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1 Introduction 
 
One of the primary goals of Integrated Vehicle Health Management (IVHM) is to detect, diagnose, 
predict, and mitigate adverse events during the flight of an aircraft, regardless of the subsystem(s) from 
which the adverse event arises. To properly address this problem, it is critical to develop technologies 
that can integrate large, heterogeneous (meaning that they contain both continuous and discrete 
signals), asynchronous data streams from multiple subsystems in order to detect a potential adverse 
event, diagnose its cause, predict the effect of that event on the remaining useful life of the vehicle, and 
then take appropriate steps to mitigate the event if warranted. These data streams may have highly 
non-Gaussian distributions and can also contain discrete signals such as caution and warning messages 
which exhibit non-stationary and obey arbitrary noise models. At the aircraft level, a Vehicle-Level 
Reasoning System (VLRS) can be developed to provide aircraft with at least two significant capabilities:  
improvement of aircraft safety due to enhanced monitoring and reasoning about the aircraft’s health 
state, and also potential cost savings through Condition Based Maintenance (CBM).  Along with the 
achieving the benefits of CBM, an important challenge facing aviation safety today is safeguarding 
against system- and component-level failures and malfunctions.  
 
A VLRS can take advantage of component, subsystem, and vehicle-level models which would represent 
connectivity and potential causal chains of failure.  Moreover, physics-based models of damage 
propagation for certain subsystems (such as the airframe or actuators) may be appropriate for inclusion 
in the model. Finally, data-driven methods to characterize interactions between components, 
subsystems, and systems may be appropriate for the design.   The architecture of a VLRS can span a 
wide range of aircraft subsystems such as airframe, propulsion, avionics, and software system. 

Vehicle level reasoning takes into account health management information from all levels – component, 
subsystem, system, and fleet-wide.  The reasoning at each level, which has its own requirements in 
terms of timing, processing, and communications, is aimed at disambiguating any conflicting information 
and improving situational awareness.  The level of Verification and Validation (V&V) scrutiny of the VLRS 
itself will be determined by the severity of the aircraft-level hazards associated with it.  Advanced VLRS 
concepts such as the integration of data from airborne and ground systems, use of active query for fault 
isolation, interaction with the flight crew, and characterization of component, subsystem, and system 
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interactions through data-driven methods, will likely pose new and significant verification, validation, 
and certification challenges.   
 
This chapter begins with a background on reasoning systems that were first developed for space 
applications and then discusses the concept of a vehicle reasoning system with aircraft applications with 
a real-world example and case study.  We then discuss some critical issues regarding the verification and 
validation of such a system and then summarize with a section on conclusions and future work. 

2 Background  
 
The need for autonomous spacecraft and rovers has been a driving force for the development of 
vehicle-level reasoning technologies.  These technologies are applicable for both unmanned aerial 
vehicle and next generation commercial aircraft.  This section describes a few examples that 
demonstrate the feasibility and benefits of reasoning systems for space applications.   
 
In 2004, NASA uploaded Livingstone Version 2 (LV2) software to the EO-1 satellite to test its ability to 
find and analyze errors in the spacecraft’s systems [1].  Normally such troubleshooting is performed on 
the ground. Tests were conducted to automatically detect and diagnose simulated failures in the 
satellite’s instruments and systems.  Livingstone provides the opportunity to recover from errors to 
protect these assets, and continue to achieve mission goals.   On this mission, LV2 also monitors another 
software application that controls EO-1 to autonomously run its imaging system.  If EO-1 does not 
respond properly to the software control, LV2 detects the error, makes a diagnosis, and sends its 
analysis to mission control.  LV2 compares a model of how the spacecraft’s systems and software should 
perform to actual performance.  If the spacecraft’s behavior differs from the model, then the LV2 
reasoner searches for the root cause and gives mission controllers suggestions of what may have gone 
wrong.  
 
Another example of a space-related reasoning system is Remote Agent.  This system enables 
autonomous planning and execution of many tasks onboard the spacecraft [2].  With this capability, only 
general directions are commanded from ground controllers on earth.  This allows faster response by the 
spacecraft to in-flight situations since ground controller intervention is limited due to communication 
delay.  As an example, autonomy capability is needed to safely maneuver a spacecraft in a hazardous 
environment such as those caused by micrometeorites. The Remote Agent software utilizes model-
based reasoning algorithms, constraint-based, goal-directed planning and execution algorithms as well 
as a fail-operational fault-protection approach.  The software includes a planner and scheduler that 
generate time-based and event-based activities labeled as tokens.  The executive in the software makes 
decisions by taking into account knowledge of the spacecraft’s state of health, constraints on spacecraft 
operations, and the plan from the planner and scheduler.  The executive expands the tokens into a 
sequence of commands that are issued directly to the appropriate subsystems and monitors the 
response to these commands, and reissues or modifies them if the response is not what is desired.    
 
The need for vehicle level reasoning in aircraft will grow in NextGen and beyond because of the 
increasing complexity in aircraft and the higher reliance on automation. What follows is an overview of 
a VLRS for aircraft applications. 
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3 Scope of Vehicle Level Reasoning Technologies 
The primary function of a VLRS is to detect faults and failures at the aircraft level, enable isolation of 
these faults, and estimate remaining useful life.  Consider characteristics of some typical faults arising in 
some subsystems within an aircraft:  

1. [propulsion] Turbine blade erosion is a natural part of turbine aging and wearing of the 
protective coating due to microscopic carbon particles exiting the combustion chamber. As the 
erosion progresses over time, this fault manifests itself as increase in fuel flow and gradual 
degradation of engine performance.  

2. [avionics/software] Loose wire harness connectors. As connector pins corrode, they make 
intermediate contact. The corresponding software module that receives this signal registers a 
series of intermittent open circuit faults which may eventually corrupts the navigation software 
and causes a memory overflow instantaneously.  

3. [airframe] Actuator stiction. A sticking actuator changes the dynamic response of a control loop. 
The feedback action provides some degree of resilience making this problem difficult to detect 
Eventually, the stiction progresses to a point where the actuator saturates and the control 
authority is completely lost.  

4. [software]  This scenario describes a fast progression fault in which the incoming navigation data 
corrupts the guidance software (see ATSB Investigation report 200503722), which then leads to 
an incorrect solution. The auto-pilot intervenes and over compensates using the engine thrust.  
This causes high temperature and high speed events in the engine, leading to cascading 
problems in the generators and secondary power distribution system. Several auxiliary 
electronics modules react to the power glitch.   
 

Broadly speaking the VLRS needs to address many different fault scenarios, including:  

1. Faults whose severity increases with time. These can be further categorized based on the time 
constant of this evolution such as incipient, slow progression or fast progression.  

2. Binary repeating faults whose repetition increases with time. These can be further categorized 
based on the time interval between repeats such as constant or increasing.  

3. Faults whose effects spread throughout the aircraft with time. These can be further categorized 
based on the size of this influence such as localized (self contained) or widespread.  

 

Figure 1. Adverse Events Cube describing the VLRS 

As shown in Figure 1, VLRS has to reason 

across three dimensions – shown  as 

three mutually orthogonal axes labeled 

time evolution (with extremes labeled 

fast and slow), impact propagation (with 

extremes labeled localized and 

widespread), and symptom persistence 

(with axes labeled intermittent and 

constant).   
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reasoning dimensions 

 

Next we describe typical modules that constitute the VLRS. Central to the VLRS are two notions—
evidence and failure modes. Broadly speaking evidence represents a symptom or an observation, the 
failure mode is often an abstract entity that can be mapped to specific corrective or mitigation action. In 
this respect, a failure mode could map one-to-one with a physical failure like those defined by the 
component manufacturer, or a condition that has a well-defined corrective action (such as remove and 
replace) defined in the aircraft maintenance procedures. Symptom evidence takes several forms as we 
shall discuss in a later section. The four functional modules of VLRS are: inference engine, system 
reference model, learning loop and communication interfaces.  To facilitate the description, the 
modules are numbered 1 through 4 in Error! Reference source not found.. 

 

Figure 2. Functional modules in a Vehicle-Level Reasoning System. 

 
 

1. Interference Engine: This module takes into account health evidence generated from all 
components and subsystem systems within the vehicle (such as aircraft) to produce the current 
diagnostic state or predicts the future evolution of a fault.  In this process, it produces a most 
plausible explanation for all the symptoms provided by various components; creates new 
hypothesis to track multiple faults; deletes hypothesis that may have weak or no evidence 
support.  

2. System Reference Model: The necessary relationships for the inference process are typically 
separated as a static system reference model. This partitioning allows the same inference 
engine software code to be reused on multiple vehicles and minimize certification and 
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qualification costs for deploying VLRS onboard an aircraft. The system reference model, an 
aircraft loadable software module describes the relationship between evidence generated at the 
component and/or subsystem level and failure modes that can be mapped to specific 
maintenance or correction action.  

3. Data mining and learning loop: Fleet modeling, data mining and knowledge discovery methods 
working on historical data can detect anomalies and precursors to critical failure modes. 
Discovering new patterns and updating old relationships in the system reference model can 
improve aircraft safety to a higher level continually.  Information from this learning loop, 

resulting in a -change in the reference model enables VLRS to provide accurate health 
assessment of component, subsystem, or system and support condition-based equipment 
maintenance and replacement.   

4. Communication interfaces: By design, VLRS takes a system-wide view of the adverse event 
detection problem. While the input interfaces defines how VLRS receives health information 
from various member components, the output interface defines how it communicates its 
outputs to the flight crew (displays), ground maintainer (ground station) or a flight management 
system for automatic fault accommodation.  

  

The overall objective of VLRS is to detect adverse events that may be occurring in the vehicle currently 

and in some near future. Several functions within this module support this objective. Next we take a 

closer look at these functions. Figure 3 summarizes them and we describe them below:   

To detect events whose characteristics are described in the adverse event cube, the VLRS needs to 

operate on a variety of evidence generated from several member systems within the vehicle. While the 

inference engine should not depend on how the evidence was generated, VLRS should support a variety 

of formats to enable the member system to express their evidence. A monitor is an expression of an 

evidence. Three common forms of monitors are:  (1) diagnostic monitor which is a binary or a 

probabilistic indication of the evidence being present or absent, (2) prognostic monitor expresses the 

presence of symptom in future time, and (3) parametric monitor that provides a time series signal 

together with a threshold whose crossing denotes the presence of a symptom. This is the Evidence 

handling function within the VLRS.  

Irrespective of the form in which it is expressed, evidence is always associated with a set of failure 

modes called its ambiguity group. If there is only one failure mode in this set, which is mapped to a 

corrective action, and the symptom associated with it is reported, then the current aircraft fault state is 

isolated. Unfortunately, this is an exception than a rule. Analyzing the overlap between the ambiguity 

groups of each of observed symptom to postulate an adverse event that can explain most of these 

symptoms is the hypothesis generation function.  Generating and updating the probability associated 

with these hypothesis based on the strength of observed symptoms is the Hypothesis handling function 

within the VLRS.  

VLRS typically reasons with evidence provided by various components or member systems in an aircraft. 
However, to support future occurrence of adverse events, VLRS needs to take an active role in 
generation of evidence in addition to a passive, data gathering and analysis activity. In this context, an 
‘active role’ means that the VLRS could generate and test internal hypotheses about the root-cause of a 
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particular adverse event by selecting subsystems and issuing queries designed to verify a hypothesis.  In 
situations where there is contradictory information, a VLRS can disambiguate conflicting health status 
through passive and active interrogation.  This is active query function within the VLRS.  

Interactions and inter-connection between various subsystems cause a failure mode in one subsystem A 

to trigger monitors in subsystem B. In addition, a failure mode in subsystem A may cause a failure in 

subsystem B. These secondary effects provide cascading evidence to the primary common cause failure 

mode. In other words, VLRS may exonerate subsystem B even though it may be exhibiting an indicting 

symptom. This is the cascade function within the VLRS.    

Handling intermittent symptoms is an important function of VLRS. Chatter or intermittency is handled 

by a simple time-based latching mechanism. Time-based latching requires history keeping and looking 

for specific temporal patterns such as sinusoids or saw-tooth. Once the pattern is established after 

analyzing the symptom over a trend window, the VLRS may filter it either to decrease the probability of 

the prevailing fault hypothesis. This is the temporal filter function within VLRS. Often evidence provided 

by a group of monitors may need to be suppressed when the aircraft is in a specific operating mode. For 

example, evidence provided by various landing subsystem monitors needs to be suppressed while the 

aircraft is in a ground engine test mode. We call this the inhibit function. While some of this inhibition 

relationship can be derived based on the power-up state of member systems, the user may also encode 

additional inhibit conditions for specific aircraft operating modes. While the overall objective of VLRS is 

to detect and diagnose ongoing failure modes accurately, the net impact of this prevailing fault on 

mission completion or safety is called function capability function.  

Often the system reference model builder can derive much of these cascade relationships by following 

the aircraft wiring and component layout drawings, the user may also encode implicit cascade 

relationships in the system reference model using past experience.  

 

 

Figure 3. Sub-functions with VLRS inferencing module 

4 An Example 
The Aircraft Diagnostic and Maintenance System (ADMS) that has been flying on the B777, B787 and 
business jets is an example of a model-based approach for VLRS. While the ADMS does not embody all 
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the VLRS functions described earlier, we present this example to highlight some of the technology 
choices.  
The ADMS inferencing engine handles only binary forms of evidence, i.e. a diagnostic monitor. In this 

format, an evidence has three states: indict (1) or exonerate (0) and a default unknown (-1) state. In the 

indict state, the evidence asserts that one of the failure modes in its ambiguity set may be occurring in 

the system. This information P(fmj=1|ei=1) is the probability that the evidence ei  will generate an 

indicting diagnostic monitor when the failure mode ei is present in the system. A bipartite graph is 

sufficient to capture this relationship, however the system reference model is a network of node entities 

such as: failure modes, corrective actions, operating modes, evidence, component ID, component 

supplier and other things needed to generate a maintenance work order automatically.  

Relationships to support the cascade analysis function are derived offline by tracking the aircraft 

component connectivity and layout drawings. In other words, the ADMS implements a topology based 

cascade analysis; functional and causal cascade are explicitly programmed as additional links in the 

system reference model network. Temporal filtering is implemented as simple counter-based latching 

algorithm rather than advanced shape recognition algorithms. ADMS uses a passive interrogation 

approach to VLRS, that is, no additional data from a particular component or subsystem are collected to 

improve fault detection and diagnosis. 

Since ADMS can handle diagnostic monitors, the overall objective of VLRS, in this case, is to detect the 
ongoing (at the present time) adverse events that explain all observed symptoms. As described earlier, 
the ADMS achieves this by generating and updating adverse event hypothesis. Within ADMS, an adverse 
event hypothesis is tracked using a data structure called fault condition FC. In other words, an FC 
describes the output generated by the VLRS—namely ADMS in this case. Figure 4 shows the schematic 
of a fault condition within ADMS.  
 
It has three elements: (1) an initiating event. As we mentioned earlier, ADMS is a passive form of VLRS 
and hence the inferencing engine is triggered when new evidence in the form of a diagnostic monitor is 
presented, (2) an ambiguity group is the set of all failure modes that could have triggered this evidence. 
This is calculated by navigating the system reference model network, (3) an evidence of interest 
constructed as follow: for each failure mode in the ambiguity set, identify all evidence that could trigger 
from the reference model. The evidence of interest is constructed by taking a union of all such evidence.   
 

 
Figure 4. Schematic of a fault condition, which represents the ongoing event hypothesis within the ADMS 
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The overall probability for the fault condition is defined as the joint probabilities of any of the failure 

modes in the ambiguity group occurring given the diagnostic monitors (evidence) present. The update is 

a simple Bayesian update, where the apriori failure mode probabilities are defined in the system 

reference model.  

The inference engine within the ADMS terminates when the failure mode in the ambiguity group 

reduces to one or a set of failure modes that map to a single corrective action as defined in the system 

reference model.  

5 Case Study 

We now provide an example to illustrate the potential safety impact of VLRS. The example surrounds an 

in-flight engine shutdown (IFSD) incident recorded by the ASIAS database. The flight crew immediately 

responded and per the operating procedures, turned back and safely landed the aircraft. An in-flight 

engine shutdown is a highly undesirable adverse event and significantly impacts aviation safety. There 

were no known exceedances reported for that engine in the recent past, investigation by the 

maintenance crew indicated a faulty fuel metering unit, which if detected earlier is a routine line 

maintenance activity—thereby avoiding the IFSD and potential safety impact.  

The aircraft was equipped with an aircraft condition monitoring system (ACMS) that records aircraft 

operational parameters. Evidence provided by several member systems (including the engine) was 

analyzed by the ADMS.  In the previous section we described the ADMS as a first step towards the 

overall VLRS goals defined in section 3.  In this case study, we focus on three VLRS functions (from 

among many described in Figure 2 and Figure 3) which does not exist in the ADMS. These are: (1) an 

offline data mining step to discover the causal signature surrounding this adverse event. This analysis 

could be accomplished based on the parametric data recorded in the ACMS recording system, (2) 

updating the existing system reference with these newly discovered evidence, (3) expanding ADMS 

inference engine to generate probabilistic diagnostic monitors for the newly added evidence through 

the active query function, and (4) adding causal cascade links in addition to the topology-based cascade 

analysis to the inference engine. While we did not add all the seven functions a VLRS should encode, our 

objective is to illustrate the improved safety impact by adding the above select features of VLRS. That is, 

determine if we could detect the underlying fault (failure of the fuel metering unit) several flights before 

it manifested as the IFSD adverse event. This early notification and the appropriate maintenance action 

could avoid the safety impact.    

We paraphrase the incident report to describe what happened: “After a normal takeoff one of the 

engines recorded a high-temperature exceedance, which means that the temperature exceeded some 

pre-specified threshold. The exceedance last long enough to trigger the safety shutdown of the engine.”  

Message trace from the existing ADMS indicated a fuel metering failure hypothesis was formulated by 

the inference emgine, however, the probability assigned were too low and competed with other failure 

hypothesis indicating an engine turbine nozzle failure. In any case, neither one of the hypothesis were 
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strong enough to generate any notification for the flight or the maintenance crew. The evolution of this 

adverse event was not captured in the system reference model—clearly justifying the need for an offline 

data mining learning loop to continuously update the system reference to enable the VLRS to detect this 

fast event.    

As we started to analyze this event, it was not clear how a faulty fuel metering unit would have 

escalated to an over-temperature condition. We employed a standard Tree Augmented Network 

Bayesian classifier to discover these relationships and hence understand how this specific fault escalated 

as a safety event. We used the parametric data collected by the ACMS from the last 50 flights leading up 

to engine shutdown event. Details on the data mining setup are described in [4].  

The results are summarized in Figure 5. On the left hand side marked #1 in Figure 5, we summarize the 

causal sequence of events discovered by the data mining step—starting from the fuel metering actuator 

fault that initially manifested as sluggish engine start.  The controller compensated by aggressive 

schedules. At some point the controller saturated which resulted in lower idling speeds. Eventually the 

speed dropped below its allowed threshold triggering while the engine exhaust gas temperature (EGT) 

remained high triggering the adverse IFSED event.  

Second, we encoded this newly discovered knowledge as a -update the system reference model. These 

updates are marked #2 in Figure 5.  This implied adding the following three new evidence to the system 

reference model: (1) time when the engine started, called the lightoff evidence that looks for 

abnormally long engine start times, (2) peak exhaust gas temperature evidence that looks for 

abnormally high exhaust gas temperature during engine startup, (3) the idling engine speed evidence 

that looks for abnormally high and abnormally low speeds when the engine is idling before aircraft 

takeoff. The two existing evidences—namely over-temperature exceedance and INFSED are show in 

Figure 5.  

Third, we built the VLRS such that the inference engine exercises all the seven functions we described in 

section 3. The actual functions exercised by the VLRS are marked #3 in Figure 5.  Finally we re-ran the 

VLRS with the updated reference model using the last 50 flight data before the IFSED event occurred 

and monitored the outputs—namely the fault conditions as described in section 4 and marked #4 in 

Figure 5. The most plausible fault state of the aircraft was isolated to a fault condition that contained 

exactly one element in its ambiguity group—namely the fuel metering unit. Repeated experiments with 

varying notification threshold on the fault condition hypothesis we concluded that the VLRS would have 

established the fuel metering root cause anywhere from 20—30 flights before the IFSED event. This 

would (in theory) allow the maintainer to fix the faulty component, eliminate the source of the fault and 

hence completely avoid this safety event.  

While this single event may be statistically insufficient from a machine learning validation metrics, the 

clear explanation discovered by the data mining method and the -change to the reference model 

together with a VLRS seemed sufficient for the engine domain expert to give his thumbs up.  
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Figure 5. Impact of VLRS on detecting events that led to an in-flight engine shutdown 

  

6 Verification and Validation Issues 
 
From a certification and design assurance perspective, certain incremental VLRS advances are simple 
extensions to existing health management capabilities that are fielded today.  Two examples are 
monitoring for multi-engine performance asymmetry, and subsystem or component performance 
trending across multiple flights.  In these cases recognized industry standards such as ARP 4761 
“Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and 
Equipment,”  ARP 4754 “Certification Considerations for Highly-Integrated or Complex Aircraft Systems,” 
and DO-178B "Software Considerations in Airborne Systems and Equipment Certification"  may provide 
sufficient guidance for certification activities pertinent to the VLRS extensions.    
 
A number of V&V issues arise when considering VLRS concepts (such as enriched evidence, tiered 
computation architecture, and continual data mining-based reference model learning) that are more 
advanced than component-focused health management systems. Following are just a few of the issues 
that may arise when considering an advanced VLRS implementation:  
 

 Large-scale integration and Commercial-Off-the-Shelf (COTS) - The large-scale integration of 
health and performance data from subsystems and components that were designed for 
standalone purposes will require agreement on new VLRS interface standards.  Integrating data 
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from COTS-based systems (such as ground-based maintenance history databases or archived 
vehicle usage data) with airborne systems will raise issues such as guaranteeing the accuracy 
and integrity of the off-board databases, and addressing the different regulatory requirements 
that govern the certification of ground-based systems from that of airborne systems.   

 

 Protecting intellectual property - Access to increased levels of health and performance 
information will be required.  In multi-vendor environments the resulting increased data 
exposure may require new paradigms for protecting intellectual property, and current 
approaches to software configuration, testing suites, and change management (field upgrades) 
may need to be reexamined.   

 

 Flight-crew interaction - In some advanced VLRS concepts, the flight crew collaborates with the 
health monitoring automation, allowing the VLRS designer to incorporate the knowledge, agility, 
and diagnostic capability of the flight crew into the analysis algorithms.  However, interaction 
with the flight crew greatly increases the required V&V activities because new hazards, such as 
increased pilot workload and misleading displays, are introduced into the safety assessment.    

 

 Interaction with flight controls - The generation of pre-programmed control surface commands 
for real-time aerodynamic estimations would provide the VLRS with additional capability to 
isolate faults and potentially improve overall health state assessment.  For example, manually 
triggered pre-programmed surface excitations may be invoked to identify performance 
degradation due to ice contamination [5].   VLRS systems incorporating such interrogation 
capability would have to be subjected to the highest level of V&V scrutiny, because anomalous 
behavior could lead to a catastrophic failure condition. 

 

 Non-deterministic techniques - In-situ data-driven approaches, such as machine learning and 
certain signal analysis approaches, offer powerful techniques for diagnostic monitoring, 
prognosis, and characterization of interactions between components and subsystems [6].  The 
non-deterministic aspects of these approaches will require new V&V tools and methods in order 
to gain regulatory acceptance, because the civil aviation community does not currently permit 
the use of such algorithms in high criticality applications.    

 
A fully realized VLRS will be a complex, highly integrated system that employs connectivity and failure 
models, data-driven and probabilistic methods, and system and subsystem interrogation.  The system 
will require large amounts of data from numerous sources such as onboard flight data, component, 
subsystem, and system health and performance data, and archived historical data.  In order to validate a 
VLRS capability, real-world data sets must be available that contain well-understood and documented 
anomalous events, including data archived from flights preceding the anomalous event.  Obtaining such 
data is, however, often impossible due to privacy, proprietary, and legal concerns.  The problem will be 
particularly severe if the VLRS is operating in a multi-vendor environment that will require data sharing 
among different organizations.  Innovative approaches to this problem are needed to support validation 
activities while also protecting legitimate data sensitivity. 

7 Conclusions  
The concept of Vehicle-Level Reasoning Systems (VLRS) has its origin in sophisticated diagnostic systems 
applicable to deep-space applications.  In those applications, the VLRS enables a higher degree of 
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autonomy and mission assurance.  In aeronautical applications, most modern aircraft are equipped with 
some degree of vehicle level reasoning.  We have discussed the basic architecture of the reasoner and 
have also shown the different types of data monitors that are applicable to the overall system.  These 
data monitors can generate ambiguity groups that require passive or sometimes active interrogation 
techniques to help disambiguate the root cause of the adverse event.  We have discussed a case study in 
which a conceptual VLRS could identify the root-cause of a problem nearly 20 to 30 flights ahead of the 
full manifestation of the problem.  The verification and validation of these systems is critical for the 
future implementations. 
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