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A supervised learning task involves constructing a mapping from an input
data space (normally described by several features) to an output space. A set
of training examples—examples with known output values—is used by a learn-
ing algorithm to generate a model. This model is intended to approximate the
mapping between the inputs and outputs. This model can be used to generate
predicted outputs for inputs that have not been seen before. Within supervised
learning, one type of task is a classification learning task, in which each output
consists of one or more classes to which the corresponding input belongs. For
example, we may have data consisting of observations of sunspots. In a clas-
sification learning task, our goal may be to learn to classify sunspots into one
of several types. Each example may correspond to one candidate sunspot with
various measurements or just an image. A learning algorithm would use the
supplied examples to generate a model that approximates the mapping between
each supplied set of measurements and the type of sunspot. This model can
then be used to classify previously unseen sunspots based on the candidate’s
measurements. The generalization performance of a learned model (how closely
the target outputs and the model’s predicted outputs agree for examples that
have not been presented to the learning algorithm) would provide an indication
of how well the model has learned the desired mapping.

More formally, a classification learning algorithm L takes a training set T" as
its input. The training set consists of |T| examples or instances. It is assumed
that there is a probability distribution D from which all training examples are
drawn independently—that is, all the training examples are independently and
identically distributed (i.i.d). The ith training example is of the form (x;,y;),
where x; is a vector of values of several features and y; represents the class to
be predicted.! In the sunspot classification example given above, each training
example would represent one sunspot’s classification (y;) and the corresponding
set of measurements (x;). The output of a supervised learning algorithm is
a model h that approximates the unknown mapping from the inputs to the
outputs. In our example, h would map from the sunspot measurements to the

n this chapter, we will assume that each individual example belongs to only one class.
However, we allow two separate examples with the same input values to be in different classes.
For example, there can be two examples having inputs (0.8, 0.3), where one example is in class
1 and the other is in class 2. That is, we will allow for some noise in the input and output
generation processes.
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Figure 1: Example decision tree

type of sunspot.

We may have a test set S—a set of examples not used in training that we
use to test how well the model h predicts the outputs on new examples. Just as
with the examples in T', the examples in S are assumed to be independent and
identically distributed (i.i.d.) draws from the distribution D. We measure the
error of h on the test set as the proportion of test cases that h misclassifies:

ﬁ S I(h(z) £ 9)
(z,y)€S

where I(v) is the indicator function—it returns 1 if v is true and 0 otherwise.

In our sunspot classification example, we would identify additional exam-
ples of sunspots that were not used in generating the model, and use these to
determine how accurate the model is—the fraction of the test samples that the
model classifies correctly.

An example of a classification model is the decision tree shown in figure 1. We
will discuss the decision tree learning algorithm in more detail later—for now,
we assume that, given a training set with examples of sunspots, this decision tree
is derived. This can be used to classify previously unseen examples of sunpots.
For example, if a new sunspot’s inputs indicate that its ‘Group Length’ is in the
range 10-15, then the decision tree would classify the sunspot as being of type
‘E,” whereas if the ‘Group Length’ is ‘NULL,’ the ‘Magnetic Type’ is ‘bipolar,’
and the ‘Penumbra’ is ‘rudimentary,” then it would be classified as type ‘C.’

In this chapter, we will add to the above description of classification prob-
lems. We will discuss decision trees and several other classification models. In
particular, we will discuss the learning algorithms that generate these classifica-



tion models, how to use them to classify new examples, and the strengths and
weaknesses of these models. We will end with pointers to further reading on
classification methods applied to astronomy data.

0.1 Features of Classification Model Learning Algorithms

As indicated above, classification learning aims to use a training set to generate a
model that can be used to classify new, typically previously-unseen, examples.
In some cases, the aim is to determine the most likely class given the new
example’s inputs. In other cases, one may measure the probabilities of each
class given the example’s inputs and use this as a measure of confidence—if the
highest probability minus the second highest probability is high, then the model
is quite confident in the highest probability class. If this probability difference
is low, then the confidence is low. Regardless of the problem, one needs an
estimate of the probability distribution of the class given the inputs, which is
P(Y|X) where X represents the new example and Y represents the vector of
possible classes. Because we have a training set that is used to determine the
probabilities, we are actually interested in P(Y|X, D), where D represents the
training data.

One example of a machine learning technique that estimates P(Y|X, D) is
nearest-neighbor classification [19]. Given a new example X, nearest-neighbor
classification identifies one or more neighbors within D and chooses the class
for X based on the classes of the neighbors. One possibility is to find the
nearest neighbor and assign to X the class of that nearest neighbor. Another
possibility is to find K nearest neighbors for some K > 2 and assign the class
most frequently seen among those neighbors or perhaps each class can get a
weighted vote, with nearer neighbors getting stronger votes. One difficulty
with this scheme is that the memory requirements for nearest-neighbor based
techniques grow with the size of the training set. Given how large modern
datasets are in many disciplines including astronomy, nearest-neighbor based
techniques are mostly impractical. One needs a machine learning technique
that can compress the information from the training set into a form that is of
constant size regardless of the size of the training set but is nevertheless able to
use information learned from the training set to classify new examples.

The decision tree example given above is a good example of such a model.
Decision trees cannot grow to a depth greater than the number of input features
and cannot have a total number of nodes beyond V!¥!, where V is the maximum
number of values that any feature can have and F' is the set of features. This is
independent of the number of training examples.

As explained above, classifier learning algorithms take a training set as input
and return a model as output. However, this model is not of an arbitrary form.
The model is drawn from a family of possible models by finding which model
is best according to some pre-defined criteria. For example, the decision tree
learning algorithm that we will describe later may have returned the decision
tree shown in figure 1. However, the set of possible models that the learning
algorithm can return is limited. In particular, this learning algorithm will always



return a decision tree and never another type of model such as a neural network.
Additionally, as mentioned above, the decision tree will have depth that is no
greater than the number of input features because each input feature can be
used at most once on any path from the root to a leaf in the tree. Other learning
algorithms may have different restrictions on the models that they may return.
For example, a decision stump learning algorithm run on sunspot data may
return only the top node (Group Length’) shown in figure 1, the three leaves
shown on the right with classes ‘D, ‘E’, and ‘F,” and the subtree rooted by
the feature ‘Magnetic Type’ replaced by the class most frequently seen among
the training examples that have ‘Group Length’ as ‘NULL.’ The set of possible
models that a learning algorithm may return is called a model family.

More formally, instead of merely returning P(Y'|X, D), we often condition
on a model family H and end up deriving the following:
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In equation (1), we replace P(Y|X, Hp, D) with P(Y|X, Hp,) to get equa-
tion (2) because Hj is meant to contain all the information that we would
ordinarily get from D. For example, if Hy is a decision tree learned from the
training data D, we no longer need D but rather can just use Hj to return the
predicted class or the probability of each possible class. Equation (2) conditions
on the set of models, and returns a sum of probabilities P(Y'|X, Hy), each of
which is weighted by P(H}|D).

Even using equation (2) seems impractical because H can be a very large
family. For example, H could be the entire set of decision trees over the set of
features F'. If each of the features is binary, then the total number of decision
trees that could be returned by the learning algorithm is

|F|
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which can become large very quickly. For this reason, typical learning al-
gorithms, such as the decision tree learning algorithm, choose one model from
within H that is best according to some criterion. If the criterion is maximizing
P(Hy|D), then the chosen model is called the Mazimum A Posteriori (MAP)
model, because it is the model with the highest posterior probability given the
training data. Equation (3) is constructed by replacing P(Hj|D) using Bayes’s



Rule with P(D|H}p)P(Hp)/P(D). Since P(D) is the same for all models and
often the prior probabilities of the models P(H}) are assumed to be the same,
some learning methods choose the model that maximizes P(D|H}), which is the
probability that the training data was generated by model Hj, and is often called
the likelihood of the data. The model that maximizes the likelihood is called the
Mazimum Likelihood (ML) model. For definitions of MAP and ML models, as
well as how they appear in machine learning methods for classification, see [26].

Clearly, using one model has risks—that model, although the single best
performing model on average, may perform poorly on some parts of the input
space. Also, the model chosen is the best performing model on that particular
training dataset. Given a slightly different training set, a different model may
be more appropriate. There is another possible method of performing model
selection rather than either using all possible models or one model. One can
use some intermediate number of models, all of which perform reasonably well
(e.g., have relatively high values of P(Hp|D)), but which are different from one
another so that they cover more of the input space or more of the space of
models optimal over the possible training sets. Methods that return multiple
such models are referred to as ensembles, and are the subject of another chapter
in this book.

The alert reader may have been inspired by the use of Bayes’s Rule in equa-
tion 3 and noted that

PXY)P(Y)
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This may make one wonder whether there are methods that, instead of
attempting to learn P(Y|X) or a similar function that generates the predicted
class or probability distribution over classes given the input, attempt to learn
P(X|Y), P(Y), and P(X). There are methods that attempt to learn P(X|Y)
and P(Y). Learning P(X) separately is unnecessary because

IC|
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where C' is the set of possible classes. Note that every factor in the above
summand is either of the form P(X|Y) or P(Y'), which are already being cal-
culated.

Methods that learn an estimate of P(Y|X) are called discriminative meth-
ods because they attempt to find a model that discriminates between multiple
classes using the inputs. On the other hand, methods that learn an estimate
of P(X|Y) and P(Y) are called generative methods because they attempt to
learn a model of the process that generates the data. One assumes in this case
that, in the true data generating process, a class is drawn at random from some
prior distribution P(Y") and then, given that class, a set of features is generated



using the distribution P(X|Y). We will give examples of generative models,
such as Naive Bayes classifiers, later in this chapter. More on discriminative vs.
generative methods appears in [19].

Sometimes, instead of directly using criteria like the posterior probability
or likelihood to try to identify the best model, some other, more convenient
criterion is used. One example criterion is classification error on the training
set—the fraction of training examples for which the decision tree returns the
incorrect class even after learning. The most commonly used decision tree learn-
ing algorithms—ID3 [23, 19] and C4.5 [22]—use this criterion. There are some
models that can return the posterior probability of an example being in each
class. In this case, mean squared error may be a better error criterion. So, for
each training example (x;,v;) € T (i € {1,2,...,|T|}), if @i is the model’s
prediction of the posterior probability of class ¢ (¢ € {1,2,...,|C|}) for training
input x;, while y; . is 1 if x; is an example of class ¢ and 0 otherwise, then the
mean squared error criterion is

Tl |C|
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Clearly, the more confident the classifier is in the correct class, the lower the
value of the mean squared error, and similarly the more confident the classifier
is in an incorrect class, the higher the value of the mean squared error.

Sometimes the error function is a sum of several criteria instead of just one
criterion. Typically one criterion is an error term such as the mean-squared
error, and the other one is a criterion designed to reduce the complexity of
the model so that it does not overfit [26] the training data—fit the training
data so well that it fits the noise in the training data in addition to the signal
and then perform poorly on the test set. For example, one way to guarantee
that decision tree learning will fit the training data at least as well as any
other decision tree is to generate a tree that is as deep as needed to make
the leaves as homogeneous as possible (maximally-skewed class distributions at
each leaf). However, constructing a decision tree in this manner may reduce the
feature selection benefit of decision tree learning and instead may include many
irrelevant features. This may lead to lower performance on the test set.

We now describe some of the most popular classification learning algorithms.

0.2 Decision Trees and Decision Stumps

A decision tree is a tree structure consisting of nonterminal nodes, leaf nodes,
and arcs. An example of a decision tree that may be produced in our example
sunspot domain is depicted in figure 1. Each nonterminal node represents a
test on a feature value. In the example decision tree, the top node (called the
root node) tests the value for ‘Group Length.” If the group length is either
‘< 10, ‘10 — 15,” or ‘> 15, then the classification returned is D, E, or F,
respectively. If the group length is ‘NULL,’ then instead of returning a class, an



Decision_Tree_Learning(7T,F,C)
if T; ¢ is the same for all ¢ € {1,2,...,|T},
return a leaf node labeled 71 ¢.
else if |F| =0,
return a leaf node labeled argmax, ZLSI I(Ti,c = ¢)).
else
f = Choose_Best_Feature(T, F)
Set tree to be a nonterminal node with test f.
for each value v of feature f,
Tf:v = @
for each example T; € T,
v = Tiyf
Add example T; to set Ty—,.
for each value v of feature f,
subtree = Decision_Tree_Learning(Ti=., F — f,C)
Add a branch to tree labeled f with subtree subtree.
return tree.

Figure 2: Decision Tree Learning Algorithm. This algorithm takes a training set T,
feature set F', and class feature C, as inputs and returns a decision tree. T; denotes
the ith training example, T} ; denotes example ’s value for feature f, and T; ¢ denotes
example i’s value for the class feature C.

additional feature, ‘Magnetic Type,’ is checked. If the type is ‘Unipolar,” then
the ‘Penumbra’ is checked. If the ‘Penumbra’ is ‘None,’ then the class returned
is A. If the ‘Penumbra’ is ‘Rudimentary,” ‘Asymmetrical,” or ‘Symmetrical,” the
class returned is H. If the value of ‘Magnetic Type’ is ‘Bipolar,” then the feature
‘Penumbra’ is checked as well. This time though, if the value of ‘Penumbra’ is
‘None,’ then class B is returned, and otherwise class C is returned. There may
have been other features measured for each example; however, none of them was
used.

Decision trees are constructed in a top-down manner which we now describe.
One decision tree learning algorithm (ID3) is shown in figure 2. If all the
examples are of the same class, then the algorithm just returns a leaf node of
that class. If there are no features left with which to construct a nonterminal
node, then the algorithm has to return a leaf node. It returns a leaf node labeled
with the default class (often chosen to be the class most frequently seen in the
training set). If none of these conditions is true, then the algorithm finds the
one feature value test that comes closest to splitting the entire training set into
groups such that each group only contains examples of one class (we discuss
this in more detail in the next paragraph). When such a feature is selected, the
training set is split according to that feature. That is, for each value v of the
feature, a training set T'y—, is constructed such that all the examples in Tr—,
have value v for the chosen feature. The learning algorithm is called recursively
on each of these training sets.

We have yet to describe the function Choose_Best_Feature in figure 2. The



feature with the highest information gain is commonly used. Information gain
is defined as follows:

Te_
Gain(T, f) = Entropy(T) — Z | |];:U|Entropy(Tf_v),
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Here, values(f) is the set of possible values of feature f if f is a categori-
cal feature. If f is an ordered feature (whether discrete or continuous), then
different binary split points are considered (e.g., tests of the form f < v that
split the training set into two parts). T is the training set, Ty=, is the subset
of the training set having value v for feature f, C is the class feature, and p;
is the fraction of the training set having class C;. The information gain is the
entropy of the training set minus the sum of the entropies of the subsets of the
training set that result from separating the training set using feature f. The
more homogeneous the training set in terms of class values, the lower the en-
tropy. Therefore, information gain measures how much a feature improves the
separation of the training set into subsets of homogeneous classes.

A decision stump is a decision tree that is restricted to having only one
nonterminal node. That is, the decision tree algorithm is used to find the one
feature test that comes closest to splitting all the training data into groups of
examples of the same class. One branch is constructed for each value of the
feature, and a leaf node is constructed at the end of that branch. The training
set is split into groups according to the value of that feature and each group is
attached to the appropriate leaf. The class label most frequently seen in each
group is the class label assigned to the corresponding leaf. The reader would
be justified in wondering when a model so seemingly simplistic as the decision
stump would be useful. Decision stumps are useful as part of certain ensemble
learning algorithms in which multiple decision stumps are constructed to form
a model that is more accurate than any single decision stump and often more
accurate than much more complicated models [17].

We chose decision trees as the first machine learning model to describe in
this chapter because the decision tree is one of the simplest and most intuitive
models. It is rather similar to a set of if-then statements. In many application
domains, domain experts need to understand how the model makes its classifica-
tion decisions to justify its use. Decision trees are among the most transparent
and easy-to-understand models, and are able to handle continuous and discrete
data. Decision tree learning also includes feature selection—that is, it only uses
the features that it needs to separate the training set into groups that are ho-
mogeneous or nearly-homogeneous in terms of the class variable. Decision tree
learning is relatively fast even on large datasets and can also be altered to run
even faster on parallel computers quite easily [27].

Decision trees have drawbacks that lead us to describe other machine learn-
ing models in this chapter. The tests within decision trees are based on single



attributes only. Decision tree learning algorithms are also unable to learn arith-
metic combinations of features that are effective for classifications. Addition-
ally, they are not designed to represent probabilistic information. The fraction
of examples of different classes at each leaf is often used as a representation of
the probability, but this is a heuristic measure. The number of examples at a
leaf node, or even at nonterminal nodes deep in the tree, may be relatively low
sometimes. Therefore, pruning is often used to remove such parts of the decision
tree. This often helps to alleviate overfitting. However, pruning also leads to
relatively few features being considered in cases where there is a small amount
of available training data. Additionally, decision trees are sensitive to small
changes in the training set. This makes them very useful as part of ensemble
learning methods where the diversity in decision trees enables their combination
to perform better, but may lead to difficulties when used by themselves.

0.3 Naive Bayes

We earlier discussed Bayes’s Rule as a way of motivating generative classifiers.
In particular,

PY =y)P(X =x|Y =y)

PY=ylX=x)= POX =%

Bayes’s theorem tells us that to optimally predict the class of an example x,
we should predict the class y that maximizes the two expressions in the above
equation.

Define F' to be the set of features. If all the features are independent given
the class, then we can rewrite P(X = x|Y =y) as H‘fF:I1 P(X; =xplY =y),
where x(5) is the fth feature value of example x. The probabilities P(Y = y)
and P(X; = x(5|Y =y) for all classes Y and all possible values of all features
Xy are estimated from a training set. For example, P(X; = x(5)|Y = y) is the
fraction of class-y training examples that have x(y) as their fth feature value.
Estimating P(X = x) is unnecessary because it is the same for all classes;
therefore, we ignore it. To classify a new example, we can return the class that
maximizes

L
P(X =x|Y =y) = [[ P(X1 =xq1),..., Xs =x(p|Y = ).
f=1

The Naive Bayes classifier operates under the naive assumption that the features
are independent given the class, which yields
|F|
P(X =x|Y =y) = P(Y =y) [[ P(X; = x(p)|Y = p). (4)
f=1
One simple algorithm for learning Naive Bayes classifiers is shown in figure 3.
For each training example, we just increment the appropriate counts: IV is the



Naive-Bayes-Learning(7T,F')
for each training example (x,y) € T,
Increment N
Increment N,
for f €{1,2,...,|F|}

Increment Ny x

Ny 1717 Ny (s
N llf=1 7%,

return h(x) = argmax, .y

Figure 3: Naive Bayes Learning Algorithm. This algorithm takes a training set T’
and feature set F' as inputs and returns a Naive Bayes classifier h. N is the number
of training examples seen so far, Ny is the number of examples in class y, and Ny x
is the number of examples in class y that have x(yy as their value for feature f.

number of training examples seen so far, N, is the number of examples in class

y, and Ny x,, is the number of examples in class y having x(y) as their value
for feature f. P(Y = y) is estimated by % and, for all classes y and feature

values x5y, P(X; = x(5)|Y = y) is estimated by

Ny .
mi The algorithm returns

a classification function that returns, for an example x

f=1

Every factor in this equation estimates its corresponding factor in equation (4).
In spite of the naivety of Nalve Bayes classifiers, they have performed quite well
in many experiments [18].

Besides the naive assumption of Naive Bayes classifiers, one can introduce
other less restrictive assumptions of conditional independence, such as two
groups of features being conditionally independent, to derive other types of
Bayesian classifiers. Probabilistic networks [26, 16] include Bayesian classi-
fiers of this type. Noisy-OR classifiers can be seen as a discriminative version
of Naive Bayes classifiers, which are generative. They are equally expressive
mathematically—that is, when all the variables are binary, a Naive Bayes clas-
sifier can be transformed into a Noisy-OR classifier, and a Noisy-OR classifier
can be transformed into a Naive Bayes classifier such that, for a given setting
of input variables, they give the same class probabilities. Surprisingly, even
though the Noisy-OR classifier is simpler, being a discriminative model, it is
more difficult to learn (that is, more training examples are needed to learn
the parameters accurately) than the Naive Bayes classifier, which explains why
Noisy-OR classifiers have received little attention by themselves. See [9] for a
detailed comparison of Naive Bayes and Noisy-OR classifiers.

Naive Bayes classifiers have several advantages that make them quite pop-
ular. They are very easy and fast to train, are robust to missing values, and
have a clear probabilistic semantics. In spite of their rather strong assumption
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that the input features are independent given the class, they perform quite well
in situations where this assumption is not true, and there is some theoretical
evidence to justify this [14]. Another advantage is that the probability distri-
butions that are estimated involve only one variable each. This alleviates the
curse of dimensionality, which is the problem that, as the dimensionality of
the relevant space increases, the training set required to fill the space densely
enough to derive accurate models grows exponentially. Naive Bayes classifiers
are also relatively insensitive to small variations in the training set.

The simplicity of Naive Bayes models also has the drawback that it cannot
represent situations in which features interact to classify data. For example,
with decision trees, we saw that certain features are only used when other fea-
tures have particular values. Such interactions cannot be represented in a Nalve
Bayes classifier. Additionally, the strong performance of Naive Bayes even with
violations of the assumption of feature independence comes about because cor-
rect classification only requires the correct class’s posterior probability to be
higher than the others—the probabilities do not actually have to be correct,
and the rank order of the probabilities of the incorrect classes does not have to
be correct. Naive Bayes classifiers may not necessarily give the correct proba-
bilities.

0.4 Neural Networks

Artificial neural networks have a structure and function that is inspired by
biological neural networks [5]. The multilayer perceptron is the most common
neural network representation. It is often depicted as a directed graph consisting
of nodes and arcs—an example is shown in figure 4. Each column of nodes is
a layer. The leftmost layer is the input layer. The inputs or features of an
example to be classified are entered into the input layer. The second layer is
the hidden layer. The third layer is the output layer, which, in classification
problems, typically consists of as many outputs as classes. Information flows
from the input layer to the hidden layer to the output layer via a set of arcs.
Note that the nodes within a layer are not directly connected. In our example,
every node in one layer is connected to every node in the next layer, but this is
not required in general. Also, a neural network can have more or less than one
hidden layer and can have any number of nodes in each hidden layer.

Each non-input node, its incoming arcs, and its single outgoing arc constitute
a neuron, which is the basic computational element of a neural network. Each
incoming arc multiplies the value coming from its origin node by the weight
assigned to that arc and sends the result to the destination node. The destina-
tion node adds the values presented to it by all the incoming arcs, transforms
it with a nonlinear activation function (to be described later), and then sends
the result along the outgoing arc. For example, the output of a hidden node z;

11
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Figure 4: An example of a multilayer feedforward perceptron.

in our example neural network is

|F|
1
Zj =49 sz(,j)x(f)
=1

where |F| is the number of input units, which is the same as the number of

input features; wz(];) is the weight on the arc in the kth layer of arcs that goes

from unit ¢ in the kth layer of nodes to unit j in the next layer (so wflj) is the
weight on the arc that goes from input unit ¢ to hidden unit j); and g is a
nonlinear activation function. A commonly used activation function, inspired
by observations of biological neural networks, is the sigmoid function:

1

9(a) = 1+ exp(—a)’

The output of an output node y; is

7
2
w—4zwﬁ)
1=1

where Z is the number of hidden units. The outputs are clearly nonlinear func-
tions of the inputs. Neural networks used for classification problems typically
have one output per class. The example neural network depicted in figure 4 is
of this type. The outputs lie in the range [0, 1]. Each output value is a measure

12



of the network’s confidence that the example presented to it is a member of that
output’s corresponding class. Therefore, the class corresponding to the highest
output value is returned as the prediction.

The most widely used method for setting the weights in a neural network
is the backpropagation algorithm [7, 19, 25]. For each of the training examples
in the training set T, its inputs are presented to the input layer of the network
and the predicted outputs are calculated. The difference between each predicted
output and the corresponding target output is calculated. The total error of
the network is

E=3) -3 o)

where y; and ¢; are the true and predicted outputs, respectively, for the ith
training example. In classification, neural networks are normally set up to have
one output per class, so that y; and g; become vectors y; and §;. In the training
set, y;,c = 1 if the ith training example is of class ¢ and y; . = 0 otherwise. By
training the neural network with the mean squared error criterion (equation 5),
the network attempts to estimate the posterior probability P(Y|X) for every
class Y. A separate value of E can be calculated for each class output. We can
write F in terms of the parameters in the network as follows:

2

1 N
E = 3> |wm Zw(Q) ’
n=1
LN z |A| 2
= 52 (g 2w Zw )x;
n=1 7j=1

In order to adjust the weights to reduce the error, we calculate the deriva-
tive of E with respect to each weight and change the weight accordingly. The
derivatives are

oF N z z
D I C A D vl B A DI
ow;; o = p
N z
2= 5 (o Sl et
awz’,j n=1 j=1
Z |Al
gD wie Zw(” Zw x| x
=1

Note that many factors in the derivatives appear more than once, so they
can be computed just once and re-used. Also, if g is a sigmoid function, then
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g = g(1 — g), so these derivatives can be calculated quickly. The weights on
the arcs of the networks are adjusted according to these derivatives so that if
the training example is presented to the network again, then the error would
be less. The learning algorithm typically cycles through the training set many
times—each cycle is called an epoch in the neural network literature.

Neural networks have performed well in a variety of domains for nearly fifty
years. They are able to represent complicated interactions among features when
necessary to derive a classification. They are also universal approzximators—
given a single hidden layer and an arbitrary number of hidden units, they can
approximate any continuous function, and given two hidden layers and an arbi-
trary number of hidden units, they can approximate any function to arbitrarily
high accuracy. The nonlinear activation function enables the entire network to
represent a function that is more expressive than a linear function, and gives us
this universal approximator property [5].

The universal approximator property of neural networks is nice in theory;
however, in practice, because neural network learning is computationally inten-
sive, reaching a small error can take excessive time and can lead to overfitting [5].
Determining the best number of hidden units is more art than science. Neural
networks are learned using gradient descent methods, which use partial deriva-
tives of the error with respect to model parameters as shown above to adjust the
parameters to improve the accuracy. However, gradient descent methods applied
to nonlinear models such as neural networks are guaranteed to reach solutions
that are locally optimal but not necessarily globally optimal [5]. Additionally,
the error as a function of the neural network’s weights seems to be relatively
complicated, because starting the learning from different initial weights tends
to lead to very different final weights and the resulting networks have different
errors in spite of learning with the same training set. This indicates that there
are many locally optimal solutions. Neural networks are also nearly impossi-
ble for domain experts and even machine learning experts to interpret for the
purpose of understanding how they arrive at their classifications.

0.5 Support Vector Machine (SVM)

Support Vector Machines were developed by Vapnik in 1979 (see [8] for a tuto-
rial). SVMs are learned using a statistical learning method based on Structural
Risk Minimization (SRM). In SRM, a set of classification functions that clas-
sify a set of data are chosen in such a way that minimizing the training error
(what Vapnik refers to as the empirical risk) yields the minimum upper bound
on the test error (what Vapnik refers to as the actual risk). The upper bound
on the test error is a guarantee that the test error will be equal to or lower
than the bound; therefore, minimizing the upper bound is the next best thing
to minimizing the test error itself.

The simplest example of a Support Vector Machine is a linear hyperplane
trained on data that is perfectly separable as shown on the left side of figure 5.
Given a set of input vectors, x; € RY, and labels, y; € {—1,1}, SVM finds a
hyperplane described by its normal vector, w, and distance from the origin, b,
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Figure 5: Optimum Hyperplane for Separable and Non-Separable Case

that divides the data perfectly and is equidistant from at least one point in each
class that is closest to the hyperplane. The shortest distance between any point
and the hyperplane is called the margin, and the algorithm works to maximize
this margin in order to minimize the chance that newer data points of a given
class, which are likely to be close to the existing points of the same class, will
end up on the wrong side of the hyperplane [8]. In figure 5, m/2 is the margin.?
This hyperplane is a decision boundary and the classification of an unknown
input vector is determined by the sign of the vector operation

If d > 0 (d < 0) then the input is predicted to be in the class y = +1 (y = —1).
Learning an SVM requires using the training data to find the best value of
w. The SVM is constructed by solving the optimization problem

min || w ||
subject to x;-w+b>1 fory; =+1
x;-w+b< -1 fory =-1,

where the last two equations can be combined into one as follows:
yi(x;-w4+b)—1>0Vie{1,2,...,]|T|}.

The objective function is chosen because we would like to maximize the margin,
which turns out to be 2/ || w ||, so this is equivalent to minimizing || w ||.

If the data are not perfectly separable this method can be adapted to com-
pensate for instances that occur on the wrong side of the hyperplane. In that
case slack variables, &; (one for each training example), are introduced that
measure the error of misclassified instances of the training data—in particular,

2For the case where the number of classes C is greater than two, typically the problem is
split into |C| two-class problems where, for each class ¢ € C, the corresponding class-c SVM
learns to predict whether the example is in class ¢ or not.
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the slacks measure how far on the wrong side of the hyperplane these misclassi-
fied instances are (see the right half of figure 5). SVMs find a hyperplane that
best separates the data and minimizes the sum of the errors ¢; by changing the
optimization problem to the following.

min | w || +B31 & (7)

subject to xi-w+b>1-¢ for y; = +1, (8)
X, wWH+Hb< —-1+¢& fory, =—1, (9)

£ >0 Vie {1,2,...,|T|}, (10)

where B is a user-defined weight on the slack variables. If B is large, the learn-
ing algorithm puts a large penalty on errors and will devise a more complicated
model. If B is small, then the classifier is simpler but may have more errors on
the training set. If the datasets are not balanced it is sometimes necessary to
give the errors of one class more weight than the other. Additional parameters,
ty (one for each class), can be added to weigh one class error over the other by
replacing the objective in equation (7) with

7|
min | w | +BY 1,¢

i=1

We can write the Wolfe dual [8] of the convex optimization problem shown in
equation (7) as follows:

T T| «IT
maz ST o — 1 I ST oy (xi - x;) (11)
subJect to 0 < a; < B, (12)

Ez 1 %iYi = (13)

This decision hyperplane can only be linear which is not suitable for many
types of data. To overcome this problem a function can be used to map the data
into a higher or infinite dimensional space and run SVM in this new space.

R H

Because of the “kernel trick,” ‘H may have infinite dimension while still making
the learning algorithm practical. That is, one never works directly with ® but
rather with a kernel function K such that

K(xi,%5) = (x) - B(x;),
so that the dual formulation shown in equation (11) becomes

maxz 10— Z'Tl Z 1alajyzyjK(xi,xj)
subject to 0 < a; < B,

Z\Tl a
i=1 yi =0
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Even though ® may map to a very high or infinite dimensional space, it only
shows up in the form of dot products, which are always scalars. This allows us
to utilize the expressive power of a high or infinite dimensional space while not
paying a very high (or infinite!) price for it computationally. There are many
possible kernel functions available and new kernels can be built from the data
itself. The kernels only need to meet Mercer’s Conditions [10] to be used in
SVM. One example kernel function is a radial basis function,

K (xi,%;) = e i I

where v is a parameter given by the user.
For a new example x, the predicted class is the sign of

17|

F) = aiyiK (xi,%) +b.
i=1

However, this can be simplified. The summation actually does not need to
be calculated over all the training examples, but rather only those training
examples whose distance from the hyperplane is exactly half the margin and
those which are on the wrong side of the hyperplane. These are referred to
as support vectors, and are the only training points having «; # 0. If V is
the subset of T' containing the support vectors, then the above classification
function can be simplified to

fx)= Z a;yK (s, x) + b.

(s,y)eV

As mentioned earlier, the sign of f(x) indicates the predicted class. |f(x)]
indicates how confident the SVM is in its class. |f(x)| does not correspond
directly to a probability, but can nevertheless can be used as a measure of
confidence.

SVMs are generated by solving a convex optimization problem, which means
that the solution is guaranteed to be optimal for that training set, even though
SVMs can be nonlinear in the original data space. They are also usable in
problems such as text mining where a very large number of input features is
present [21]. They have been shown to perform very well experimentally in
many domains. SVMs are applicable to many domains because kernels over
many different types of inputs—discrete, continuous, graphs, sequences, etc.,—
have been derived. Multiple kernels can even be used at the same time [1, 12, 13].
These properties have led SVMs to be one of the most popular machine learning
models in use today among machine learning researchers and practitioners, as
can be seen in the many papers on SVMs in machine learning conferences over
the last ten years.

SVMs have the disadvantage, just like neural networks, of being impene-
trable by domain experts wishing to understand how they arrive at their clas-
sifications. Learning SVMs is also computationally intensive, although there
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have been substantial efforts to reduce their running time (such as [11]). They
are also designed to solve two-class problems. As mentioned earlier, they can
be set up to solve |C|-class problems by setting up |C| SVMs, each of which
solves a two-class problem. However, this means |C| times the computation of
a two-class problem. Also, if the set of classes is mutually exclusive and if more
than one SVM predicts that the example is in its corresponding class, then it is
unclear how to determine which class is the correct one.

0.6 Further Reading

We gave several references throughout the chapter for more information on the
machine learning algorithms discussed here. Another reference for classification
algorithms in general is [15]. There have also been several attempts at applying
classification methods to astronomy data. Classification and other forms of
analysis on data representing different solar phenomena are described in [4].
Classification of stars and galaxies in various sky surveys such as the Sloan
Digital Sky Survey are described in [3, 6]. See [24] for a description of the use
of classification methods for matching objects recorded in different catalogues.
Classification of sunspot images obtained by processing some NASA satellite
images is described in [20]. A recent, general survey of the use of data mining
and machine learning in astronomy is [2].
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