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Abstract interpretability.

Supervised latent Dirichlet allocation (SLDA) [5] is such
Although mixed-membership models have achieveda mixed-membership model which takes response variables
great success in unsupervised learning, they have not beelinto account. However, the response variables in SLDA are
widely applied to classification problems. In this paper, real numbers assumed to be generated from a normal linear
we propose a family of discriminative mixed-membership model, which is different from categorical labels in the €on
models for classification by combining unsupervised mixed-text of classification. In principle, the authors proposed a
membership models with multi-class logistic regression. | general framework to extend SLDA to deal with other types
particular, we propose two variants respectively applica- of response variables, including categorical labels, thase
ble to text classification based on latent Dirichlet alloca- generalized linear models (GLM) [14]. However, efficient
tion and usual feature vector classification based on mixed-inference in the general case is difficult without the good
membership naive Bayes models. The proposed models alroperties of Gaussian distribution. In addition, SLDA is
low the number of components in the mixed membershiponly designed to handle text data or a sequence of homoge-
to be different from the number of classes. We proposenous tokens, while several real world classification prob-
two variational inference based algorithms for learningth  lems involve heterogenous features with measured values,
models, including a fast variational inference which isssub e.g., most datasets in the UCI benchmark.
stantially more efficient than mean-field variational appro In this paper, we propose discriminativemixed-
imation. Through extensive experiments on UCI and textmembership (DM) models by combining multi-class logis-
classification benchmark datasets, we show that the modelsic regression with unsupervised MM models. In particular,
are competitive with the state of the art, and can discover we consider two variants—discriminative latent Dirichlet
components not explicitly captured by the class labels. allocation (DLDA) and discriminative mixed-membership
naive Bayes (DMNB). DLDA is applicable to text classi-
fication and uses latent Dirichlet allocation (LDA) [6] as
1 Introduction the underlying MM model. DMNB is applicable to non-
text classification involving numerical feature vectorslan
uses mixed-membership naive Bayes (MNB) [2] as the un-
derlying MM model. The mixed-membership representa-

as topic modeling [6], bioinformatics [1] and social networ t|_on generated by D_M IS b_|ased _by Cl.ass Iabel; and can be
viewed as a supervised dimensionality reduction. Further,

analysis [12]. A key advantage of such models is that they since DM allows the number of componetin the mixed

provide a succinct and interpretable representation of oth membershio to be different from the number of classes
erwise large and high-dimensional datasets. However, onethe m %SI F1:t n discovers additional latent structure E‘z o
important restriction of most existing MM models is that € model often CISCovers a y

they are unsupervised models and cannot leverage class Ia\tlﬁza;I(;?jzlllesebyr;[)heogaats\;ol?:r?qlifiev!t:f \ellz;:jil;?f);gfi:]ef::gnce
bel information for classification. On the other hand, while » W€ prop

popular classification algorithms, such as support vectoralgomth: onels baseq on |d.eas originally proposed n [.6]
machines (SVM) [7] and logistic regression (LR) [17], per- and the othe_r is more efficient in space and time comple>§|ty
form well on classification, the classifier itself is ofterrtha _l?_y lfsmg a S|gp|f|c?)ntly (Ijess n?or:it:s;t?;npsagmeteesrfe. dUirq“F;'S
to interpret. The above observation motivates our current aylor expansion based app 99 '

work on designing accu_rate d_iscriminative CI?-SSiﬁcatibn a 1«Discriminative” here does not mean a discriminative model, dut
gorithms while leveraging mixed-membership models for generative model used for classification instead of clusgeri

In recent years, mixed-membership (MM) models have
been found wide application in a variety of domains, such




the proposed inference algorithms maintain the lower bound2.2 Supervised LDA
maximization strategy used in variational inference.

Recently, there has been an increasing interest in mixed-  Supervised latent Dirichlet allocation (SLDA) [5] is an
membership models combining supervision information. extension of LDA which accommodates the response vari-
Other than SLDA, [10] proposed labeled latent Dirichlet aples other than the documents. The response variable
allocation to incorporate functional annotation of known s assumed to be generated from a normal linear model
genes to guide gene clustering. [13] proposed DiscLDA N (7'z, 52), wheren and o2 are the parameters and the
which determines document position on topic simplex with ¢qyariatess — ZNfl zn /N are the empirical average fre-
guidance of labels. [15] proposed a Dirichlet-multinomial quencies of each latent topic in the document. The density
regression which accommodates different types of meta-fynction of SLDA is given as follows:

data, including labels. [19] proposed a correlated lalgelin )
model for multi-label classification. [18] extends SLDA for p(z1n, yla, Bk, n,07)

image classification and annotation. N )
The rest of the paper is organized as follows: In Sec- Z/P(ﬂa)z 11 pGalm)p(znlzn, Bik) |p(ylz1n, m, 0% .
n=1

s
Z1:N

tion 2, we give a brief overview of mixed-membership

models. In Section 3, we propose discriminative mixed-
membership models. In Section 4, a variational approach
for learning DM is given. We present the experimental re-
sults in Section 5 and conclude in Section 6. In the follow-

ing sections, mixed-membership models particularly refer
to LDA and MNB. 2.3 Mixed-membership naive Bayes

Sincey is assumed to be generated from a univariate normal
linear model, SLDA is constrained to deal with one dimen-
sional real-valued response variables.

Although LDA achieves a good performance in topic
modeling, it suffers from two limitations [2]: (1) LDA can-
not deal with data points with measured feature values. (2)
In this section, we give an overview on two LDA cannot deal with data points with heterogenous fea-

mixed-membership models—Iatent Dirichlet allocation and tures. MNB relaxes these limitations by introducing a sepa-

mixed-membership naive Bayes models. We also briefly in- rate exponential family distribution [3] for each featuttds
troduce supervised latent Dirichlet allocation. designed to deal with sparse and heterogenous feature vec-

tors. Given a data point; ., the density function of MNB
model withk components is as follows:

2 Generative mixture models

2.1 Latent Dirichlet allocation

N
ol @)= plrte)| [T S palmlp, (onlen.60)] .

LDA [6] is a three-level Bayesian model as an extension " foterfios

of finite mixture models (FMM) for topic modeling. Instead RN

of having a fixed component proportiarfor all data points ~ where 3z,, indicates that the model only considers the

as in FMM, LDA maintains a separate component propor- non-missing feature®) = {6,,, [n])'} are the parameters

tion 7 over k components for each documeny 5, andr for the distributions ofN features respectively, and each

is sampled from a Dirichlet distribution Oir). For a se- 6, = {6,.,[i]}} are the parameters ovkrcomponents of

quence of words in a document. v and the corresponding  featuren. py, (z,|zx,,0,) is an exponential family distri-

sequence of components (topies)y, LDA has a density  bution with a form ofpy (2]6) = exp((x, 8) — ¥(0))po(x),

of the form wheref is the natural parametepy-) is the cumulant func-
tion, andpy(x) is a non-negative base measurg.deter-

))dﬂ’ mines a particular family, such as Gaussian, Poisson, etc.,
andé determines a particular distribution in that family.

N
p(-Tl:N|O¢7 ﬁl:k):/p(ﬂ|a)<nzp(2n|ﬂ')p($n|zna Bk

n=1 zn

wheres,., = {6, [} ([{]f =i =1,..., k) isacollection . _ _
of parameters fok component distributions, each of which 3 Discriminative mixed-member ship models
is a Discrete distribution over all words in the dictionary.

Getting a closed form expression for the marginal den-  We motivate discriminative mixed-membership models
sity p(z1.n |, B1.x) is intractable. Variational inference [6] by considering two important limitations of SLDA [5]
and Gibbs sampling [11] are two most popular approacheswhich prevent it from being used as a discriminative clas-
proposed to address the problem. sification model: First, the response variables in SLDA are



(} ( ) 2. For each word in the document,
a [n (a) Choose a component = i ~ Discretér).
Oh@- C’ ® O (b) Choose aword,, ~ Discreté3;).
c N y z XN| B« 3. Choose the label from a multi-class logistic regression
exp(nj 2) c—1
(2) DLDA y~LR (—HZ?; e’xp(ngz))’ i
C} C Z is an average of;.y over all observed words, where each
o m 2z, is a k-dimensional unit vector with only thé" entry
i being 1 if it denotes thé" component. The categorical re-
Q{”.* ( >Z .X e<> sponse variablg can be considered as a sample generated
c y NI b kN from the Discrete distributiortp,,...p.—1,1 — Y5_" pr)
(o) DMNB wherep, = % for [A]{". In two-class classifi-
h=1\"p #
. . . . 1
Figure 1. Graphical models for DLDA and DMNB. cation,y is 0 or 1 generated from Bernoulﬂm),

variat | b dtob ted f i.e., the model needs only omen the two-class case.
univariate real numbers assumed to be generated fromanor- - 1 oo oo two important properties of DLDA and DM

mal linear _model, Wherea_\s the response var_lables,_|.e., 1851 0dels in general: (1) The-dimensional mixed member-
bels, are discrete categories in the classification setfikg

; - ship z effectively serves as a low dimensional representa-
though the authors pointed out that the response varlable%on of the original document. While in LDA is inferred

can be of various t.ypes obta}lne_d_from generalized Ilnearin an unsupervised way, it is obtained from a supervised di-
models, variational inference is difficult in the generaea

Whil Tavl o ded I5 biai mensionality reduction in DLDA. We give the explanation
e a faylor expansion Is recommende [5] to obtain in Section 4. (2) DLDA allows the number of classesnd
an approximation of the log-likelihood, such an approach

o _ the number of componentsin the generative model to be
forgoes the lower bound guarantee of variational inference

. ! . ) different. If & was forced to be equal tg for problems with
Second, like LDA, SLDA is designed for text data viewed a small number of classeswould have been arather coarse
as a sequence of homogeneous tokens. However, most no

text classification task the UCI benchmark dat tr}épresentation of the document. In particular, for twessla
ext classilication tasks, €.g., the enchmark gatasets roblemsz would lie on the 2-simplex which may not be an

have features with reasur ed yalues. Further_, the feature formative representation for classification purposes- D
could be heterogenous with different semantics, different coupling the choice of from ¢ prevents such pathologies.
[h principle, we may find a propérusing Dirichlet process
mixture models [4].

From the generative model, the joint distribution of latent
' and observable variables for DLDA is given by

and zip code. SLDA is not designed for such data.

The proposed family of discriminative mixed mem-
bership models overcome both limitations. In particular
DLDA is a variant of SLDA which accommodates cate-
gorical response variables and is hence suitable for text p(m, 218, 21, Y|, Bk, Mise-1) @)
classification tasks. Further, DMNB is a variant of MNB, N
i.e., a generalization suitable for discriminative clisai ~ =P(7|c) (H p(anW)p(xnlzn,ﬂm)) PYlz1:N, Mie1) -
tion with (non-text) heterogenous feature vectors. In@¥in n=1
ple, DMNB works for sparse data, but the sequel only con- |ntegrating (1) overr and summing it ovet,. yields the
siders the non-sparse case for ease of exposition. marginal distribution of z1.x, ):

3.1 Discriminative LDA (@1, yles Brik; tie—1) z/p(ﬂa) @

s

N
Assuming there are classes and the number of com- Z (H p(zn|7r)p(xn|zn,ﬁ1:k)> PYlz1n, Mie—1)dm .
ponents we choose ig the graphical model for DLDA is o
given in Figure 1(a), where: is a k-dimensional parame-
ter of a Dirichlet distribution,3;.,, are the parameters for
k component distributions over the words with each com- 5
ponent referring to a topic, angl.. = [n1,---,n.]7 is a
matrix with ¢ k-dimensional logistic reé?essionnpgrameters P(X, Vlev, Brites Mze-1) = H/ﬂ p(mala) ®)
as the rows, wherg, is a zero vector by default, so we only =177
usen;.._1 as the parameter to be estimated. The generative Z (

n=1

The probability of the entire data set 6f documents and
their labels(X = {x4, [d]P}, Y = {yq, [d]P}) is given by

process for each document. i is given as follows:

11 pzanl7a)p(@an| zan, ﬁm)) p(Yalza:n, Nic—1)dmq -
1. Choose a component proportiorn~ Dirichlet(«).

zg,1:N \n=1



(8¢
StdDLDA | s ox exp (W) = W(SL, 3) + Xu_y Lww ~ 0)1og Bio + % X5 (g — exp(mui) /€))
Fast DLDA | ¢ o< exp (W(3) = (S, 1) + & 0Ly S0y 1w ~ v) log By, + NZifﬁ(nmyh—oxp<nhi)/s))
Std DMNB | i o exp (W(3) = W1, %) + (= ©2582 — log /202, + & 525! (muin — exp(mni) /€))
Fast DMNB | ¢; o exp (W(7) — W(S_, ) + PR (e it —log /270%,) + % 5 (i — exp(mi) /€) )

(b) ~ ©)¢
Std DLDA/DMNB | ~; = o + >0, b StdDLDA/DMNB | ¢ =1+ L5010 SV 6, exp(ima)
Fast DLDA/DMNB | 7 = a; + N¢; Fast DLDA/DMNB | £ = 1+ Y5_) S0 i exp(ins)

Table 1. Updates for variational parameters.

3.2 Discriminative MNB A special case of DMNB is when each featuteis
assumed to be generated from onekoGaussian distri-

Discriminative MNB is similar with DLDA except that  Putions with the mean., ={si.;, i)} and the variance
it keeps separate distributions for each feature. Given the?s=107:, [i]1}. The marginal distribution ofz 1., y) is:
graphical model in Figure 1(b), the generative process for

z1.y is as follows: p($1:N7y|O‘7/L1:N,1:kaG%:N,l:kanLC—l) = /p(ﬂ@) (4)
1. Choose a component proportiorn~ Dirichlet(«). "

2. For each feature in the data point > Hp 2n|T)P(Tn |20, fin, 1k, T 1 k)) (Yl21:N s Mic—1)dm

Z1:N

(a) Choose a component = i ~ Discretdr).

b) Choose a feature valug, ~ T |00 N )

(b) 8, ~ P, (T ) The probab|l|ty of the entire data st = {4, [d|P},Y =
3. Choose the label from a multi-class logistic regression {ya, [d]P}) is given by

exp(ny Z) ) e—1
~LR (HZ;C:I exp(nfz) /)’ [hl3

Py, (Tn|0n:) in 2(b) is an exponential family distribu- (XYl i 1k, 0T, 1o Mze—1) H/ (mala)  (5)
tion [3]. Comparing DMNB with DLDA, for each com-
ponent/topic;, DLDA has only one discrete distribution to Z
generate features (words), while DMNB has separate dis-
tributionspy,, (z,,|0,;) for different featuren. These com-
ponent distributions for DMNB could be of different types,
or a same type with different parameters, just like in naive . .
Bayes. Therefore, DMNB is more flexible than DLDA to 4 Inference and parameter estimation

deal with heterogenous features with measured values by

choosing a proper distribution for each feature.

DMNB could be considered as a generalization of naive  Since DM models assume a generative process for both
Bayes (NB) classifier extended in the following aspects: labels as well as the data points, instead of using labels di-
First, NB shares a component among all features, butrectly to train a classifier, we use baothand)’ as samples
DMNB has a separate component for each feature andfrom the generative process to estimate the parameters of
maintains a Dirichlet-multinomial prior on all possible DM models such that the likelihood of observiig’, ))
combination of component assignments. Therefore theis maximized. Unlike naive Bayes [9], the parameters can-
components for different features might be different in not be directly estimated from the class labels due to the
DMNB, and NB could be considered as a special case whenlatent mixed memberships. In particular, due to the latent
z,, is the same for all features. Second, NB uses the shared/ariables, the computation of the likelihood in (2) and &) i
component as a class indicator, whereas DMNB uses thentractable. In this section, we present two alternative ap
mixed membership over separate components as inputs to @aroaches to obtain a variational approximation of the log-
logistic regression model which finally generates the classlikelihood and propose an expectation maximization (EM)-
label. Third, NB requireg=c while DMNB does not. In  style algorithm to iteratively obtain better estimatesluod t
principle, DMNB could be applied whenever naive Bayes model parameters. Finally, we show how the estimated pa-
is applicable. rameters can be used to do prediction on test data.

Hp Zdn|77 Idn|zd7n,un 1:k, 0. n,l: k)) (ydlzd,1:N7n1:c—l)d7Td .

2d,1:N



. 'lféso F;E“Ba Vggg' Vl/i;‘se V\{ggc E?’%fgi 'gg;’ S;;;f 28361% q- is space efficient especially for high-dimensional data.
N1 2 T8 1 13 32 =134 T80 1 19 It is also time efficient W!th.a substantially smaller num-
c | 3| 2 11 3 2 8 2 2 7 ber of parameters to optimize ovey; and g, determine
Table 2. UCI Data. two d|ffeIent varlatlon_al _mfere_nce algozlthms. We cakth
first one “standard variational inference” and the secored on
Nasa Classic3 Cd’IT;f“ CS'I“n? g;“r:e “fast variational inference”, which accordingly yield sta
5 1596 3893 3000 3000 | 3000 dard DM/MM (Std DM/MM) models as opposed to Fast
v 604 5923 7666 | 10083 | 5932 DM/MM models respectively. In the sequel, we ugéo
passenger| aeronautics| atheism| guns | graphics denoteq1 or qo unless otherwise necessary.
Classes flight crew | medicine | baseball| mideast| windows . .. L. . . .
mainte- | information-| | .| ms Given the variational distribution as in (8) or (9), the first
nance | retrieval | SP® | P windows five terms in the lower bound (7) can be easily obtained fol-
Table 3. Text Data. lowing LDA or MNB depending on which DM model we
are using. The most difficult part is the last term, which
4.1 Variational approximation cannot be computed exactly even after introducing the vari-

ational distributionq, so further approximation is needed

to log p(z1:n, yla, A 771 —1), we introduce a variational ~ derivation could be found in the Appendix. For standard

distribution (7, z1.x|Q)% as an approximation of the true DM models, we have

posterior distributiom(, z1. 5 |a, A, 71..—1) over the latent E,log p(y|z1:8, M:c—1)] (10)
variables, wheré is the set of variational parameters. By AL c—1 c—1 1
a direct application of Jensen’s inequality [6], the lower >_ZZ¢M (thhlyh——ZeXp 77;”>+(1———10g £),
bound tolog p(z1.n, y|a, A, m1.c—1) IS given by: n lim1 £

log p(z1:n, yla, Ay m1e—1) (6) and for Fast DM models, we have
>Egllog p(m, z1.n8, 1.8, Yl Ay e—1)] + H(q(m, z1:8)) - E,logp(y|z1:5,Mizc—1)] (11)

noticing thatz,.5 and y are conditionally independent

i k c c—1
e O I O e oy e 1ol and > > o <Z MhilYn — % Zexp(nm)> +(1- % —log¢),
givenzy.y, we have i=1 —

whereé > 0 is a new variational parameter introduced to

L=Eq[log p(r|a)HFEq[log p(z1:v[m)] ) obtain a lower bound for the last term in (7).
+Eq[log p(x1:n]21:n5, A)[=Ey [log g(m)|=Eqy[log q(z1:n)]
+E,[log p(ylz1:n, M:c—1)] - 41.1 Inference

We propose two different variational distributions Given a choice of model parametefs(), A® {")_ ),
q(m, z1.n). Following [6], we consider the lower bound to the log-likelihood for each data point
N in (7) becomes a function of the variational parame-
q1(m, 2187, ¢1:8) = @1 (7)) H a1(znlgn) ,  (8) ters L(a(t),A( ) ngt)*l’%(’b’g)i The goal of the infer-
i ence step is to obtain the tightest lower bound to the
where g; (]7) is a Dirichlet distribution forr and each ~ U€ tlog-l:kell(rt])ood which is achieved by maximizing
q1(zn|6,) is a Discrete distribution fot,,. Also, we pro- L(a® A® n) v, ¢, &) with respect toy, ¢ and¢. The

pose results of the variational parameters are given in Table 1,

N wherel(z,, ~ v) takes value 1 it is the index for thex!"
02 (7, 21:817: 0) = qa(ly) H q2(2n|®) » ©) word of the document in the dictionary and 0 otherwise, and

n=1 V is total number of the words in the dictionary.

wheregs (|y) is a Dirichlet distribution forr andgs (2, |¢) From Table 1,6 = [25:1 én1/N, ..., ZnN:1 G /N

is a Discrete distribution for alt,,. In bothg; andgs, we for DM and ¢ = [¢1,. .., ¢x] for Fast DM actually give

have ak-dimensional Dirichlety) for each data point, but  the posterior of;, i.e., the low-dimension representation of

we have a-dimensional Discret@,,) for each of N fea-  each data point. Note that the last term in all expressions

tures ing; and only one Discrete) for all features ing.. of ¢ containsy, showing that the low-dimension represen-

By keeping a substantially smaller number of parameters,tation not only depends om;.y, but also depends o,
27 denotess,.; for DLDA and ., for DMNB. wh|c_h means DM models achieve s_uperwsed d|mer_15|on re-
3To avoid clutter, we do not show the free variational paranseéq QUctlon. Removm_g the last ter.m gives _the expression of
unless necessary in the sequel. in the corresponding unsupervised settings.




Iris Pima Vowel Wine Wpbc Ecoli lono Sonar Seg
Std 0.9200 | 0.6500 | 0.4535 | 0.9706 | 0.7737 | 0.7895 | 0.6829 | 0.6300 | 0.6514
MNB +0.0613 | +0.0552| +0.0299| +0.0500| +0.0704 | +0.0629| +0.0579| +0.0789| +0.0293
Fast 0.9466 | 0.6868 0.4969 | 0.9470 | 0.7789 0.7950 | 0.7486 | 0.6100 | 0.6333
MNB +0.0688 | +0.0486 | +0.0332| +0.0647 | +0.0692 | +0.0595| +0.0643| +0.0516 | +0.0637
Std 0.9466 | 0.6553 | 0.6192 | 0.9647 | 0.7632 | 0.7788 | 0.7314 | 0.6000 | 0.6398
DMNB | +£0.0525| +0.571 | £0.0571| +0.0411| +0.0832| +0.0554 | +0.0895| +0.0822| +0.0397
Fast 0.9600 0.6645 | 0.6596 0.9765 0.7632 | 0.8060 0.8031 0.6596 0.7632
DMNB | +£0.0644 | +0.0632| +0.0409 | +0.0324 | +0.0832| +0.0762 | +0.1291 | +0.0918 | +0.0507

Table 4. Accuracy on UCI withk = c.

Iris Pima Vowel Wine Wpbc Ecoli lono Sonar Seg
Std 1.8850 | 3.5525 | 24.8176| 2.2563 | 3.0255 | 4.6465 | 5.2036 | 4.8948 | 120.2613
DMNB | +0.2232| +1.5372| +8.7263| +£0.2505| +0.6129| +1.1336| +3.1054| +4.509 | +77.2722
Fast 1.1651 2.0802 | 16.1795 | 1.0988 1.5965 3.9679 0.8220 1.0252 25.368
DMNB | £0.1771 | +£0.1668 | +0.4393 | £0.0425 | +0.2124 | +0.3937 | +0.0077 | £0.0751 | +6.3268

Table 5. Running time (seconds) of standard DMNB and Fast DMNB on UCI datakvithc.

4.1.2 Parameter estimation

Variational parametergp*, v*, £*) from the inference step
gives the optimal lower bound to the log-likelihood of
each pair of (z1.n5,y). Since we cannot maximize
log p(X, Y|a, A, m1..—1) directly, we maximize the aggre-
gate lower bound""_, L(¢%, 5, &5, a, A, 1.1 over all
data points with respect t@, A andn;.._; respectively to
obtain the estimated parameters. The estimations arid

A are the same as in the corresponding MM models [6, 2].

As for n, we have

Zd 1 Zn 1 ydhd)dnz/Nd

Nhi =
Zd SN B/ (Naka)
for standard DM models, and
nhi = log Zd 1 DdiYan
Zd 1 ¢d1/€d

for Fast DM models.
4.2 Variational EM algorithm

We propose an EM-style algorithm to find out
the optimal model parameters alternatively. Given
(=D, A=D1 pl=1)) from the initial guess or the last it-
eration. The algorithm alternates between the following tw
steps until convergence:

1. E-step: Givena®=D A¢=D p{=1)) for each data
point find the variational parameters
(t= 1)7A(t_1),77§fc7—12)’

(¢d 77d , d )_argmaXL((bd»'Yd &a,
(Pa,Yd:€a)

thenL(¢\”, 7", £: o, A, m1.._1) gives a lower bound to
log p(xq, ya|o, A, mrc—1)-

2. M-step: Maximizing the aggregate lower bound yields
an improved estimate of model parameters:

t)7"7(t2 1) argmaXZL ’Y(t) ((jt)7 ((it);aaAa 771:0—1) .

A’I)d 1

(a(t),A

After ¢ iterations,

D t t
S0 Lol

the objective function becomes

HDAG R Y Initerationt + 1,

b(

(Y (®) ¢g)7 ‘(;)’Oé(t A(t 1)

D
<YLY T WA )
d=1

D
<3 Ll e il AU ity
d=1
The first inequality holds becaus@e ™, ¢{™ ¢l

maximizes L (y4, g, ;@ A® 5ty in E-step, and

the second inequality holds becaL(sét“),A(t“),ngfj_l})

maXimizeSZdDZI L(’Y((it+1)? Elt+1)a ¢(it+1); a, A7 nl:c—l) inM

step. Therefore, the objective function is guaranteed to be
non-decreasing until convergence.

4.3 Prediction

Once we have the model parameters from EM, we can
usen:..1, the parameters for logistic regression, to do pre-
diction. Given a data point;., we have

E[logp(y = h|x1:N7 @, Av 771:(:—1)]
nf Elz] — Ellog(1 + Y5} exp(n]'2))]

0 — Elog(1 + 5} exp(nf2))]

Since the second term féh]{~! andh = c are the same,
we only need to comparey! E[z],--- ,nZ_, E[z],0). Ifthe
ht" term is the largest, the predicted class.is

The computation forE[z] is intractable, so we again
introduce variational distribution(, z1.y) and calculate
E,[Z] as an approximation of[z]. In particular,E,[z] =
+ Zflv:l ¢, for standard DM andy, (2] = ¢ for Fast DM.
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Figure 2. Histogram of Mixed-membership Entropy on Cmusim.

(a) Std LDA (b) Fast LDA
Nasa | Classic3 Cmu- Cmu- Cmu-
diff sim same
Std 0.9140 0.6733 0.9677 0.8143 0.5633
LDA +0.0140| +0.0254 | +0.0069 | + 0.0161| +0.0243
Fast 0.9194 0.6748 0.9773 0.8553 0.7730
LDA +0.0148| + 0.0242| £+ 0.0110| +0.0197 | +0.0205
Std 0.9220 0.6710 0.9600 0.8140 0.6267
DLDA | +£0.0127| +0.0256 | +0.0089 | +0.0252 | +0.0348
Fast 0.9237 0.6756 0.9800 0.8653 0.7900
DLDA | £0.0163 | +£0.0234 | +0.0102 | +0.0182 | +0.0315
Table 6. Accuracy on Text withk = c.
Nasa Classic3 Cmu- Cmu- Cmu-
diff sim same
Std 549.1762| 2176.6794| 1752.7828| 2344.6408| 1981.4625
DLDA | +£5.7491 | £(21.6241| +22.3689 | +966.5029| +0.0348
Fast | 36359 | 114.3461 | 27569 | 361029 | 40.1892
DLDA | +£0.2090 | +18.1366 | +0.61151 +2.9873 +5.8339

Table 7. Running time (seconds) of standard DLDA and

Fast DLDA on text data withk = c.

5 Experimental results

ters using all data points and their labels in the training se
in particular, we set the number of componeht® be the
number of classes, use the mean and standard deviation
(for Gaussian case only) of the data points in each class to
initialize A; and useD;/D to initialize «;, whereD,; is the
number of data points in clagsand D is the total number

of data points. Fory.._; in DM, we run a cross valida-
tion by holding out 10% of training data as the validation
set and use the parameters generating the best results on the
validation set. In particular, eaefj in n;..; takes value of
ruyp, whereuy, is a unit vector with thét* dimension be-

ing 1 and others being 0, amdakes values from 0 to 100 in
steps of 10. In principle, MM models are not used for clas-
sification, but given the initialization we have introduced
there is a one-to-one mapping between the component and
the class. Therefore, given the mixed membership on a test
data point, we pick the componenith the largest proba-
bility as the predicted component, if the correspondingsla

of component is the same with the class label, we consider
the data point as correctly classified, otherwise it is rkista

We present experimental results for DMNB on UCl data, enly classified. We use the percentage of correctly cladsifie
and for DLDA on text. Two types of experiments are in- data points, i.e., the accuracy, to compare DM and MM.

cluded: First, we compare DM to corresponding MM mod-
els. Second, we compare DM with other classification algo-
rithms. Experiments are run with a 10-fold cross validation

5.1 Datasets

The results for DMNB and DLDA are presented in Ta-
ble 4 and 6 respectively. We make two observations: (1)
Fast DM/MM models have a higher accuracy than the cor-
responding standard DM/MM models, with a few excep-
tions. (2) Standard DM models are not necessarily better
than standard MM models, but Fast DM models are usu-

We pick 9 datasets from UCI machine learning reposi- g1y petter than Fast MM models. The higher accuracy of

tory for DMNB. The number of data pointd)), features

Fast DM demonstrates the effects of logistic regression in

(N) and classesf in each dataset are in Table 2. We pick accommodating label information for DM models.

five text datasets for DLDA. The number of documerii3,(
the number of words in the dictionary’§, and the classes

We further investigate on the mixed memberships gen-

are in Table 3. Nasa is a subset of Aviation Safety Report- €rated by DM and MM models. In particular, we com-

ing System (ASRS) online datab4selt contains reports

pute the Shanon entropy for the mixed membership as

of flight problems originated by three sources. Others are@ Discrete distribution and compare the entropy among

commonly used benchmark datasets for text classification.

5.2 DM models vs. MM models

In this section, we compare DM models with= ¢ to
corresponding MM models. We initialize model parame-

4http://akama.arc.nasa.gov/ASRSDBOnNline/QueryWizargiBaspx

different algorithms. A low entropy implies almost a
“sole membership”, whereas a higher entropy implies a
real mixed membership. Figure 2 is an example show-
ing the histogram of mixed membership entropy on text
data of Cmusim using four variants of LDA. We can see
that for Fast LDA/DLDA, almost all data points have ex-
tremely small mixed-membership entropies, while for stan-
dard LDA/DLDA, the entropies fall into different ranges.



Iris Pima Vowel Wine Wpbc Ecoli lono Sonar Seg
FastDMNB | 0.9600 | 0.7197 | 0.6606 | 0.9765 | 0.7632 | 0.8152 | 0.8507 | 0.6600 | 0.6701

() +0.0644 | +£0.0602| +0.0323 | +0.0304| +£0.0832| +0.0862| +0.0891| +0.0876| +£0.0487
FastDMNB | 0.9600 | 0.7039 | 0.6980 | 0.9882 0.7737 | 0.8392 | 0.8543 | 0.8100 | 0.7632
(c+5) +0.0716 | £0.0542| +0.0267 | +0.0248 | +0.0954 | +0.0836 | +0.0908| +0.0907| 4+0.0412
Fast DMNB | 0.9667 0.7000 | 0.7020 0.9765 | 0.7789 0.8485 0.8943 0.8200 0.7684
(c+10) +0.0566 | +0.0638| +£0.0258 | +0.0411| +£0.1024 | +0.0515 | £0.0786 | +0.1059 | +0.0418
NB 0.9533 | 0.7578 0.6737 | 0.9705 | 0.7000 | 0.8363 | 0.8114 | 0.7268 | 0.6850

+0.0632 | +0.0617 | +0.0346| +0.0310| +0.0158| +0.0745| +0.0853| +0.0079 | +0.0625
0.9333 | 0.6500 | 0.4515 | 0.7471 | 0.8457 | 0.8030 | 0.7171 | 0.5350 | 0.8307

LR 0.0871 | +0.0552| +0.0444 | +£0.1469 | +0.0168| +0.0610| +0.0494 | +0.0709 | +0.0358
SUM 09733 | 0.7671 | 0.8354 | 0.9529 | 0.7842 | 0.8394 | 0.9171 | 0.7450 | 0.9745
+0.0466 | +0.0645 | +0.0469 | +0.0372| +0.1323 | +0.0670| +0.0594 | +0.0896| +0.0096
Table 8. Accuracy on UCI with Different Choices df.

Iris Pima Vowel Wine Wpbc Ecoli lono Sonar Seg

e 0.9466 | 0.6400 | 0.4121 | 0.9294 | 0.7632 | 0.7666 | 0.7057 | 0.5550 | 0.6082
’ +0.0688| +0.1577 | +£0.0446 | +0.1030| +0.0832| +0.0655 | +0.1159 | +0.0724| +0.0627
jmets | 0-9400 | 0.6368 | 0.6600 | 0.9176 | 0.7631 | 0.7636 | 0.8000 | 0.6100 | 0.6346
4+0.0913| +0.1101| £0.0966 | £0.0794| +0.0917| +0.0889 | -0.0819 | +0.0699| +0.0734

jmet10 | 0-9400 | 0.6663 | 0.4858 | 0.9235 | 0.7157 | 0.8121 | 0.8600 | 0.6450 | 0.6043
4+0.0857| +0.0572| +£0.0455| +0.0411| +0.1039| +0.1740| £0.0619 | +0.0845| +0.0931

Table 9. Accuracy on UCI from Fast MNB and logistic regression together withedifit choices of.

Similar results are obtained on UCI data. The interesting (SVM) [8], logistic regression (LR) and naive Bayes (NB)
observation indicates that fast variational inferencealbt models on UCI data; and compare Fast DLDA with SVM,
generates “sole membership” while standard mean-fieldNB, LR and mixture of von Mises-Fisher (vMF) model on
variational inference generates real “mixed membership”. text data. Since DM models are combination of logistic re-
The fact that Fast DM/MM generates sole membership, asgression and mixed-membership model, we also compare
well as the previous observation that Fast DM/MM are bet- the results from DM with those from MM and logistic re-
ter than standard DM/MM in terms of accuracy, shows the gression in two steps sequentially.

correlation between “sole membership” and higher classi-
fication accuracy, although we are not sure about the exis-
tence of causality between them. “Mixed membership” may

be useful in various real applications, but it does not seem157 ¢+ 30, ¢ + 50, ¢ + 100). For initialization ofA, we use

to help in terms of classmcat!on accuracy. the mean and standard deviation (for Gaussian case only) of
We compare the running time between standard DM and e training data in given classes plus some perturbation if

Fast DM. The results for DMNB and DLDA are presented r < . for . we set it to bel /k on each dimension; and

in Table 5 and 7 respectively. In Table 5, although most o, we again use a cross validation as in Section 5.2.

of datasets are small, Fast DMNB is already faster thangqs, s\yvm. we use linear and RBF kernel with same cross

the standard DMNB, especially on the largest dataset Segzjigation strategy on the penalty parameter and the kernel
where Fast DMNB is about 5 times faster than standard parameter (for RBF only) taking values frord—> to 10°

DMNB. Fast DM.'s advgntage. increases when it. comes to multiplicative steps of 10 respectively.

the larger and higher-dimensional text data as in Table 7, _
where Fast DLDA is about 20 to 150 times faster than the _ TN results for Fast DMNB and DLDA are presented in
standard DLDA, showing Fast DM models’ absolute supe- Table 8 and 10. The top parts of the tables are the results
riority in terms of time efficiency. Combining the results rom the generative models, and the bottom parts are the
with the accuracy comparison in Table 4 and Table 6, we eSults from discriminative classification algorithms. rFo
can see that Fast DM models are generally more accurate VM, we report the highest accuracy of linear and RBF

and substantially faster than standard DM and MM models. kernels with different parameters. We use bold for the best
results among the generative models and use bold and italic

for the best results among all algorithms. Three parts of in-
formation could be read from the tables: (1) Overall, on text
datasets, Fast DLDA does better than all other algorithms,
Since Fast DM models have better performance thanincluding SVM, on almost all datasets, which is a promis-
standard DM models, in this subsection, we use Fast DMing result although more rigorous experimentations may be
to compare with other classification algorithms. In particu needed to make a further investigation; on UCI datasets,
lar, we compare Fast DMNB with support vector machine Fast DMNB also achieves higher accuracy than all other

For Fast DM models, we run the experiments with an
increasingk. In particular, for Fast DMNB, we usk =
(¢,c + 5,c+ 10), and for Fast DLDA, we usé = (c,c¢ +

5.3 Fast DM vs. other algorithms



Nasa | Classicz| CMY- Cmu- Cmu- 1 | runway, gwcra_ft, approach, tower, cleared, landing,airp
diff sim same turn, taxi, traffic, final, controller

FastDLDA | 0.9237 | 0.6756 | 0.9800 | 0.8653 | 0.7900 , | maintenance, aircraft, flight, minimum equipment list, &im
(k=c) £0.0163| +0.0234| +0.0102)| +£0.0182| +0.0315 check, engine, mechanical, installed, part, inspectiamkw
FastDLDA | 0.9232 | 0.6858 | 0.9747 | 0.8713 | 0.8458 passenger, flight, attendant, told, captain, seat,asked,
(k=c+15) +0.0144| +0.0216 | +0.0121| +0.0264 | +0.0214 3 back, attendants, aircraft, lavatory, crew
Fast DLDA | 0.9301 0.6838 0.9817 0.8707 0.8468 . — — : -
00" S (% S| ori ||| Ferar o st catry
FastDLDA | 0.9237 | 0.6854 | 09823 | 0.8700 | 0.8150 ’ g » Captain, oxygen,p 9

(k=c+50) | +0.0138| +0.0211| +0.0083 | +0.0230| +0.0184 _
FastDLDA | 0.0261 | 0.6866 | 0.0760 | 08718 | 0.8347 Table 12. Topics from Nasa.
(k=c+100) | +0.0102| +0.0245 | +0.0108| +0.0182 | +0.0187
0.9216 | 0.6509 | 0.9530 | 0.7447 | 0.7600

VMF 1+0.0113| +0.0246| +0.0071| +0.0214| +0.0347 of k following this two-step strategy are presented in Ta-
NB 0.9334 | 0.6766 | 0.9813 | 0.8613 | 0.8410 ble 9 and 11 for UCI and text data respectively. Comparing
+0.0094 | +0.0230| +0.0069) +0.0216| +0.0262 these results with Table 8 and 10, it is clear that DM models
LR f(')?gf; f('fggsz fd?gf; fﬂggo féf‘fzzg’g outperfo.rm the a_lgorithm using MM a_nq logistic regres_siqn
v 0.9192 | 0.6854 | 0.9563 | 0.8357 | 0.8120 sequenyally, which means, b_y combining _MM and Iogllst|c
+0.0146| +£0.0278| +£0.0105] +0.0156| +0.203 regression together, DM achieves supervised dimensional-

ity reduction to obtain a better low-dimensional repreaent
tion than MM, which further helps classification. Compar-
ing these results with the accuracy of logistic regression o

Table 10. Accuracy on text with different choices &f

. Cmu- Cmu- Cmu- . . N .
Nasa | Classic3| = .q sim same original data, we can see that there is no clear winner, which
= 0.9194 | 0.5609 | 0.9513 | 0.8560 | 0.7733 may depend on the quality of low-dimensional representa-
- +0.0148| +0.0281 | +0.0268| +0.0196 | +0.0339 tion generated from MM.
poets | 09118 [ 05611 | 0.9756 | 0.8550 | 0.8173 h ioned del .
40.0124| +0.0284| +0.0112| +0.0226!| +0.0197 As we have mentioned, DM models generate inter-
rer3o | 0-9080 | 0.5611 | 0.9760 | 0.8530 | 0.8183 pretable results. We give an example of several topic word
+0.0143| +0.0284| +0.0116| +£0.0216  +0.0168 lists on Nasa generated by Fast DLDA & ¢ + 30) in
poetso | 0-0085 | 05596 | 0.9746 | 0.8546 | 0.8040 Table 12. Itis al it i It d trating th
: 10.0132| +0.0284| +0.0123| £0.0248| +0.0201 able 12. Itis also an interesting result demonstrating the
r=er100 | 0-8926 | 0.6537 | 0.9423 | 0.7726 | 0.6726 effect of allowing a larger number of components than the
+0.0942| +0.0598| +0.0896] 0.1715 | +0.6726 number of classes, that is, Fast LDA may discover topics

which are not explicitly specified in class labels. The first
three topics in Table 12 correspond to three classes in Nasa
respectively, but topic 4, which we call “passenger medical
emergency”, could be considered as a subcategory of the
algorithms on most of datasets except SVM, which beats“passenger” class, and it is not specified in the labels. Nei-
Fast DMNB six out of nine times. (2) The better perfor- ther NB nor SVM is able to generate this type of results.
mance of Fast DM models compared with LR on original
datasets indicates that the low-dimensional representati
we generate helps the classification. (3) Interestingly, fo
Fast DMNB, the accuracy increases monotonically wkith
from ¢ to ¢+ 10 on most of the datasets. For Fast DLDA on In this paper, we have proposed discriminative mixed-
text data, an increasing of accuracy with a larges also membership models, as a combination of unsupervised
observed, although the result goes up and down without amixed-membership models and multi-label logistic regres-
clear trend. One possible reason for the increasing acgurac sion. We proposed a fast variational inference algorithm
is as follows: Wherk is too small, we are performing a which is substantially faster than the mean-field approxi-
drastic dimension reduction to represent each data point inmation used in LDA. An important property of DM models
a k-dimensional mixed membership representation, which is that they allow the number of componehtto be differ-
may cause a huge loss of information, but the loss may de-ent from the number of classes Interestingly, a largek
crease whet increases. helps to discover the components not specified in labels and
DM models do dimensionality reduction and classifica- increase classification accuracy. In addition, DM models
tion in one shot via a combination of MM models and logis- are competitive with the state of the art classification algo
tic regression. In principle, we may also use these two algo-rithms in terms of the accuracy, especially on text data, and
rithms sequentially in two steps, i.e., first using MM mod- are able to generate interpretable results. Future work in-
els to get a low-dimensional representation, and then ap-cludes using Dirichlet process mixture models to find out
plying logistic regression on the low-dimensional represe the proper value fok and extending the model to accom-
tation for classification. The results with different chesc ~ modate kernels.

Table 11. Accuracy on text from Fast LDA and logistic
regression together with different choiceskof

6 Conclusion



A Variational inference PuttingF, [log p(y|z1.n5, M1-c—1)] back to (7) gives us the
complete expression fdr. By maximizing (7) with respect
In this section, we give the derivation for variational in- to the variational and model parameters alternatively as in

ference in Section 4. Given the lower bound function as (7), Section 4, we find the optimal value foa, A, 71.c—1).

the first five terms could easily obtained following LDA or

MNB depending on which DM model is used, so we only Acknowledgements

work on the last ternE, [log p(y|z1.n5, M1:c)]-
The class labe} is from a multi-class logistic regres-
; exp(nj 2) k-1 ; - .
Sl_on_LR(_Hz,ﬁ_;} exp(n,{z))’ [R]T7", i.e.,y is from a discrete
distribution withn,.._; z the natural parameter. Therefore,
c—1 c—1

P(yl21:n M1c—1) =exp (anzyh —log(1+ze><p(m?2))> :

h=1 h=1
Accordingly,

Eq[logp(y‘zlzN;nl:cfl)] (12)

c—1 c—1
=E,[> uf zyn —log(1+ > exp(nj 2))]
h=1 h=1

c—1

i EqlZilyn — Eqllog(1+ Y exp(ny 2))] -
h=1

>
[
—
-
I
—

The second term of (12) could be expanded as follows:

c—1

— Eyflog(1+ Y exp(n] 2))]
h=1
c—1 k

> —log(1 + Z Eq[eXp(Z NhiZi)])

i=1

k
> —log(1+ Z Eq[z zi exp(nni)])

(13)

where the first inequality is from Jensen’s inequality, the
second inequality is also from Jensen’s inequality nogcin
that z is actually a Discrete distribution, and the third in-
equality is from—log(z) > 1 — i log(&) [16] by intro-
ducing a new variational parameter- 0. Given (13),

Eq[logp(y|zlzN7 771:c71)}

k c—1
z Z Eqzi] Z (Uhiyh - %exp(nhi)) +1- % —log(¢) ,
i=1

h=1
where in standard DM models, ;]
in fast DM models E,[z;] = ¢;.

N
+ >0 éni, and
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