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Abstract

Although mixed-membership models have achieved
great success in unsupervised learning, they have not been
widely applied to classification problems. In this paper,
we propose a family of discriminative mixed-membership
models for classification by combining unsupervised mixed-
membership models with multi-class logistic regression. In
particular, we propose two variants respectively applica-
ble to text classification based on latent Dirichlet alloca-
tion and usual feature vector classification based on mixed-
membership naive Bayes models. The proposed models al-
low the number of components in the mixed membership
to be different from the number of classes. We propose
two variational inference based algorithms for learning the
models, including a fast variational inference which is sub-
stantially more efficient than mean-field variational approx-
imation. Through extensive experiments on UCI and text
classification benchmark datasets, we show that the models
are competitive with the state of the art, and can discover
components not explicitly captured by the class labels.

1 Introduction

In recent years, mixed-membership (MM) models have
been found wide application in a variety of domains, such
as topic modeling [6], bioinformatics [1] and social network
analysis [12]. A key advantage of such models is that they
provide a succinct and interpretable representation of oth-
erwise large and high-dimensional datasets. However, one
important restriction of most existing MM models is that
they are unsupervised models and cannot leverage class la-
bel information for classification. On the other hand, while
popular classification algorithms, such as support vector
machines (SVM) [7] and logistic regression (LR) [17], per-
form well on classification, the classifier itself is often hard
to interpret. The above observation motivates our current
work on designing accurate discriminative classification al-
gorithms while leveraging mixed-membership models for

interpretability.
Supervised latent Dirichlet allocation (SLDA) [5] is such

a mixed-membership model which takes response variables
into account. However, the response variables in SLDA are
real numbers assumed to be generated from a normal linear
model, which is different from categorical labels in the con-
text of classification. In principle, the authors proposed a
general framework to extend SLDA to deal with other types
of response variables, including categorical labels, based on
generalized linear models (GLM) [14]. However, efficient
inference in the general case is difficult without the good
properties of Gaussian distribution. In addition, SLDA is
only designed to handle text data or a sequence of homoge-
nous tokens, while several real world classification prob-
lems involve heterogenous features with measured values,
e.g., most datasets in the UCI benchmark.

In this paper, we propose discriminative1 mixed-
membership (DM) models by combining multi-class logis-
tic regression with unsupervised MM models. In particular,
we consider two variants—discriminative latent Dirichlet
allocation (DLDA) and discriminative mixed-membership
naive Bayes (DMNB). DLDA is applicable to text classi-
fication and uses latent Dirichlet allocation (LDA) [6] as
the underlying MM model. DMNB is applicable to non-
text classification involving numerical feature vectors and
uses mixed-membership naive Bayes (MNB) [2] as the un-
derlying MM model. The mixed-membership representa-
tion generated by DM is biased by class labels and can be
viewed as a supervised dimensionality reduction. Further,
since DM allows the number of componentsk in the mixed
membership to be different from the number of classesc,
the model often discovers additional latent structure beyond
what implies by the class labels with a largerk. To learn
the model, we propose two families of variational inference
algorithms: one is based on ideas originally proposed in [6]
and the other is more efficient in space and time complexity
by using a significantly less number of parameters. Unlike
Taylor expansion based approximations suggested in [5],

1“Discriminative” here does not mean a discriminative model, buta
generative model used for classification instead of clustering.



the proposed inference algorithms maintain the lower bound
maximization strategy used in variational inference.

Recently, there has been an increasing interest in mixed-
membership models combining supervision information.
Other than SLDA, [10] proposed labeled latent Dirichlet
allocation to incorporate functional annotation of known
genes to guide gene clustering. [13] proposed DiscLDA
which determines document position on topic simplex with
guidance of labels. [15] proposed a Dirichlet-multinomial
regression which accommodates different types of meta-
data, including labels. [19] proposed a correlated labeling
model for multi-label classification. [18] extends SLDA for
image classification and annotation.

The rest of the paper is organized as follows: In Sec-
tion 2, we give a brief overview of mixed-membership
models. In Section 3, we propose discriminative mixed-
membership models. In Section 4, a variational approach
for learning DM is given. We present the experimental re-
sults in Section 5 and conclude in Section 6. In the follow-
ing sections, mixed-membership models particularly refer
to LDA and MNB.

2 Generative mixture models

In this section, we give an overview on two
mixed-membership models—latent Dirichlet allocation and
mixed-membership naive Bayes models. We also briefly in-
troduce supervised latent Dirichlet allocation.

2.1 Latent Dirichlet allocation

LDA [6] is a three-level Bayesian model as an extension
of finite mixture models (FMM) for topic modeling. Instead
of having a fixed component proportionπ for all data points
as in FMM, LDA maintains a separate component propor-
tion π overk components for each documentx1:N , andπ
is sampled from a Dirichlet distribution Dir(α). For a se-
quence of words in a documentx1:N and the corresponding
sequence of components (topics)z1:N , LDA has a density
of the form

p(x1:N |α, β1:k)=

∫

π

p(π|α)

(

N
∏

n=1

∑

zn

p(zn|π)p(xn|zn, β1:k)

)

dπ ,

whereβ1:k = {βi, [i]
k
1} ([i]k1 ≡ i = 1, . . . , k) is a collection

of parameters fork component distributions, each of which
is a Discrete distribution over all words in the dictionary.

Getting a closed form expression for the marginal den-
sity p(x1:N |α, β1:k) is intractable. Variational inference [6]
and Gibbs sampling [11] are two most popular approaches
proposed to address the problem.

2.2 Supervised LDA

Supervised latent Dirichlet allocation (SLDA) [5] is an
extension of LDA which accommodates the response vari-
ables other than the documents. The response variable
is assumed to be generated from a normal linear model
N(ηT z̄, σ2), whereη and σ2 are the parameters and the
covariates̄z =

∑N

n=1 zn/N are the empirical average fre-
quencies of each latent topic in the document. The density
function of SLDA is given as follows:

p(x1:N , y|α, β1:k, η, σ
2)

=

∫

π

p(π|α)
∑

z1:N

(

N
∏

n=1

p(zn|π)p(xn|zn, β1:k)

)

p(y|z1:N , η, σ
2)dπ .

Sincey is assumed to be generated from a univariate normal
linear model, SLDA is constrained to deal with one dimen-
sional real-valued response variables.

2.3 Mixed-membership naive Bayes

Although LDA achieves a good performance in topic
modeling, it suffers from two limitations [2]: (1) LDA can-
not deal with data points with measured feature values. (2)
LDA cannot deal with data points with heterogenous fea-
tures. MNB relaxes these limitations by introducing a sepa-
rate exponential family distribution [3] for each feature.It is
designed to deal with sparse and heterogenous feature vec-
tors. Given a data pointx1:N , the density function of MNB
model withk components is as follows:

p(x1:N |α,Θ)=

∫

π

p(π|α)







N
∏

n=1
∃xn

∑

zn

p(zn|π)pψn
(xn|zn, θn)






dπ ,

where ∃xn indicates that the model only considers the
non-missing features,Θ = {θn, [n]N1 } are the parameters
for the distributions ofN features respectively, and each
θn = {θni, [i]

k
1} are the parameters overk components of

featuren. pψn
(xn|zn, θn) is an exponential family distri-

bution with a form ofpψ(x|θ) = exp(〈x, θ〉 − ψ(θ))p0(x),
whereθ is the natural parameter,ψ(·) is the cumulant func-
tion, andp0(x) is a non-negative base measure.ψ deter-
mines a particular family, such as Gaussian, Poisson, etc.,
andθ determines a particular distribution in that family.

3 Discriminative mixed-membership models

We motivate discriminative mixed-membership models
by considering two important limitations of SLDA [5]
which prevent it from being used as a discriminative clas-
sification model: First, the response variables in SLDA are
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Figure 1. Graphical models for DLDA and DMNB.

univariate real numbers assumed to be generated from a nor-
mal linear model, whereas the response variables, i.e., la-
bels, are discrete categories in the classification setting. Al-
though the authors pointed out that the response variables
can be of various types obtained from generalized linear
models, variational inference is difficult in the general case.
While a Taylor expansion is recommended [5] to obtain
an approximation of the log-likelihood, such an approach
forgoes the lower bound guarantee of variational inference.
Second, like LDA, SLDA is designed for text data viewed
as a sequence of homogeneous tokens. However, most non-
text classification tasks, e.g., the UCI benchmark datasets,
have features with measured values. Further, the features
could be heterogenous with different semantics, different
ranges of values, etc., such as a customer’s age, occupation
and zip code. SLDA is not designed for such data.

The proposed family of discriminative mixed mem-
bership models overcome both limitations. In particular,
DLDA is a variant of SLDA which accommodates cate-
gorical response variables and is hence suitable for text
classification tasks. Further, DMNB is a variant of MNB,
i.e., a generalization suitable for discriminative classifica-
tion with (non-text) heterogenous feature vectors. In princi-
ple, DMNB works for sparse data, but the sequel only con-
siders the non-sparse case for ease of exposition.

3.1 Discriminative LDA

Assuming there arec classes and the number of com-
ponents we choose isk, the graphical model for DLDA is
given in Figure 1(a), whereα is a k-dimensional parame-
ter of a Dirichlet distribution,β1:k are the parameters for
k component distributions over the words with each com-
ponent referring to a topic, andη1:c = [η1, · · · , ηc]

T is a
matrix with c k-dimensional logistic regression parameters
as the rows, whereηc is a zero vector by default, so we only
useη1:c−1 as the parameter to be estimated. The generative
process for each documentx1:N is given as follows:

1. Choose a component proportionπ ∼ Dirichlet(α).

2. For each word in the document,
(a) Choose a componentzn = i ∼ Discrete(π).
(b) Choose a wordxn ∼ Discrete(βi).

3. Choose the label from a multi-class logistic regression

y ∼ LR
(

exp(ηT
h z̄)

1+
Pc−1

h=1
exp(ηT

h
z̄)

)

, [h]c−1
1 .

z̄ is an average ofz1:N over all observed words, where each
zn is a k-dimensional unit vector with only theith entry
being 1 if it denotes theith component. The categorical re-
sponse variabley can be considered as a sample generated
from the Discrete distribution(p1, ...pc−1, 1 −

∑c−1
h=1 ph)

whereph =
exp(ηT

h z̄)

1+
Pc−1

h=1
(ηT

h
z̄)

for [h]c−1
1 . In two-class classifi-

cation,y is 0 or 1 generated from Bernoulli( 1
1+exp(−ηT z̄)

),
i.e., the model needs only oneη in the two-class case.

There are two important properties of DLDA and DM
models in general: (1) Thek-dimensional mixed member-
ship z̄ effectively serves as a low dimensional representa-
tion of the original document. Whilēz in LDA is inferred
in an unsupervised way, it is obtained from a supervised di-
mensionality reduction in DLDA. We give the explanation
in Section 4. (2) DLDA allows the number of classesc and
the number of componentsk in the generative model to be
different. Ifk was forced to be equal toc, for problems with
a small number of classes,z̄ would have been a rather coarse
representation of the document. In particular, for two-class
problems,̄z would lie on the 2-simplex which may not be an
informative representation for classification purposes. De-
coupling the choice ofk from c prevents such pathologies.
In principle, we may find a properk using Dirichlet process
mixture models [4].

From the generative model, the joint distribution of latent
and observable variables for DLDA is given by

p(π, z1:N , x1:N , y|α, β1:k, η1:c−1) (1)

=p(π|α)

(

N
∏

n=1

p(zn|π)p(xn|zn, β1:k)

)

p(y|z1:N , η1:c−1) .

Integrating (1) overπ and summing it overz1:N yields the
marginal distribution of(x1:N , y):

p(x1:N , y|α, β1:k, η1:c−1) =

∫

π

p(π|α) (2)

∑

z1:N

(

N
∏

n=1

p(zn|π)p(xn|zn, β1:k)

)

p(y|z1:N , η1:c−1)dπ .

The probability of the entire data set ofD documents and
their labels(X = {xd, [d]

D
1 },Y = {yd, [d]

D
1 }) is given by

p(X ,Y|α, β1:k, η1:c−1) =
D
∏

d=1

∫

πd

p(πd|α) (3)

∑

zd,1:N

(

N
∏

n=1

p(zdn|πd)p(xdn|zdn, β1:k)

)

p(yd|zd,1:N , η1:c−1)dπd .
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(a)φ

Std DLDA φni ∝ exp
(

Ψ(γi) − Ψ(
∑k

l=1 γl) +
∑V

v=1 1(xn ∼ v) log βiv + 1
N

∑c−1
h=1(ηhiyh − exp(ηhi)/ξ)

)

Fast DLDA φi ∝ exp
(

Ψ(γi) − Ψ(
∑k

l=1 γl) + 1
N

∑N

n=1

∑V

v=1 1(xn ∼ v) log βiv + 1
N

∑c−1
h=1(ηhiyh − exp(ηhi)/ξ)

)

Std DMNB φni ∝ exp
(

Ψ(γi) − Ψ(
∑k

l=1 γl) +
(

− (xn−µni)
2

2σ2

ni

− log
√

2πσ2
ni

)

+ 1
N

∑c−1
h=1(ηhiyh − exp(ηhi)/ξ)

)

Fast DMNB φi ∝ exp
(

Ψ(γi) − Ψ(
∑k

l=1 γl) + 1
N

∑N

n=1

(

− (xn−µni)
2

2σ2

ni

− log
√

2πσ2
ni

)

+ 1
N

∑c−1
h=1(ηhiyh − exp(ηhi)/ξ)

)

(b) γ (c) ξ

Std DLDA/DMNB γi = αi +
∑N

n=1 φni
Fast DLDA/DMNB γi = αi +Nφi

Std DLDA/DMNB ξ = 1 + 1
N

∑c−1
h=1

∑k

i=1

∑N

n=1 φni exp(ηhi)

Fast DLDA/DMNB ξ = 1 +
∑c−1
h=1

∑k

i=1 φi exp(ηhi)

Table 1. Updates for variational parameters.

3.2 Discriminative MNB

Discriminative MNB is similar with DLDA except that
it keeps separate distributions for each feature. Given the
graphical model in Figure 1(b), the generative process for
x1:N is as follows:

1. Choose a component proportionπ ∼ Dirichlet(α).

2. For each feature in the data point

(a) Choose a componentzn = i ∼ Discrete(π).

(b) Choose a feature valuexn ∼ pψn
(xn|θni)

3. Choose the label from a multi-class logistic regression

y ∼ LR
(

exp(ηT
h z̄)

1+
Pc−1

h=1
exp(ηT

h
z̄)

)

, [h]c−1
1 .

pψn
(xn|θni) in 2(b) is an exponential family distribu-

tion [3]. Comparing DMNB with DLDA, for each com-
ponent/topici, DLDA has only one discrete distribution to
generate features (words), while DMNB has separate dis-
tributionspψn

(xn|θni) for different featuren. These com-
ponent distributions for DMNB could be of different types,
or a same type with different parameters, just like in naive
Bayes. Therefore, DMNB is more flexible than DLDA to
deal with heterogenous features with measured values by
choosing a proper distribution for each feature.

DMNB could be considered as a generalization of naive
Bayes (NB) classifier extended in the following aspects:
First, NB shares a component among all features, but
DMNB has a separate component for each feature and
maintains a Dirichlet-multinomial prior on all possible
combination of component assignments. Therefore the
components for different features might be different in
DMNB, and NB could be considered as a special case when
zn is the same for all features. Second, NB uses the shared
component as a class indicator, whereas DMNB uses the
mixed membership over separate components as inputs to a
logistic regression model which finally generates the class
label. Third, NB requiresk=c while DMNB does not. In
principle, DMNB could be applied whenever naive Bayes
is applicable.

A special case of DMNB is when each featuren is
assumed to be generated from one ofk Gaussian distri-
butions with the meanµn={µni, [i]k1} and the variance
σ2
n={σ2

ni, [i]
k
1}. The marginal distribution of(x1:N , y) is:

p(x1:N , y|α, µ1:N,1:k, σ
2
1:N,1:k, η1:c−1) =

∫

π

p(π|α) (4)

∑

z1:N

(

N
∏

n=1

p(zn|π)p(xn|zn, µn,1:k, σ
2
n,1:k)

)

p(y|z1:N , η1:c−1)dπ .

The probability of the entire data set(X = {xd, [d]
D
1 },Y =

{yd, [d]
D
1 }) is given by

p(X ,Y|α, µ1:N,1:k, σ
2
1:N,1:k, η1:c−1)=

D
∏

d=1

∫

πd

p(πd|α) (5)

∑

zd,1:N

(

N
∏

n=1

p(zdn|π)p(xdn|zdn, µn,1:k, σ
2
n,1:k)

)

p(yd|zd,1:N , η1:c−1)dπd .

4 Inference and parameter estimation

Since DM models assume a generative process for both
labels as well as the data points, instead of using labels di-
rectly to train a classifier, we use bothX andY as samples
from the generative process to estimate the parameters of
DM models such that the likelihood of observing(X ,Y)
is maximized. Unlike naive Bayes [9], the parameters can-
not be directly estimated from the class labels due to the
latent mixed memberships. In particular, due to the latent
variables, the computation of the likelihood in (2) and (4) is
intractable. In this section, we present two alternative ap-
proaches to obtain a variational approximation of the log-
likelihood and propose an expectation maximization (EM)-
style algorithm to iteratively obtain better estimates of the
model parameters. Finally, we show how the estimated pa-
rameters can be used to do prediction on test data.
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Iris Pima Vowel Wine Wpbc Ecoli Iono Sonar Seg
D 150 768 990 178 198 336 351 208 2310
N 4 8 11 13 34 7 34 60 19
c 3 2 11 3 2 8 2 2 7

Table 2. UCI Data.

Nasa Classic3
Cmu- Cmu- Cmu-
diff sim same

D 4226 3893 3000 3000 3000
V 604 5923 7666 10083 5932

Classes

passenger aeronautics atheism guns graphics
flight crew medicine baseball mideast windows

mainte- information-
space politics

ms-
nance retrieval windows

Table 3. Text Data.

4.1 Variational approximation

For each data point, to obtain a tractable lower bound
to log p(x1:N , y|α,Λ, η1:c−1)

2, we introduce a variational
distributionq(π, z1:N |Ω)3 as an approximation of the true
posterior distributionp(π, z1:N |α,Λ, η1:c−1) over the latent
variables, whereΩ is the set of variational parameters. By
a direct application of Jensen’s inequality [6], the lower
bound tolog p(x1:N , y|α,Λ, η1:c−1) is given by:

log p(x1:N , y|α,Λ, η1:c−1) (6)

≥Eq[log p(π, z1:N , x1:N , y|α,Λ, η1:c−1)] +H(q(π, z1:N )) .

We useL to denote the lower bound. Following [6] and
noticing that x1:N and y are conditionally independent
givenz1:N , we have

L=Eq[log p(π|α)]+Eq[log p(z1:N |π)] (7)

+Eq[log p(x1:N |z1:N ,Λ)]−Eq[log q(π)]−Eq[log q(z1:N )]

+Eq[log p(y|z1:N , η1:c−1)] .

We propose two different variational distributions
q(π, z1:N ). Following [6], we consider

q1(π, z1:N |γ, φ1:N ) = q1(π|γ)

N
∏

n=1

q1(zn|φn) , (8)

where q1(π|γ) is a Dirichlet distribution forπ and each
q1(zn|φn) is a Discrete distribution forzn. Also, we pro-
pose

q2(π, z1:N |γ, φ) = q2(π|γ)

N
∏

n=1

q2(zn|φ) , (9)

whereq2(π|γ) is a Dirichlet distribution forπ andq2(zn|φ)
is a Discrete distribution for allzn. In bothq1 andq2, we
have ak-dimensional Dirichlet(γ) for each data point, but
we have ak-dimensional Discrete(φn) for each ofN fea-
tures inq1 and only one Discrete(φ) for all features inq2.
By keeping a substantially smaller number of parameters,

2Λ denotesβ1:k for DLDA andθ1:kN for DMNB.
3To avoid clutter, we do not show the free variational parameters of q

unless necessary in the sequel.

q2 is space efficient especially for high-dimensional data.
It is also time efficient with a substantially smaller num-
ber of parameters to optimize over.q1 and q2 determine
two different variational inference algorithms. We call the
first one “standard variational inference” and the second one
“fast variational inference”, which accordingly yield stan-
dard DM/MM (Std DM/MM) models as opposed to Fast
DM/MM models respectively. In the sequel, we useq to
denoteq1 or q2 unless otherwise necessary.

Given the variational distribution as in (8) or (9), the first
five terms in the lower bound (7) can be easily obtained fol-
lowing LDA or MNB depending on which DM model we
are using. The most difficult part is the last term, which
cannot be computed exactly even after introducing the vari-
ational distributionq, so further approximation is needed.
We give the expression for the last term here, the details of
derivation could be found in the Appendix. For standard
DM models, we have

Eq[log p(y|z1:N , η1:c−1)] (10)

≥
1

N

N
∑

n=1

k
∑

i=1

φni

(

c−1
∑

h=1

ηhiyh−
1

ξ

c−1
∑

h=1

exp(ηhi)

)

+(1−
1

ξ
−log ξ) ,

and for Fast DM models, we have

Eq[log p(y|z1:N , η1:c−1)] (11)

≥

k
∑

i=1

φi

(

c−1
∑

h=1

ηhiyh −
1

ξ

c−1
∑

h=1

exp(ηhi)

)

+ (1 −
1

ξ
− log ξ) ,

whereξ > 0 is a new variational parameter introduced to
obtain a lower bound for the last term in (7).

4.1.1 Inference

Given a choice of model parameters(α(t),Λ(t), η
(t)
1:c−1),

the lower bound to the log-likelihood for each data point
in (7) becomes a function of the variational parame-
ters L(α(t),Λ(t), η

(t)
1:c−1, γ, φ, ξ). The goal of the infer-

ence step is to obtain the tightest lower bound to the
true log-likelihood, which is achieved by maximizing
L(α(t),Λ(t), η

(t)
1:c−1, γ, φ, ξ) with respect toγ, φ andξ. The

results of the variational parameters are given in Table 1,
where1(xn ∼ v) takes value 1 ifv is the index for thenth

word of the document in the dictionary and 0 otherwise, and
V is total number of the words in the dictionary.

From Table 1,φ̄ = [
∑N

n=1 φn1/N, . . . ,
∑N

n=1 φnk/N ]
for DM and φ = [φ1, . . . , φk] for Fast DM actually give
the posterior of̄z, i.e., the low-dimension representation of
each data point. Note that the last term in all expressions
of φ containsy, showing that the low-dimension represen-
tation not only depends onx1:N , but also depends ony,
which means DM models achieve supervised dimension re-
duction. Removing the last term gives the expression ofφ
in the corresponding unsupervised settings.

5



Iris Pima Vowel Wine Wpbc Ecoli Iono Sonar Seg
Std 0.9200 0.6500 0.4535 0.9706 0.7737 0.7895 0.6829 0.6300 0.6514
MNB ±0.0613 ±0.0552 ±0.0299 ±0.0500 ±0.0704 ±0.0629 ±0.0579 ±0.0789 ±0.0293
Fast 0.9466 0.6868 0.4969 0.9470 0.7789 0.7950 0.7486 0.6100 0.6333
MNB ±0.0688 ±0.0486 ±0.0332 ±0.0647 ±0.0692 ±0.0595 ±0.0643 ±0.0516 ±0.0637
Std 0.9466 0.6553 0.6192 0.9647 0.7632 0.7788 0.7314 0.6000 0.6398
DMNB ±0.0525 ±0.571 ±0.0571 ±0.0411 ±0.0832 ±0.0554 ±0.0895 ±0.0822 ±0.0397
Fast 0.9600 0.6645 0.6596 0.9765 0.7632 0.8060 0.8031 0.6596 0.7632
DMNB ±0.0644 ±0.0632 ±0.0409 ±0.0324 ±0.0832 ±0.0762 ±0.1291 ±0.0918 ±0.0507

Table 4. Accuracy on UCI withk = c.

Iris Pima Vowel Wine Wpbc Ecoli Iono Sonar Seg
Std 1.8850 3.5525 24.8176 2.2563 3.0255 4.6465 5.2036 4.8948 120.2613
DMNB ±0.2232 ±1.5372 ±8.7263 ±0.2505 ±0.6129 ±1.1336 ±3.1054 ±4.509 ±77.2722
Fast 1.1651 2.0802 16.1795 1.0988 1.5965 3.9679 0.8220 1.0252 25.368
DMNB ±0.1771 ±0.1668 ±0.4393 ±0.0425 ±0.2124 ±0.3937 ±0.0077 ±0.0751 ±6.3268

Table 5. Running time (seconds) of standard DMNB and Fast DMNB on UCI data withk = c.

4.1.2 Parameter estimation

Variational parameters(φ∗, γ∗, ξ∗) from the inference step
gives the optimal lower bound to the log-likelihood of
each pair of (x1:N , y). Since we cannot maximize
log p(X ,Y|α,Λ, η1:c−1) directly, we maximize the aggre-
gate lower bound

∑D

d=1 L(φ∗d, γ
∗

d , ξ
∗

d , α,Λ, η1:c−1) over all
data points with respect toα,Λ andη1:c−1 respectively to
obtain the estimated parameters. The estimations ofα and
Λ are the same as in the corresponding MM models [6, 2].
As for η, we have

ηhi = log

∑D

d=1

∑Nd

n=1 ydhφdni/Nd
∑D

d=1

∑Nd

n=1 φdni/(Ndξd)

for standard DM models, and

ηhi = log

∑D

d=1 φdiydh
∑D

d=1 φdi/ξd
for Fast DM models.

4.2 Variational EM algorithm

We propose an EM-style algorithm to find out
the optimal model parameters alternatively. Given
(α(t−1),Λ(t−1), η

(t−1)
1:c−1) from the initial guess or the last it-

eration. The algorithm alternates between the following two
steps until convergence:
1. E-step: Given(α(t−1),Λ(t−1), η

(t−1)
1:c−1), for each data

point, find the variational parameters

(φ
(t)
d ,γ

(t)
d ,ξ

(t)
d )=argmax

(φd,γd,ξd)

L(φd, γd, ξd, α
(t−1),Λ(t−1),η

(t−1)
1:c−1) ,

thenL(φ
(t)
d , γ

(t)
d , ξ

(t)
d ;α,Λ, η1:c−1) gives a lower bound to

log p(xd, yd|α,Λ, η1:c−1).
2. M-step: Maximizing the aggregate lower bound yields
an improved estimate of model parameters:

(α(t),Λ(t),η
(t)
1:c−1)=argmax

(α,Λ,η)

D
∑

d=1

L(γ
(t)
d ,φ

(t)
d ,ξ

(t)
d ;α,Λ, η1:c−1) .

After t iterations, the objective function becomes
∑D

d=1 L(γ
(t)
d ,φ

(t)
d ,ξ

(t)
d ;α(t),Λ(t),η

(t)
1:c−1). In iterationt+ 1,

D
∑

d=1

L(γ
(t)
d ,φ

(t)
d ,ξ

(t)
d ;α(t),Λ(t),η

(t)
1:c−1)

≤

D
∑

d=1

L(γ
(t+1)
d ,φ

(t+1)
d ,ξ

(t+1)
d ;α(t),Λ(t),η

(t)
1:c−1)

≤

D
∑

d=1

L(γ
(t+1)
d ,φ

(t+1)
d ,ξ

(t+1)
d ;α(t+1),Λ(t+1),η

(t+1)
1:c−1) .

The first inequality holds because(γ(t+1)
d ,φ

(t+1)
d ,ξ

(t+1)
d )

maximizesL(γd, φd, ξd;α
(t),Λ(t), η

(t)
1:c−1) in E-step, and

the second inequality holds because(α(t+1),Λ(t+1),η
(t+1)
1:c−1)

maximizes
∑D

d=1 L(γ
(t+1)
d ,φ

(t+1)
d ,ξ

(t+1)
d ;α,Λ, η1:c−1) in M

step. Therefore, the objective function is guaranteed to be
non-decreasing until convergence.

4.3 Prediction

Once we have the model parameters from EM, we can
useη1:c−1, the parameters for logistic regression, to do pre-
diction. Given a data pointx1:N , we have

E[log p(y = h|x1:N , α,Λ, η1:c−1)]

=







ηThE[z̄] − E[log(1 +
∑c−1
h=1 exp(ηTh z̄))] [h]c−1

1

0 − E[log(1 +
∑c−1
h=1 exp(ηTh z̄))] h = c .

Since the second term for[h]c−1
1 andh = c are the same,

we only need to compare
(

ηT1 E[z̄], · · · , ηTc−1E[z̄], 0
)

. If the
hth term is the largest, the predicted class ish.

The computation forE[z̄] is intractable, so we again
introduce variational distributionq(π, z1:N ) and calculate
Eq[z̄] as an approximation ofE[z̄]. In particular,Eq[z̄] =
1
N

∑N

n=1 φn for standard DM andEq[z̄] = φ for Fast DM.
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(a) Std LDA
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(b) Fast LDA
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(c) Std DLDA
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(d) Fast DLDA

Figure 2. Histogram of Mixed-membership Entropy on Cmusim.

Nasa Classic3
Cmu- Cmu- Cmu-
diff sim same

Std 0.9140 0.6733 0.9677 0.8143 0.5633
LDA ±0.0140 ±0.0254 ±0.0069 ± 0.0161 ±0.0243
Fast 0.9194 0.6748 0.9773 0.8553 0.7730
LDA ±0.0148 ± 0.0242 ± 0.0110 ±0.0197 ±0.0205
Std 0.9220 0.6710 0.9600 0.8140 0.6267
DLDA ±0.0127 ±0.0256 ±0.0089 ±0.0252 ±0.0348
Fast 0.9237 0.6756 0.9800 0.8653 0.7900
DLDA ±0.0163 ±0.0234 ±0.0102 ±0.0182 ±0.0315

Table 6. Accuracy on Text withk = c.

Nasa Classic3
Cmu- Cmu- Cmu-
diff sim same

Std 549.1762 2176.6794 1752.7828 2344.6408 1981.4625
DLDA ±5.7491 ±(21.6241 ±22.3689 ±966.5029 ±0.0348
Fast 3.6359 114.3461 27.569 36.1029 40.1892
DLDA ±0.2090 ±18.1366 ±0.61151 ±2.9873 ±5.8339

Table 7. Running time (seconds) of standard DLDA and
Fast DLDA on text data withk = c.

5 Experimental results

We present experimental results for DMNB on UCI data,
and for DLDA on text. Two types of experiments are in-
cluded: First, we compare DM to corresponding MM mod-
els. Second, we compare DM with other classification algo-
rithms. Experiments are run with a 10-fold cross validation.

5.1 Datasets

We pick 9 datasets from UCI machine learning reposi-
tory for DMNB. The number of data points (D), features
(N ) and classes (c) in each dataset are in Table 2. We pick
five text datasets for DLDA. The number of documents (D),
the number of words in the dictionary (V ), and the classes
are in Table 3. Nasa is a subset of Aviation Safety Report-
ing System (ASRS) online database4. It contains reports
of flight problems originated by three sources. Others are
commonly used benchmark datasets for text classification.

5.2 DM models vs. MM models

In this section, we compare DM models withk = c to
corresponding MM models. We initialize model parame-

4http://akama.arc.nasa.gov/ASRSDBOnline/QueryWizard Begin.aspx

ters using all data points and their labels in the training set,
in particular, we set the number of componentsk to be the
number of classesc; use the mean and standard deviation
(for Gaussian case only) of the data points in each class to
initialize Λ; and useDi/D to initializeαi, whereDi is the
number of data points in classi andD is the total number
of data points. Forη1:c−1 in DM, we run a cross valida-
tion by holding out 10% of training data as the validation
set and use the parameters generating the best results on the
validation set. In particular, eachηh in η1:c−1 takes value of
ruh, whereuh is a unit vector with thehth dimension be-
ing 1 and others being 0, andr takes values from 0 to 100 in
steps of 10. In principle, MM models are not used for clas-
sification, but given the initialization we have introduced,
there is a one-to-one mapping between the component and
the class. Therefore, given the mixed membership on a test
data point, we pick the componenti with the largest proba-
bility as the predicted component, if the corresponding class
of componenti is the same with the class label, we consider
the data point as correctly classified, otherwise it is mistak-
enly classified. We use the percentage of correctly classified
data points, i.e., the accuracy, to compare DM and MM.

The results for DMNB and DLDA are presented in Ta-
ble 4 and 6 respectively. We make two observations: (1)
Fast DM/MM models have a higher accuracy than the cor-
responding standard DM/MM models, with a few excep-
tions. (2) Standard DM models are not necessarily better
than standard MM models, but Fast DM models are usu-
ally better than Fast MM models. The higher accuracy of
Fast DM demonstrates the effects of logistic regression in
accommodating label information for DM models.

We further investigate on the mixed memberships gen-
erated by DM and MM models. In particular, we com-
pute the Shanon entropy for the mixed membership as
a Discrete distribution and compare the entropy among
different algorithms. A low entropy implies almost a
“sole membership”, whereas a higher entropy implies a
real mixed membership. Figure 2 is an example show-
ing the histogram of mixed membership entropy on text
data of Cmusim using four variants of LDA. We can see
that for Fast LDA/DLDA, almost all data points have ex-
tremely small mixed-membership entropies, while for stan-
dard LDA/DLDA, the entropies fall into different ranges.
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Iris Pima Vowel Wine Wpbc Ecoli Iono Sonar Seg
Fast DMNB 0.9600 0.7197 0.6606 0.9765 0.7632 0.8152 0.8507 0.6600 0.6701
(c) ±0.0644 ±0.0602 ±0.0323 ±0.0304 ±0.0832 ±0.0862 ±0.0891 ±0.0876 ±0.0487
Fast DMNB 0.9600 0.7039 0.6980 0.9882 0.7737 0.8392 0.8543 0.8100 0.7632
(c+5) ±0.0716 ±0.0542 ±0.0267 ±0.0248 ±0.0954 ±0.0836 ±0.0908 ±0.0907 ±0.0412
Fast DMNB 0.9667 0.7000 0.7020 0.9765 0.7789 0.8485 0.8943 0.8200 0.7684
(c+10) ±0.0566 ±0.0638 ±0.0258 ±0.0411 ±0.1024 ±0.0515 ±0.0786 ±0.1059 ±0.0418

NB
0.9533 0.7578 0.6737 0.9705 0.7000 0.8363 0.8114 0.7268 0.6850
±0.0632 ±0.0617 ±0.0346 ±0.0310 ±0.0158 ±0.0745 ±0.0853 ±0.0079 ±0.0625

LR
0.9333 0.6500 0.4515 0.7471 0.8457 0.8030 0.7171 0.5350 0.8307
0.0871 ±0.0552 ±0.0444 ±0.1469 ±0.0168 ±0.0610 ±0.0494 ±0.0709 ±0.0358

SVM
0.9733 0.7671 0.8354 0.9529 0.7842 0.8394 0.9171 0.7450 0.9745
±0.0466 ±0.0645 ±0.0469 ±0.0372 ±0.1323 ±0.0670 ±0.0594 ±0.0896 ±0.0096

Table 8. Accuracy on UCI with Different Choices ofk.

Iris Pima Vowel Wine Wpbc Ecoli Iono Sonar Seg

k=c
0.9466 0.6400 0.4121 0.9294 0.7632 0.7666 0.7057 0.5550 0.6082
±0.0688 ±0.1577 ±0.0446 ±0.1030 ±0.0832 ±0.0655 ±0.1159 ±0.0724 ±0.0627

k=c+5
0.9400 0.6368 0.6600 0.9176 0.7631 0.7636 0.8000 0.6100 0.6346
±0.0913 ±0.1101 ±0.0966 ±0.0794 ±0.0917 ±0.0889 ±0.0819 ±0.0699 ±0.0734

k=c+10
0.9400 0.6663 0.4858 0.9235 0.7157 0.8121 0.8600 0.6450 0.6043
±0.0857 ±0.0572 ±0.0455 ±0.0411 ±0.1039 ±0.1740 ±0.0619 ±0.0845 ±0.0931

Table 9. Accuracy on UCI from Fast MNB and logistic regression together with different choices ofk.

Similar results are obtained on UCI data. The interesting
observation indicates that fast variational inference actually
generates “sole membership” while standard mean-field
variational inference generates real “mixed membership”.
The fact that Fast DM/MM generates sole membership, as
well as the previous observation that Fast DM/MM are bet-
ter than standard DM/MM in terms of accuracy, shows the
correlation between “sole membership” and higher classi-
fication accuracy, although we are not sure about the exis-
tence of causality between them. “Mixed membership” may
be useful in various real applications, but it does not seem
to help in terms of classification accuracy.

We compare the running time between standard DM and
Fast DM. The results for DMNB and DLDA are presented
in Table 5 and 7 respectively. In Table 5, although most
of datasets are small, Fast DMNB is already faster than
the standard DMNB, especially on the largest dataset Seg,
where Fast DMNB is about 5 times faster than standard
DMNB. Fast DM’s advantage increases when it comes to
the larger and higher-dimensional text data as in Table 7,
where Fast DLDA is about 20 to 150 times faster than the
standard DLDA, showing Fast DM models’ absolute supe-
riority in terms of time efficiency. Combining the results
with the accuracy comparison in Table 4 and Table 6, we
can see that Fast DM models are generally more accurate
and substantially faster than standard DM and MM models.

5.3 Fast DM vs. other algorithms

Since Fast DM models have better performance than
standard DM models, in this subsection, we use Fast DM
to compare with other classification algorithms. In particu-
lar, we compare Fast DMNB with support vector machine

(SVM) [8], logistic regression (LR) and naive Bayes (NB)
models on UCI data; and compare Fast DLDA with SVM,
NB, LR and mixture of von Mises-Fisher (vMF) model on
text data. Since DM models are combination of logistic re-
gression and mixed-membership model, we also compare
the results from DM with those from MM and logistic re-
gression in two steps sequentially.

For Fast DM models, we run the experiments with an
increasingk. In particular, for Fast DMNB, we usek =
(c, c + 5, c + 10), and for Fast DLDA, we usek = (c, c +
15, c+ 30, c+ 50, c+ 100). For initialization ofΛ, we use
the mean and standard deviation (for Gaussian case only) of
the training data in given classes plus some perturbation if
k > c; for α, we set it to be1/k on each dimension; and
for η1:c−1, we again use a cross validation as in Section 5.2.
For SVM, we use linear and RBF kernel with same cross
validation strategy on the penalty parameter and the kernel
parameter (for RBF only) taking values from10−5 to 105

in multiplicative steps of 10 respectively.

The results for Fast DMNB and DLDA are presented in
Table 8 and 10. The top parts of the tables are the results
from the generative models, and the bottom parts are the
results from discriminative classification algorithms. For
SVM, we report the highest accuracy of linear and RBF
kernels with different parameters. We use bold for the best
results among the generative models and use bold and italic
for the best results among all algorithms. Three parts of in-
formation could be read from the tables: (1) Overall, on text
datasets, Fast DLDA does better than all other algorithms,
including SVM, on almost all datasets, which is a promis-
ing result although more rigorous experimentations may be
needed to make a further investigation; on UCI datasets,
Fast DMNB also achieves higher accuracy than all other
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Nasa Classic3
Cmu- Cmu- Cmu-
diff sim same

Fast DLDA 0.9237 0.6756 0.9800 0.8653 0.7900
(k=c) ±0.0163 ±0.0234 ±0.0102 ±0.0182 ±0.0315
Fast DLDA 0.9232 0.6858 0.9747 0.8713 0.8458
(k=c+15) ±0.0144 ±0.0216 ±0.0121 ±0.0264 ±0.0214
Fast DLDA 0.9301 0.6838 0.9817 0.8707 0.8468
(k=c+30) ±0.0128 ±0.0234 ±0.0099 ±0.0228 ±0.0190
Fast DLDA 0.9237 0.6854 0.9823 0.8700 0.8150
(k=c+50) ±0.0138 ±0.0211 ±0.0083 ±0.0230 ±0.0184
Fast DLDA 0.9261 0.6866 0.9760 0.8718 0.8347
(k=c+100) ±0.0102 ±0.0245 ±0.0108 ±0.0182 ±0.0187

vMF
0.9216 0.6509 0.9530 0.7447 0.7600
±0.0113 ±0.0246 ±0.0071 ±0.0214 ±0.0347

NB
0.9334 0.6766 0.9813 0.8613 0.8410
±0.0094 ±0.0230 ±0.0069 ±0.0216 ±0.0262

LR
0.9209 0.6396 0.9553 0.6750 0.4823
±0.0157 ±0.0252 ±0.0157 ±0.1330 ±0.1283

SVM
0.9192 0.6854 0.9563 0.8357 0.8120
±0.0146 ±0.0278 ±0.0105 ±0.0156 ±0.203

Table 10. Accuracy on text with different choices ofk.

Nasa Classic3
Cmu- Cmu- Cmu-
diff sim same

k=c
0.9194 0.5609 0.9513 0.8560 0.7733
±0.0148 ±0.0281 ±0.0268 ±0.0196 ±0.0339

k=c+15
0.9118 0.5611 0.9756 0.8550 0.8173
±0.0124 ±0.0284 ±0.0112 ±0.0226 ±0.0197

k=c+30
0.9080 0.5611 0.9760 0.8530 0.8183
±0.0143 ±0.0284 ±0.0116 ±0.0216 ±0.0168

k=c+50
0.9085 0.5596 0.9746 0.8546 0.8040
±0.0132 ±0.0284 ±0.0123 ±0.0248 ±0.0201

k=c+100
0.8926 0.6537 0.9423 0.7726 0.6726
±0.0942 ±0.0598 ±0.0896 0.1715 ±0.6726

Table 11. Accuracy on text from Fast LDA and logistic
regression together with different choices ofk.

algorithms on most of datasets except SVM, which beats
Fast DMNB six out of nine times. (2) The better perfor-
mance of Fast DM models compared with LR on original
datasets indicates that the low-dimensional representation
we generate helps the classification. (3) Interestingly, for
Fast DMNB, the accuracy increases monotonically withk
from c to c+10 on most of the datasets. For Fast DLDA on
text data, an increasing of accuracy with a largerk is also
observed, although the result goes up and down without a
clear trend. One possible reason for the increasing accuracy
is as follows: Whenk is too small, we are performing a
drastic dimension reduction to represent each data point in
a k-dimensional mixed membership representation, which
may cause a huge loss of information, but the loss may de-
crease whenk increases.

DM models do dimensionality reduction and classifica-
tion in one shot via a combination of MM models and logis-
tic regression. In principle, we may also use these two algo-
rithms sequentially in two steps, i.e., first using MM mod-
els to get a low-dimensional representation, and then ap-
plying logistic regression on the low-dimensional represen-
tation for classification. The results with different choices

1
runway, aircraft, approach, tower, cleared, landing, airport,
turn, taxi, traffic, final, controller

2
maintenance, aircraft, flight, minimum equipment list, time,
check, engine, mechanical, installed, part, inspection, work

3
passenger, flight, attendant, told, captain, seat,asked,
back, attendants, aircraft, lavatory, crew

4
passenger, flight, medical, attendant, emergency, aircraft
doctor, landing, attendants, captain, oxygen,paramedics

Table 12. Topics from Nasa.

of k following this two-step strategy are presented in Ta-
ble 9 and 11 for UCI and text data respectively. Comparing
these results with Table 8 and 10, it is clear that DM models
outperform the algorithm using MM and logistic regression
sequentially, which means, by combining MM and logistic
regression together, DM achieves supervised dimensional-
ity reduction to obtain a better low-dimensional representa-
tion than MM, which further helps classification. Compar-
ing these results with the accuracy of logistic regression on
original data, we can see that there is no clear winner, which
may depend on the quality of low-dimensional representa-
tion generated from MM.

As we have mentioned, DM models generate inter-
pretable results. We give an example of several topic word
lists on Nasa generated by Fast DLDA (k = c + 30) in
Table 12. It is also an interesting result demonstrating the
effect of allowing a larger number of components than the
number of classes, that is, Fast LDA may discover topics
which are not explicitly specified in class labels. The first
three topics in Table 12 correspond to three classes in Nasa
respectively, but topic 4, which we call “passenger medical
emergency”, could be considered as a subcategory of the
“passenger” class, and it is not specified in the labels. Nei-
ther NB nor SVM is able to generate this type of results.

6 Conclusion

In this paper, we have proposed discriminative mixed-
membership models, as a combination of unsupervised
mixed-membership models and multi-label logistic regres-
sion. We proposed a fast variational inference algorithm
which is substantially faster than the mean-field approxi-
mation used in LDA. An important property of DM models
is that they allow the number of componentsk to be differ-
ent from the number of classesc. Interestingly, a largerk
helps to discover the components not specified in labels and
increase classification accuracy. In addition, DM models
are competitive with the state of the art classification algo-
rithms in terms of the accuracy, especially on text data, and
are able to generate interpretable results. Future work in-
cludes using Dirichlet process mixture models to find out
the proper value fork and extending the model to accom-
modate kernels.
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A Variational inference

In this section, we give the derivation for variational in-
ference in Section 4. Given the lower bound function as (7),
the first five terms could easily obtained following LDA or
MNB depending on which DM model is used, so we only
work on the last termEq[log p(y|z1:N , η1:c)].

The class labely is from a multi-class logistic regres-

sion LR(
exp(ηT

h z̄)

1+
Pk−1

h=1
exp(ηT

h
z̄)

), [h]k−1
1 , i.e.,y is from a discrete

distribution withη1:c−1z̄ the natural parameter. Therefore,

p(y|z1:N , η1:c−1)=exp

(

c−1
∑

h=1

ηTh z̄yh−log(1+

c−1
∑

h=1

exp(ηTh z̄))

)

.

Accordingly,

Eq[log p(y|z1:N , η1:c−1)] (12)

=Eq[

c−1
∑

h=1

ηTh z̄yh − log(1 +

c−1
∑

h=1

exp(ηTh z̄))]

=

c−1
∑

h=1

k
∑

i=1

ηhiEq[z̄i]yh − Eq[log(1 +

c−1
∑

h=1

exp(ηTh z̄))] .

The second term of (12) could be expanded as follows:

− Eq[log(1 +
c−1
∑

h=1

exp(ηTh z̄))] (13)

≥− log(1 +

c−1
∑

h=1

Eq[exp(

k
∑

i=1

ηhiz̄i)])

≥− log(1 +
c−1
∑

h=1

Eq[
k
∑

i=1

z̄i exp(ηhi)])

= − log(1 +

c−1
∑

h=1

k
∑

i=1

Eq[z̄i] exp(ηhi))

≥−
1

ξ

c−1
∑

h=1

k
∑

i=1

Eq[z̄i] exp(ηhi) + 1 −
1

ξ
− log(ξ) ,

where the first inequality is from Jensen’s inequality, the
second inequality is also from Jensen’s inequality noticing
that z̄ is actually a Discrete distribution, and the third in-
equality is from− log(x) ≥ 1 − x

ξ
− log(ξ) [16] by intro-

ducing a new variational parameterξ > 0. Given (13),

Eq[log p(y|z1:N , η1:c−1)]

≥

k
∑

i=1

Eq[z̄i]

c−1
∑

h=1

(

ηhiyh −
1

ξ
exp(ηhi)

)

+ 1 −
1

ξ
− log(ξ) ,

where in standard DM modelsEq[z̄i] = 1
N

∑N

n=1 φni, and
in fast DM models,Eq[z̄i] = φi.

PuttingEq[log p(y|z1:N , η1:c−1)] back to (7) gives us the
complete expression forL. By maximizing (7) with respect
to the variational and model parameters alternatively as in
Section 4, we find the optimal value for(α,Λ, η1:c−1).
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