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Abstract—A novel general framework for distributed anomaly
detection with theoretical performance guarantees is proposed.
Our algorithmic approach combines existing anomaly detection
procedures with a novel method for computing global statistics
using local sufficient statistics. Under a Gaussian assumption,
our distributed algorithm is guaranteed to perform as well as
its centralized counterpart, a condition we call ‘zero information
loss’. We further report experimental results on synthetic as well
as real-world data to demonstrate the viability of our approach.

Index Terms—anomaly detection; distributed; data mining

I. INTRODUCTION

In real-life situations where access to data in multiple
locations can present a strategic advantage, a metaphorical
prisoner’s dilemma is often seen to unfold. For example, there
are numerous cases where data cannot be localized at a central
location (even by a trusted third party) for proprietary reasons,
notwithstanding the advantages that may arise from such
cooperation. In other cases, particularly concerning medical
data, statutory requirements with respect to privacy rights
render such cooperation infeasible even though, as before,
such cooperation might prove to be advantageous to all parties
concerned. In some situations, the logistics of transferring
data to various locations are too imposing, e.g. when real
time predictions are needed for mobile platforms such as an
armada of ships. Finally, transferring large amounts of data to
and fro would impose significant bandwidth costs and might
prove to be a computational bottle-neck in situations where the
amount of data at each location is large. Thus, opportunities
for consolidating information from multiple sources, when
weighed against the risks involved, create what could be called
a ‘distributed data mining prisoner’s dilemma’. In this paper,
we propose a novel solution to this problem in the specific
data mining domain of anomaly detection.

Current research in anomaly detection using advanced data
mining techniques has so far focused on detecting different
types of anomalies from individual data sources [6], [9], [12].
However, in several real-life situations, the data containing
anomalies may be dispersed across multiple locations. There-
fore, there is a need for distributed algorithms that work well
with limited exchange of relevant information from distributed
sites in order to achieve anomaly detection on a global scale.

If such distributed algorithms can guarantee detection of the
same set of anomalies as the centralized approach, they may be
seen to possess significant practical advantages over existing
centralized methods.

In pursuit of this goal, we propose a novel framework for
anomaly detection from distributed data sources that guar-
antees the same prediction performance as the centralized
algorithm and exchanges very limited information across dis-
tributed sites. The rest of this paper is organized as follows:
in Section 2, we briefly review existing work in this area.
In Section 3.A, we present an efficient anomaly detection
method based on T2 and Q statistics methods [1] and
show a novel distributed extension based on exchanging only
local mean vectors and covariance matrices across distributed
sites. Our experimental results performed on synthetic and
several publicly available real data sets (documented in Section
4) indicate that the proposed distributed anomaly detection
method is very effective in detecting anomalies. Finally, we
conclude with some observations on possible lines of future
research in Section 5.

II. RELATED WORK

To solve the problem of detecting anomalies from dis-
tributed data sources, researchers have proposed several ap-
proaches: (i) modifications of simple distance based anomaly
detection algorithms [2], (ii) tracking the changes in principal
components [3], [4], and (iii) adapting standard ensemble
schemes [5]-[12]. Recently proposed distributed version of
distance based anomaly detection algorithm [2] is event based
and requires exchange of set of data records across distributed
sites. The number of data points that has to be sent to other
distributed sites is still relatively large thus increasing time
complexity of this distributed algorithm. Two methods for
monitoring principle components [3], [4] have been used in
the distributed eigen monitoring algorithm to detect changes
in distributed and dynamic astronomical data streams. These
methods are modifications of a very simple approach for
anomaly detection based on the fact that the top few principal
components capture the bulk of variability in a given data
set, and the smallest principal components result in constant
values. Therefore, any data point that violates this structure
for the smallest components corresponds to an anomaly.



Using ensemble methods for distributed anomaly detection
has also gained a lot of attention among researchers recently.
However, there have been only a limited number of proposed
techniques for distributed unsupervised learning. To detect
anomalies from very large and distributed databases, some re-
searchers have proposed modifications of standard distributed
data mining framework [S]-[11]. In this framework, instead
of merging all data at a central location, local models are
built at each local data site, and global anomaly detection
is performed by exchanging these local models. These local
models are represented using different forms such as data
boundary descriptions (minimal bounding rectangles, convex
hulls [8], etc), or using specific machine learning models
(neural networks [7], association rules [5], clustering [8], [11],
Principal Component Analysis [6], genetic programming [8],
etc). However, the main problem with exchanging local models
thus far has been inability to guarantee the same prediction
performance as the centralized method. In the absence of
such guarantees, the case for using distributed computing for
anomaly detection has to be weighed in the balance against
the risk of losing performance by failing to detect anomalies.
Since anomaly detection is generally sought in scenarios where
false negatives have severe negative consequences, the lack of
theoretical performance guarantees in distributed approaches
is an important handicap in anomaly detection, even more so
than in less false-negative sensitive data mining applications.

It is felt that our proposed approach represents an advance
in that it successfully addresses this problem with limited data
exchange among distributed sites. Not only does it guarantee
the same performance as centralized anomaly detection, it also,
in effect, parallelizes the existing algorithm by improving com-
putational efficiency by the order of the number of sites. Thus,
our approach may be used not only to perform distributed
computing in relevant domains, but also to parallelize anomaly
detection in scenarios where the data is originally centralized.

III. METHODOLOGY

In this section, we first present an efficient anomaly detec-
tion method from a single dataset based on T2 and Q statistics
algorithms, followed by a distributed version of this anomaly
detection method.

A. Statistical anomaly detection

T? statistic based anomaly detection. T? statistics have
been frequently used in statistical process control applications
to detect various faults in multivariate datasets [1]. T2 statistics
can be computed directly by generating a PCA (principal
component analysis) model of the multivariate data. PCA is a
well-known multivariate technique that is used primarily for
dimensionality reduction. Assume that X is a given data set
of n data records which have m features. The PCA model is
calculated using the singular value decomposition (SVD) on
the autoscaled X:

ﬁ-XZU-Z-VT, (1)

where U is a nxm orthogonal matrix, V' is a m xm orthogonal
matrix and ¥ is a n X n diagonal matrix that contains positive
real singular values of decreasing magnitude along its main
diagonal 01 > 02 > -+ = Omin(m,n)- Factorization in equa-
tion (1) is equivalent to solving an eigenvalue decomposition
of the sample covariance matrix 3.
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where the diagonal matrix A = X7 - ¥ € R™X™ contains
the positive real eigenvalues of decreasing magnitude and the
it" eigenvalue equals the square of the i* singular value (i.e.,
Ai = o). In order to optimally capture the variations of the
data while minimizing the effect of random noise corrupting
the PCA representation, the loading vectors corresponding to
a largest singular values are typically retained. These vectors
are then stacked into a m X a loading matrix P forming the
orthogonal basis for a-dimensional space. Thereafter, the T2
statistic can be calculated using the following formula [16]:

Y= X' X=v-A-VT, )
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where z is an m x 1 observation vector and A, contains the
the first ¢ rows and columns of A. The threshold for the T2
statistic [17] is given as:
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where F,(a,n — a) is the upper 100a% critical point of the
F-distribution with @ and n - a degrees of freedom.

Q statistics based anomaly detection. While T? statistics is
typically focused on the a largest eigenvalues, Q statistic [16]
monitors the portion of the observation space called residual
space that corresponds to the (m-a) smallest eigenvalues. In
other words, T? statistics captures the variations within the
PCA model and Q statistics is the measure of amount of
variation not captured by the PCA model:

Q=c"-e 5)

where e = (I — P - PT) - z is the residual vector and I is the
m X m identity matrix.

B. Distributed Anomaly Detection

The general framework for distributed anomaly detection
based on T? and Q statistics based methods is shown in
Figure 1. Assume there are N distributed sites, where site
j contains data set S; with n; examples, j = 1,2,--- , N.
Data sets contain the same set of m features, but they do not
necessarily have the same number of data records and cannot
be completely merged for the purpose of anomaly detection.
The distributed version of anomaly detection algorithm has
to achieve exactly the same prediction performance as the
centralized one when all distributed data sets are merged
together. Therefore, T2 and/or Q statistics anomaly detection
scores computed from all distributed sites have to be exactly
the same as in the scenario when all data sets are merged
at a centralized site. It can be observed from equations 3



and 5 that both T2 and Q statistics for the centralized data
can be achieved simply by computing the covariance matrix
Y and loading matrix P for the centralized data. Here, we
present a simple approach of determining the global covariance
matrix without merging all distributed data sets but by simply
exchanging the local covariance matrices and mean vectors. In
the scenario of V disjoint sets S;,j = 1,2,--- , N, centralized
data set S would be computed as the union of all S; sites

(stlLJSQU"'USN).
Fig. 1. Schematic of a general framework for distributed anomaly detection.
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Each distributed set is considered as an independent site
with limited communication capability with other sites. Simple
covariance matrix X for the data set S would be computed as:
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n is the size of the dataset S, u is the mean vector of S
for all m features, i.e. u = [u1, M2, , fbm). Considering
the distributed scenario, however, sample covariance matrix
3; computed from the data present at site [ may be calculated
as:
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The key question here is how to compute the covariance
matrix > from N covariance matrices >; and mean vectors
L.(1=1,2,---,N) computed locally at N distributed sites.

The (i,7)"" element of global covariance matrix defined in
equation (6) can be rewritten as:
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Note that equation (8) is a result of splitting the first term
in equation (6) among N distributed sites. Furthermore, the
global means are written as a linear combination of local

means, i.e.,
N
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The sum ()", si(k)s}(k)) in equation (8) can be sub-
stituted using equation (7), thus resulting in the following
expression for the (i,7)"" element of the global covariance
matrix:
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In matrix notation, this equation may be written as:
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Here, 1! is the row mean vector of the dataset corresponding
to the [* distributed site. Equation (10) provides a method to
exactly determine the global covariance matrix from the local
covariance matrices and local mean vectors, thus allowing ex-
act computation of global T2/Q statistics as in the centralized
scenario when all data sets are merged together.

Space constraints require us to be extremely brief in our
description of the theoretical properties of our algorithm. If the
underlying data may be assumed to be drawn from a Gaussian
distribution, our distributed algorithm is guaranteed to perform
as well as a centralized one, since the statistics shared between
data sites (mean and covariance) are sufficient to reconstruct
the density function representing the underlying data distribu-
tion. Our algorithm, thus, displays ‘zero information loss’.

IV. EXPERIMENTAL RESULTS

In this section, we report results on on synthetic data as
well as on several real life data sets summarized in Table 1.
Synthetic data corresponds to two scenarios where (i) data at
multiple sites may be assumed to be drawn from the same
underlying distribution (referred to henceforth as the homo-
geneous case) and (ii) when data at multiple sites are drawn
from different heterogeneous distributions (the heterogeneous
case).



A. Experiments on Synthetic Data

In anomaly detection, anomalous data records are typically
detected as deviations from normal data modeled as uni-
modal data distributions. Multi-modal data distributions are,
of course, possible but are less frequently encountered. In
practice, it is often found that a Gaussian distribution serves
as an adequate fit for most two-sided unimodal data distribu-
tions, which accounts for its overwhelming prevalence of use
(apart from considerations regarding simplicity of analysis).
Section 3.4 shows how our algorithm can be applied in cases
where the Gaussian assumption is inapplicable. Extending this
generalization to account for multi-variate families of non-
Gaussian distributions, however, is non-trivial. Therefore, for
the purpose of our experiments, we have exclusively studied
cases where the underlying data distributions can be modeled
using Gaussians.

In the homogeneous case, approximately 20,000 data sam-
ples are drawn from a 30-dimensional Gaussian distribution at
each of ten independent sites. A random number of anomalies
are seeded within these ten data sites. The total number
of anomalous data samples over the entire dataset is about
200 (0.1%), a percentage that corresponds to realistic domain
applications. In the heterogeneous case, 20,000 data samples
are again drawn at each of ten independent sites. However,
in this case, data samples at different sites are drawn from
different 30-dimensional Gaussian distributions. Anomalies
are seeded in the same manner as in the homogeneous case,
with a total number again approximately 200.

All results are described in terms of ROC curves, plotting
the true positive rate (sensitivity), against the false positive
rate (1 - specificity). T? algorithm had a perfect score on the
homogeneous data, while the Q statistics did not perform as
well on the same data. The relative inferior performance of
the Q statistics can be explained by the complementarity of
the T2 and Q statistics. Since the T2 statistics is a measure
of variations within a PCA model, anomalous records that
lie closer to the direction of first few eigenvectors would
be easily discriminated from normal data records by the T?
statistics. On the other hand, Q statistics is more useful when
the anomalies are more apparent in the residual subspace i.e.
when the anomalous records lie closer to the eigenvectors that
are not considered in the PCA model. In our homogenous case,
anomalies were generated closer to the primary eigenvectors,
hence, the T? statistics turned out to be better suited for de-
tecting anomalies, as opposed to the Q statistics. However, for
the heterogeneous data the Q statistics performed better than
the T? as the anomalies were seeded such that they were more
visible in the residual subspace. Therefore, for the purpose of
multivariate anomaly detection, it is recommended to monitor
T? and Q statistics, simultaneously, as they will pick anomalies
lying in different but complementary subspaces.

To conclude, both in cases where data at multiple sites
is generated from the same normal distribution, where good
performance is theoretically assured, and in cases where data
is drawn from multiple normal distributions, where theoretical

guarantees need not apply, our algorithmic approach performs
well. In the latter case, note that while the generative dis-
tributions are different in terms of their moments, in several
practical scenarios, they are not very far apart', which causes
the merged distribution to continue to look relatively unimodal
(though not as symmetric). Generally speaking, if the shared
data distribution is not perturbed too far away from a relatively
Gaussian form by this merging of local sufficient statistics, our
anomaly detection algorithms should still be able to perform
well on the associated data set. Note that the zero information
loss guarantee will continue to hold in this case, since the
sufficient statistics of local distributions are being combined. It
is another matter that the combination of these statistics might
create a merged distribution that is non-Gaussian and hence not
very tractable for anomaly detection. Thus, performance will
suffer, but no more than if the data samples had been combined
in the first place. Hence, there will be a performance guarantee,
even if the asymptote of the performance (the centralized case)
performs extremely poorly.

B. Experiments on Real Life Data

All real life datasets used in our experiments have been
widely used by other researchers for anomaly detection. Table
1 gives a summary of those data sets. KDD CUP 1999 dataset
includes a set of 41 features derived from each network
connection and a label that specifies the status of a network
connection record which is either normal or presents a specific
attack type. Attacks fall into four main categories: DoS (Denial
of Service), R2L (Remote to Local), U2R (User to Root) and
Probe. We selected U2R, which covers only 246 instances,
to detect the smallest intrusion class. Since the anomalies
are detected as deviations from the normal behavior, we
modified the original dataset (311029 records), and collected
only normal class (60593 records) and U2R attack records for
the experiment.

For Satimage dataset we chose the smallest class to repre-
sent anomalies and collapsed the remaining classes into one
class. This procedure gave us a skewed 2-class dataset, with
5809 majority class examples and 626 minority class examples
(anomalies). When performing experiments on mammography
and rooftop datasets, we did not change any of the class
distributions. All real life data sets have been split into ten
subsets with approximately same number of data records per
site.

For our experiments performed on real life data sets from
Table 1, the computed ROC curves for both T2 and Q statistics
based anomaly detection approaches are presented in Figure
2. Analyzing Figure 2 bears out our earlier observation on the
complementarity of our two anomaly detection algorithms. For
the mammography and KDDCup99 data set, Q statistics had
better detection performance while for rooftop and satimage
data sets T2 statistics was more successful. Thus, we reiterate
our earlier observation that a sequential application of both

le.g. functionally identical devices transmitting maintenance statistics from
multiple locations will presumably have expected parameter values within a
narrow range, though operational variance might be high.
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(b) Q statistics based distributed anomaly detection for homogeneous
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ROC curves for synthetic data. Data at multiple sites is drawn from the same multi-variate Gaussian distribution. Homogeneous data assumes all

sites draw samples from the same multi-variate Gaussian distribution. Heterogeneous data assumes multiple sites drawn samples from different distributions.

TABLE I
SUMMARY OF DATA SETS USED IN EXPERIMENTS

Dataset Modification made in ~ Size of Numbers of Con- Numbers of Dis- Number of Percentage of
the data set Dataset tinuous features crete features anomalies anomalies

KDDCUP 1999 U2R vs. normal 60839 34 7 246 0.4%

Mammography - 11183 6 0 260 2.32%

Rooftop - 17829 9 0 781 4.38%

Satimage Smallest class vs. rest 16435 36 0 626 9.73%

anomaly detection methods should likely result in good results
in at least one of the cases.

In all cases, performance of the distributed algorithm was
identical to the performance obtained from data consolidation
and centralized computation. This phenomenon occurs not
because local sufficient statistics are transmitted accurately, but
because the anomaly detection schemes use only the global
covariance, which is obtained analytically from the sample
means and covariance matrices as shown in Section 3. Since
the actual distribution is not Gaussian, the statistical anomaly
detection algorithms will not perform optimally well. Thus,
in this case, the performances are identical not because of
zero information loss, but because the error in transmission is
pushed through to the anomaly detection stage as an artifact
of the anomaly detection algorithm chosen. In practical terms,
the high area under curve (AUC) for at least one of our
two anomaly detection algorithms in all four cases presents
significant evidence of the robustness of our algorithms for
computation with real-life data drawn from arbitrary distribu-
tions, which in turn suggests that our algorithm may be useful
in real world applications.

C. Computational efficiency

The time complexity for centralized T? and Q statistics
based anomaly detection is O(nm?). In the distributed version
of anomaly detection algorithm, each site computes PCA,
computes local mean vector and covariance matrix, broad-
casts them to all other sites, computes the global mean and

covariance matrix and finally computes the anomaly detection
score. The time complexity for all computations is O(n;m?),
while the communication overhead is minimal since the local
mean is m-dimensional, and the local covariance matrix is
of size m x m. Thereby, computational savings of O(--) are

. 1
achievable.

V. CONCLUSIONS

In this paper, we have presented an algorithm for distributed
anomaly detection with a theoretical guarantee of detection
performance equivalent to detection performance of a central-
ized algorithm, assuming that the parametric assumption we
make on the distribution underlying the data is justified. Ex-
perimental results on real data demonstrate that our algorithm
performs well even in cases where the theoretical guarantee
does not hold explicitly.

We foresee two avenues of promising work emerging from
our proposed approach. The first avenue involves deeper
investigation of our method of distributing sufficient statistics
among data sites to anomaly detection methods (or indeed any
other data mining algorithms) for more general distributions.
We feel that since, for well-behaved (in our case, exponen-
tial family) distributions, sufficient statistics of the relevant
distributions can be made available at all sites, it should be
relatively straightforward to construct a viable scheme for zero
information loss distributed anomaly detection (data mining)
for any exponential family distribution. Second, since real
world data is never exactly modeled by a Gaussian or any
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other standard distribution, it might be fruitful to design an
information divergence based loss measure to compute the
information loss with respect to the centralized case. This
may then be further used as a measure of confidence in the
distributed algorithm’s predictions.
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