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Foreward 
Anomaly Detection techniques are playing an increasingly important role in the analysis of large 
data sets across many application domains.  In particular, the use of anomaly detection 
techniques for monitoring digital and physical infrastructure is growing rapidly, Other important 
application domains include health and climate informatics. The aim of the 2014 workshop on 
Optimization Methods for Anomaly Detection (OMAD) is to bring together researchers to study 
the detection of anomalies in large data sets in a systematic optimization framework.  The 
workshop consists of four papers and two keynote addresses. 

In ParitoSVR: Parallel Iterated Optimizer for Support Vector Regression in the Primal, the 
authors will present a distributed algorithm for support vector regression using the ADMM 
framework. The SVM model is then used to identify anomalies as those data points, which have 
a large residual value vis-à-vis the model. The authors apply paritoSVR on a real (and large) data 
set consisting of fuel consumption patterns in airline flights. 

In Anomaly Detection Using Tripoint Arbitration Similarity Method,  the author, proposes a 
tripoint similarity function to identify outliers. The similarity function is used in a MinMaxCut  
optimization framework. The proposed method is validated on an application related to 
monitoring computing infrastructure. 

A new measure of anomalousness (called q-value) is proposed in Measuring Anomalousness in 
Statistical Models. The measure, which is related to p-value, provides a natural way to find 
anomalies in clustered data. 

In Identifying Precursors to Anomalies Using Inverse Reinforcement Learning, the authors  
propose a method for determining pre-cursor signals just before the advent of an anomalous 
event. The application domain includes the monitoring of airplane flight data. 

The workshop will also host two keynote talks. The first by Professor Vipin Kumar from the 
University of Minnesota will highlight the role of anomaly detection in getting a better 
understanding of climate data.  The second, by Dr. Dragos Margineantu, from Boeing, will focus 
on the application of anomaly detection techniques in the airline industry. 

The organizing committee would like to thank (i) the authors for participating in the workshop, 
(ii) the organizers of the SDM 2014, especially Professor Tina Elliasi-Rad, the SDM workshops 
chair, (iii) colleagues who served in the program committee  

Finally we would like to thank the sponsors of the workshop: NASA Ames and National ICT 
Australia (NICTA) for their generous support. 

Thanks! 

Sanjay Chawla, Kamalika Das and Aris Gionis 
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Understanding Global Change: Opportunities and Challenges for 
Data Driven Research 

	
  
Vipin Kumar 

 
 

The world's population is growing steadily and many countries are simultaneously 
industrializing, developments that have been ongoing at varying rates for two 
centuries but have accelerated over the past several decades. These processes are 
increasingly straining already scarce natural and food resources, which must scale up 
to keep pace with growing demand. The consequences of such large-scale changes 
include tremendous stresses on the environment that would be calamitous at the 
current rate of change if they are not managed sustainably. As a result, scientists are 
tasked with providing answers to challenging questions such as: What is the effect of 
urbanization on regional land use and ecology? What is the impact of climate change 
on global water resources? How does deforestation affect the net carbon balance? 
How does increased biofuel production impact crop patterns and food availability? 
Addressing these interconnected, societally-relevant questions requires development 
of new computational methods that enable monitoring, analysis and understanding of 
changes in the Earth system, interactions between different processes, and their 
impacts on factors such as the carbon cycle, hydrology, air quality, and biodiversity. 
 
This talk will present an overview of research being done in a large interdisciplinary 
project on the development of novel data driven approaches that take advantage of the 
wealth of climate and ecosystem data now available from satellite and ground-based 
sensors, the observational record for atmospheric, oceanic, and terrestrial processes, 
and physics-based climate model simulations. These information-rich datasets offer 
huge potential for monitoring, understanding, and predicting the behavior of the 
Earth's ecosystem and for advancing the science of global change. This talk will 
discuss some of the challenges in analyzing such data sets and our early research 
results. 
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User-in-the-loop Learning and Optimization for Anomalous Action 
Detection 

Dragos Margineantu 
 
 
An increasing number of users collect transaction data and need scalable tools that 
assist them in identifying abnormalities. This talk will present an interactive user-in-
the-loop approach based on inverse reinforcement learning and linear optimization 
methods for detecting anomalies and intent in data. We implemented and tested our 
algorithms on real-world GMTI and AIS sensor data.  
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ParitoSVR: Parallel Iterated Optimizer for Support Vector Regression

in the Primal

Kamalika Das∗ Kanishka Bhaduri† Nikunj Oza‡

Abstract

Regression problems on massive data sets are ubiquitous

in many application domains including the Internet, earth

and space sciences, and aviation. Support vector regression

(SVR) is a popular technique for modeling the input-

output relations of a set of variables under the added

constraint of maximizing the margin, thereby leading to

a very generalizable and regularized model. However, for

a dataset with m training points, it is challenging to

build SVR models due to the O(m3) cost involved in

building them. In this paper we propose ParitoSVR — a

parallel iterated optimizer for Support Vector Regression

in the primal that can be deployed over a network of

machines, where each machine iteratively solves a small

(sub-)problem based only on the data observed locally and

these solutions are then combined to form the solution to the

global problem. Experiments on real datasets demonstrate

the accuracy and scalability of our algorithm. As a real

application, we use ParitoSVR to detect flights having

abnormal fuel consumption from a fleet-wide commercial

aviation database.

1 Introduction

In many application domains, it is important to predict
the value of one feature based on certain other mea-
sured features. For example, in commercial aviation, it
is very important to model the fuel consumption based
on input parameters such as aircraft speed, wind speed,
control surfaces, engine power, pitch, roll, yaw etc. This
is because according to the Air Transportation Associ-
ation (ATA), fuel is an airline’s largest expense at a
staggering 17.5 billion gallons per year1. Identifying
flights with abnormal fuel consumption may help the
airlines to do proper maintenance of these aircrafts and
save operating costs. For such problems, a regression
model can be learned that predicts the fuel flow based

∗UARC, NASA Ames Research Center. kama-
lika.das@nasa.gov
†Netflix Inc. kanishka.bh@gmail.com
‡NASA Ames Research Center. nikunj.c.oza@nasa.gov
1http://www.airlines.org/Energy/Fuels101/Pages/

AirlineEnergyQA.aspx

on these input parameters. One such popular regression
method is Support vector machines (SVM) [1] which is a
class of maximum margin classifiers, that demonstrates
good generalization performance. SVM’s can also ex-
ploit the kernel trick, thereby making them suitable for
non-linear model learning as well. SVMs however are
computationally expensive for large datasets.

In this paper we propose Parallel Iterated Optimizer
for Support Vector Regression in the Primal (Pari-
toSVR), a new support vector regression algorithm that
can be deployed over a network of machines, where each
machine solves a small (sub-)problem based only on the
data observed locally and these solutions are then com-
bined to form the solution to the global problem. Our
proposed method is based on the Alternating Direction
Method of Multipliers (ADMM) optimization technique
[2][3], which is parallelizable for separable convex prob-
lems, and converges to the exact solution as the central-
ized version with theoretical guarantees.

2 Background

Our ParitoSVR algorithm uses as a building block
two components: (1) Alternating Direction Method of
Multipliers (ADMM), and (2) SVR. In this section, we
discuss these two topics.
ADMM: ADMM [3] is a decomposition algorithm for
solving separable convex optimization problems of the
form:

min
x,y

G1(x) + G2(y)(2.1)

subject to Ax− y = 0, x ∈ Rn, y ∈ Rm

where A ∈ Rm×n and G1 and G2 are convex functions.
ADMM is an iterative technique and the update equa-
tions are:

xt+1 = min
x

{
G1(x) + ρ/2

∥∥Ax− yt + pt
∥∥2
2

}

yt+1 = min
y

{
G2(y) + ρ/2

∥∥Axt+1 − y + pt
∥∥2
2

}

pt+1 = pt +Axt+1 − yt+1

where p = (1/ρ)z. ADMM effectively decouples the
x and y updates such that parallel execution becomes
possible. In a distributed computing framework, this
becomes even more interesting since each computing
node can now solve a (smaller) subproblem in x inde-
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pendently, and then, these solutions can be efficiently
gathered to compute the consensus variable y and the
dual variable p. ADMM converges within a few itera-
tions when moderate precision is required. This can be
particularly useful for many large scale problems, simi-
lar to what we consider here.
SVR: Give m data tuples (training set) D = (xi, yi)

m
i=1,

where xi ∈ Rn is the input and yi ∈ R is the cor-
responding output or target, SVR solves the following
optimization problem:

min
w,b

[
λ||w||2 +

m∑

i=1

`ε(w · xi + b− yi)
]

(2.2)

where λ is a constant and `ε is the ε-insensitive loss
function defined as, `ε(r) = max(|r| − ε, 0). This is a
convex optimization problem which can be solved using
convex optimization solvers such as CVX2.

In the next section we show how to build SVR mod-
els for very large datasets using distributed computing
via the ADMM technique.

3 ParitoSVR formulation

For the linear ParitoSVR algorithm setup, we assume
that the training data is distributed among N client
processors (nodes) P1, . . . , PN with a central machine
P0 acting as the server or collector. The dataset at
machine Pj , denoted by Dj , consists of mj data points

i.e. Dj =
{
x
(j)
i , y

(j)
i

}mj

i=1
. It is assumed that the

datasets are disjoint: Di

⋂
Dj = ∅ and

⋃N
j=1Dj = D,

where D is the total (global) data set. The goal is
to learn a linear support vector regression model on D
without exchanging all of the data among all the nodes.

Given Eqn. 2.2, the optimization problem is now:

min
w

[
m∑

i=1

`ε(w · xi − yi) + λ||w||2
]

⇔ min
w




N∑

j=1

mj∑

i=1

`ε
(
w · x(j)

i − y(j)i

)
+ λ ‖w‖2




The inner sum can be computed by each node indepen-
dently (assuming that w is known). We next write it in
a form such that it is decoupled across the nodes:

min
w1,...,wN ,z




N∑

j=1

mj∑

i=1

`ε
(
wj · x(j)

i − y(j)i

)
+ λ ‖z‖2


(3.3)

subject to wj = z

In the ADMM decomposition, each node can solve
its local problem using its own data and optimization
variable and then coordinate the results across the nodes
to drive them into consensus. The nodes update the
consensus variable z iteratively, based on their local

2http://cvxr.com/cvx/
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Figure 1: Models formed by node 1 on synthetic dataset
as the algorithm progresses.

data and scatter-gather operations on z until they
converge to the same result.

Theorem 3.1. The ADMM update rules for the linear
support vector regression primal optimization are:

wt+1
j = min

wj

{ mj∑

i=1

`ε
(
wj · x(j)

i − y(j)i

)
+
ρ

2

∥∥wj − zt − ut
j

∥∥2
2

}

zt+1 = min
z

{
λ ‖z‖22 +

Nρ

2

∥∥z−wt+1 − ut
∥∥2
2

}

ut+1
j = ut

j + wt+1
j − zt+1

where u ∈ Rn is the (scaled) dual variable and wt+1

and ut+1 are the averages of the variables over all the
nodes.

Proof. We omit the proof here due to shortage of space.

The w update can be executed in parallel for each
machine. It involves solving a convex optimization
problem in n + 1 variables at each node. This solution
depends only on the data available at that partition.
The z update step involves computing the average of
the w and u vectors in order to combine the results
from the different partitions. Critical to the working
of ADMM is the convergence criteria. The primal and
dual residuals can be written as: rtp = ‖wt − zt‖22 , rtd =∥∥ρ(zt − zt−1)

∥∥ Also, given the thresholds εpri and εdual,
the primal and dual thresholds can be written as,
εpri = εabs

√
m + εrel max(‖w‖ , ‖z‖) and and εdual =

εabs
√
m+ρεrel ‖u‖ . The iterations terminate when rtp <

εpri and rtd < εdual.

4 Experiments

In this section we demonstrate the performance of the
ParitoSVR algorithm.

ParitoSVR has been implemented in MATLAB
2011b. The experiments have been executed in NASA
Pleiades supercomputer facility3. For solving the con-
vex problems at each iteration, we have used the convex
optimization toolbox CVX for Matlab4.

3http://www.nas.nasa.gov/hecc/resources/pleiades.html
4http://cvxr.com/cvx/

4



0 500 1000 1500
−0.5

0

0.5

1

1.5

2

Number of test flights

N
o

rm
a

liz
e

d
 m

e
a

n
 

s
q

u
a

re
d

 e
rr

o
r 

  

 

 

(a) Squared error for all flights

0 500 1000 1500
1500

2000

2500

3000

3500

4000

Time (in seconds) in cruise

A
v
e

ra
g

e
 i
n

s
ta

n
ta

n
e

o
u

s
 

fu
e

l 
c
o

n
s
u

m
p

ti
o

n
  

  
  

 

 

Observed fuel consumption
Predicted fuel consumption

(b) Outlier flight fuel consumption
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(c) Normal flight fuel consumption

Figure 2: Fuel flow study on CarrierX dataset. Fig. (a) shows squared error for all test flights, the 3-σ bound and
flights which cross the threshold. Fig. (b) shows the observed and predicted fuel flow of top ranked anomalous
flight. Fig. (c) shows the same for a normal flight.

Fig. 1 shows the sample dataset generated from
a linear model following y = w × x + noise, where
w is the weight of the regression model. We have
used 2 nodes in this experiment and, for each node,
chosen a different w vector so that each node sees
a different data distribution. The data of the two
nodes are shown in two different colors (circle and plus
markers). Also shown in the figure are the models
(straight lines) formed by node 1 at different iterations
of linear ParitoSVR algorithm.

4.1 Anomaly detection on CarrierX dataset We
use the linear ParitoSVR algorithm to detect anomalous
fuel consumption in a commercial aircraft. We model
the average fuel flow as a function of 29 different
parameters that measure system parameters such as
lateral and longitudinal acceleration, roll and pitch
angle, air pressure, and velocity, as well as external
parameters such as wind speed and direction. We have
used all 1500 flights (≈ 4.5 million training instances) for
a specific tail number for a particular year for training,
and tested subsequent years’ flights for predicting fuel
consumption. Flights for which the mean squared errors
of the predicted instantaneous fuel consumption fall
outside the 3-σ boundary of the average mean squared
error, are tagged anomalous (σ is the standard deviation
of the mean predictions). Out of approximately 1800
flights for a test year, 14 flights were determined to
be anomalous. Figure 2(a) shows the mean squared
errors for each of the flights in blue and the 3-σ bounds
in green. The instantaneous fuel flow for the top
ranked anomalous flight among these 14 flights is shown
in Figure 2(b). The red graph depicting observed
fuel flow is significantly higher than the predicted fuel
consumption, shown in blue.

5 Conclusion

In this paper we have proposed ParitoSVR — a par-
allel iterated optimizer which solves support vector re-

gression in the primal. Our formulation is paralleliz-
able among a number of computing nodes connected to
a central computing node. Empirical study show that
our algorithm is accurate and scalable, ideal for large
scale deployment. As future work, we plan to develop
asynchronous version of this problem for peer-to-peer
architectures.
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Anomaly Detection Using Tripoint Arbitration Similarity Method

Aleksey Urmanov∗

Abstract

The tripoint arbitration similarity method uses every point

in a sample as an observer to evaluate the similarity of a

pair of points of the sample. The similarity of the pair is

aggregated over all observers in the sample. The resulting

pairwise similarity matrix captures information about clus-

ters of similar points. An anomalous point is defined as an

observer point for which all points in the sample are pair-

wise similar. The method is independent of the underlying

joint distribution of the sample points and does not require

the user to tune any parameters other than selecting the ap-

propriate distance function and setting the admissible false

detection rate. The proposed method handles heterogeneous

data by computing a combined similarity score which is of

interest for many industrial, social, scientific, web, retail, fi-

nance and health sciences applications. The work in progress

on anomaly detection using the tripoint arbitration similar-

ity method is reported.

1 Introduction

Anomaly/outlier detection is one of the practical prob-
lems of data analysis. Applications range from cleansing
of data in statistical hypothesis testing and modeling,
performance degradation detection in systems prognos-
tics, workload characterization and performance opti-
mization for computing infrastructures, intrusion detec-
tion in network security applications, medical diagnosis
and clinical trials, social network analysis and market-
ing, optimization of investment strategies, filtering fi-
nancial market data, fraud detection in insurance and e-
commerce applications. Methods for anomaly detection
utilize statistical approaches such as hypothesis testing
[1] and machine learning approaches such as one-class
classification and clustering [2]. See [3] for a review.

An anomaly is defined qualitatively as an observa-
tion that significantly deviates from the rest of the sam-
ple. To quantify significant deviation a model is created
that represents nominal observations and allows to com-
pute deviation from it with a given false detection rate
(type I error). In rare cases when instances of actual
outliers are available in quantities sufficient to create
a model describing the outlier observations, likelihood
ratio-based statistical tests and two-class classification

∗Oracle Labs, San Diego. Email: aleksey.urmanov@oracle.com

can be used with a specified missed detection rate (type
II error).

Distributional and possibly other data-generating
assumptions and tuning of various critical parameters
are required to use existing anomaly detection methods.
For example, when using the Mahalanobis distance,
a mutivariate Gaussian assumption is made for the
data generating mechanism. When using clustering,
a number of clusters must be specified and a specific
cluster formation mechanism must be assumed.

The analysis is becoming more laborious when ob-
servations are represented by heterogeneous data. For
instance, a health monitoring system of a computing
infrastructure that provides cloud services must contin-
uously monitor diverse types of data about thousands
of targets. The monitored data may include physical
sensors, soft error rates of communication links, data
paths, memory modules, network traffic patterns, inter-
nal software state variables, performance indicators, log
files, workloads, user activities etc, all combined into a
heterogeneous observation describing a target within a
time interval. An anomaly detection system must con-
sume all this data and alert the system administrator
about anomalously behaving targets. In such environ-
ments it is unpractical to expect that the system ad-
ministrator will possess sufficient skills to set and tune
various anomaly detection parameters.

The tripoint arbitration similarity-based anomaly
detection system is developed to address these new
challenges. It has the following features designed-in:

• Makes no distributional or other assumptions about
the data-generating mechanism.

• Operates without tuning of any parameters by the
user. The appropriate distance function is selected
based on the type of the data.

• Detects anomalies with a desired false detection
rate. The user may specify the admissible false
detection rate, otherwise < 1% is used by default.

• Handles seamlessly observations composed of het-
erogeneous components (numeric, text, categorical,
time series, other) as long as an appropriate dis-
tance function is available for each data type.

6



2 Tripoint Similarity and Clustering

Tripoint arbitration similarity method is based on a
novel definition of similarity of data points. Consider
a collection of samples x1, x2, . . . , xn in Rm with the
Euclidian distance dij = d(i, j) = d(xi, xj) as the
closeness measure for two points. Given a pair of points,
(xi, xj), and an arbiter point a ∈ Rm, the tripoint
arbitration similarity is defined as

(2.1) Sa(xi, xj) =
min(d(i, a), d(j, a))− dij

max(min(d(i, a), d(j, a)), dij))

Sa takes values between −1 and +1 with the
following interpretation. Sa(xi, xj) = −1 means that
points xi and xj are completely dissimilar for the
arbiter point a. Sa(xi, xj) = +1 means the points
are completely similar. Sa(xi, xj) = 0 means the
arbiter point cannot decide whether the points similar or
dissimilar. All other non-zero values reflect the degree
of similarity (positive values) or dissimilarity (negative
values) of the pair for the arbiter.

For a set of arbiter points A = {a1, a2, . . . , al} the
similarity is aggregated over all arbiters

(2.2) SA(xi, xj) =
1

l

l∑

k=1

Sak(xi, xj)

Let D = {x1, x2, . . . , xn} be a random sample from
an unknown population. The empirical pairwise tripoint
arbitration similarity matrix of sample D is defined as

(2.3) SD = [SD\{xi,xj}(xi, xj)]

Since similarity (2.1) ranges from -1 to +1 for any
type of data, it is possible to combine similarities of dif-
ferent modalities of multimodal data into a single overall
similarity. One rule for combining modal similarities is
to follow common sense (analogously to [4]). For modal
similarities with the same sign, the overall similarity be-
comes bigger than either of the modal similarities but
still remains ≤ 1.

Sa(xi, xj) = Sa(1)(x
(1)
i , x

(1)
j ) + Sa(2)(x

(2)
i , x

(2)
j )

− Sa(1)(x(1)i , x
(1)
j ) · Sa(2)(x(2)i , x

(2)
j )

(2.4)

When modal similarities have different signs, the
overall similarity is determined by the maximum abso-
lute value but the degree of similarity or dissimilarity
weakens.

Sa(xi, xj) =

Sa(1)(x
(1)
i , x

(1)
j ) + Sa(2)(x

(2)
i , x

(2)
j )

1−min(| Sa(1)(x(1)i , x
(1)
j ) |, | Sa(2)(x(2)i , x

(2)
j ) |)

(2.5)

Using this definition of the pairwise similarity ma-
trix for a data set, the clustering problem can be
formulated as follows. Given a set of points D =
{x1, x2, . . . , xn}, xi ∈ Rm, the problem is to par-
tition the set into an unknown number of clusters
C1, C2, . . . , CL so that points in the same cluster are
similar and points in different clusters are dissimilar.
This clustering problem can be casted into an optimiza-
tion problem that can be efficiently solved using matrix
spectral analysis methods

min J(C1, C2, . . . , CL)(2.6)

SD(Cp, Cp) ≥ 0, 1 ≤ p ≤ L(2.7)

SD(Cp, Cq) ≤ 0, 1 ≤ p < q ≤ L(2.8)

SD(Cp, Cq) is the average of all pairwise similarities of
points from clusters Cp and Cq
(2.9)

SD(Cp, Cq) =
1

| Cp | | Cq |
∑

i:xi∈Cp

∑

j:xj∈Cq

SD(xi, xj)

and the objective function J is constructed to simulta-
neously satisfy minSD(Cp, Cq) for 1 ≤ p < q ≤ L and
maxSD(Cp, Cp) for 1 ≤ p ≤ L. One such objective
function is [5]

(2.10) J =
∑

1≤p<q≤L

SD(Cp, Cq)

SD(Cp, Cp)
+
SD(Cp, Cq)

SD(Cq, Cq)

Dropping the constraints in (2.6) leads to the prob-
lem similar to the MinMaxCut formulation in [5] with
pairwise associations given by the tripoint similarity.

To deal with the constraints in (2.6) an iterative
approach was adopted. At the initial iteration the orig-
inal problem is solved by partitioning the data set into
two clusters using an appropriate objective function, for
example, the MinMaxCut objective function in (2.10).
At the next iteration each of the two clusters is parti-
tioned in two and so forth. At each iteration the con-
straints are checked. Violation of the constrains serves
as a stopping criterion for the iterations. The process of
splitting clusters is stopped when no more clusters can
be split without violating the inter-cluster dissimilarity
constraint. This iterative procedure automatically pro-
duces the appropriate number of clusters. The tripoint
arbitration clustering method uses matrix spectral anal-
ysis results to iteratively find the appropriate number of
clusters by solving the problem (2.6).

3 Anomaly Detection System

The proposed anomaly detection system relies on tri-
point clusters to determine a possible global structure
in the data. Tripoint clustering finds automatically the
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Figure 1: Outlier detection on artificial data with FAR
< 1%. All observations that lie in the yellow region
will be detected as outliers given the nominal data that
comprise two clusters.

Figure 2: Anomalous target detection using time series
data representing operating targets in a computing
infrastructure. Target #18 is correctly detected as
anomalously behaving compared to nominally behaving
targets #1-17.

appropriate number of clusters and labels the observa-
tions with a cluster label l = 1, 2, . . . , L. The resulting
clusters C1, C2, . . . , CL constitutes the nominal model
based on the sample.

An anomaly is defined as an observation z for which
all cluster-average similarities are positive or all points
from clusters C1, C2, . . . , CL are pairwise similar on
average, i.e.
(3.11)

Sz(Cl) =
1

| Cl |
∑

i,j

Sz(xi, xj) > tα, i, j : xi, xj ∈ Cl,

where α is the desired false detection rate. The thresh-
old tα is determined from Prob(Sz > tα) < α .

Figure 1 illustrates the area (in yellow color) points

Figure 3: Estimated sampling distribution of Sz.

from which are considered as outliers with < 1% FAR
for the data set compose of two clusters shown with
blue crosses and green triangles. Tripoint clustering
finds automatically two clusters in the data set and
assigns cluster labels to the corresponding observations.
Any new observation z for which Sz(C1) > 0.5 or
Sz(C2) > 0.5 is a detected outlier or anomaly.

Figure 2 shows the results of clustering and anomaly
detection in time series which represent certain at-
tributes of monitored targets in a computing infrastruc-
ture. Tripoint clustering found 2 clusters in a pool of
17 targets shown on the left and right sides of the plot.
A new target (#18) when presented to the anomaly de-
tection system was correctly detected as anomalous.

And finally Figure 3 shows the estimated sampling
distribution of Sz for a multivariate Gaussian data set
with n = 500 points. By varying n, the values of
tα can be tabulated for different α for use in (3.11).
For more rigorous calculation of tα, the exact sampling
distribution of Sz can be determined through Monte-
Carlo simulations or asymptotic distribution theory.

References

[1] P.J. Rousseeuw and A. Leroy, Robust regression and
outlier detection. New York: Wiley (1987).

[2] B. Schlkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola,
and R.C. Williamson, Estimating the support of a high-
dimensional distribution, Neural computation, 13(7),
pp. 1443-1471 (2001).

[3] V.J. Hodge and J. Austin, A survey of outlier detec-
tion methodologies, Artificial Intelligence Review 22.2,
pp. 85-126 (2004).

[4] I. B. Sirodza, Quantum models and methods of artificial
intelligence for decision-making and control, Nauch-
naya Mysl (2002), pp. 92.

[5] C. Ding, et al., A minmaxcut spectral method for data
clustering and graph partitioning, Lawrence Berkeley
National Laboratory, Tech. Rep 54111 (2003).

8



Measuring Anomalousness in Statistical Models

Thomas Veasey∗ Stephen Dodson∗

1 Introduction.

Broadly speaking, unsupervised anomaly detection
techniques fall into two categories: distance based ap-
proaches, which look at the distance between points or
local density, for example [4, 7, 8], and statistical ap-
proaches, which are usually based on robust estimators
and hypothesis testing, see for example [2]. In this pa-
per, we study a statistical technique that can be used
for unsupervised anomaly detection, based on a varia-
tion of the concept of the p-value of the value of a test
statistic, see for reference [12].

We show how this quantity, which we will refer to
henceforth as the q-value of an event, is well defined and
generates an intuitive measure of the events’ anomalous-
ness in the presence of distribution modes, which would
correspond to anomaly detection on clustered data.
Furthermore, unlike many distance based approaches
for anomaly detection, such as kNN proposed in [10],
it naturally captures the relationship between the num-
ber of items in a cluster and their anomalousness. We
discuss how to compute the q-value for some specific
distributions and also numerical approaches that can
be used to compute it for arbitrary distributions.

Finally, we study a class of high dimensional
anomaly detection problems where the events of pri-
mary interest are statistically significant deviations in
one, or a small number of, the dimensions. For such
problems, many of the difficulties associated with high
dimensional anomaly detection, data sparsity, choice of
distance metric [1], runtime [6], and model size, can be
circumvented for the proposed measure of anomalous-
ness, without using dimension reduction techniques. In
particular, we show how applying the q-value to order
statistics on the individual dimension values leads to a
natural measure for solving exactly this problem.

The authors’ primary interest is in anomaly detec-
tion for application performance monitoring and net-
work security. The data sets are nearly always col-
lections of time series, and a common requirement for
anomaly detection in this context is to provide alerts
about anomalous system behaviour. We discuss a deci-
sion criterion, which we use to identify anomalies corre-

∗Prelert Ltd., 156 Blackfriar’s Road, London, UK. E-mail:
{tveasey,steve}@prelert.com

sponding to unusual system or user behaviour given the
ordering defined by the q-value.

Various characteristics are ubiquitous in the data
sets we work with, and we highlight those which we
have found are particularly important to capture in
the statistical model in order to get accurate anomaly
detection. Specifically, non-Gaussian distribution tails,
proper handling of integer data, brakes and/or highly
variable data rates and seasonality. Furthermore, the
data sets are typically very large: monitoring data for
large computer networks can comprise tens or even
hundreds of thousands of performance metrics; common
data related to network security, such as proxy logs
have transaction rates in the thousands of events per
second. Any time series model must be highly compact,
and fast enough to compute on these data volumes.
We have found that summarising the time series by
small numbers of statistics, such as the mean, minimum
and maximum of n metric values, allows us to scale
to enormous data volumes with little loss in detection
performance. In fact, varying the resolution, varying
n for our example, effectively provides different insight
into the data: different types of anomaly emerge for
different choices.

We give results for a set of performance metrics
generated monitoring an internet banking system over a
three day period. This is around 12 GB and comprises
around 33,500 distinct metric time series.

2 A Definition of Anomalousness.

The q-value is defined for any statistical model for which
a distribution function exists. Specifically, the model
must be some random variable from a probability space
(Ω,F , P ) to some measure space (X,A ) and there must
exist a measurable function f : X → R+, where R+

denotes the non-negative real line with Borel algebra,
which recovers the probabilities of the measurable sets
of X. We define the q-value of an event x ∈ X as:

q(x) = P ({y : f(y) ≤ f(x)})

This is clearly well defined, since the closed interval
[0, f(x)] is Borel measurable and so its preimage is
A measurable. Since q(x) is a probability it takes
values in the interval [0, 1]. Any subset of [0, 1] has
the usual strict total ordering of the reals, and so we
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can define a strict weak ordering of events by their
anomalousness, i.e. x >a y if and only if q(x) <
q(y). In particular, anomalousness can be defined as
some monotonic decreasing function of the q-value, for
example − log(q(x)).

It is interesting to compare this definition with
the p-value, which is always defined in terms of some
test statistic, say T (x), of the event. In particular,
the p-value is the probability of the test statistic ex-
ceeding its observed value given the null hypothesis:
P (T (y) > T (x)|H0). In the case that the null hy-
pothesis is the data set is Gaussian distributed with
known mean m and covariance V , and the test statistic
is T (x) = ‖x−m‖2, the so called two-tailed test, then
the definitions coincide, since the probability density
function is less than f(x) in exactly the region where
the test statistic is greater than T (x). Note, however,
that this case, a single mode symmetric model, is one of
the few cases where the values coincide. Furthermore,
the q-value makes no specific appeal to a null hypothe-
sis. The idea is, given a statistical model of a data set,
to define a quantity that naturally relates to the anoma-
lousness of observed events, in much the same way as
say then mean distance to k-nearest neighbours does for
distance based anomaly detection.

If the data set to be analysed for outliers has been
clustered then the corresponding statistical model will
be multimodal. In particular, each cluster will typically
generate a mode of the distribution, or local maximum
in the density function. The q-value for an item from
such a data set is therefore the (Lebesgue) integral of
the density function over some region that (usually)
contains multiple holes, corresponding to modes of the
distribution.

The exact value for an item depends on the choice
of statistical model. However, for reasonable models the
value should be close to the fraction of items in lower
density regions. In particular, we show that for any mix-
ture of uniform random variable,

∑
i fi × U(Bi) where

fi denotes the fraction of items in an m-dimensional
cuboid Bi = [a1,i, b1,i]× [a2,i, b2,i]× ...× [am,i, bm,i] and
U(Bi) is a uniform random variable on that cuboid, then
the q-value of an item x is exactly the fraction of items
for which the density f(y) = fiy/V (Biy ) is less than or
equal to f(x), where iz denotes the index of the box
which contains item z and V denotes the volume func-
tion defined as V (Bi) =

∏
j |bj,i − aj,i|.

Proof. By definition we have that

q(x) =

∫
1{f(y) ≤ f(x)}f(y)dy

=
∑

i

1

{
fi

V (Bi)
≤ fix
V (Bix)

}
fi

V (Bi)
V (Bi)

=
∑

{i:di≤d(x)}
fi

where 1{·} denotes the indicator function, and in the
last line we have defined di = fi/V (Bi). We can interpret
this summation as the fraction of items for which the
density is less than or equal to the density at the item
x.

We note, also, that any random variable can be ap-
proximated in distribution by a mixture of uniforms,
since we may approximate the cumulative density func-
tion by a sequence of piecewise constant functions. So
this result can be used, in conjunction with binary space
partitioning, to estimate q-values for arbitrary small-
ish dimensional multivariate models. Also, the density
function for any reasonable mixture model describing
clustered data will be proportional to the fraction of
items in a mode, in the vicinity of that mode, so items
from clusters with fewer items will naturally have lower
q-values.

3 Numerical Schemes for Calculating q-values.

For many univariate distributions the q-value can be
evaluated in closed form. Otherwise, efficient numerical
methods often exist for finding the density function level
sets. However, for general multivariate distribution and
mixture models numerical methods must be used. We
review a couple of approaches. Perhaps the simplest
scheme for computing the q-value, if the statistical
model can be sampled is the following: generate n
independent samples of the distribution, say Yn = {y},
and define:

qn(x) =
|{y ∈ Yn : f(y) ≤ f(x)}|

n

We show that qn(x)
a.s.−−→ q(x) as n → ∞. In fact, we

can compute the asymptotic error distribution.

Proof. As before, define our system model to be a ran-
dom variable Y with probability density function f .
Let, A(x) denote the A measureable set f−1[{z : z ≥
0, z ≤ f(x)}], and 1{A(x)} denote the indicator func-
tion of A(x). Given a random sample y of Y then, by
definition, 1{A(x)}(y) = 1 with probability q(x) and
0 otherwise. Therefore, 1{A(x)}(Y ), which we under-
stand as 1{A(x)} ◦ Y , is a Bernoulli random variable

10



with success probability p = q(x). By definition,

|{y ∈ Yn : f(y) ≤ f(x)}|
n

∼ 1

n

n∑

i=1

1{A(x)}(Y )

Furthermore,
∑n
i=1 1{A(x)}(Y ) ∼ B(n, p), i.e. it is

a binomial random variable with number of trials n
and probability of success p. Noting that B(n, p)

a.s.−−→
N(np, np(1− p)) as n→∞ it follows that

1

n

n∑

i=1

1{A(x)}(Y )
a.s.−−→ N

(
q(x),

q(x)(1− q(x))

n

)

In particular, it is normally distributed with mean q(x)
and variance q(x)(1− q(x))/n. The variance is maximised

when q(x) = 1/2, and so qn(x)
a.s.−−→ q(x) as n → ∞ for

all x and we are done.

This is just a particular Monte Carlo scheme for
evaluating the integral

∫
1{f(y) ≤ f(x)}f(y)dy. It has

one important advantage over the other schemes we dis-
cuss: the same set of samples can be used for evaluating
q(x) for any x. This means it is particularly well suited
to Sequential Monte Carlo methods for estimating the
statistical model. Otherwise, the following methods will
have lower error for a given running time.

A recursive stratified sampling, such as the MISER
algorithm [9], will yield lower variance for the same
sample size. Further speedup can be obtained by
importance sampling. In particular, the integrand is
identically zero where f(y) > f(x). Therefore, if
we are using a mixture model, with density function
f(y) =

∑
i πifi(x) and can compute the regions {Ri},

bounded by
{
zi : zi = f−1i (f(x)/πi)

}
, we should only

sample outside the region
⋃
iRi. Finally, we note for

a mixture of uniforms approximation, then storing the
region densities in a red-black tree augmented with the
fraction of items in each subtree means it is possible to
compute the q-value for a new item in O(log(N)) and
update the data structure in O(log(N)) where N is the
number of uniforms, see [5] for details.

4 Statistically Significant Anomalies in Low
Dimensional Subspaces.

For many problems in application performance moni-
toring and network security, anomalies of particular in-
terest are statistically significant deviations in a small
number of the raw measurement dimensions. For exam-
ple, if a system has ten thousand performance metrics,
which might comprise average response times of differ-
ent database queries, responses per interval, errors per
interval and so on, a system problem is likely to man-
ifest itself as highly unusual values in a subset of the

performance metrics. Similarly, many types of network
attack amount to a small set of users doing highly un-
usual things at a given instant. For example, a port scan
attack would correspond to a client sending requests to
an unusually large range of server port addresses on
a host in a relatively short period of time. For these
problems, it is not necessary to try and model the dis-
tribution on the full space. Instead, we can accurately
model its marginals, for example the individual perfor-
mance metrics, or the distribution of a population for
particular attributes, such as unique server port address
requests in a fixed time interval. Then compute q-values
on these, and aggregate the individual q-values to get
an effective measure for overall anomalous at any given
instance.

To understand why we must account for the number
of dimensions in this aggregation process, consider the
simple case that each marginal is a Gaussian. If there
is no anomaly, we expect N independent samples from
a Gaussian, where N is the number of dimensions. In
the case that N = 10, 000 the most extreme sample we
expect to see is about 4 standard deviations, where as
in the case that N = 10 the most extreme sample we
expect to see is around 1.5 standard deviations. These
correspond to q-values of 1−erf (4/

√
2) = 6.3×10−5 and

1− erf (1.5/
√
2) = 0.13, respectively.

Given a collection of N q-values, {qi}, a heuristic
we have found to be useful for computing an aggregate
q-value is to compute the q-value on the order statistic

q(N)(x) = P ({y : fX(N)(y) ≤ fX(N)(x)})

Here, fX(N)(y) = N !
1!(N−1)! (F (y)− F (−y))

N−1
f(y) de-

notes the distribution of the most extreme sample as a
function of y, from a collection of N independent identi-
cally distributed samples from a symmetric single mode
distribution, and x is the value of the most extreme sam-
ple. In our case, we are not interested when the smallest
q-value is too large, given the sample size. Therefore,
we evaluate P ({y : |y| ≥ |x|}). This is equal to

2N

2N
[(2t− 1)]

1
FX(x) = 1−

(
1−min

i
{qi}

)N

In particular, we set our aggregate q-value to be 1 −
(1 − mini{qi})N . Note, 1 − FX(x) = mini{qi}/2 follows
from the assumptions about sample distributions and
the definition of x. This result can be generalized
to compute the aggregate q-value from the M most
extreme samples for N dimensions under the same
assumptions.

5 Test Data and Methodology.

The data set we analysed was gathered by the CA
APM product monitoring three servers of an internet
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banking site. Every performance metric is reported at
60s intervals, although some record transactions and are
not necessarily available at this granularity. It contains
33,159,939 distinct records and 33,456 distinct time
series. The data cover a period of 72 hours and so the
total data rate is around 500,000 values per hour. There
are 38 categories of metric; these include responses per
interval, average response time, errors per interval, stall
counts and average result processing. Note that various
categories are split out by SQL command, host and so
on, which accounts for the total number of distinct time
series.

For this data set, we found it was sufficient to as-
sume that the series were stationary. For other prob-
lems, capturing diurnal and weekly variation is impor-
tant, for which we use radial basis function interpolation
to fit the periodic temporal patterns. We chose to fit
either a Gaussian distribution with unknown mean and
precision, a gamma distribution with unknown shape
and rate, or a log-normal distribution with unknown
location and scale to the (assumed) stationary distribu-
tion of each time series. We use standard Bayesian tech-
niques to estimate the parameters, and Bayesian model
selection to choose among the models, see [3] for details
on Bayesian model selection. Finally, on this data set
we found it was very important to accurately account
for time series comprising integer data with low vari-
ation, in particular, series for which particular integer
values have significant probability. Such data are gen-
erally badly modelled by continuous distributions. We
automatically detect this case, and model these data us-
ing a latent variable. In particular, we assume that the
observed values are described by X + U([0, 1]), where
we estimate X, and U([0, 1]) denotes a uniform random
variable on the interval [0, 1].

A large anomaly manifested itself as system perfor-
mance degradation during the interval 32 to 35 hours af-
ter the start of the data set. In terms of the raw anomaly
scores, which were obtained by aggregating individual
time series q-values, this corresponded to a signal-to-
noise ratio of around 330dB, where the noise level was
taken as the median aggregate q-value. If the time se-
ries are ordered by their q-values at that time, then 560
of the 33,456 time series are significantly anomalous.
These results indicated there was an operational issue
with a specific component of the backend, which re-
sulted in the response time of a subsection of the website
(6 JSPs) having dramatically increased response times.
In addition, there was a precursor to the main anomaly,
at 27 hours after the start of the data set, which pro-
vided the system administrators with early warning of
the specific problem before the main failure. This was
detected in the performance metrics with a signal-to-

noise ratio of around 65dB; however, this was not sig-
nificant enough to result in user noticeable system per-
formance degradation.

We generated two alerts, corresponding to these two
incidents for this data set. Our algorithm to generate
alerts from the raw aggregate q-values is based on both
the signal-to-noise and the historical quantiles of the
aggregate q-value, for which we use the data structure
proposed in [11].
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Identifying Precursors to Anomalies Using Inverse Reinforcement Learning∗
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Abstract

In this paper, we consider the problem of discovering can-

didate precursors to anomalies in a set of time sequenced

data. Typical scenarios involving time sequential data in-

clude dynamical systems and general monitoring systems.

In such scenarios, a precursor could be any event that fre-

quently precedes a given event of interest. Anomalies are

rare but significant events in time series data and identify-

ing precursors to anomalies is vital in proactive management.

In this work, an inverse reinforcement learning (IRL) based

method is formulated to succinctly represent the nominal

behavior and identify sequences that preceded the anoma-

lous events. A preliminary evaluation is performed on flight

recorded data identifying challenges and future directions for

application.

1 Introduction

In many applications including finance, study of natu-
ral calamities and extreme weather, network security [1]
etc., finding precursors to an event of interest (a phe-
nomenon) is a task of high importance. The knowledge
about precursors to these phenomena can be vital to
proactive management of risk. If precursor events could
be identied, appropriate alarming mechanisms can be
designed to either prevent or at least minimize the dele-
terious consequences of the phenomenon. Anomalous
events are rare but significant events which in many
cases, lead to an abnormal behavior or a risky situa-
tion. In such cases, it is important to analyze and iden-
tify precursors that lead to anomalies for proactive risk
management. This paper considers anomalies in time
sequenced data and attempts to discover candidate pre-
cursors to the anomalous events.

2 Discovering Precursors to Anomalies

In this section, an algorithm using inverse reinforcement
learning is proposed to identify candidate precursors to
anomalies in time series data. The section proceeds by

∗Supported by the NASA System-wide Safety and Assurance
Technologies (SSAT) Project.
†UARC, Nasa Ames Research Center, Moffett Field, CA
‡Verizon, Palo Alto, CA
§SGT Inc., Nasa Ames Research Center, Moffett Field, CA
¶Nasa Ames Research Center, Moffett Field, CA

introducing some background in inverse reinforcement
learning, using its solution to perform value function es-
timation and using the optimal value function, discover
precursors.

2.1 Inverse Reinforcement Learning The goal of
inverse reinforcement learning (IRL) is to determine
the underlying reward function using observed behavior
of the agent making decisions in a Markov Decision
Process (MDP). A finite MDP is a tuple (S, A, Ps,a,
γ and R(s)) where S is a state space with n states, A
is an action space with k actions, {Ps,a} are the state
transition probabilities corresponding to an action a at
state s, γ ∈ [0, 1) is the discount factor, R(s) ∈ R is the
underlying reward function. A policy π can be defined
as any map π : S 7→ A and the corresponding value
function at any state s1 can be given by

(2.1) V π(s1) = E[R(s1) + γR(s2) + γ2R(s3) + ...|π]

where the expectation is over the distribution of state
sequences (s1, s2, s3, ...) following the policy π starting
from s1.

Given the setting above, the goal of standard re-
inforcement learning is to determine a policy π∗ that
maximizes V π(s) among all policies for all s ∈ S. When
the agent’s reward function is known, this task can be
achieved using existing techniques for value function es-
timation [2]. However, in several situations, the agent’s
behavior is not completely known, i.e., the reward func-
tion cannot be defined easily. In such situations, the
expert’s observed behavior can be used to either recon-
struct the underlying reward function as in the case of
inverse reinforcement learning [3] or construct optimal
policies directly as in the case of apprenticeship learning
[4].

Assuming availability of sampled trajectories (rele-
vant to the problem involving time series in this paper),
the IRL problem can be posed as in [3]. The sampled
trajectories can be considered as demonstrations of both
the expert and non-expert acting in the MDP. Using the
trajectories, the value functions of the expert and non-
expert policies can be determined as follows. Let the
unknown reward function be parameterized as

(2.2) R(s) = α1φ1(s) + α2φ2(s) + ..+ αdφd(s)
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where the φi represent the features of the reward
function. The expert value function following policy
πE at state s1 can be given by

(2.3) V πE (s1) = E[R(s1) + γR(s2) + ...|π]

= E[α1φ1(s1) + α2φ2(s1) + ..+ αdφd(s1)

+ γα1φ1(s2) + γα2φ2(s2) + ..+ γαdφd(s2) + ..|πE ]

= E[α1(φ1(s1)+γφ1(s2)+ ..)+α2(φ2(s1)+γφ2(s2)+ ..)

+ ...+ αd(φd(s1) + γφd(s2) + ..)|πE ]

= α1E[(φ1(s1) + γφ1(s2) + ..)|πE ]+

+ α2E[(φ2(s1) + γφ2(s2) + ..)|πE ]

+ ...+ αdE[(φd(s1) + γφd(s2) + ..)|πE ]

= α1λ1 + α2λ2 + ..+ αdλd

where λi represent the feature expectations, i.e., the
value function if the reward function is composed of
φi(s) only. After calculating the feature expecta-
tions knowing the state sequences, the value function
can be defined as a function of the unknown α =
[α1, α2, .., αd]

T as follows.

(2.4) V πE (α) =

d∑

i=1

αiλi

Similarly, by knowing the sequence of states (trajecto-
ries) for J sub-expert/non-optimal policies, the V πj (α)
can be calculated. The objective of IRL is to deter-
mine the coefficients αi so that V πE (α) ≥ V πj (α) for
j = 1, 2, ..J . A linear programming problem can be
solved for αi as follows

(2.5) min
α

J∑

j=1

ζj

(2.6) subject to





V πj (α)− V πE (α)− ζj ≤ 0

ζj ≥ 0, j = 1, 2, .., J

|αi| ≤ 1, i = 1, 1, .., d

2.2 Value Function Estimation The IRL problem
gives an optimal α which gives a model of the underly-
ing expert’s reward function. The reward function can
then be used to determine the expert’s value function
using a regular reinforcement learning algorithm. Any
of the methods described in [2] such as dynamic pro-
gramming, monte carlo or temporal difference depend-
ing on availability of the system model, ability to sample

etc. In this paper, considering sample time series from
a policy as monte carlo samples, the value function is
approximated as follows. For each policy πj including
the expert policy πE , a sample trajectory is used to
identify the state sequences and using the reward func-
tion obtained above, the values of every state in S is
updated. This is repeated for several trajectories from
the selected policy and the average returns are stored
as state values.

2.3 Precursor identification The value function of
the expert policy πE obtained above can be used to
compare a non-expert behavior to identify a possible
precursor sequence. V πE can be thought of as the
expert’s value function and any action that is greedy
with respect to the expert’s value function gives the
optimal policy π∗ [2]. Let the greedy action at s be
a∗(s) and the corresponding value be V π∗(s). In our
problem involving time series, the time sequence and
the physics of the problem can be used to restrict the
state space for searching optimal actions in some cases.
A given test time series can be analyzed as follows.
Using the state sequences of the test data and the
obtained reward function, the state values V πtest can
be estimated. By comparing the V πtest with V π∗ , we
can indirectly evaluate the actions taken by the agent
in the test trajectory. Let

(2.7) ∆V = V πtest(s)− V π∗(s)

and if ∆V ≤ 0, then it would mean that a sub-optimal
action has been taken by the agent executing the test
policy and by comparing over the state sequence, we
can identify a sequence of bad actions by the agent.
As defined earlier, an optimal action is one that cor-
responds to a nominal time series while a non-optimal
action would correspond to an anomalous sequence as
defined in the IRL problem. It should however be noted
that the test policy is evaluated just based on one time
series and hence not an expectation. However, the goal
is to identify the level of sub-optimality in the state se-
quences specifically executed by the test trajectory to
identify the precursor and not for the policy in general.
This assumption needs to be analyzed more in detail
and will be considered in the future. Further, if the
action space is well defined, instead of comparing the
value functions as above, the actions of the test agent
can be directly compared against the optimal actions of
the expert and precursors can be identified by noting
their difference.

3 Application to Flight Anomalies

In this section, the IRL based precursor discovery al-
gorithm is evaluated on flight time series data sets ob-
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tained from a FOQA (Flight Operations Quality As-
surance) archive. Typical FOQA parameters consist
of both continuous and discrete (categorical) data from
the avionics, propulsion system, control surfaces, land-
ing gear, the cockpit switch positions, and other critical
systems. Each flight record can have up to 500 param-
eters in the form of time sequences and are sampled at
1 Hz.

Flight anomalies are of significant interest within
the NASA System-wide Safety and Assurance Technolo-
gies (SSAT) project to assess the health of large com-
mercial fleets of aircraft. In this paper, flights that
violated exceedance thresholds on computed air-speed
are considered as operational anomalies. A specific ex-
ceedance defined as computed air-speed above a cer-
tain threshold (in knots) at an altitude of 1000 feet is
considered an operationally significant high-energy ap-
proach. The goal of this study is to discover precursors
to such high-energy approach flights [5] for use in proac-
tive flight management. The data set consists of about
20000 nominal flights (flights that did not violate the
exceedance and considered optimal with respect to the
exceedance) and about 250 anomalous flights.

3.1 Discovery of candidate precursor sequences
The FOQA raw data consists of more than 400 parame-
ters recorded as time sequences during the flight. How-
ever, to overcome the curse of dimensionality in solving
the Markov decision process in the IRL, the FOQA data
is abstracted to represent the various events happening
in a flight using a high level parameter such as the air-
craft energy. With the given definition of an anomaly,
the flight data is considered as a sample from an expert
policy (πE) if it doesn’t flag the exceedance or a sample
from a non-expert policy (πj) if it flags the exceedance.
A reward function R(s) can be defined as a linear com-
bination of several Gaussian functions defined with re-
spect to the states s. It has to be noted that the state
definition is given by s = [E D]T where E represents
the kinetic energy of the aircraft while D represents the
distance in nautical miles to touchdown. The reward
function R(s) can be represented as in equation (2.2)
where φi could represent Gaussian functions with mean
µi and spread σi and d represents the total number of
Gaussian functions in the state space. Using the re-
ward function with unknown coefficients αi the value
function of each trajectory is calculated and the IRL
problem is solved as in section 2.1. The optimal value
of α gives a model of the underlying reward function
that when used to solve the associated MDP, results in
maximum possibility of avoiding the given exceedance.
The model hyper-parameters including d, µi, σi are de-
termined based on cross-validating the learned model

on a hold-out data set. Following section 2.1, the ∆V
for a given test flight is calculated. A negative value for
∆V indicates that the given test flight performs inferior
to the optimal policy π∗ and a negative rate of ∆V indi-
cates a sequential inferior behavior. These two features
are used in defining precursor candidates for the given
test flight. It should be noted that the problem in hand
uses FOQA data that only records the state of the flight
and no explicit information about the intentions/actions
of the agent (a pilot) is available and hence we were re-
stricted to comparing the value functions as mentioned
in section 2.3

Using the identified precursor sequences of a given
test flight in terms of the states s, the FOQA historical
data can be used to identify the flight parameters that
are abnormal. The identified precursor sequence points
to a section of the flight prior to the adverse event where
interesting precursor events can be discovered. By mod-
eling a nominal distribution of the FOQA parameters,
any abnormality can be detected by comparison against
the nominal. The identified abnormal parameters may
contain information about possible factors that lead to
the adverse event. This is algorithmically analyzed and
validated by a domain expert.

4 Results and Discussion

In this section, a high-energy approach flight is analyzed
for precursors from 35 nautical miles until touchdown.
Figure 1 shows the evolution of the fight in terms of
the parameters reported by the algorithm as candidate
precursors. The blue shaded region represents the nom-
inal distribution of that parameter (99 percentile of the
non-exceedance flights) The green shaded regions of the
figure represent the sequence of precursors (a precursor
window) as identified by comparing the flight’s state
values to V π∗ .

It can be observed from Figure 1 that the computed
air-speed of the flight is high compared to the nominal
distribution of the non-exceedance flights indicating
that the test flight is indeed an example of a high-energy
approach. Further, out of the 56 chosen parameters
from the FOQA list, only 11 were listed as possible
precursor parameters as these parameters were out
of the nominal distribution in the precursor window.
The algorithm also reported ground speed which is
correlated with the computed air-speed, vertical speed,
stabilizer position, engine speed, flight director specified
speed etc. However, a close look at the discrete
parameters reported by the algorithm gives a clear
picture of the actions responsible for the anomalies,
i.e., the landing gear has been deployed a little earlier
compared to nominal flights and the flaps were deployed
very late causing the aircraft to slow down late leading
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Figure 1: Figure showing the test flight trajectory (black curve) along with the precursor window (green region)
as identified by the IRL algorithm. The nominal distribution of the continuous parameters such as computed
air-speed, engine RPM, stabilizer position, vertical speed and ground speed are shown in blue - light blue region
represents 0 - 99 percentile while dark blue region represents 25 - 75 percentiles. The nominal distribution of
discrete variables including landing gear, flaps, auto speed control are shown by blue curve with markers indicating
the probability of the variable having a value of 1.

to the exceedance (In the discrete plots, the marked
blue curve represents the probability that a nominal
discrete event takes a value of 1). Both these factors
were validated by domain experts as probable precursors
to the high speed exceedance. The initial high computed
air-speed followed by a lack of optimal action (which is
to deploy landing gear and flaps on time) in this case
can be concluded as a valid precursor for flights violating
the high-speed exceedance at 1000 feet altitude.

5 Conclusions

In this paper, a novel method to discover precursors to
anomalies has been formulated using inverse reinforce-
ment learning. It is argued that a value function of a
non-expert, if compared against the optimal value func-
tion of an expert, can be used to identify instances of
a “bad” or sub-optimal actions/situations in time se-
ries data. A high dimensional FOQA time series data
has been abstracted and used for preliminary evalua-
tion of the algorithm. The results indicate that the al-
gorithm indeed finds the precursors that were validated
by a domain expert. Although the analysis on a cou-
ple of flights gave us promising results, the algorithm is
at infancy and requires extensive validation for which
data sets with ground truth information about the pre-
cursors and anomalies are required. Also, for precursor
identification, an appropriate performance metric will

be identified for evaluation of this algorithm in future.
Finally, some of the underlying hypotheses/assumptions
of the algorithm will be tested in future.
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