
The Case for Software Health Management

Ashok N. Srivastava†

Johann Schumann‡
† NASA Ames Research Center

‡ SGT Inc., NASA Ames

Abstract—Software Health Management (SWHM) is a new
field that is concerned with the development of tools and tech-
nologies to enable automated detection, diagnosis, prediction,
and mitigation of adverse events due to software anomalies.
Significant effort has been expended in the last several decades
in the development of verification and validation (V&V)
methods for software intensive systems, but it is becoming
increasingly more apparent that this is not enough to guarantee
that a complex software system meets all safety and reliability
requirements. Modern software systems can exhibit a variety
of failure modes which can go undetected in a verification and
validation process.

While standard techniques for error handling, fault detection
and isolation can have significant benefits for many systems,
it is becoming increasingly evident that new technologies and
methods are necessary for the development of techniques to de-
tect, diagnose, predict, and then mitigate the adverse events due
to software that has already undergone significant verification
and validation procedures. These software faults often arise
due to the interaction between the software and the operating
environment. Unanticipated environmental changes lead to
software anomalies that may have significant impact on the
overall success of the mission. Because software is ubiquitous,
it is not sufficient that errors are detected only after they
occur. Rather, software must be instrumented and monitored
for failures before they happen. This prognostic capability will
yield safer and more dependable systems for the future. This
paper addresses the motivation, needs, and requirements of
software health management as a new discipline. 1

I. INTRODUCTION

Modern society relies on advanced hardware and soft-
ware intensive systems, many of which are safety-critical
like aircraft, automobiles, medical equipment, and nuclear
facilities. A sudden, previously undetected problem can lead
to catastrophic failures with potential loss of life. Complex
machinery is thoroughly tested and analyzed throughout the
design cycle for potential failure modes, a process, which
has given society unprecedented access to highly reliable
and fault tolerant systems. For example, typical modern jet
aircraft engines have very few faults even after 100, 000
hours of operation. Although these systems are highly
reliable, engineers continue to monitor the health of the
engines and are developing prognostic techniques to estimate

1Published in the Proceedings of the IEEE Conference on Space Mission
Challenges for Information Technology, Palo Alto, CA, August 2011.

the remaining useful life of the engine components and
subsystems. These prognostic systems rely on several crucial
pieces of information, including real-time sensor readings
from different parts of the engine, fleet-wide performance
comparisons with other engines of similar make and model,
and advanced physics models that are representative of the
evolution of the engine performance as a function of time.

Software is often treated differently in the sense that
automatic detection, diagnosis, prognosis and mitigation of
adverse events due to software is not a common practice. A
recent book by the National Research Council on software
dependability says that software must be treated as a sys-
tem component, and that “dependability is not an intrinsic
property of software. The committee strongly endorses the
perspective of systems engineering, which views the soft-
ware as one engineered artifact in a larger system of many
components, some engineered and some given, and views
the pursuit of dependability as a balancing of costs and
benefits and a prioritization of risks. A software component
that may be dependable in the context of one system might
not be dependable in the context of another.” [8] As part of
this system engineering perspective, it is critical to develop
techniques to monitor the health of the software in its
operating environment.

Assuming that appropriate fault detection and isolation
technologies are available anomalies occurring in the soft-
ware such as the flight control system can be detected and
isolated to continue safe operation. In some cases it is
possible to detect faults as they are developing. The ultimate
goal of prognostics, or the ability to estimate the remaining
useful life of the software system is generally not part of
these technologies.

Integrated Vehicle Health Management (IVHM) systems
are being developed to detect adverse events during the
operation of a complex system (e.g., an aircraft engine),
diagnose the root-cause of the problem, and then estimate
the severity of the event and its impact on the overall
mission of system. In many cases, IVHM technologies are
developed to improve the safety of the overall system.
However, they can also be used to reduce maintenance costs
by enabling condition-based maintenance, a maintenance
paradigm where components or subsystems undergo repairs



only when those repairs are needed (e.g., [9]). This is in
contrast to scheduled maintenance, where repairs are made
regardless of the health of the system. Condition-based
maintenance can be more cost effective without sacrific-
ing safety by reducing unnecessary maintenance activities.
A health management system consists typically of both
hardware and software, working together to determine the
current state of health of the host system2. An IVHM system
monitors the health of the host system through the use
of sensors, physics-based models, and data-driven methods
to detect, diagnose, predict, and subsequently mitigate the
adverse events due to a problem of the system. These steps
are defined as follows:

• Detection: The task of detection is to determine whether
or not the current state of the host system is operating in
an off-nominal condition. This task is difficult because
if the host system undergoes complex mode changes
during its operation, the characterization of nominal
and off-nominal operation requires either a data-driven
or physics-based model that accounts for all nominal
operational modes.

• Diagnosis: Because most system faults manifest them-
selves in multiple ways, it is critical to determine
the root-cause of the problem. Thus, the diagnosis
system must be able to distinguish between potentially
hundreds of competing root-causes of the detected
problem. For example, low oil pressure and vibration
could point to many different problems if looked at
separately. Only when considered in combination a
worn-out engine bearing can be diagnosed. Depending
on the application, diagnosis must be done rapidly
in order to enable the estimation of remaining useful
life and subsequent mitigation of the adverse event. A
critical issue in diagnosis is differentiating between a
sensor fault and a fault in the system being sensed.
In some real-world scenarios, it has become evident
that sensor redundancy is not sufficient to enable this
differentiation and that a model of the system may be
essential for disambiguation of adverse events.

• Prognosis: An actual fault in the system can, even
if correctly detected and diagnosed, lead to a safety-
hazard. For example, a broken cog in a rotocraft engine
can lead to a fatal crash. Prognostic technology uses the
available data and models to estimate the remaining
useful life of the system. Thus, the actual occurrence
of the fault can be avoided because the part can be
replaced before it reaches the end of its useful life.

• Mitigation: Once a fault has been detected and diag-
nosed, depending on the amount of remaining useful
life, an IVHM system could attempt to mitigate this

2In this article, we refer to the host system as the system, which is
undergoing health management. The host system may be comprised of
hardware, software, or a combination thereof.

failure to ensure uninterrupted and safe operation. De-
pending on the severity of the fault and the estimated
remaining useful life, this may involve partially auto-
mated procedures.

Health management for electrical and mechanical systems
is state-of-the-art and is under active research and develop-
ment in many aerospace and military applications. NASA,
the Air Force, and numerous companies such as Boeing,
Lockheed Martin, GM, and others from many industrial sec-
tors invest in health management technologies. Even in most
modern automobiles, some degree of health management
systems can be found. For example, the notorious check
engine light is the output of a relatively simple engine health
management system.

An obvious question arises: if these technologies are
being researched, developed, and implemented for hardware
systems, why are there no health management systems for
software? Software is ubiquitous and will become even
more prevalent in coming decades. Should we not have
a warning indicating Please save, your favorite OS will
be crashing within 2 minutes with a probability of 95%?
Although such functionality would be convenient and would
avoid much nuisance, the situation is much more severe in
safety-critical areas. In practically all safety-critical systems
(aircraft, nuclear and medical devices, business applica-
tions), software plays a prominent role, and this role will
become even more important in the future. Because errors
in such software can lead to catastrophic failures which
can cost human life, developers often expend an extreme
amount of effort in developing and certifying highly reliable
software. Nevertheless, such software can still have bugs and
errors as demonstrated by many examples. So, why can’t we
simply “hook up” the software to an IVHM system and use
that to detect, diagnose, predict, and mitigate the software
problems? Unfortunately, this problem cannot be solved so
easily. In this paper we will discuss the issues with building
such a system and present requirements and and approaches
toward developing a Software Health Management (SWHM)
System.

Before we begin discussing the details of software health
management and the issues surrounding this new subject,
one may question whether technologies similar to Software
Health Management already exist. For example, the familiar
Remote Software Upgrade, Fault-Tolerant Computing, and
Runtime Verification all appear to address some of the issues
in software health management. We briefly touch on these
three areas and contrast them with the concept of software
health management.

The Remote Software Upgrade process is fairly routinely
used, there are some key differences in the schemes. The
Internet-based patching and monitoring system does not
detect, isolate, and predict the impending consequences of an
error, nor does it automatically generate a patch. Computer
usage data are analyzed in a semi-automated fashion and



then humans primarily generate patches for dissemination
back to the machines.

Fault tolerant computing provides techniques and infra-
structure (in hardware and software) enable the software
system to reliably operate in the presence of faults. The
field of fault tolerant computing is very mature; still it does
not provide all the necessary properties which are required
for SWHM. Perhaps the most important difference between
fault tolerant computing and SWHM lies in the missing
prognostic capabilities of fault tolerant systems.

Most properties for a software system that need to be
shown must be demonstrated during actual software devel-
opment. Runtime Verification groups together a number of
approaches, which provide tools and techniques to detect
violations of properties during runtime of the system. Most
of these techniques are preventive techniques, some have
diagnostics aspects, and most describe automatic recovery
mechanisms.

The concept of software health management is distinctly
different from the methods listed above: a viable software
health management system automatically detects, diagnoses,
predicts, and mitigates adverse events due to software errors
or errors due to correct operation of software with incorrect
environmental information.

II. SOFTWARE AND SOFTWARE-RELATED PROBLEMS

Software and software-related problems are pervasive in
modern computer systems. Peter Neumann has assembled a
relatively comprehensive list of “Risks to the Public in the
Use of Computer Systems and Related Technology.” [12]
Each item from the list is demarcated with numerous sym-
bols indicating whether the issue can lead to loss of life, loss
of resources, whether the issue resulted due to intentional
or unintentional misuse, and a number of other factors. We
summarize a few key examples from the fields of aeronau-
tics, the automotive industry, medicine, and military systems
to discuss some of the key issues that have arisen related to
software. The list is long and pervasive thereby motivating
many of the technologies discussed in this paper. However,
we do not claim that all of these issues could have been
resolved with high certainty with an appropriate Software
Health Management system, since that would require further
analysis of the details specific incident.

A. Software Problems in Aeronautical Systems

Aerospace systems are certainly software intensive—over
half of the the cost of a modern aircraft is due to software
development. However, the use of software far exceeds just
the code running on a single aircraft. The proposed new
airspace operations system, known as NextGen [8], will be
an extremely software intensive system, and has been called
the most complex dynamical system to ever be developed.
In this section we highlight some key issues that have arisen
either on a single aircraft or in the management of the

aircraft in the Global Airspace to show the type and severity
of the issues that have arisen in the recent past due to
software problems. The list below is certainly not exhaustive
but represents a few issues that particularly motivate the de-
velopment of new software health management technologies.

1) British Airways Flight 027: Error in Terrain Collision
and Avoidance System: In June 1999, due to an error in
the Terrain Collision and Avoidance System (TCAS) on
an aircraft, two Boeing 747 jets came within 600 feet of
collision over a remote region of China. Fortunately, the
error did not result in fatalities, but the source of the incident
points to a significant issue that may be possible to address
through the use of appropriate Software Health Management
techniques. It is important to note that the software in
the system has obviously undergone extensive verification
and validation. However, due to an unexpected change in
environmental variables, the TCAS system was forced into
a mode that could have lead to catastrophic loss of life.

In this incident, a British Airways Boeing 747 and another
Korean Air Cargo Boeing 747 were flying in opposite di-
rections in the same airspace with the British Airways flight
2000 feet above the Korean Air Cargo flight. Greenwell and
Knight [7] provide an excellent description of the incident
as follows, “The TCAS unit installed on the Korean Air
jet indicated traffic 400 feet below and approaching head
on and shortly thereafter instructed the pilot to climb to
avoid the oncoming traffic. In reality, there were no other
aircraft in the vicinity of the Korean Air jet except for
the British Airways flight 2,000 feet above, and the TCAS
units indication and climb instruction were erroneous. The
pilot had no way of knowing this, however, as he was
operating in a region of airspace without air traffic control
service and the cloud layer severely limited his visibility,
and thus he followed the climb instruction issued by TCAS.
The Korean Air pilot reported that the vertical separation
between his aircraft and the phantom aircraft indicated
by TCAS decreased to zero before increasing, and before
reaching zero TCAS instructed him to increase his rate of
climb. The pilot complied and pitched his aircraft further,
unknowingly placing it on a collision course with British
Airways flight 027, which was now closing in rapidly from
above...”. The primary source of the problem was determined
to be due to damaged circuitry in the TCAS system on
the Korean jetliner, which lead to multiple problems in the
estimation of the altitude of the British Airways aircraft. The
TCAS system, in essence, made correct decisions based on
incorrect information coming from part of its circuitry. A
software health management system would be valuable in
determining whether the incoming environmental variables
(the altitude information in this case) are causing it to take
actions which are inconsistent with the overall safety profile
of the vehicle.

2) Northwest Flight 255: Monitoring System Disabled:
A critical aspect of any health management system (HMS),



whether it be for software or hardware components, is
the fact that the HMS must be engaged in order for it
to provide safety value. In the accident described here, a
warning system was disabled for unknown reasons. Neu-
mann reports that “. . . the same pilots had intentionally
disconnected the alarm on another MD-80 two days before
raises suspicions.” [12]. Quoting from the NTSB report3,
the “evidence indicated that the flaps and slats were in the
up/retract position and had not been deployed for takeoff.
Neither pilot recited the items of the taxi checklist. Stall
warnings were annunciated but an aural takeoff warning
was not annunciated by the central aural warning system
(CAWS). It was confirmed that 28 Volt DC power was not
provided to the CAWS power supply #2. The reason for
the loss of electrical power was traced to a circuit breaker
but no malfunction of the circuit breaker was found.” This
unfortunate loss points us to an important aspect of a SWHM
system: what would check the status of the HM system itself,
i.e., who checks the checker? The flight ended tragically in
the loss of all crew and passengers except for a four year
old girl.

3) F-22 Raptors Experience Multiple Computer Crashes:
The first test flight of the F-22 Raptor in 1992 ended in
a crash at Edwards Air Force base, fortunately without
loss of life. The cause of the crash was determined to be
due to an error in the flight control software that failed
to prevent a pilot-induced oscillation. The first crash of
an F-22 in production also points to an issue in the flight
control system, which is due to unanticipated environmental
conditions: “A problem with a flight-control system caused
an F/A-22 Raptor to crash on the runway at Nellis AFB,
NV, on Dec. 20, according to a US Air Force report released
08 June 2005. The malfunction of the flight-control system
was caused by a brief power interruption to the aircraft’s
three rate-sensor assemblies, which caused them to fail. The
assemblies measure angular acceleration in all three axes:
pitch, roll, and yaw. With three failed assemblies, the F/A-
22 is not able to fly, investigators said.” [17].

Later, “while attempting its first overseas deployment to
the Kadena Air Base in Okinawa, Japan, on 11 February
2007, a group of six F-22 Raptors flying from Hickam AFB,
Hawaii experienced multiple computer crashes coincident
with their crossing of the 180th meridian of longitude (the
International Date Line). The computer failures included at
least navigation (completely lost) and communication. The
fighters were able to return to Hawaii by following their
tankers in good weather. The error was fixed within 48 hours
and the F-22s continued their journey to Kadena.” [16].

B. Mars Spirit Rover

A short time after landing on Mars, the rover Spirit
encountered a “reboot loop”, where a fault during the

3See www.ntsb.gov for more information

booting process caused the system to reboot again. More
than 60 reboots per day made any operation of the rover
impossible. According to reports a problem in the EEPROM,
which is used on board as a file system for intermediate
data storage over time was at fault. When this memory
storage was filled up, “the boot process failed while trying
to read the file system” [1]. A software patch solved the
problem and the mission continued. The software for Spirit
(and Opportunity) had been developed according to highest
reliability standards and rigorous V&V had been performed
[13]. Even during flight (before landing), a 10-day (10-sol)
test was successfully performed. However, the problem only
materialized at Sol 18 [1].

This example shows how, despite careful testing, hard to
detect errors can still remain in the software. Furthermore,
this example shows that certain kinds of software related
failures could be detected by monitoring before the actual
fault occurs.

C. Automotive Industry

In recent years, the amount of software used in cars has
increased tremendously [3]. Modern cars have dozens of
interacting processors, which control many highly safety-
critical components like brakes, suspension, engine, and
transmission.

Software problems can endanger lives and can cause
costly recalls, like the recent recall of defective brakes on
Toyota Prius Hybrids. Another software problem, described
in [4] concerned automatic cruise control, where under
specific circumstances the full throttle was applied suddenly
due to a sudden internal mode change in the software. In
fact, about 40% of all factory recalls and stalls are due to
electrical and electronic problems, which include software
and it is to be expected that with the increasing complexity
(in particular for electric and hybrid cars), the number of
software-related problems will increase.

D. Medical Industry

The medical industry has also experienced significant
issues due to software related problems. For example, a
software problem in the Therac-25 led to five deaths when
the machine erroneously gave radiation levels nearly 100
times the appropriate amount [11]. The machine injured
six patients between 1985 and 1987 and lead to the death
of two individuals. The safety issues regarding this ma-
chine are related to numerous software design, coding,
testing, and verification and validation issues. The causal
factors of the accidents include, “overconfidence in software,
confusing reliability with safety, lack of defensive design,
failure to eliminate root causes, complacency, unrealistic risk
assessments, inadequate investigations of accident reports,
inadequate software engineering practices, software reuse,”
and other problems [15].

www.ntsb.gov


At first glance, this appears to be an excellent candidate
for a SWHM system. However, it violates a key assumption
that the software has been designed and built and passed
rigorous verification and validation procedures. The article
by Leveson [15] clearly indicates that this system had
not undergone an appropriate verification and validation
procedure for a safety critical system.

III. SOFTWARE HEALTH MANAGEMENT AS A NEW
DISCIPLINE

In the cases described in the previous section, preventative
measures have been taken to avoid the problems mentioned.
However, there are several critical commonalities among
these examples. Each system had gone through rigorous
verification and validation testing at multiple steps in the
design and implementation process. The errors were due to
changes in environmental factors that were unanticipated
by the designer. Our point is, while traditionally these
errors can be caught and corrected after an incident occurs
(sometimes after long manual analysis), we need to develop
technologies that can diagnose, predict, and mitigate the
effects which occur due to faulty software and hardware
interactions as soon as they arise, or even before they they
manifest themselves.

In Figure 1 we show a schematic architecture of a software
health management system, which monitors the health of an
aircraft control system. The SWHM monitors the input and
output signals of the software controller, the behavior of the
aircraft and the pilot action, and then compares these signals
to an internal model of the system. The architecture shown
here is very similar to the standard state estimation model
used in control theory. A key difference, however, is that
this system must monitor mixed (continuous, discrete, and
categorical) signals and also compare it with the output of
a model which is a high-level abstraction of the system.

The SWHM model shown in Figure 1 is an abstraction
of the host system. Thus, it does not contain details of
the system dynamics or state equations. However, it may
contain information about the host software itself, about the
software environment, and about the operating system. Such
information will be on different levels of abstraction and
can be discrete or continuous. A typical low level piece
of information might be the validity or quality of a signal
or the occurrence of a “division-by-zero” error. A higher
abstracted view could trace the software’s timing, stack, or
memory usage. On another level, information like CPU load,
the length of message queues, or free space in the file system
might be used for fault identification and potentially for
prognostics. An almost full file system and active processes
that write to the file system could serve as a indicator that
there might be problems in the near future, a scenario that is
somewhat similar to the example presented in Section II-B.

Figure 1. Principal architecture of a software health management system:
the top row shows a typical (feed-back) aircraft control architecture. Pilot
inputs are mixed with the aircraft sensor feedback signals and fed into
the aircraft controller, which is implemented as a piece of software. The
software health management system (bottom) will obtain information from
the software system itself, the hardware (aircraft), and by monitoring the
inputs and outputs of the software (dashed lines). Using its SWHM model,
the software health management executive is continuously trying to detect
and isolate faults in the monitored system and, if necessary, will issue
mitigation or recovery actions (dot-dashed line) to the controller.

A. Detecting Problems with Software Sensors

Sensors produce data about a specific component of
the host system and enable anomaly detection. The sensor
readings can be discrete, categorical, or continuous mea-
surements. Continuous sensor readings are often evaluated
based on a predefined envelope of safe operation. If the
readings fall outside the envelope of safe operation (a so-
called red-line condition) the system may be in a fault state.
In some cases, particularly for aerospace applications and
other safety critical systems, redundant sensors are deployed
and a voting scheme is used to enable differentiation from
sensor faults and faults in the host system.

The SWHM system must detect and identify anomalies
in the software execution [10]. These could be triggered
errors (e.g., division-by-zero), unexpectedly high memory
requirements, unexpected bad numerical accuracy, or the
software system making a logical choice, which may be
correct, but not the best one for the overall system. The
SWHM system must have the capability to monitor the
software during its execution. We thus speak of software
sensors, which continuously watch the execution of the
software and report data to the SWHM system. The SWHM
must also receive data from a multitude of environmental
and hardware sensors, as software failures often occur due
to the interaction between SW and hardware and unantici-
pated environmental variables (e.g., turbulence, icing). The
concept of an SWHM system can be extended to also deal
with problems in the computer hardware (e.g., radiation hit)
and anomalies caused by malicious code.

Recently, researchers at Vanderbilt University [5] have
developed a model (based on the CORBA Component
Model (CCM)), which expresses small software modules
as components with inputs, outputs, measured (or sensed)
parameters, and the system state. This component model
allows complex software systems to be visualized to assess



the best locations to sense messages for sensing failures in
the software.

Traditional sensors suffer from additive sensor noise
which could be due to underlying physical noise sources
and can have known distributions. In the case of software,
however, the sensors will not have an additive source of
noise. However, if the output of a software sensor is a
function of data that is processed from traditional sensors,
the software sensor will also contain the same noise signal.
The procedure for anomaly detection with software sensors
can directly follow methods used for detecting anomalies
in traditional sensor data. These methods include envelope
detection for single sensors or more complex anomaly
detection methods for multivariate heterogeneous (i.e., both
discrete and continuous measurements) signals [2], [14].

B. Diagnosis and Disambiguation Algorithms

Detection of the anomaly is usually not sufficient to make
an accurate prediction of the consequences of a particular
anomaly and to fix the problem. Here, the SWHM must be
able to diagnose the symptoms and find the cause of the
problem, or the most likely cause(s) of the failure. Since
the diagnosis component is necessarily model-based and
needs to contain knowledge about the underlying combined
hardware/software system, all requirements that need to be
fulfilled for a traditional system diagnosis system are valid
here as well. In particular, the identification should return a
rank-ordered list of potential causes of the anomaly, and also
should provide a measure of confidence for each diagnosis.
In more complex situations, the health management system
would need to identify faults in both hardware and software.

A critical element of a health management system are
the disambiguation algorithms. These algorithms take sensor
data from potentially multiple sources in the host system
along with the output of anomaly detection algorithms and
produce a list of potential sources of the fault. In almost
all cases, these algorithms are passive, meaning that they
do not have the ability to actively query the host system
to help disambiguate faults. These algorithms often have an
underlying abstracted physical model of the host system to
help perform diagnosis and disambiguation. For a SWHM
system, the challenge is to develop a rigorous model of
the host system to enable model-based diagnosis methods.
Techniques based on both model-driven and data-driven
techniques are also possible and would resemble the methods
used for traditional hardware based diagnosis systems. The
diagnosis system may benefit from a simulation that is
running in parallel to the real software system, which takes
the same data as the input but simulates the behavior of the
software system to help in fault identification and isolation.

The challenge for correct fault disambiguation can be
seen, for example, in the Terrain Collision Avoidance System
anomaly in Section II-A1. Here, the SWHM would need to
identify the fact that an error had occurred in the damaged

circuitry and disambiguate that fault from the event that an
actual collision was imminent.

C. Prediction Algorithms

A major benefit of IVHM systems lies in the fact that
the system can produce a prognosis about the health of the
monitored component. This allows the operator to be much
more flexible in maintenance schedules: for example, a jet
engine only needs to be replaced when the prognosis system
predicts that the engine is still safe to use but it is reaching
its end of life and that major component failure might occur
soon. In a traditional maintenance regime, the engine is
replaced according to a schedule based on operational factors
regardless of its actual state. For software, no notion of
prognosis in general exists.

The only exceptions are performance prognosis for com-
puter systems or networks (e.g., based upon queueing the-
ory) and general software risk models. All software fault
handling technologies are backwards oriented, i.e., they react
on faults that already have happened or are imminent.

A critical issue is the development of methods to assess
the severity and criticality of an error due to software. Many
ideas of reliability theory, such as mean-time-to-failure, need
to be translated into this new domain. These include real-
time estimation of time-before-failure and the severity of
the failure and its impact on the software and hardware
systems. For example, in the case of a stack-overflow, one
could imagine an estimation of the time to failure as being
a function of the number of pushes that occur on the stack.
For any finite stack, the number of operations before failure
can easily be calculated. Of course, the difficult part of
the problem is the estimation of the number of times the
push will occur due to the external environment. Other
examples of simple software errors that could be modeled
for prognostics include memory leaks which can lead to slow
but an unbounded increase in processes, or an overflow in
the hard drive.

It is imaginable that failures such as the ones on the
Spirit Mars rover (Section II-B), where the on-board memory
file system became overfull within 18 days and causing a
reboot cycle, could be predicted (and mitigated) by a SWHM
system.

As with any prediction, the estimation of the certainty
in the prediction is key. Note that this estimation must not
solely be a function of the known environmental variables.
If we were to base our predictions and certainty estimates
just on the known environmental variables, we would not
anticipate any faults, because we would assume that the envi-
ronmental variables all stay within their nominal operations.

D. Mitigating the Effects of an Error

If a problem has been detected and it is determined by
the SWHM system to be indicative of a substantial error,
mitigation strategies need to be employed that depend on the



application domain. For example, in the case of the medical
equipment described above, an appropriate mitigation strat-
egy may be to simply shutdown the machine if the radiation
output level is too high. This decision could be made in real-
time and would need to be validated to see if it produces
any unwanted side-effects. It turns out that such a system
had been designed. However, the warnings were ignored by
operators who continued to administer dangerous levels of
radiation to the patients. For other systems, such as those on
an aircraft, it may not be appropriate to simply shut down
the system. In those cases, one could consider automatically
generating a patch to help avoid a catastrophic problem until
the plane has landed. All state information from the sensors,
as well as the history of the system state could be recorded
to help analysts reproduce the results. The composition of
the existing software and hardware architecture along with
the addition of the new patch must undergo some verification
and validation process. Technologies to perform such rapid
verification and validation must be developed that would
ensure the integrity of the resulting system. In some cases,
the solution may be chosen from a predetermined set of
validated solutions. However, care must be taken in this
case because the system, by definition, is running in an off-
nominal condition.

IV. CONCLUSIONS

Software health management (SWHM) is a discipline
that must be developed to address inevitable problems in
software intensive systems that have already undergone
verification and validation. The field is new and the problems
are significant. A mathematical theory of software failure
needs to be developed which allows for the development
of provably correct algorithms for detecting, diagnosing,
predicting, and mitigating the adverse events of software
issues.

V. ACKNOWLEDGEMENTS

The authors would like to thank Eric Cooper, Paul Miner,
and the NASA partners working on software health man-
agement. This article was written under the support of the
NASA Aviation Safety Program Integrated Vehicle Health
Management project and NASA’s OSMA SARP project “Ad-
vanced tools and techniques for V&V of IVHM systems”.

REFERENCES

[1] M. Adler. The Planetary Society Blog: Spirit Sol 18 Anomaly,
2006.
URL http://www.planetary.org/blog/article/00000702/.

[2] S. D. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a simple
pruning rule. Proceedings of The Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2003.

[3] R. N. Charette. This Car Runs on Code. IEEE Spectrum,
February 2009.

[4] A. Degani. Taming HAL: Designing Interfaces Beyond 2001.
Palgrave Macmillan, 2004.

[5] A. Dubey, G. Karsai, R. Kereskenyi, and M. Mahadevan.
A Real-Time Component Framework: Experience with CCM
and ARINC-653. IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 2010.

[6] R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[7] W. S. Greenwell and J. C. Knight. What should aviation
safety incidents teach us? Technical Report, University of
Virginia, 2003.

[8] D. Jackson, M. Thomas, and L. I. Millett. Software for De-
pendable Systems: Sufficient Evidence? National Academies
Press, 2007.

[9] A. Jardine, D. Lin, and D. Banjevic. A review on machinery
diagnostics and prognostics implementing condition-based
maintenance. Mechanical Systems and Signal Processing, 20
(7):1483–1510, 2006.

[10] G. Karsai, editor. 1st International Workshop on Software
Health Management (SMH 2009), 2009. ISIS, Vanderbilt
University. URL http://www.isis.vanderbilt.edu/workshops/
smc-it-2009-shm.

[11] N. Leveson and C. S. Turner. An Investigation of the Therac-
25 Accidents. IEEE Computer, 26(1):18–41, 1993.

[12] P. Neumann. Illustrative risks to the public in the use of
computer systems and related technology, 2009. URL http:
//www.csl.sri.com/users/neumann/illustrative.html.

[13] P. Regan and S. Hamilton. NASA’s Mission Reliable. IEEE
Computer, 37(1):59–68, 2004.

[14] A. N. Srivastava and S. Das. Detection and prognostics on
low dimensional systems. IEEE Transactions on Systems Man
and Cybernetics, Part C, 39(1), 2009.

[15] N. Leveson Software: System Safety and Computers. Addison
Wesley, 1995.

[16] D. Johnson. Raptors Arrive at Kadena, 2007.
URL http://www.af.mil/news/story.asp?storyID=123041567.

[17] GlobalSecurity.org. F-22 Raptor, 2004.
URL http://www.globalsecurity.org/military/systems/aircraft/
f-22-testfly.htm.

http://www.planetary.org/blog/article/00000702/
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.isis.vanderbilt.edu/workshops/smc-it-2009-shm
http://www.csl.sri.com/users/neumann/illustrative.html
http://www.csl.sri.com/users/neumann/illustrative.html
http://www.af.mil/news/story.asp?storyID=123041567
http://www.globalsecurity.org/military/systems/aircraft/ f-22-testfly.htm
http://www.globalsecurity.org/military/systems/aircraft/ f-22-testfly.htm

	Introduction
	Software and Software-related Problems
	Software Problems in Aeronautical Systems
	British Airways Flight 027: Error in Terrain Collision and Avoidance System
	Northwest Flight 255: Monitoring System Disabled
	F-22 Raptors Experience Multiple Computer Crashes

	Mars Spirit Rover
	Automotive Industry
	Medical Industry

	Software Health Management as a New Discipline
	Detecting Problems with Software Sensors
	Diagnosis and Disambiguation Algorithms
	Prediction Algorithms
	Mitigating the Effects of an Error

	Conclusions
	Acknowledgements
	References

