids, that is
the center of mass of the trajectories of each cluster. Those
centroids can be seen as “typical operations”. Some clusters
are minor variations from each other, such as the flights
coming from the bottom left corner. This comes from the
settings used for DBSCAN. On Figure 12(b), one can clearly
identify clusters of points. The algorithm was run with a
high sensitivity (ε small and minPts large). The parame-
ter ε reflects the similarity between trajectories (the smaller
the more similar), and minPts is the number of “similar”
trajectories needed to create a new cluster (Section IV-B2b).
A small ε generates “narrow” cluster while a larger ε will
generate clusters with more variability in trajectories. The
clusters and centroids showed on figures 12(b) and 13
were presented to staff members of the Northern California
TRACON and it was concluded that some of the clusters
were at the borderline of “normality”, since they present large
vectoring (e.g. pink cluster from the right, and purple cluster
from the bottom). Therefore, in the application presented in
section V, the algorithm is run with a lower sensitivity and
provides fewer clusters, with larger variability. The resulting
centroids of this run can be seen on Figure 20.

5) Computational effort: The entire algorithm was im-
plemented in Matlab and optimized for modularity and not
for speed. The entire process (data augmentation, PCA and
clustering) took about 1 minute and a half on a regular work-
station. Currently, the main bottleneck is the data augmentation
process that can easily be improved using parallel processing.
The algorithm has been demonstrated on a much larger data
set (300,000+ trajectories) [29], but required an additional step
of hierarchical clustering first.

6) Analysis of Outliers: Figure 14 shows the outliers de-
tected by the clustering algorithm. Outliers represent 19.5%
of all trajectories. A visual inspection shows that the main
reasons for being detected as an outlier is the presence of
holding patterns, large vectoring maneuvers or direct routes.

Figure 15 presents the number and frequency of outlier
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Fig. 12. Clustering results using re-sampling, data augmentation, PCA
decomposition, and DBSCAN on the first 5 principal components.

trajectories as a function of the type of aircraft. Commercial
jets represent the largest share in numbers, but the frequency is
much smaller. Among the trajectories of regional and business
aircraft, 4% and 5% are identified as outliers, respectively.
An explanation is the size, the speed and the maneuverability
of the aircraft. Some arrivals procedures for turboprops have
dedicated routes because of their speed; turboprops fly much
slower than jets. Turboprops are merged with other traffic
on final approach. To ensure a safe separation at the runway
threshold, air traffic controllers “vector” aircraft, that is give a
sequence of headings to follow. The vectors given to business
and regional aircraft might be different and sharper than the
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Fig. 14. Trajectories identified as outliers

vectors given to larger size jets.
Figure 16 presents the frequency of outliers for each day of

study. Each bar represents one day. The minimum percentage
of outliers is less than 2% and goes up to 16%. The most
likely explanation for the outliers is the weather. San Francisco
airport usually operates with two close parallel runways.
The runways are not independent, that is, they cannot be
operated simultaneously when the weather does not permit
visual approaches. When a runway is closed, the landing
capacity is reduced from 60 to 30 aircraft per hour. Schedules
and operations usually take the weather into account , but
unexpected late fog dissipation or other type of convective
weather might disrupt the operations and force controllers to
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Fig. 15. Distribution of outliers by aircraft category
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Fig. 16. Histogram of outliers, day by day

vector aircraft and put them on holding patterns.
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Fig. 17. Histogram of outliers, hour by hour, local time

Figure 17 presents the frequency of outliers as a function
of the time of the day. The local time is reported on the
abscissa axis, starting at midnight. This diagram is an average
over the entire period of interest. The frequency of outliers
is higher during the period 12 a.m. - 4 a.m., then decreases
in the early morning, to an increase again with a peak at 11
a.m.. Another peak is visible at 5 p.m.. The outliers identified
at night are mostly due to direct routing that is allowed by the
very low traffic density at night. During the morning, traffic
density increases and requires more rerouting for efficient
sequencing and merging. Another usual cause for outliers is
the late dissipation of the fog. When the fog dissipates later
than expected, the inflow of aircraft is higher than the runway
capacity, since only one runway is in use, and therefore,
aircraft in excess have to delayed, either by vectoring or
holding patterns. This issue of fog is definitely a factor for
rerouting, but is expected more during the summer season.
During the winter, rain and storm are frequent in the bay area,
resulting in inability to run parallel approaches.

D. Result Validation: Visit to the NCT

The results of the trajectory based clustering were shown
and discussed to with air traffic controllers and managers
during a visit to the NCT. The controllers were able to
positively identify all the Standard Terminal Approach Routes
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(STARs). They noticed that some of the centroids correspond
to “large” vectoring (Purple and dark pink centroids on Figure
13)and should not be considered as “nominal” trajectories.

V. AIRSPACE MONITORING

This section proposes an airspace monitoring technique that
automatically detects when an aircraft is not conforming to
typical operations. Typical operations are determined using the
centroids of the clusters found using the previous clustering
methods. Centroids correspond to flight path often flown and
the value of the parameters used for clustering allows the
trajectories to vary more around the centroids. The objective
of the monitoring task is to detect when an aircraft deviates
from typical path in real time.

A. Motivation

After analysis of the available data, it appears that confor-
mance monitoring using waypoints is not doable in terminal
areas. Figure 18 displays an aerial view of the San Francisco
Bay Area. The blue circle represents the outer boundary of
the TRACON, given by the area covered by the radar. The
white lines are the representative of the procedures identified
in section IV-C4. The yellow dots are way-points or reporting
points. The locations of those points come from Standard
Terminal Arrival Routes (STAR) and track logs [30]. The
centroids of the clusters pass over only a limited number
of way-points. This shows that using published way-points
and reporting points cannot be efficiently used to monitor
traffic in the TRACON. The intent based methods cannot be
used in the terminal area. Figure 18 also displays the arrival
from the north for turboprops. This arrival procedure has not
been identified by the clustering algorithm because of the
relatively small number of aircraft using this route, and of the
variability of the flight path following this procedure. A real
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Fig. 18. Centroids of the clusters and reporting points/way-points for SFO
arrivals. Those centroids differ from the ones in Figure 13 because the
algorithm was run with differen parameters with a smaller sensitivity.

time trajectory analysis tool built upon the knowledge gathered

from the clustering analysis is now proposed. The tool is called
AirTrajectoryMiner (ATM) since it enables the monitoring of
operations in the TRACON. Current aircraft trajectories are
compared against nominal trajectories, that is the trajectories
in the clusters. If they differ too much, the current trajectory
is tagged as abnormal, or outlier. The only intent used is
the aircraft final destination airport. The tool automatically
detects if the aircraft is flying one of the possible approaches,
including most commonly used vectoring maneuvers.

B. Data Formatting

It is not possible to directly compare the current trajec-
tories with nominal trajectories, since current trajectories are
incomplete. During real-time system operations, only past data
are known. Therefore, the nominal dataset is fragmented. Re-
sampled trajectories that had 50 points are split in 10 fragments
of 5 points. The average travel time in the TRACON for
aircraft landing at SFO is about 14 minutes. Therefore, 5 data
points correspond to about 14*60/10 = 84 seconds. A memory
of 80 seconds is used for current tracks. The radar hits of the
last 80 seconds of flight are re-sampled to 5 points that can
now be compared against the database of nominal tracks. This
comparison is done using the Inductive Monitoring System.

C. Anomaly Detection: Inductive Monitoring System

To detect anomalous trajectories, the Inductive Monitoring
System (IMS) [31] is used. IMS is a good alternative to model
based health monitoring systems. It provides a high fidelity
detection tool, and there is no need to manually build a model.
IMS runs in two steps: learning phase and anomaly detection.
IMS learns the nominal behaviors using a training dataset
provided by the user. IMS builds clusters using k-means
clustering and density-based clustering. During the anomaly
detection phase, the input data is compared with knowledge
base built from the training data. The anomaly score can be
interpreted as the distance to the nearest cluster. The input data
belongs to a cluster if all the parameters values are within the
range specified by the cluster limits.

The training dataset includes all the trajectories identified
as nominal and fragmented into 10 segments of 5 points. The
total number of segments was 276,040.

D. AirTrajectoryMiner: Monitoring tool

AirTrajectoryMiner (ATM) is a real time TRACON moni-
toring tool. Figure 19 shows how ATM could be incorporated
into the air traffic management environment. The inputs to the
tool are the set of all the trajectories identified as nominal,
work resulting from section IV-C4, and the radar tracks of
the flights of interest. ATM delivers two types of outputs.
On the one hand, it delivers an indication of conformance of
current flight to nominal procedures, and on the other hand,
it delivers a measure of the complexity in the TRACON that
can be incorporated in Traffic Management Advisor (TMA)
software[32].

Figure 20 displays the monitoring environment. The top
frame is a 2D view of the airspace. The airspace corresponds
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Approach Control

Center Control

Fig. 19. Schematic view of the air traffic control system in and around the
TRACON - Integration of AirTrajectoryMiner

to a cylinder of radius 80km, going from the ground up to
6000 m and centered at OAK. The following provides some
information about the display and associated aircraft count.
• Green circle: aircraft intended to land at SFO (associated

count: nSFO).
• Grey square: aircraft not intended to land at SFO (asso-

ciated count: nSFO).
• Green segment: trajectory of an aircraft intended to land

at SFO and following the procedures (associated count:
nOK,SFO).

• Red segment: trajectory of an aircraft intended to land
at SFO and whose trajectory is identified as an outlier:
it does not to follow the procedures (associated count:
nOK,SFO).

• Grey segment: trajectory of an aircraft not intended to
land at SFO and whose trajectory does not interfere with
traffic landing at SFO nOK,SFO).

• Orange segment: trajectory of an aircraft not intended
to land at SFO and whose trajectory may interfere with
traffic intended to land at SFO. The trajectory was identi-
fied as nominal for landing at SFO, but it is not intended
to SFO (associated count: nOK,SFO).

• Colored lines: Centroids of the clusters of trajectories
identified as nominal. The centroids presented differ from
the ones on Figure 13, because the clustering algorithm

Fig. 20. AirTrajectoryMiner display. Top frame: conformance to typical
operations. Bottom frame: time history of complexity in the TRACON.

was re-run with different parameters to remove “large”
vectoring from nominal operations, accounting for air
traffic controller’s feedbacks (section IV-D).

Aircraft intent information comes from the data. The length
of the line following the aircraft corresponds to the part of
the trajectory being analyzed, that is the last 80 seconds of
the trajectory. The length of the line is therefore proportional
to the velocity of the aircraft. This display is intended for
an air traffic controller managing the arrivals at SFO. A
similar display would be used for managing other arrivals or
departures. The only change would be the training data for
IMS and the centroids displayed. Aircraft with a gray segment
can be ignored, since they are not landing at SFO and are not
interfering with landing traffic at SFO. Aircraft with a green
segment are following the typical operations to land at SFO.
Aircraft in orange require special attention since they are not
intended to land at SFO but present characteristics that identify
them as “in the pattern to land at SFO”. They conform with
some of the SFO landing trajectories. Aircraft in red also need
special attention since they are supposed to land at SFO but
currently not on typical tracks. The controller needs to make
sure they are not generating conflicts or interfering with other
traffic.

E. AirTrajectoryMiner: Measure of complexity

Based on the compliance of current flights to procedures, we
define a measure of complexity for the TRACON, which could
provide an automatic feedback of the health of the TRACON
to the traffic flow manager who regulates the flow of aircraft
arriving in the TRACON.
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This paper introduces a new complexity metric for air
traffic management, based on the compliance of aircraft to
procedures identified as nominal. According to [33], [34],
controllers build a mental model of nominal operations. The
complexity of a traffic configuration perceived by the con-
trollers increases when an aircraft flight paths do not follow
this mental model. When operations are running as expected,
the controller is more efficient and can deal with more aircraft.
Thus, increasing the number of aircraft not following nominal
procedure will reduce the maximum number of aircraft a
controller can deal with simultaneously, reducing the capacity
of the airspace. During a visit of the Northern California
TRACON, the parameters identified to increase the complexity
are vectoring, aircraft on holding patterns, aircraft mix, i.e
turboprops and jets at the same time, and aircraft types (e.g
heavy, medium, light). The proposed monitoring tool identifies
as outliers aircraft that are subject to large vectors, those flying
on holding patterns and executing a go-around. Turboprops,
which increase controller’s workload, are likely to be identified
as outliers since they fly on dedicated routes that were not
identified as typical by the presented clustering algorithm.

The proposed complexity measure is based on Shannon’s
theory of communication [35]. Let SSFO be the sample space
of all the aircraft inbound for SFO, in the TRACON at a given
time. The random variable X defined on SSFO assigns OK to
the aircraft identified as nominal and OKi, i = 1 . . . nOK,SFO
to the aircraft identified as outliers. For the aircraft identified
as outliers, it is assumed that each outlier aircraft is unique and
independent from other aircraft. At each instant, each outlier
is considered different from the other outliers, that is there
are nOK,SFO types of outliers. The resulting probability mass
function fX(x) associated with the random variable X at a
given instant is:

fX(x)

{
nOK,SFO

nSFO
, x ∈ {OK}

1
nSFO

, x ∈ {OKi, i = 1 . . . nOK,SFO}
(6)

This means that the instantaneous probability of an aircraft
inbound for SFO to be identified as nominal is

p(OK|SFO) =
nOK,SFO
nSFO

, (7)

and the probability of an aircraft inbound for SFO to be a
specific outlier is

p(OKi|SFO) =
1

nSFO
, i = 1 . . . nOK,SFO. (8)

The entropy HSFO of the aircraft inbound to SFO is
therefore

HSFO =− p(OK|SFO) log p(OK|SFO) . . .

−
nOKi,SFO∑

i=1

p(OKi|SFO) log p(OKi|SFO)

=− nOK,SFO
nSFO

log
nOK,SFO
nSFO

. . .

−
nOK,SFO
nSFO

log
1

nSFO
.

(9)

The same reasoning is used for aircraft not inbound to SFO:

HSFO =−
nOK,SFO
nSFO

log
nOK,SFO
nSFO

. . .

−
nOK,SFO
nSFO

log
1

nSFO
.

(10)

The proposed measure of complexity C is the sum of the
entropy of aircraft inbound to SFO and the entropy of aircraft
not inbound to SFO.

C = HSFO +HSFO. (11)

This complexity measure is an indication of the disorder
with regard to typical operations. If no aircraft is identified as
an outlier, the complexity is 0. The complexity increases with
the proportion of outliers detected.

The bottom left plot of Figure 20 shows this measure of
the complexity over the last 10 minutes. The plot is refreshed
every 15 seconds. When the traffic flow manager sees that
the complexity increases, ATM provides information about
the operations in the TRACON. If the complexity gets high,
the controller in charge of the TRACON is likely to have
a high workload. Providing the traffic flow manager with
this complexity measure can help him to manage the flow
of arriving aircraft. A low complexity suggests that more
aircraft can be allowed in the TRACON. Increasing complexity
suggests that the TRACON controllers are subject to an heavy
workload and that the aircraft arrival rate should be reduced.

This tool can also be used as an automatic independent
monitoring tool. Intent based tools [14] cannot be used in
terminal areas since controllers give vectors that do not appear
in the flight plan. Moreover, there are many turns and altitude
changes that are left to the pilot to execute.

VI. CONCLUSION

This paper presented two trajectory clustering methods
and an application to airspace monitoring. The first method
clusters trajectories that have turns at the same spatial lo-
cations. The second methodologies is based on a principal
components analysis of resampled and augmented trajectories.
Those algorithm are used to determine typical operations. The
monitoring tool compares the conformance of current flights
to identified typical operations in real-time. The version of the
tool presented in this paper monitors the landings at SFO, but
it can easily be modified to monitor any traffic pattern, by
modifying the input dataset.
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