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Abstract. With the advent and expansion of social networking, the amount of generated text

data has seen a sharp increase. In order to handle such a huge volume of text data, new and

improved text mining techniques are a necessity. One of the characteristics of text data that makes

text mining difficult, is multi-labelity. In order to build a robust and effective text classification

method which is an integral part of text mining research, we must consider this property more

closely. This kind of property is not unique to text data as it can be found in non-text (e.g.,

numeric) data as well. However, in text data, it is most prevalent. This property also puts the

text classification problem in the domain of multi-label classification (MLC), where each instance

is associated with a subset of class-labels instead of a single class, as in conventional classification.

In this paper, we explore how the generation of pseudo labels (i.e., combinations of existing class

labels) can help us in performing better text classification and under what kind of circumstances.

During the classification, the high and sparse dimensionality of text data has also been considered.

Although, here we are proposing and evaluating a text classification technique, our main focus is

on the handling of the multi-labelity of text data while utilizing the correlation among multiple

labels existing in the data set. Our text classification technique is called pseudo-LSC (pseudo-

Label Based Subspace Clustering). It is a subspace clustering algorithm that considers the high and

sparse dimensionality as well as the correlation among different class labels during the classification

process to provide better performance than existing approaches. Results on three real world multi-

label data sets provide us insight into how the multi-labelity is handled in our classification process

and shows the effectiveness of our approach.

1. Introduction

Classification is an important part of text data analysis as has been pointed out in text research

over a long period of time. With the increase of its volume, it has become necessary that we find

automated means for text classification. However, text data is different from its non-text counterpart

in a number of ways. The first difference that we look into and address in this paper is that text

data tends to address multiple topics at the same time. As a result, they can be associated with

multiple class labels giving rise to multi-labelity. And, these class labels are not independent of one

another, indicating the existence of correlation or label dependence across the class labels. One of

the main contributions of this paper is to take this correlation into account during the classification

process.

We must also consider the high and sparse dimensionality of text data. All documents in text

data sets are written in plain language. Since the vocabulary of any natural language is vast, the

dimensionality is very high and compared to the whole vocabulary, only a few words appear in each

document which gives rise to the sparseness.
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Another important consideration during text classification is the availability of labeled data.

Manual labeling of data is a time consuming task and as a result, in many cases, they are available

in limited quantity. If we consider just the labeled data, then we are sometimes left with too little

data to build a classification model that can perform well. On the other hand, if we ignore the class

label information of the labeled data, then we are forsaking valuable information that could allow

us to build a better classification model.

If we look into the literature, we see that usually, text classification approaches focus on a specific

characteristic of text data such as its high dimensionality, multi-labelity or availability of limited

labeled data. As a result, many of these methods can not be used universally. Sometimes, the

underlying theory of these methods may become incorrect. For example, Entropy Weighting K

Means approach [12] uses a subspace clustering approach that is based on the entropy of the features

or dimensions. If the data is multi-label, then the entropy calculation of that method no longer

holds ground. This happens in case of SISC [3], too, which is our previously formulated semi-

supervised subspace clustering algorithm that considers both the high dimensionality and limited

labeled data challenges. In SISC [3], however, the measure that becomes incorrect is the class

impurity calculation. Also, it is only applicable for multi-class text data, not multi-label data, let

alone considerations of label correlation.

In face of all these challenges, traditional as well as state-of-the-art text classification approaches

perform poorly on multi-label data sets as we have found through our experiments. In order to

address this multi-labelity scenario, we extended SISC to formulate SISC-ML[4] which is a multi-

label variation of SISC. However, if we look closely into the data, we find that not all the classes

co-occur with the same frequency. Which implies that the correlation among different class labels

are not the same. In order to incorporate this correlation information during the clustering process,

We, therefore, extended SISC [3] further based on this correlation information and formulated

pseudo-LSC in this paper.

The reason behind choosing SISC as our classification method for extension is due to its notion

of subspace clustering. Subspace clustering allows us to find clusters in a weighted hyperspace [10]

and can aid us in finding documents that form clusters in only a subset of dimensions. In our

proposed pseudo-LSC (pseudo-Label Based Subspace Clustering) approach, we augment the original

class labels in the data set with pseudo-labels which are actually combinations of multiple class

labels. Assigning such pseudo-labels allows us to use the correlation among different class labels

during clustering and to achieve better classification performance.

In short, we have a number of contributions in this paper. First, pseudo-LSC is a semi-supervised

subspace clustering algorithms that successfully finds clusters in the subspace of dimensions irre-

spective of the data being multi-class or multi-label. Second, our proposed algorithm performs well

in practice even when a very limited amount of labeled training data is available. Third, at the

same time, this algorithm minimizes the effect of high dimensionality and its sparse nature during

training. Finally, we compare pseudo-LSC with other classification and clustering approaches to

show the effectiveness of our algorithms over three benchmark multi-label text data sets.
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The organization of the paper is as follows: Section 2 discusses related works. Section 3 presents

the theoretical background of pseudo-LSC, the semi-supervised multi-class text classification ap-

proach. Section 4, then describes how pseudo-LSC handles multi-labeled data. Section 5 discusses

the data sets, experimental setup and evaluation of our approach. Finally, Section 6 concludes with

directions to future research.

2. Related Work

We can divide our related work based on the characteristic of our proposed pseudo-LSC. pseudo-

LSC is a semi-supervised approach, it uses subspace clustering, and most important of all, it can

handle multi-label data. Therefore, we have to look into the state-of-the-art methods that are

already in the literature for each of these categories of research.

Approaches that have been proposed to address multi-label text classification, including margin-

based methods, structural SVMs [19], parametric mixture models [21], κ-nearest neighbors (κ-

NN) [25], and ensemble pruned methods [16]. One of the most recent works include RAndom

k-labELsets (RAKEL) [20]. In a nutshell, it constructs an ensemble of LP (Label Powerset) clas-

sifiers and each LP is trained using a different small random subset of the multi-label set. Then,

ensemble combination is achieved by thresholding the average zero-one decisions of each model per

considered label. MetaLabeler [18] is another approach which tries to predict the number of labels

using SVM as the underlying classifier. Most of these methods utilize the relationship between

multiple labels for collective inference. One characteristic of these models is they are mostly super-

vised [16, 20, 18]. Aside from multi-label text classification, there are also work on regret analysis

and loss function for such classification. In [9], Dembczynski et al. compare two loss functions

namely subset 0/1 loss and Hamming loss for different multi-label classifiers. They focus mainly

on the close connection between conditional label dependence and loss minimization. Unlike their

approach, we are utilizing the unconditional label correlation that exists in the data as well as cluster

impurity minimization.

Semi-supervised methods for classification is also present in the literature. This approach stems

from the possibility of having both labeled and unlabeled data in the data set and in an effort to use

both of them in training. In [5], Bilenko et al. propose a semi-supervised clustering algorithm derived

from K-Means, MPCK-MEANS, that incorporates both metric learning and the use of pairwise

constraints in a principled manner. There have also been attempts to find a low-dimensional subspace

shared among multiple labels [12]. In [24], Yu et al. introduce a supervised Latent Semantic Indexing

(LSI) method called Multi-label informed Latent Semantic Indexing (MLSI). MLSI maps the input

features into a new feature space that retains the information of original inputs and meanwhile

captures the dependency of output dimensions. Our method is different from this algorithm as our

approach tries to find clusters in the subspace. Due to the high dimensionality of feature space in text

documents, considering a subset of weighted features for a class is more meaningful than combining

the features to map them to lower dimensions [12]. In [7] a method called LPI is proposed. LPI

is different from LSI which aims to discover the global Euclidean structure whereas LPI aims to

discover the local geometrical structure. But LPI only handles multi-class data, not multi-label data.

In [17] must-links and cannot-links, based on the labeled data, are incorporated in clustering. But, if
3
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the data is multi-label, then the calculation of must-link and cannot-link becomes infeasible as there

are large number of class combinations and the number of documents in each of these combinations

may be very low. As a result, this framework can not perform well when using multi-label text data.

There has been some subspace clustering approaches to minimize the impact of high dimension-

ality on classification. Subspace clustering can be divided into hard and soft subspace clustering. In

case of hard subspace clustering, an exact subset of dimensions are discovered whereas soft subspace

clustering determines the subsets of dimensions according to the contributions of the dimensions

in discovering corresponding clusters. Examples of hard subspace clustering include CLIQUE [2],

PROCLUS [1], ENCLUS [8] and MAFIA [11]. A hierarchical subspace clustering approach with au-

tomatic relevant dimension selection, called HARP, was presented by Yip et al. [23]. HARP is based

on the assumption that two objects are likely to belong to the same cluster if they are very similar to

each other along many dimensions. But, in multi-label and high dimensional text environment, the

accuracy of HARP may drop as the basic assumption becomes less valid. In [14], a subspace cluster-

ing method called nCluster is proposed. But, it has similar problems when dealing with multi-label

data. In [22], Wang et al. focuses on an ensemble approach and proposes a nonparametric Bayesian

clustering ensemble method to discover the number of clusters for consensus clustering. In [13],

SciForest has been proposed which uses clustering for finding group of anomalies/outliers. There,

Liu et al. employ a split selection criterion to choose a split that separates clustered anomalies from

normal points. They also makes use of randomly generated hyper-planes in order to provide suitable

projections that separate anomalies from normal points. However, such a clustering is not applicable

for multi-label text classification. Other soft clustering include [6] where spectral decomposition of

the normalized affinity matrix is performed. The affinity matrix indicates the similarity measure

between any two instances in the training set and therefore, depends too much on the quality of the

similarity measure. Also, [6] focuses on using such clustering on graph data rather than text data.

pseudo-LSC uses subspace clustering in conjunction with κ-NN approach. In this light, it is

closely related to the work of Jing et al. [12], Frigui et al. [10] and Ahmed et al. [3]. The closeness is

due to the subspace clustering and fuzzy framework respectively. A significant difference with Frigui

et al. [10] is that, unlike pseudo-LSC, it is unsupervised in nature. Another work that is closely

related to ours is the work of Masud et al. [15]. In [15], a semi-supervised clustering approach called

SmSCluster is used. They have used simple K-Means Clustering and it is specifically designed to

handle evolving data streams. Finally, SISC [3] is another subspace clustering approach which has

close resemblance to our approach. But, it is designed for only multi-class data. It has a multi-label

variation called SISC-ML [4]. However, as mentioned previously, SISC-ML does not consider the

class label correlation and assumes the class labels to be independent of each other. Our proposed

pseudo-LSC is different in this respect as it does not make such class label independence assumption.

It is also not specific for multi-class or multi-label data as is the case for SISC or SISC-ML. pseudo-

LSC can work with a data set irrespective of it being multi-class or multi-label and therefore,

addresses many of the challenges associated with text classification simultaneously.

4
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Notation Range Explanation

xi i = 1 : n i-th data point in the n document data set

dj j = 1 : m j-th binary feature of m unigram features for

data point xi

ti i = 1 : p i-th class of p classes in the data set where p = |T |

cl l = 1 : k l-th cluster of k subspace clusters

wl l = 1 : k Membership weight of data point xi of l-th

subspace cluster

Lcl - Total number of labeled points in cluster cl

Table 1. SISC Notations

3. Multi-Label Classification

In this section, we describe theMLC problem in more detail and formalize it from a soft-clustering

perspective. Along the way, we introduce the notations used throughout the paper.

3.1. Problem Statement. Let X denote the training instance space X̂ denote the test set. Also,

let T = t1, t2, . . . , tp be a finite set of class labels. We assume that any instance x across the training

and test set is associated with a subset of labels T ∈ 2T ; this subset is often called the set of relevant

class labels while the complement of T is considered as irrelevant for x. Our goal is to predict

the probability of a test instance x̂i to belong to each class label tr, r = 1 : p. In short, for each

test instance x̂i ∈ X̂ , we generate a class label vector y = (y1, y2, . . . , yp), in which yi = [0, 1] and
∑p

i=1 yi = 1.

In this paper, we define a multi-label classifier h as an X → Y mapping that assigns a class-label

vector y i ∈ Ŷ to each test instance x̂i ∈ X̂ . Therefore, the problem of MLC can be stated as follows:

Given training data in the form of a finite set of observations (x ,y) ∈ X ×Y, the goal is to learn

a classifier h : X → Y that generalizes well beyond the training observations. Table 1 specifies some

of the notations that will be used throughout this paper.

It should be noted that since we are using a soft subspace clustering formulation, each training

instance xi ∈ X is a member of all the k subspace clusters (but with different membership weights).

Apart from these notations, the following two measures are also used in pseudo-LSC as has been

defined for SISC in [3].

3.2. Description of pseudo-LSC. In pseudo-LSC, each data point may belong to multiple clus-

ters. The weight with which a data point belongs to a particular cluster is referred to as cluster

membership weight. For a data point, these membership weights across all the clusters sum up to

1. So, the membership weights can be regarded as probabilities with which a data point belongs

to a cluster. Also, pseudo-LSC applies subspace clustering and the weight of a dimension in a

cluster represents the probability of contribution of that dimension in forming that cluster. These

dimension weights within a cluster are kept as a vector and the different dimension vectors of the

clusters indicate how the clusters are different from one another. We, therefore, have to update

three parameters during our clustering process - the dimension weights within each cluster, the
5
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Figure 1. pseudo-LSC Top Level Diagram

cluster membership weights of each data point and the cluster centroids. pseudo-LSC utilizes the

Expectation-Maximization(E-M) approach that locally minimizes the following objective function.

F (W,Z,Λ) =

k
∑

l=1

n
∑

j=1

m
∑

i=1

w
f
ljλ

q
liDlij ∗ (1 + Impl) + γ

k
∑

l=1

m
∑

i=1

λ
q
liχ

2
li(1)

where

Dlij = (zli − xji)
2

subject to
k

∑

l=1

wlj = 1, 1 ≤ j ≤ n, 1 ≤ l ≤ k, 0 ≤ wlj ≤ 1

m
∑

i=1

λli = 1, 1 ≤ i ≤ m, 1 ≤ l ≤ k, 0 ≤ λli ≤ 1

In this objective function, W , Z and Λ represent the cluster membership, cluster centroid and

dimension weight matrices respectively. Also, the parameter f controls the fuzziness of the mem-

bership of each data point, q further modifies the weight of each dimension (λli) of each cluster cl

and finally, γ controls the strength of the incentive given to the Chi Square component.

Our algorithm is formulated using the E-M approach. In the E-Step, the dimension weights

and the cluster membership weights are updated. Initially, every data point has equal membership

weights across the clusters and the dimensions are given equal weights, too. During the dimension

weight and cluster membership weight update, the cluster impurity is calculated using the pseudo-

labels, not the original class labels. In the M-Step, the centroids of the clusters are updated and the

summary statistics, i.e., the representation (percentage) of each class label present in the cluster, is

updated. During the summary calculation, the membership weights are used. In the final step, the

κ nearest neighbor clusters are identified for each test point where κ is a user defined parameter.

The distance is calculated in the subspace where the cluster resides. If κ is greater than 1, then

during the class probability calculation, we multiply the class representation with the inverse of the

subspace distance and then sum them up for each class across all the κ nearest clusters.

6
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3.3. Impurity Measure. Each cluster cl, l = 1 : k, has an Impurity Measure [15] associated with it.

This measure quantifies the amount of impurity within each cluster cl. If the data points belonging

to cl all have the same class label, then the Impurity Measure of this cluster Impl is 0. On the other

hand, if more and more data points belonging to different class labels become part of cluster cl, the

Impurity Measure of this cluster Impl also increases. This component has been used to modify the

dispersion measure for each cluster. Its use helps in generating purer clusters in terms of cluster

labels. However, it should be noted that Impl can be calculated using only labeled data points. If

there are very few labeled data points, then this measure does not contribute significantly during

the clustering process. Therefore, we use 1 + Impl, so that unlabeled data points can play a role in

the clustering process. Using Impl in such a way makes pseudo-LSC semi-supervised.

Impl = ADCl ∗ Entl

Here, ADCl indicates the Aggregated Dissimilarity Count and Entl denotes the entropy of cluster

cl. In order to measure ADCl, we first need to define Dissimilarity Count [15], DCl(xi, yi):

DCl(xi, yi) = |Lcl | − |Lcl(t)|

if xi is labeled and its label yi = t, otherwise DCl(xi, yi) is 0. Lcl indicates the set of labeled

points in cluster cl. In short, it counts the number of labeled points in cluster cl that do not have

label t. Then ADCl becomes

ADCl =
∑

xi∈Lcl

DCl(xi, yi)

Summing up the ADCl for all the class labels provide us with the ADCl for the entire cluster.

The Entropy of a cluster cl, Entl is computed as

Entl =

|T |
∑

t=1

(−plt ∗ log(p
l
t))

where plt is the prior probability of class t, i.e., plt =
|Lcl

(t)|

|Lcl
| . It can also be shown that ADCl is

proportional to the gini index of cluster cl, Ginil [15]. But, in pseudo-LSC method, the data points

have fuzzy cluster memberships. So, the ADCl calculation needs to be modified to incorporate

this concept into pseudo-LSC. Rather than using counts, the membership weights are used for the

calculation. This is reflected in the probability calculation.

plt =

n
∑

j=1

wlj ∗ jt

where, jt is 1 if data point xj is a member of class t, and 0 otherwise. This Impurity Measure

is normalized using the global impurity measure, i.e., the impurity measure of the whole data set,

before using in the subspace clustering formulation.

3.4. Chi Square Statistic. During the clustering process, it may happen that the clusters are

formed using only a few features. However, if only a few features (e.g., 2 or 3 features) are involved

in the clustering with their dimension weights being greater than 0, they may fail to play any role
7
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during the label prediction step. This may happen as those few features may never appear in a test

document rendering us unable to ascertain the κ-NN clusters of a test data point. To prevent such a

scenario to happen, this Chi Square component has been included in the objective function so that

more features or dimensions have nonzero weights and can participate in the clustering process. It

works against the dispersion component of the objective function to create a balancing effect and

ensures that clusters are not formed in just a few dimensions. From a clustering perspective, the

conventional Chi Square Statistic can be defined as,

χ2
li =

m(s1s4 − s2s3)
2

(s1 + s3)(s2 + s4)(s1 + s2)(s3 + s4)

where

s1 = number of times feature di occurs in cluster cl

s2 = number of times feature di occurs in all

clusters except cl

s3 = number of times cluster cl occurs without feature di

s4 = number of times all clusters except cl occur

without feature di

m = number of dimensions

This Chi Square Statistic χ2
li indicates the measure for cluster cl and dimension di. However,

if the conventional approach is used for calculation of s1, s2, s3, s4 and m, then a threshold has

to be specified to determine which point can be regarded as a member of a cluster. This not only

brings forth another parameter, but also the membership values themselves are undermined in the

calculation. So, pseudo-LSC modifies the calculation of these counts to consider the corresponding

membership values of each point. The modification is provided below:

s1 =

n
∑

j=1

∑

di∈xj

wlj , s2 = 1−

n
∑

j=1

∑

di∈xj

wlj

s3 =

n
∑

j=1

∑

di /∈xj

wlj , s4 = 1−

n
∑

j=1

∑

di /∈xj

wlj

m = total number of labeled points

3.5. Update Equations. Minimization of F in Eqn. 5 with the constraints, forms a class of con-

strained nonlinear optimization problems. This optimization problem can be solved using partial

optimization for Λ, Z and W. Detailed derivation of the update equations can be found in [3].

3.5.1. Dimension Weight Update Equation. Given matrices W and Z are fixed, F is minimized if

(2) λli =
1

Mlij

∑m
i=1

1
Mlij

8
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where

Mlij =







n
∑

j=1

w
f
ljDlij ∗ (1 + Impl) + γχ2

li







1

q−1

3.5.2. Cluster Membership Update Equation. Similar to the dimension update equation, the update

equations for cluster membership matrix W can be derived, given Z and Λ are fixed. The update

equation is as follows:

(3) wlj =
1

Nlij

∑k
l=1

1
Nlij

where

Nlij =

{

m
∑

i=1

λ
q
liDlij

}
1

f−1

3.5.3. Cluster Centroid Update Equation. The cluster center update formulation is similar to the

formulation of dimension and membership update equations. The update equations for cluster

center matrix i.e., Z can be derived, given W and Λ are fixed. The update equation is as follows:

(4) zli =

∑n
j=1 w

f
ljxij

∑n
j=1 w

f
lj

4. Handling Multi Labeled Data

The previously described Impurity Measure calculation is only applicable for multi-class data

where each document may belong to only a single class label. This constraint ensures that the

calculated probabilities always sum up to 1. However, if each data point may belong to more than

one class label, the sum of probabilities may become greater than 1. One way would be to convert

the classification problem into T binary class problems and modify the Impurity Measure to handle

the multi-label data in such a way. But, doing so is only feasible if all the class labels are independent

of each other. Our experience with multi-label data also indicate that there is a correlation among

the different class labels. In order to handle the multi-labelity as well as the co-occurrence of the

class labels, our proposed pseudo-LSC generates pseudo-labels which are combinations of one or

more original class labels in the data set. In short, we transform the multi-label data set into a

multi-class data set where each data point can belong to only a single pseudo-label. The following

example illustrates how the pseudo-labels are generated.

As can be seen from the example in Table 2, the 5 data points belong to 3 pseudo-labels. And

each of the pseudo-labels may constitute of one or more original class labels in the data set. After

assigning such pseudo-labels to the data points, the new data set becomes multi-class. Therefore,

the pseudo-LSC multi-class algorithm becomes applicable to such a data set. In Figure 3.1, we show

how the text data is converted from its original label to pseudo-labels. In this example, data points

x1, x2 and x3 are assigned pseudo-labels p1, p2 and p3 respectively. This pseudo-label generation is
9
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Data Labels

x1 t1, t3
x2 t1, t2, t4
x3 t2

x4 t1, t3
x5 t2

Pseudo Labels Label Sets

p1 t1, t3
p2 t1, t2, t4
p3 t2

Data Pseudo Labels

x1 p1
x2 p2
x3 p3
x4 p1
x5 p3

Table 2. Construction of Pseudo Labels In pseudo-LSC

only applicable during the Impurity Measure calculation. The original class labels are used in all

other calculations during the classification process.

5. Experiments and Results

We have used a total of three multi-label data sets to verify the effectiveness of our algorithm

on multi-label data. In all cases, we used fifty percent data as training and rest as test data in

our experiments as part of 2-fold cross-validation. Similar to other text classification approaches,

we performed preprocessing on the data and removed stop words from the data. We used binary

features as dimensions, i.e. features can only have 0 or 1 values. The parameter γ is set to 0.5. For

convenience, we selected 1000 features based on information gain and used them in our experiments.

In all the experiments related to a data set, the same feature set was used. We performed multiple

runs on our data sets. And in each case, the training set was chosen randomly from the data set.

5.1. Data sets. We describe here all the three data sets that we have used for our experiments.

(1) Reuters Data Set: This is part of the Reuters-21578, Distribution 1.0. We selected 10, 000

data points from the 21, 578 data points of this data set and henceforth, this part of the

data set will be referred to as simply Reuters data set. We considered the most frequently

occurring 20 classes in our experiments. Of the 10, 000 data points, 6, 651 are multi-labeled.

(2) 20 Newsgroups Data Set: This data set is also multi-label in nature. We selected 15, 000

documents randomly for our classification experiments. Of them 2, 822 are multi-label doc-

uments and the rest are single labeled. We have performed our classification on the top 20

classes of this data set.

(3) NASA ASRS Data Set: We randomly selected 10, 000 data points from the ASRS data set

and henceforth, this part of the data set will be referred to as simply ASRS Data Set. We

considered 21 class labels (i.e., anomalies) in our experiments.

5.2. Base Line Approaches. We have chosen 3 sets of baseline approaches. First, since we are

using κ-nearest neighbor (κ-NN) approach along with clustering approach, we compare our method

with the basic κ-NN approach. Second, we compare two subspace clustering approaches. They

are SCAD2 [10] and K-means Entropy [12] approaches. The reason behind using them as baseline

approaches is that they have similarities in objective functions with our methods. So, a comparison

with them will show the effectiveness of our algorithms from a subspace clustering perspective.

Finally, we perform experiments using two multi-label methods and compare them to pseudo-LSC.
10
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Figure 2. ROC Curves for (a) NASA ASRS Data Set (b) Reuters Data Set (c) 20
Newsgroups Data Set.

Methods ASRS Reuters 20 Newsgroups

pseudo-LSC 0.637 0.821 0.874

Pruned Set 0.469 0.56 0.60

MetaLabeler 0.58 0.762 0.766

κ-NN 0.552 0.585 0.698

SCAD2 0.482 0.533 0.643

K Means Entropy 0.47 0.538 0.657

Table 3. Area Under The ROC Curve Comparison Chart For Multi-Label Classification

They are Pruned Set [16] and MetaLabeler [18] approaches. Both these methods are state-of-the-

art multi-label approaches and use SVM as their base classifiers. We, therefore, did not choose

SVM as a baseline approach as it is already takes part in the comparison through these multi-label

approaches. Also, it was not possible to used SISC [3] as it is applicable only for multi-class data,

not multi-label data. Below we describe these 5 baseline approaches briefly.
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5.2.1. Basic κ-NN Approach. In this approach, we find the nearest κ neighbors in the training set

for each test point. Here κ is a user defined parameter. After finding the neighbors, we find how

many of these neighbors belong to the t-th class. We perform this calculation for all the classes.

We can then get the probability of the test point belonging to each of the classes by dividing the

counts with κ. Finally, using these probabilities, for each class, we generate ROC curves and take

their average to compare with our methods.

5.2.2. K-Means Entropy. This is another soft subspace clustering approach that we compare with

pseudo-LSC. Its objective function has two components, the first one is based on dispersion and the

second one is based on the negative entropy of cluster dimensions. Another difference between this

approach and SCAD2 is that it is not fuzzy in nature. So, a training data point can belong to only a

single cluster. The objective function that is minimized, as specified in [12] to generate the clusters,

is as follows:

F (W,Z,Λ) =
k

∑

l=1

n
∑

j=1

m
∑

i=1

wljλliDlij + γ

k
∑

l=1

m
∑

i=1

λlilog(λli)(5)

5.2.3. SCAD2. SCAD2 [10] is a soft subspace clustering method with a different objective function

than the pseudo-LSC method. This clustering method is also fuzzy in nature and can be considered

the most basic form of fuzzy subspace clustering. As it does not consider any other factors during

clustering except for dispersion. Its objective function has close resemblance to the first term of

the pseudo-LSC objective function. As mentioned earlier, the reason we have used this method as

benchmark is due to this similarity. The objective function of SCAD2 is as follows:

F (W,Z,Λ) =
k

∑

l=1

n
∑

j=1

m
∑

i=1

w
f
ljλ

q
li|xij − zli|

2(6)

After performing this clustering using the same E-M formulation of pseudo-LSC, we use κ nearest

clusters of each test point to calculate label probabilities.

5.2.4. MetaLabeler. This is a multi-label classification approach that learns a function from the data

to the number of labels [18]. It involves two steps - i) constructing the meta data set and ii) learning

a meta-model. Unlike our formulation of pseudo-labels in pseudo-LSC, the label of the meta data for

this method is the number of labels for each instance in the raw data. There are three ways [18] that

this learning can be done. We have applied the Content-based MetaLabeler to learn the mapping

function from the features to the meta-labels (i.e., the number of class labels). As specified in [18],

we consider the meta learning as a multi-class classification problem and use it in conjunction with

One-vs-Rest SVM. We, therefore, train T + 1 SVM classifiers where T is the total number of class

labels in the data set. Of them, one is a multi-class classifier and the rest are One-vs-Rest SVM

classifiers for each of the classes. We then normalize the scores of the predicted labels and consider

them as probabilities for generating ROC curves.

12

2011 Conference on Intelligent Data Understanding 71

TOSHIBA
Pencil

TOSHIBA
Pencil



Methods ASRS Reuters 20 Newsgroups

pseudo-LSC 0.637 0.821 0.874

pseudo-LSC Without Chi Square 0.455 0.532 0.582

Table 4. Area Under The ROC Curve Comparison Chart For Chi Square Statistic

5.2.5. Pruned Set. The main goal of this algorithm is to transform the multi-label problem into a

multi-class problem. In order to do so, Pruned Set [16] method finds frequently occurring sets of

class labels. Each of these sets (or combinations) of class labels are considered as a distinct label.

The benefit of using this approach is that, only those class label combinations that occur in the data

set and the user does not need to consider an exponential amount of class label combinations. The

user specifies parameters like what is the minimum count of a class label combination to consider

it as frequent and the minimum size (i.e., class combinations having at least r class labels) of such

sets or combinations.

At first, all data points with label combinations having sufficient count are added to an empty

training set. This training set is then augmented with rejected data points having label combinations

that are not sufficiently frequent. This is done by making multiple copies of the data points, only

this time with subsets of the original label set. So, some data points may be duplicated during

this training set generation process. This training set is then used to create an ensemble of SVM

classifiers. We have also varied the number of retained label subsets to add to the training set and

chose the best result to report.

5.3. Evaluation Metric. In all of our experiments, we use the Area Under ROC Curve (AUC) to

measure the performance. For all the baseline approaches and our pseudo-LSC method, we generate

each class label prediction as a probability. Then, for each class we generate an ROC curve based

on these probabilities and the original class labels. After generating all the ROC curves, we take the

average of them to generate a combined ROC curve. Finally, the area under this combined ROC

curve is reported as output. This area can have a range from 0 to 1. The higher the AUC value,

the better the performance of the algorithm.

5.4. Results and Discussion. As can be seen from Figure 2(a), pseudo-LSC performs much bet-

ter than the baseline approaches. In Table 3, the AUC values for pseudo-LSC and all the baseline

approaches are provided. With the ASRS data set, the AUC value for pseudo-LSC is 0.637. The

closest performance is provided by the state-of-the-art MetaLabeler approach which is 0.58. There-

fore, there is around 5%-8% increase in performance with our approaches.

Similar results can be found for Reuters and 20 Newsgroups data sets. In Figure 2(b) and

Figure 2(c), we provide these results. Just like the ASRS data set, pseudo-LSC provides much

better results. For Reuters data set, our algorithm achieves AUC values of 0.821 and the nearest

baseline approach value is 0.762. And, for 20 Newsgroups data set, the AUC value achieved is 0.874

whereas, the nearest value is 0.766.

5.5. Impact of Chi Square Statistic. We have included the Chi Square Statistic in our objective

function to achieve better performance by ensuring that more features have nonzero dimension
13
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weights as opposed to only a few features having nonzero weights and generating the clusters over

a larger subset of dimensions. This increases the probability that a test point will have some of

those nonzero features making the distance calculation meaningful. We have performed experiments

to determine the impact of this component on the classification performance. To do so, we have

removed this component from the objective function and performed the same experiments. We

found that using it indeed increases the performance quite significantly. The objective function used

in this case is given below.

F (W,Z,Λ) =
k

∑

l=1

n
∑

j=1

m
∑

i=1

w
f
ljλ

q
liDlij ∗ (1 + Impl)(7)

The results are provided in Table 4.

6. Conclusions

In this paper, we have presented pseudo-LSC, a semi-supervised text classification approaches

based on fuzzy subspace clustering that considers the correlation among different class labels by

generating pseudo labels during the clustering process. It provides a unified approach to perform

classification on both multi-class and multi-label data. The experimental results on real world multi-

labeled data sets like ASRS, Reuters and 20 Newsgroups, have shown that pseudo-LSC outperforms

κ-NN, K-Means Entropy based method, SCAD2 and state-of-the-art multi-label text classification

approaches like Pruned Set and MetaLabeler in classifying text data.
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