KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Efficient Keyword-Based Search for Top-K
Cells in Text Cube

Bolin Ding, Bo Zhao, Cindy Xide Lin, Jiawei Han, Fellow, IEEE, Chengxiang Zhai,
Ashok Srivastava, Senior Member, IEEE, Nikunj C. Oza

Abstract—Previous studies on supporting free-form keyword queries over RDBMSs provide users with linked-structures (e.g., a
set of joined tuples) that are relevant to a given keyword query. Most of them focus on ranking individual tuples from one table or

joins of multiple tables containing a set of keywords.

In this paper, we study the problem of keyword search in a data cube with text-rich dimension(s) (so-called text cube). The text
cube is built on a multidimensional text database, where each row is associated with some text data (a document) and other
structural dimensions (attributes). A cell in the text cube aggregates a set of documents with matching attribute values in a subset
of dimensions. We define a keyword-based query language and an IR-style relevance model for scoring/ranking cells in the text
cube. Given a keyword query, our goal is to find the top-k most relevant cells. We propose four approaches, inverted-index
one-scan, document sorted-scan, bottom-up dynamic programming, and search-space ordering. The search-space ordering
algorithm explores only a small portion of the text cube for finding the top-£ answers, and enables early termination. Extensive
experimental studies are conducted to verify the effectiveness and efficiency of the proposed approaches.

Index Terms—Keyword search, multidimensional text data, data cube.

1 INTRODUCTION

THE boom of Internet has given rise to an ever in-
creasing amount of text data associated with multiple
dimensions (attributes), for example, customer reviews in
shopping websites (e.g., Amazon) are aways associated
with attributes like price, model, and rate. A traditional
OLAP data cube can be naturally extended to summarize
and navigate structured data together with unstructured text
data. Such a cube model is called text cube [1]. A cell in
the text cube aggregates a set of documents/tuples with
matching attribute values in a subset of dimensions.

Keyword query, one of the most popular and easy-to-use
ways to retrieve useful information from a collection of
plain documents, is being extended to RDBMSs to retrieve
information from text-rich attributes [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12], [13], [14], [15], [16]. Given
a set of keywords, existing methods aim to find relevant
tuples or joins of tuples (e.g., linked by foreign keys) that
contain al or some of the keywords.

In this paper, we study supporting keyword-based search
in text cube. Unlike in plain documents nor RDBMSs, the
goal of keyword search in text cube is to find the top-k
most relevant cells for a given keyword query.

Example 1.1 (Motivation): Table 1 shows a small sam-
ple database of customer reviews about laptops. Customer

e B.Ding, B. Zhao, C. Lin, J. Han, and C. Zhai are with the Department
of Computer Science, University of Illinois at Urbana-Champaign, 201
North Goodwin Avenue, Urbana, IL 61801, USA.

E-mail: {bding3, bozhao3, xidelin2, hanj, czhai}@uiuc.edu

e A. Sivastava and N. C. Oza are with Intelligent Systems Division,
NASA Ames Research Center, Moffett Field, CA 94035, USA.

E-mail: ashok@email.arc.nasa.gov, nikunj.c.oza@nasa.gov

(=
TABLE 1
Motivation Example

Brand | Model CPU oS Customer Review

Acer | AOA110 | 1.6GHz | Linux || light weight as little as
2.2 Ib, fun and power-
ful computing features

Acer | AOA110 | 1.8GHz XP weight just over two
pounds, with powerful
Intel Atom Processor

Asus | EEEPC | 1.8GHz XP comes in pearl white
style, images are sharp,
disk is large

Review is the text attribute, whereas Brand, Model, CPU,
and OS are structural attributes.

Jim, amarketing analyst, wants to find which laptops are
commented as light weight and powerful performance. He
types a set of keywords: {“light”, “weight”, “powerful”}.
Using IR techniques, the system can rank all the customer
reviews and output the most relevant ones. However, when
there are many customer reviews relevant to the query, Jim
has to browse through a lot of reviews and summarize dif-
ferent opinions by himself. As multidimensional attributes
are associated with each review, is it more desirable that a
system provides users with “aggregated information”, such
as “Acer AOA110 laptops are usually lightweight and have
powerful performance’, than returning individual reviews?
This is our intention to study such a new mechanism.

A cell in the text cubeis in the form of (Brand = Acer,
Model = AOA110, CPU = *, OS = *), which aggregates
all the customer reviews (the first two in Table 1) for Acer
AOA110 laptops. Another cell (Brand =*, Model =*, CPU
= 1.8GHz, OS = XP) aggregates the second two reviews. It

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

can be seen that the first cell is more relevant to Jim's query
(Acer AOA110 laptops are lightweight and powerful) than
the second. The goal of our system is to provide Jm with
such aggregated information (i.e., the cell “Acer AOA110
laptops’ that is relevant to his query), instead of a ranked
list of individual customer reviews.

If Jim is interested in gaming computers, he can types
{“fast”, “gaming” } into the system, and high-performance
computer models with good customer reviewers are ex-
pected to be output, eg., (Brand = *, Model = Xtreme
XT, CPU = Intel Corei7, OS = *). O

Traditional IR techniques can be used to rank documents
according to the relevance. In a large text database, how-
ever, the number of relevant documents to a query could
be large, and a user has to spend much time reading them.

If a document is associated with attribute information,
in a data cube model (a multidimensional space induced
by the attributes), e.g., the text cube, a cell aggregates the
documents with matching values in a subset of attributes.
Such a collection of documentsis associated with each cell,
corresponding to an object, eg., “Acer AOA110 laptops’
or “1.8GHz XP laptops’ (in the above example), that can
be directly recommended to the user for the given query.

This paper studies the problem of keyword-based top-
k search in text cube, i.e, given a keyword query, find
the top-k most relevant cells in a text cube. When
users want to retrieve information from a text cube using
keyword queries, we believe that relevant cells, rather than
relevant documents, are preferred as the answers, because:
(i) relevant cells are easy for users to browse; and (ii)
relevant cells provide users insights about the relationship
between the values of relational attributes and the text data.

Overview of Model and Techniques. Following is an
overview of our work, with important issues highlighted.
Relevance Score: Given a keyword query, the first ques-
tion is how to compute the “relevance” of a cell in a text
cubefor ranking. Note that acell correspondsto a collection
of documents. We employ the average model studied in [17]
to assign the relevance scores of the cells. Specifically, ANY
IR scoring function (e.g., Okapi) can be used to compute the
relevance score of each single document, and the relevance
score of a cell (a document collection) is the (weighted)
average of relevance scores of documents in this cell. An
aternative is the big document model: documents in a cell
are concatenated into a big document, and the relevance of
the cell is the relevance of this big document. [17] shows
the average model is better than the big document model.
Support Requirement: We allow a user to specify a
support threshold minsup, and we only output the relevant
cells with no less than minsup documents. Users may not
prefer a cell with too few documents, since this cell is not
“popular” (eg., if there are too few reviews on a computer
model, the user is unlikely to choose this one); users may
feel more confident browsing a cell with larger number of
documents (reviews). Also, when high-level information is
preferred, minsup can be set to a relatively large value.
Challenges. The major computational challenge of this
problem is the huge number of cells in a text cube. It

increases exponentially w.rt. the dimensionality and is
much larger than the number of documents in the database.

Efficient Algorithms: We design four approaches for
the problem of keyword-based top-k search in text cube.
The first one (inverted-index one-scan) scans the inverted
index of each keyword in the query once to compute the
relevance scores of al cellsin the text cube. The second one
(document sorted-scan) scans the documents in the order
of relevance, and at the same time, updates the relevance
scores of cells containing each document being visited;
early stop for top-k is possible because upper bounds of
relevance scores can be estimated. The third one (bottom-
up dynamic programming) computes relevance scores of
cells from bottom to top in a level-by-level manner. The
fourth one (search-space ordering), based on the third one,
explores cells in the order of relevance and prunes the
search space by estimating relevance score upper bound
in subspaces, so as to explore as few cells in the text cube
as possible before outputting the top-k answers.

Contributions. In this paper, we propose and study the
problem of keyword-based top-k search in text cube (or
multidimensional text data): finding the top-k cells relevant
to a user-given keyword query. Flexible keyword-based
query language and relevance scoring formula of cells
(aggregation of text data) are developed. We analyze the
computational challenges and propose four approaches,
inverted-index one-scan, document sorted-scan, bottom-
up dynamic programming, and search-space ordering, to
support the query language in text cube. We compare the
four approaches and study their efficiency and effectiveness
experimentally using both real and synthetic datasets.

Organization. Section 2 introduces the text cube model
of multidimensional text data, defines the keyword search
problem and keyword-based query language in text cube,
and analyzes computational challenges. The four ap-
proaches for finding the top-& most relevant cells for a
given keyword query are introduced in Sections 3 and 4.
Experimental study is reported in Section 5, followed by
discussion on how to extend our approach in Section 6 and
related work in Section 7. Section 8 concludes this paper.

2 KEYWORD QUERIES IN TEXT CUBE

In this section, we introduce our data cube model and the
keyword search problem. Preprocessing for our system and
challenges for query processing are also discussed.

2.1 A Data Cube Model for Text Data

A set of documents D is stored in an n-dimensional
database DB = (A;, As, ..., A,, D). Each row of DB is
inthe form of r = (ay,as,...,a,,d): let r[A4;] = a; € A;
be the value of attribute (or dimension) A;, and »[D] = d
be the document in this row.

A document d is a multi(sub)set of the term set W =
{wy, ..., wp}: aterm w; may appear multiple timesin d.

The data cube model extended to the above multidi-
mensional text database is called text cube [1]. Several
important concepts are introduced as follows.

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

TABLE 2
A 4-Dimensional Text Database DB

TABLE 3
Some Cells in the Text Cube

| Dimensions [Text Data | Cell M PIT]S] D
M P T S d Co LT * | {di,da,ds, ds,ds,ds}
(Model) | (Price) | (Time) | (Score) (Document) C1 ml | * [* | * || {di,do,d3}
mi pl T ST || di = {WL WL, W2, W2, w8} Co [[m2] * [*[* [I {ds,ds,do}
mi P2 il < |[da = {w2, W2, W5, W6, w7} Cs [[ml]* [td]* Il {d,do}
mi p3 0 < |[ds = {w3, w4, W3, Wb, w7} Ca ml] ™ |2 1ds
m2 pl 0 < |[ds = {wL WL, WL, Wi, wa} Co mip > | *]slfdid
m2 P2 0 < |[ds = {wWh, W6, W7, w8, w8} Co [l mll]* 2 || {da ds}
m2 p3 il ST |[dg = {wd, Wb, w8, w8, wo} C7_ || m2 1 d}
Cg m2 * t2 * {C|47 d5}
Cg m2 * t2 S2 {d47 d5}
C1o ml * tl sl di
Cell and Aggregated Document. In the text cube built on gn mi P; 3 g 31
isi _ . 12 m p: 2
Y?B, acel isin the form of C._ (Ul.’ V9, ..., U, : D), where o T [T 5 ey odl)
either v; € A; (avalue of dimension A;) or v; = * (the Croa ML * [2 sl & (empty cell)

dimension A; is aggregated in '), and D (the aggregated
document in C) is the set of documents in the rows of DB
having the same dimension values as C' on all the non-x
dimensions. Formally, for acell C' = (vy,vs,...,v, : D),

D = {r[D] | for r € DB st. r[A;] = v; if v; # *}.

We use C|.A4;] to denote the value v; of dimension A; in the
cell C, and C[D] to denote the aggregated document D of
the cell C. Define the support of a cell C, denoted by |C/|,
to be the number of documentsin C[D], i.e, |C| = |C[D]|.
A cell is said to be empty if C[D] = @. For smplicity, a
cell is aso written as C' = (v1,va, ..., vp).

All the cells with the same set of non-« dimensions form
a cuboid. A cuboid with m non-x dimensions is an m-dim
cuboid. The n-dim cuboid (with no aggregated dimension)
is called the base cuboid. Cells in an m-dim cuboid are m-
dim cells, and cells in a base cuboid are base cells. Note
that each base cell may aggregate multiple rows/documents,
since different rows may have the same values of attributes.

Ancestor and Descendant. Cell C” is an ancestor of C' (or
C isadescendant of C") iff Vi : C'[A;] #x = C'[A]
= C[A;]. Cell C is an ancestor (or descendant) of itself.
We use ans(C) to denote the set of ancestors of a cell C,
and des(C') to denote the set of descendants of a cell C”.

Parent and Child. Parents and children are immediate
ancestors and descendants of a cell, respectively. Cell C’ is
a parent of C' (or C is achild of C”) iff (i) C' € ans(C),
and (ii) C’ is an i-dim cell while C'isan (i 4+ 1)-dim cell.
Let par(C) (chd(C”)) denote the set of parents of acell C'
(children of a cell C”). Note that the 0-dim cell (i.e, the
cell in the form of (x,x,...,x: D)) has no parent.

A-Parent and A-Child. The A-parent of acell C' is C’
(or, C'is an A-child of C"), denoted by par 4(C) = ", iff
(i) C" isaparent of C, (i) C[A] # *, and (iii) C'[A] = *. A
cell may have more than one A-child, and we use chd 4(C")
to denote the set of al .A-children of C".

It iswell-known al the cells in a data cube (or text cube)
form a lattice, according to the parent-child relationship.

Example 2.1 (Text Cube): Table 2 shows atext database
DB, with four dimensions, M, P, T, and S. Term set W =
{wl, w2, ..., w8}. A total of six documents are stored.

Table 3 shows some cells in the text cube generated from
DB. Cy has support 6 and C; has support 3, i.e, |Co| =6
and |Cy| = 3. Cy is the 0-dim cell and C41, C12 are base
cells. Cg, Cy, C5, 061 Clo, Ci1, and (o are descendants
of C1, while only C3, Cy4, C5 and Cy are children of C.
Note C; has some other descendants and children not listed
in this table. A cell may have more than one parent, eg.,
both C3 and C5 are parents of C1g.

Cell C is the T-parent of C5 and Cy, i.e, parp(Cs)
= parp(Cy) = C1. Céls C5 and Cy are the T-children of
C4, i.e, chdy(Cy) = {Cs5,C4}. Cells C5 and Cy are the S-
children of C4, i.e, chds(C1) = {C5,Cs}. And similarly,
parg(Cs) = parg(Cs) = Ch. O
Multiple Documents in a Row. In a database where each
row contains more than one document, to generalize our
model, we can create a linked list of documents and keep
the total number of documents in each row. By aggregating
this count into cells on higher levels, we can easily calculate
the support of each cell. Note that this modification will not
affect our agorithms introduced later.

2.2 Keyword Search Problem in Text Cube

In traditional data cubes, operations like drill-down and
roll-up suffice for users to explore multidimensional data.
In text cube, however, a large portion of data is text. Since
keyword query is an effective way for users to explore text
data, we propose the keyword search problem in text cube.

2.2.1 Keyword Search Problem

A keyword query is a set of terms, i.e, q = {t1, to, ...,
tiq} € W. Given a keyword query g and a minimum
support requirement minsup, the goal is to find the top-%
cells C’s st. supports |C| > minsup with the top-% highest
relevance scores in the text cube of DB.

Note that a cell relevant to the query g may contain all or
some of theterms 4, .. ., ¢|q. The relevance score of a cell
C w.r.t. the query q is defined as a function rel(q, C[D]) of
the aggregated document C'[D] and the query q. For brevity,
it is also written as rel(q, C'). Because the total number of

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

cells in the text cube could be huge and it is not possible
for a user to browse all of them, we return the top-% cells
in the non-increasing order of relevance scores, where k
can be specified by a user.

Recall the support of acell C' isthe number of documents
aggregated in C[D]. We allow users to specify the minimum
support minsup, because they may be only interested in
cells “popular” enough. Users feel more confident when
browsing a cell containing a large number of documents
(eg., customer reviews) than a cell with only one or two.

2.2.2 Relevance Scoring Formula

To rank al the cells and find the top-k ones, we define
the relevance scoring function rel(q, C[D]) (or rel(q, C)
for brevity). Recall an aggregated document C[D] C D is
a set of documents aggregated in C. Here, we treat every
document in C[D] equally when calculating relevance score
of C w.r.t. akeyword query q. rel(q, C[D]) is defined as the
average of al the relevance scores of documents in C[D]:

cE X sad @

deC[D]

rel(q, C[D]) =

s(q,d) is the relevance score of a document d w.r.t. q

N —dfy +0.5 k1 + 1)tfy, (k3 + 1)qtf,

s(q,d):Z'“ I3 - th)dltd) I =
tea A H05 (1 —b)+bg) g KeFath

(Okapi weighting [18]) %)

=" wiar(t) - wee(t,d) - waer(t, q),
teq
where N = |DB], tf, 4 is the term frequency of term ¢ € q
in d (the number of times ¢ appearing in d), df, is the
number of documentsin DB containing ¢, dl4 is the length
of document d, avdl is the average length of documentsin
DB, qtf, , is the number of times ¢ appearing in q, and,
k1,b, ks are constants.

Our algorithms introduced later can also handle other
formulas s(q,d) for scoring documents, say pivoted nor-
malization weighting [19]. In general, our algorithms allow
s(q,d) to be in the form of s(q,d) = s((tf,.d4), Aq, Ad),
where A, isthe set of parameters about q, e.g., idf (inverted
document frequency), and A 4 is the set of parameters about
d, eg., document length (for normalization). This form
covers most IR models for evaluating the relevance of a
document w.r.t. a query.

[17] shows that the weighted version of (1) (document
with higher weight in C[D] contributes more to the rel-
evance score rel(q, C)) is effective for ranking document
corpuses. In this paper, we use the unweighted version (i.e,
(1) for the ease of explanation. Our algorithms can be
easily extended to the weighted version, if the weights of
documents can be precomputed.

Note that, for query q, rel(q, C) is the relevance score
of a set (corpus) of documents (i.e, C[D]), while s(q,d) is
the relevance score of one document. In the rest part of this
paper, we call rel(q, C') a relevance scoring formula, and
s(q,d) a document scoring formula to distinguish them.

2.2.3 Extended Form of Keyword Query

Users may want to retrieve answers from a certain part of
the text cube, by specifying a subset dimensions of interests
and/or values of some dimensions. Motivated by this, the
simplest form of keyword queries q can be extended by
adding dimension-value constraints.

In an n-dimensional text cube, an extended keyword
query is in the form of Q@ = (uy,us,...,u, : q), where
u; € A; U {x,7}. We aso use Q[A;] to denote w;.
Q[A;] € A; specifies the value of dimension A; in a cell
C; Q[A;] = * means the dimension A; in a cell C must
be aggregated; and Q[.A;] =7 (question mark) imposes no
constraint on the dimension A; of acell C. A cdl C is
said to be feasible w.r.t. the query @ iff

(i) for dimension A; st. Q[A;] = *, C[A;] = =
(A; is aggregated in C);
(II) for A; st. Q[.AZ] e A;, C[.AZ} = Q[.A,], and
(iii) for A; st. Q[A;] =7, no constraint on C[A,].

Given an extended keyword query Q = (u1,ug, ..., uy, :
q) and a minimum support minsup, our goa is to find
the top-k feasible cells C’s st. support |C| > minsup and
relevance scores rel(q, C[D])’s are the top-k highest.

Example 2.2 (Queries, Answers, and Relevance Scores):
In the text cube of DB in Table 2, consider a keyword
query q = {wl, w2} and minsup = 2.

Using Okapi (2) with ky = k3 = 1 and b =
0.5: s(q,d;) = 1.6, s(q,d2) = 0.8, s(q,ds) = 0.9.
Base cells (ml,pl,tl,sl,{d1}), (ml,p2,tl,s2,{ds2}),
and (m2,pl,t2,s2,{d4}) have relevance scores 1.6, 0.8,
and 0.9, respectively. But they will not be output because
their supports are al 1, less than the threshold minsup. Cell
(*,pl, *,%,{dy,ds}) has relevance score (1.6 + 0.9)/2 =
1.25, and (m1, , t1, %, {dq,d2}) has relevance score (1.6+
0.8)/2 = 1.2. They are the top-2 cells in the output. So we
may infer, when the price P = p1, documents in the text
cube are highly relevant to the given query q.

An extended keyword query Q = (7, %,7,%:q) (i.e, no
constraint on dimensions M and T', while dimensions P and
S must be aggregated). C-C in Table 3 are feasible cells,
but C5 and Cs are not, since C5[S] # * and Cg[S] # *.

Another query is Q' = (7,*,7?,s2 : q), which imposes an
additional constraint that a cell must value s2 on dimension
S, i.e, C[S] = s2. Then, Cy in Table 3 is a feasible cell
(Co[S] = s2); but Cyg is not, for Cp[S] = s1 # s2. O

2.3 Preprocessing

In the algorithms introduced later, some parameters are as-
sumed to be precomputed to speedup the query processing.
First, the support of each cell, i.e, the number of doc-
uments aggregated in this cell, is precomputed and stored,
since supports are query-independent. This only requires
additional O(1) space for each cell. Later we can use this
to efficiently check whether the support of a cell is above
the threshold, and whether a cell is fully-aggregated.
Second, note that (2) can be rewritten as a more genera
form: s(q,d) = >, wiat(t) - wee(t, d) - waee (¢,). Both
wigr(t) and wye(t,d) are precomputed for all terms and

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

documents, and stored in inverted indexes. So as an online
query q comes, s(q,d) can be computed conveniently.
Note that the above two steps can be done at the same
time, as documents are scanned one by one. All algorithms
presented later can benefit from this precomputation.

2.4 Challenges of Query Processing

There are two challenges of this keyword search problem:
First, the size of atext cube could be huge; and second, it is
impractical to precompute relevance scores for al queries.

2.4.1 Size of Text Cube

There is an n-dimensional database DB = (A4, Ao, ...,
A,,, D) with N rows, s.t. the non-empty cells in the text
cube of DB is QN -2™) or Q[T (|Ai|+1)), where |.A;|
is the number of different values in dimension A;.

Even when minsup (> 0) is nontrivial, the number of
cells to be considered (those with support > minsup) is
still huge, since a data cube is “fat” in the middle. For
example, suppose minsup is large enough s.t. only d-dim
cells with d < n/2 have support > minsup, we may still
need to consider at least N - (,,) = Q(NV - 2"/?) cells to
select the top-k relevant ones w.r.t. a keyword query.

So only when the number of dimensions is small (2 to
4), we can compute the relevance scores of al cells and
then sort them to find the top-£ cells efficiently.

2.4.2 Limits of Preprocessing

In text cube, relevance scores rel(q,C) of cells have to
be computed online because they are query-dependent,
athough wiqs(t) and wie(t,d) can be precomputed (as
in Section 2.3). Also, the ranking of cells according to
rel(q, C') cannot be precomputed either, since for different
queries, the rankings could be different. Online computation
of rel(q,C) and ranking of cells dominate the cost of
processing a query; so, we aim to explore only a small
portion of the text cube for the top-k answers.

3 DOCUMENT LINEAR-SCAN APPROACHES

Two approaches for the keyword-based top-% search prob-
lem based on linear scans of rows are introduced in
Section 3.1 and 3.2. Thefirst one scans al rows to compute
the relevance scores of al cells, and then output the top-
k cells. The second one scans the rows in the descending
order of relevance scores; in this process, cells containing
each document are updated with upper bounds of relevance
scores estimated to enable the early stop for top-k. We
first focus on simple keyword query q = {t1,...,tq}
with support requirement minsup and show how to handle
extended keyword queries in Section 3.3.

3.1 Inverted-Index One-Scan Approach

We construct a row-based inverted index for each term.
Recall tf; 4 denotes the term frequency of ¢ in the document
d. From the row-based inverted index IV(¢) of term ¢, we
can efficiently retrieve al the rowsr = (a1, ..., a,,d)’sin

DB with term frequencies tf, 4 > 0. The size of row-based
inverted indices for al termsin W is bounded by the total
length of al documentsin DB.

Given a query q against the text cube of DB and mini-
mum support minsup, the inverted-index one-scan approach
is outlined in Algorithm 1. We first compute the score
s(q,d) of each document in a row that contains at least
one term in q (since otherwise s(q,d) is 0) using the
inverted indexes (line 1). Then, for each row r, we can
efficiently identify al the cells C’s in the text cube st.
r[D] € C[D] and support |C[D]| > minsup (lines 2-3: note
|C[D]| can be precomputed and materialized). These cells
are the ancestors of the base cell corresponding to row r.
We use ans(r) to denote this set of cells, and note that
lans(r)| < 2" in an n-dimensiona text cube. We update
rel(q,C) using s(q,7[D]) (line 4). Finaly, after all rows
are scanned, each rel(q, C) is correctly computed as the
average of s(q,[D])’s with r contained in C' (some rows
with s(q,7[D] = 0 are not scanned, but we know the total
number of documents in C, so the average still can be
computed), and the top-k ones are output (line 5).

Algorithm 1 Inverted-Index One-Scan Algorithm
Input: keyword query q against DB, parameter k, minsup
1: Compute relevance score s(q, [D]) for each row r;
2. for each row r € DB with s(q,r[D]) > 0 do
3. for each cell C' € ans(r) and |C[D]| > minsup do
4 Update rel(q, C) using s(q,7[D]);
5. Output the top-k relevant cells with support > minsup
(for cells with the same relevance scores, output them
in the descending order of support).

Example 3.1: Consider a row r» = (ml,pl,tl,sl,dq)
in the text database in Table 2(a). A cell C' with d; €
C[D] must be one of the 2% ancestors of the base cell
(ml,pl,tl,sl), eg, (ml,pl,*,sl), (ml,=tl,x*), and
(*,*,t1, %), which are considered in lines 3-4. O

Theorem 1: Algorithm 1 uses O(N - |q| +2" - N + k -
log M) time and O(n - M) space, where N = |DB| is the
total number of rows, n is the dimensionality, and M isthe
total number of non-empty cells.

Proof: Algorithm 1 scans the row-based inverted index
of each query term only once. The size of each row-based
inverted index is bounded by N = |DB]|. Also, the 2™
ancestors of a row r can be enumerated in linear time.
So Algorithm 1 requires O(N - |q| + 2™ - N) time to
compute the relevance scores of al non-empty cells. After
that, it constructs a (Fibonacci) heap of all non-empty cells
(ordered by relevance) in linear time O(M) < O(2™ - N)
[20] and outputs the top-k in O(k - log M) time. Totally,
weneed O(N - |q| +2"- N + k-log M) time.

Since there are at most M < 2™ - N nonempty cells, and
for each cell we store its dimension values, relevance score,
and support, we need totally O(n - M) space (besides the
storage of inverted indexes and text cube). O

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 2 Document Sorted-Scan Algorithm
Q: a priority queue of cells (sorted in the non-increasing
order of relevance scores)
top(Q): the top (first) cell of a priority queue Q
Input: keyword query q against DB, parameter k, minsup
1: Rows are scanned in the descending order of relevance:
r1,72,...,rn such that s(q,r;[D]) > s(q, ri+1[D]);
2. fori=1to N do
3. for each cell C' € ans(r;) and |C[D]| > minsup do
4; Aggregate r; into C: compute rel(q, C'); as
the average of relevance scores of documents in

both r1,...,r; and C,

5 if C' contains NO doc in {r;t1,...,rn} then
6: Insert C into Q (rel(q, C) = rel(q, C););

(for other cells, we have rel(q, C'); = rel(q,C);—1)
7. while (i) rel(q, top(Q)) > maxc{rel(q,C),;} and

(ii) rel(q, top(Q)) > s(q,i+1[D]) do

8 Output top(Q), and delete it from Q;
9 ent < cent + 1; if ent = k then terminate.

3.2 Document Sorted-Scan Approach

Our second approach is outlined in Algorithm 2. Compared
to Algorithm 1, it uses an additional data structure, a pri-
ority queue Q, to keep cells (candidates) in the descending
order of relevance. Given a query q, initidly, Q is empty.
All rows in DB are scanned in the descending order of
relevance (line 1): rq,7r2,...,7n such that s(q,r;[D]) >
s(q, ri+1[D]). To obtain this ranked list, we simply compute
scores of al rows first and then construct a heap to keep
them in the descending order of scores; arow is poppedif it
needs to be scanned.! Recall ans(r;) is the set of ancestors
of r;, i.e, the set of cells containing document »[D]. When
r; is scanned, for each C' € ans(r;), we compute rel(q, C');
(line 4) as the average relevance score of documents
among r1[D], ..., r;|D] that are contained in C' (recall that
rel(q, C) is the average relevance score of all documents
that are contained in C). If C' contains NO document in
{rit1,...,rn}, we can conclude rel(q,C) = rel(q,C);
and insert C' into the priority queue Q (lines 5-6). For a
cell containing some rows that are aready scanned, we
have rel(q,C) < rel(q,C);, as rows are scanned in the
descending order of relevance; for a cell C' not touched yet
(containing no row that is scanned), rel(q, C') is bounded by
s(q, ri+1[D]), the maximum relevance score among the rest
individual documents. So for the cell with max relevance
score in Q, ¢’ = top(Q), once rel(q,C’) > rel(q, C);
for al cells C (line 7(i)), and rel(q,C’) > s(q,ri+1[D])
(line 7(ii)), C’ can be output and popped from Q (line 8).
Theorem 2: Algorithm 2 outputs the top-k cells with the
highest relevance scores and support > minsup in the non-
increasing order of rel(q, C).
Proof: We only need to prove that, in any iteration of
lines 3-9, if C = top(Q) is output, then rel(q, C’) is the

1. There are other top-k agorithms to obtain this ranked list, eg., [21].
But the cost of Algorithm 2 is dominated by the cost of ranking cells,
instead of ranking documents, so we just apply this simple method.

maximum among al cells that are not output yet.
For any cell C € Q, by the definition of Q, rel(q,C") >
rel(q, C). For any other cell C, we may have either

rel(q,C) <rel(q,C); or rel(q,C) < s(q,7i+1[D)).

So from line 7(i)-(ii), we have rel(q, C’) > rel(q,C). [
Implementation Issues. On line 4, rel(q,C); can be
efficiently computed from rel(q,C); (r; is the last row
aggregated into C). On line 5, if the number of documents
inacell C is precomputed, we can test whether C' contains
NO document in {r;;1,...,rn} by counting the number
of documents that are already aggregated into C'. On line 7,
maxc{rel(q, C);} can be efficiently fetched if rel(q, C);’s
are maintained in another priority queue.

Tie Breaker. Ties (for cells with the same relevance scores)
break arbitrarily in Algorithm 2. If for cells with the same
relevance scores, we want to output them in the descending
order of support, then we modify Algorithm 2 as follows.
First, the priority queue Q keeps cells (candidates) in the
descending order of relevance, and keeps cells with the
same relevance scores in the descending order of support.
Second, “>" should be changed into “>" online 7, so that,
when a cell is about to be output, all the cells (not-output-
yet) with the same relevance scores are in Q.

Theorem 3: Algorithm 2 uses O(N - (|q| +log N) + 2" -
N -log M) time and O(n - M) space, where N = |DB| is
the total number of rows, n is the dimensionality, and M
is the total number of non-empty cells.

Proof: In the worst case, it needs to scan all rows
with relevance score computed, in the descending order of
relevance, which takes O(N - (|q| +1og N)) time. Lines 4-
6 repeat at most O(2™ - N) times, and each iteration takes
O(log M) time since we need to main a priority queue Q
and another queue to maintain max c{rel(q, C);}. Lines 7-
9 aso repeat a most O(M) < O(2™ - N) times and
each iteration takes O(log M) time. So the time complexity
follows. The space complexity is the same as Algorithm 1,
as additional priority queues need linear space. O

The complexity of Algorithm 2 is worse than Algo-
rithm 1, but may terminate earlier before scanning all rows.

3.3 Handling Extended Keyword Queries

Algorithm 1 and 2 can be easily adapted to handle extended
keyword query @ = (u1,...,u, : q). With the dimension-
value constraints w1, . . ., u,, we actually restrict our atten-
tion to a subspace of the text cube. Lines 2-3 of Algorithm 1
are modified a bit: we update rel(q, C') only for the feasible
cells in ans(r). For example, if Q = (7,7,t1,% : q) over
the text cube of DB in Table 2 is given, then for row
r = (ml, pl,tl,sl), weonly update relevance scores of its
ancestors (ml,pl,t1,%), (x,pl,t1,%), (ml,*,t1,%), and
(*,%,t1,%) in lines 3-4. Similar modification can be aso
applied to lines 2-3 of Algorithm 2.

3.4 Deficiencies of Linear Scan Approaches

Algorithm 1 is efficient only when the number of dimen-
sions is small (from 2 to 4). Because, it scores al the non-

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

empty cells but the number of non-empty cells increases
exponentialy w.r.t. the dimensionality (see Section 2.4).
Algorithm 2 aims to improve Algorithm 1 by enabling
early-stop. However, once a row is scanned, all the cells
containing it are explored. There are totally 2™ cells con-
taining a document in a n-dim cube. So the numbers of
candidate cells and explored cells increase very quickly.
In the next section, we will introduce a more delicately-
designed top-k agorithm, search-space ordering, which
carries out cell-based search and explores as small number
of cellsin the cube as possible to find the top-k answers.

4 SEARCH-SPACE ORDERING APPROACH

Unlike the two algorithms in Section 3 which compute
the relevance score of a cell from documents/rows in the
database, the algorithms introduced in this section compute
the score from its children cells, in a dynamic-programming
manner. We introduce the basic bottom-up dynamic pro-
gramming algorithm in Section 4.1, followed by the design
and analysis of an more efficient approach, search-space
ordering. We start with simple keyword queries and discuss
how to extend our algorithm in Section 4.4.

4.1 Bottom-up Dynamic Programming

Consider a cell C” and all of its .A-children chd 4(C”’) for
some aggregated dimension A (C'[A] = but C[A] # *
for C' € chd 4(C")). Itisclear that the sets of documents ag-
gregated in different cellsin chd 4 (C”) are digoint and their
union is equal to C'[D], i.e, C'[D] = Ucechd 4 (o) CIP)-
From the definition of relevance (1), we have recursion:

. ZCEchdA(C’) rel(q, C)|C[D]|

rel(q,C’) = , 3
@)= T eanion 1] ®

where |C[D]| is the number of documentsin C[D].

Naive Dynamic Programming Algorithm

A naive dynamic programming agorithm that directly
utilizes (3) is as follows. We first compute the relevance
scores rel(q, C) for al n-dim (base) cells, as in (1). Then
we compute the relevance scores rel(q, C’) of (n — 1)-
dim cells, (n — 2)-dim cells, ..., and 0-dim cell, in the
decreasing order of dimensionality, using the recursion (3);
this is because for a d-dim cell C’, the right-hand side of
(3) involves only d + 1 cells. Finaly, after the relevance
scores of al cells are obtained, output the top-% relevant
ones with supports no less than the threshold minsup.

Bottom-up Aggregation:

From Partially-aggregated to Fully-aggregated

To compute rel(q,C’), a direct implementation of (3)
could be inefficient if min 4 [chd 4(C’)| = O(min4 |A|) is
large. We will introduce a bottom-up aggregation approach
whose complexity is independent of min 4 |.4], but only
dependent on n (the total number of dimensions). It is also
an important basis of our search-space ordering agorithm
which will be introduced in Section 4.3.

For each aggregated dimension A of acell C' (C'[A] =
x), we maintain a partial relevant score rel 4(q, C’) based
on the A-children that are already aggregated into C'’. Let
L 4(C") be the number of documents contained by the A-
children that are already aggregated into C’. A non-base
cell C” issaid to be fully-aggregated iff for some dimension
A, La(C") = |C'[D]| and rela(q,C") = rel(q,C");
otherwise, C’ is said to be partially-aggregated.

Initialy, al cells are partially-aggregated and rel(q, C')’s
are unknown for all cells; and we set rel 4(q, C') = oo and
L A(C) = 0 for each cell C' and each of its aggregated
dimension .A. We compute rel(q, C') for al base cells from
the database. After that, all base cells are fully-aggregated.

For each fully-aggregated cell C' and each of its non-
aggregated dimensions A (C[A] # *), we aggregate C' to
its A-parent C’ as follows (define oo x 0 = 0):
Aggregate(C, C"): C € chd4(C")

r_elA(q:C/)LA(C) +rel(q,C’)|C[D}| . (4
La(C") +|C[D]| ’

2: La(C") + La(C")+|C[D]; (5)

3: if La(C’) = |C'[D]| then rel(q, C") < rela(q,C’). (6)

1: rela(q,C") «

When L 4(C") = |C'[D]| = ZCechdA(C’) |C[D]|, i.e, dl
documents in C’[D] have been aggregated into C’ through
its A-children, from (3), we have rel(q, C’) = rel4(q, C")
obtained and thus C" becomes fully-aggregated. We repeat
this procedure until al cells are fully-aggregated. Note that
from the definition of “fully-aggregated”, we only need to
storerel 4(q, C’) and L 4(C") on one aggregated dimension
A (eg., the one with the smallest index) for each cell.

Algorithm 3 Bottom-up Dynamic Programming Algorithm
Input: keyword query q against D3, parameter k, minsup
1: Compute rel(q, C)’s for al non-empty base cells;
2. for d = n downto 1 do
3 for each non-empty d-dim cell C do
for each dimension A do
Let C’ be C’s A-parent;
Call Aggregate(C, C");
7. Output the top-£ relevant cells with support > minsup
(for cells with the same relevance scores, output them
in the descending order of support).

@ g k&

Algorithm 3 describes this approach. In each iteration of
line 2-6, al of non-empty d-dim cells are fully-aggregated,
because all of non-empty n-dim, (n —1)-dim, ..., (d+1)-
dim cells are scanned. We keep all non-empty cells in a
queue so that we do not need to touch any empty cell.
Note that a non-empty cell C' has C[D] # @ but possibly
rel(q, C') = 0. From the recursion (3) how and rel 4(q, C")
is updated in (4)-(5), we can prove Algorithm 3 is correct.

Example 4.1: We shows how rel(q, C’) is computed in
Algorithm 3. Suppose there are five documentsdy, ..., ds
with document scores s(q,d;) = 8, s(q,d2) = 4,
s(q,ds) =4, s(q,d4) =6, and s(q,ds) = 2. Also, suppose
C’ = (al, , *) has three B-children and three C-children,

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 4
B-children and C-children of C" = (al, x, *)

chds (C7) chdc(C7)
A[B | C D Wl || A B]C D rol
al | bl | * | {di,d2} | 6 ||al| * | cl| {di,d2} | 6
al [b2 | * | {ds,da} | 5 ||al| * | 2| {ds} Z
al | b3 | * | {ds} 2 |[al | * | 3| {di,ds} | 4

which are al fully-aggregated. Documentsin C"’s children
and cell relevance scores are shown in Table 4.

When C' = (al,bl, %) and (al, %, cl) are aggregated into
C’, using Aggregate(C, C’), wehave Lg(C") = Lc(C') =
2, and partial scores relg(q, C’) = relc(q, C’) = 6.

After B-child (al, b2,) is aggregated into C”’, we have
relg(q,C’") = (6 x 2+ 5 x 2)/4 = 5.5, and Lg(C’) = 4.

After C-child (al, *,c2) is aggregated into C’, we have
rela(q,C") = (6 x 2+4 x 1)/3 = 5.33, and L¢(C”) = 3.

Later when at least one of (al,b3,) and (al, *,c3) is
aggregated into C’, C” is fully-aggregated. But actually we
only need to keep either (relp, Lg) or (relc, Lc). O

Theorem 4: Algorithm 3 uses O(N -|q|+n- M) time and
O(n - M) space, where N = |DB|, M is the total number
of non-empty cells, and n is the number of dimensions.

Proof: Non-empty base cells are computed in O(NV -
|g]) time. All non-empty cells are kept in queue st. the
ordered access of each takes O(1) time. Lines 4-6 need
O(n) time. So we need O(n- M) time to computerel(q, C')
for all non-empty cells. We use Hoare's selection algorithm
to select the top-k from all non-empty cellsin O(M) time.

A simple implementation needs O(n- M) space: for each
cell wekeep rel 4(q, C') and L 4(C) for every dimension A.
But we actually only need to keep them on one aggregated
dimension (e.g., the one with the smallest index). O

In the rest of this paper, for each cell C we storerel 4(C)
and L 4(C) for only one dimension. So we will also write
rel4(C) asrel(C), if not otherwise specified.

4.2 Upper/Lower Bounds of Relevance Score

We first introduce a pair of upper/lower bounds of relevance
scores, which will be used to prune search space of our
agorithm in Section 4.3. The main idea is: the relevance
score of the union of two document sets lies between the
relevance scores of these two document sets.

Lemma 1. For any query q and any two digoint doc-
ument sets Dy, Do st. rel(q,Dy) < rel(q,D2), we have
rel(q, D) < rel(q,D; UD32) < rel(q, D2).

Proof: From the definition in Equation (1),

_ |D1| . rel(q, D1) + ‘DQ‘ . rel(q, Dg)
|D1] + |D2|

rel(q, D1 U D2)

Since rel(q, D1) < rel(q, D2),

|D1| + |D2|
rel(q,D; UDgy) < —— -rel(q, Ds) = rel(q, D2),
(a,D1 2) < IDy| + D2 (9, D2) (q,D2)
and similarly, rel(q, Dy U D2) > rel(q, Dy). O

Example 4.2: To verify Lemma 1, consider D; = {di,
do} and Do = {ds}. Suppose for some query q, we

have s(q,d1) = l,s(q,dg) = 3,3(q,d3) = 8. Then,
rel(q, D1) = 2, rel(q, D2) = 8, and rel(q, D; UD2) = 4. 0
Lemma 2: (Two-side bound property) For any non-base
cell C intext cube and any query q, there exist two children
Cy and Cy of C st. rel(q,Cy) < rel(q,C) < rel(q, Ca).
Proof: Consider .A-children of C: (i ccng,, (o) C' D]
= C[D], where C'[D]'s are digoint. So from Lemma 1, the
proof can be completed by induction on |chd 4(C)|. O

Remark. Lemmas 1 and 2 are still true for different docu-
ment scoring formulas s(q,d) and the weighted version of
rel(q,C) (i.e, rel(q,C) is a weighted average of s(q,d)
over al documents d in C[D], where the weight of a
document wy is fixed and positive).

4.3 Search-Space Ordering Algorithm

Our search-space ordering approach is based on the fol-
lowing idea. Although the search space is huge (especially
if the dimensionality is reasonably large, say, > 10), when
only the top-k answers are interesting to users, only a small
portion of the text cube is “closely” relevant to the given
query g. So, (i) we estimate the upper bound of relevance
scores in a subspace of the text cube, and (ii) we order and
prune subspaces so that we can follow a shortcut to the
top-k relevant cells with support > minsup.

4.3.1 Algorithm Framework

The main ideais. order and prune the search space of cells
using (the upper bound of) relevance scores.

Bottom-up Aggregation: Our agorithm worksin asimilar
manner as the bottom-up dynamic programming algorithm
(Algorithm 3). Relevance scores are computed from the
base cells (whose relevance scores can be computed with
the row-based inverted indexes efficiently) to higher levels.

Search-Space Ordering: But unlike line 3 in Algorithm 3
(where the next cell C to be aggregated to its parents
is selected arbitrarily), we pick the most relevant fully-
aggregated cell in each iteration and aggregate it to its
parents. This is because a highly-relevant cell is likely to
have highly-relevant children. Note that a fully-aggregated
cell needs to be aggregated to its parents at most once.

Search-Space Pruning: The relevance score of a fully-
aggregated cell is known. For a partially-aggregated cell,
we have the upper bound from Lemma 2. When a fully-
aggregated cell has its relevance score no lower than the
upper bound of relevance scores of all partially-aggregated
cells, it is output as one of the top-% (if support > minsup).

We will discuss the details of this algorithm and upper
bound estimation for relevance scores in Section 4.3.2.

4.3.2 Algorithm Description

Three structures are used in our algorithm: Initially, all base
cells are put into aggregation queue (Q »), and the base cells
with support no less than minsup are put into candidate
gueue (Qc), both maintained in the non-increasing order
of relevance scores. The partially-aggregated pool (P) is
empty. More cells will be inserted into Qa and Q¢ later. If

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 5
Base Cuboid of a 2-Dimensional Text Database
[M T P] CMD Jrelq,O) |
ml | pl dy 8
ml | p2 do 6
ml | p3 {d3, d7} 4
m2 | pl dy 8
m2 | p2 ds 6
m2 | p3 {de, dg} 4

an ancestor has the same relevance score as its descendant,
the ancestor has higher priority in these two queues.

o Aggregation Queue (Qa): In each iteration, the cell
C' with the highest score rel(q,C') in Qa is popped
out and aggregated into each of its parents C’ us-
ing Aggregate(C,C"), i.e, (4)-(6), with the partia
relevance score rel(q, C’) computed/updated (since
a highly-relevant cell likely has highly-relevant chil-
dren). After that, if C” is partialy-aggregated, it is put
into the partially-aggregated pool P if C’ is not in
Pa; if C’ becomes fully-aggregated, then: (i) C’ is
deleted from P, and inserted into Qa, and (ii) if its
support > minsup, C is inserted into Qc.

o Partially-aggregated Pool (P A): It maintains partially-
aggregated cells (and partial relevance scoresrel(q, -)),
each of which has at least one child aggregated into
the cell. Note that it is possible no child of acell C is
aggregated into C, and thus C' (till called partially-
aggregated cell) isnot in Pa.

» Candidate Queue (Qc): All fully-aggregated cells are
maintained in Q¢ if support > minsup. When acell in
Qc has a relevance score higher than the upper bound
of relevance scores of al partially-aggregated cells, it
can be output as one of the top-%£. We will prove such
an upper bound is: max{maximum partial relevance
score in P4, maximum relevance score in Qa}.

The framework of this algorithm is outlined in Algo-
rithm 4. Given a keyword query q, the relevance scores of
base cells can be computed using inverted indexes (line 1).
Initialy, Pa is empty, all base cells are inserted into Qa,
and the ones with support > minsup are inserted into Qc.
In each iteration of lines 3-14, the top cell C' in Qa is
popped (deleted from Qa) for aggregation (line 4). For
each partially-aggregated parent C’ of C, we insert it into
Pa if necessary (line 6); and we can compute/update the
partial relevance score rel(q, C') using Aggregate(C, C")
(line 7), asin (4)-(6). If the cell C” is fully-aggregated (for
some dimension A, al of its A-children have already been
aggregated into C’), we can compute its exact relevance
scorerel(q, C’), delete it from P4, and add it into Qa; it is
aso added into Q¢ if its support > minsup (lines 8-11). At
the end of each iteration (lines 12-14), the top cells in Q¢
can be output (also deleted from Qc) if their scores are no
less than the maximum partial relevance score in P and
the maximum relevance score in Qa (i.e, the upper bound
of relevance scores of partially-aggregated cells).

TABLE 6
Running Example

Initialization: All base cells are put into Qa. Two cells with support

> minsup are put into Qc. Pa is empty.

PA(Q) | @

Qa(0) | (M1,p1):8, (M2,pl):8, (M1,p2):6, (M2,p2):6, (Ml,p3):4,
(m2,p3):4

Qc(0) | (m1,p3):4, (m2,p3):4

15T jteration: Cell (m1,p1) is popped from Qa (0), and aggregated into
its two parents, (m1,*) and (*,pl) (inserted into Pa(1)). The partial
relevance scores of (m1,*) and (*,pl) are computed as 8.

Pa(d) | (m1*):8, (*,p1):8

Qa(D) | (Mm2,p1):8, (M1,p2):6, (M2,p2):6, (M1,p3):4, (M2,p3):4
Qc() | (m1,p3):4, (m2,p3):4

2nd jteration: (m2,pd) is popped from Qa (1), and aggregated into the
two parents, (m2,*) and (*,pl): (m2,*) isinserted into Pa(2) with the
partial relevance score computed as 8; (*,pl) are aready in Pa(1).
Then, (*,pl) is fully aggregated, since it has only two M-children,
(m1,p1) and (m2,p1). So (*,pl) is deleted from P, (1) and inserted
into Qa(2). It is aso inserted into Qc(2) for its support > minsup.
Finaly, the top cell in Qc(2), (*,pl), has relevance score no less
than the maximum partial relevance score in Pa(2) and the maximum
relevance score in Qa(2), so (*,pl) is output.

Pa(2) | (m17*):8, (m2,*):8

Qa(2) | (*,p1):8, (m1,p2):6, (M2,p2):6, (M1,p3):4, (M2,p3):4

Qc(2) | (*,p1):8, (m1,p3):4, (m2,b3):4

374 jteration: Cell (*,pl) is popped from Qa(2), and its parent (*,*)
is added into Pa(3).

Pa(3) | (m1*):8, (m2*):8, (*,*):8

Qa®) | (M1,p2):6, (M2,p2):6, (M1,p3):4, (M2,p3):4

Qc(3) | (m1,p3):4, (m2,p3):4

47 jteration: (m1,p2) is popped from Qa(3), and aggregated into
its two parents, (m1,*) and (*,p2). (m1,*) is aready in P5(3), and
its partial relevance score is updated as 7 in Pa(4), since we have
seen two children of (m1,*), (m1,pl) and (m1,p2), with score 8 and
6, respectively. (*,p2) is inserted into Pa(4) with partial score 6.
Pa(4) | (m2%):8, (*,*):8, (M1,*):7, (*,p2):6

Qa(4) | (m2,p2):6, (m1,p3):4, (M2,p3):4

Qc(4) | (m1,p3):4, (m2,p3):4

We give some intuitions on why the above upper bound is
valid. In our agorithm, aloop invariant is: for any partially-
aggregated cell C' (no matter whether it isin P a), the union
of Po and Qa forms a cut between C' and the base cells
in the cube lattice. So from the two-side bound property
(Lemma 2), the relevance score of C' is upper bounded by
the (partial) relevance score of adescendant cell in P AUQAa.
Formal proofs will be given in Section 4.3.3.

Example 4.3: This example shows the basic idea of our
algorithm, using a 2-dimensional text database. Table 5
shows the base cuboid of this database—each base cell may
contain more than one document. Consider akeyword query
q = {wl,w2} and minsup = 2. Suppose the relevance
score rel(q, C') (defined in Equations (1)-(2)) of each base
cell is computed as in the fourth column of Table 5.

Initialy, all base cells are put into Qa, and the ones with
support no less than minsup are put into Q¢, both in the
non-decreasing order of relevance scores. P 4 is empty.

We show how to maintain Qa, Qc, Pa in Table 6. Num-
ber in bracket in the first column is the number of iterations,
eg., Pa(2) means the status of P, at the end of the 274

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

Algorithm 4 Search-Space Ordering Algorithm
Qa and Qc: priority queues of cells (sorted in the non-
increasing order of relevance scores)
top(Q): the top (first) cell of a priority queue Q
Pa: the set of partially-aggregated cells
Input: keyword query q against DB, parameter k, minsup
1: Compute rel(q, C)’s for al non-empty base cells;
2. ent + 0, Qa « {al non-empty base cells},
Qc + {non-empty base cells with support > minsup};
3. while ent < k do
Let C bethetop cell in Qa, and delete C' from Qa;
for each partially-aggregated parent C € par(C) do
if C" ¢ Pa then insert C” into Pa;
Aggregate C' into C’ using Aggregate(C, C’):
Update partial relevance score rel(q, C');
8: if C” is fully-aggregated (all documentsin C'[D]
are aggregated into C"” on some dimension) then

N o gk

9: Compute rel(q, C’);
10: Delete C’ from Pp;
11: Insert C’ into Qa;

Insert C” into Qc if support |C’| > minsup;
122 whilerel(q, top(Qc)) > maxcrep, {rel(q, C')} and
rel(q, top(Qc)) > rel(q, top(Qa)) do
13: Output the top cell of Qc, and delete it from Qc;
14: cnt <+ ent + 1;

iteration; the number after each cell in the second column
is the relevance score (or partia relevance score in P p). O

Enlarging k£ at Running Time without Recomputation.

With £ unspecified, repeating the iteration of lines 3-15,
cells with support > minsup will be output in the non-
increasing order of relevance scores. Users can stop it at
any time when they feel the results are enough.

Tie Breaker. Similar to Algorithm 2, ties (for cells with the
same relevance scores) break arbitrarily in Algorithm 4. If
we want to rank cells with the same relevance scores in the
descending order of their support, Algorithm 4 is revised
as follows. First, the candidate queue Q¢ keeps cells in
the descending order of relevance, and keeps cells with the
same relevance scores in the descending order of support.
Second, “>" should be changed into “>" on line 12, so
that, when a cell is about to be output, al the cells (not-
output-yet) with the same relevance scores are in Qc.

Theorem 5: Algorithm 4 needs O(N - |q|+n - T -log T')
timeand O(n-T') space, where N = |DB], n is the number
of dimensions, and T is the number of cells explored by this
algorithm (i.e,, the ones used to be added into Q A, Qc, Pa).

Proof: Again, non-empty base cells are computed in
O(N - |q|) time. After a cell explored is fully-aggregated,
on lines 5-11, it is aggregated into its (at most n) parents
(using O(n) time), and one operation on Qa, Qc, Pa (using
O(logT) time) is invoked for each parent.

The space needed is O(n - T'). This is because, for each
cell explored, we keep its n-dim identifier and rel 4(q, C)
& L 4(C) for one dimension .A. And, a pointer to this cell
is kept in Qa, Qc, Pa using O(1) space. O

The total number of non-empty cells, M (recall Theo-
rem 4), is an upper bound of 7. However, T' is determined
by both data distribution in the database and the query q.
So we cannot get a preciser estimation of it beforehand. We
will report the actual values of T' in our experiments, and
show that Algorithm 4 explores a much smaller portion of
cells than other agorithms.

4.3.3 Correctness

We prove the correctness of Algorithm 4 in the following
part (s(-,-) not restricted to the form of Equation (2)).

Lemma 3 (Estimating Upper Bound of Relevance Scores):
For any query q, on line 12 of Algorithm 4, if
(@) rel(g,top(Qc)) > maxcrep, {rel(q,C’")} and
(b) rel(q, top(Qc)) > rel(q, top(Qa)),
then cell top(Qc¢) has a relevance score no less than the
scores of al partially-aggregated cells.

Proof: Let A = rel(q, top(Qc)). For the purpose of
contradiction, suppose there is a cell C'”' that is partially-
aggregated and the relevance score rel(q, C”) > A.

We focus on A-children of C'” for its selected aggregated
dimension A, st. rel(q, ") = rel 4(q, C").

Let P(C") denote the set of C""’s A-children that are
partially-aggregated, and F(C") denote the set of C""’s A-
children that are fully-aggregated but not aggregated into
C' yet. Recall L 4(C") isthe number of documents that are
already aggregated into C” from its A-children.

If La(C") =0, weknow that no child is aggregated into
C". Then, P(C") UF(C") covers dl of C"’s A-children.
Note rel(q, C”) > A. From Lemma 2, there exists C' €
P(C")UF(C") st. rel(q,C) > rel(q,C") > A.

If Lo(C") # 0, C"” € Pa. From condition (a) in the
lemma, rel(q,C”) < maxcrep, rel(q,C’) < A. Agan
noterel(q, C"") > A. From Lemma 1-2, there exists a child
C e P(C")UF(C") st. rel(q,C) > A.

For the selected children C' of C”, there are two cases:

(i) C € F(C"): We must have C € Qa, since otherwise,
C' is dready aggregated into C” when C' is popped
from Qa. Then, rel(q,top(Qa)) > rel(q,C) > A,
which contradicts with A > rel(q, top(Qa)).

(i) C € P(C"): C is partidly aggregated. Repeat the
above argument about C'”” for C' (or induction on the
number of aggregated dimensionsin C'”).

Since the text cube is finite, that means, if rel(q,C”) > A
for some C”, we will aways terminate with a descendant
C of ¢ with contradiction. So the proof is completed. [

The above proof holds if we choose rel(q,C") =
rel 4(q, C") for any aggregated dimension A. So if choos-
ing rel(q, C”) = minrel4(q,C"), our agorithm has a
tighter upper bound (it may terminate earlier but incurs
more space to store rel 4 for each dimension).

Theorem 6: Algorithm 4 outputs the top-% cells with the
highest relevance scores and support > minsup in the non-
increasing order of rel(q, C).

Proof: For any cell C with support > minsup, before
it is output, it is either partially-aggregated or in Q¢. From
Lemma 3, when the cell top(Qc) is output, its relevance

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 7
Laptop Review Database: Dimensions and Statistics
[Dimension | Description | Cardindity |

1. Laptop Brand brand of the laptop 20
2. Laptop Family | family of the laptop 26
3. Screen size of the screen 26
4. Memory size of the main memory 9

5. Disk size of the hard drive 28
6. CPU Brand brand of the processor 5

7. CPU Model model of the processor 148
8. CPU Speed speed of the processor 33
9. 0S pre-installed os 12
10. Color color of the laptop 10

score is no less than the relevance score of any partially-
aggregated cell. So, from the way that Q¢ is ordered (non-
increasing order of relevance scores), for any ent = k on
lines 13-14 of Algorithm 4, top(Qc) is the cell with the
top-k highest relevance score among all cells with support
> minsup; thus, top-k cells are output in the non-increasing
order of relevance scores. O]

4.4 Handling Extended Keyword Queries

We modify Algorithm 4 as follows to handle extended
keyword queries Q = (u1,u2,...,u, : q).
(i) On lines 1-2, instead of inserting base cells into Qa
and Qc¢, we insert the cells C’s with (8) C[A;] = *
if u; = % (dimension .4; must be aggregated), (b)
ClA;] = u; if u; € A; is a specific value, and (c)
ClA;] € A; is any specific value if u; =7. One scan
of inverted indexes of terms in q suffices to identify
these cells and insert them into Qa and Qc.
(i) On lines 5-14, we consider C’ € par(C), only if C’
is a feasible cell, which satisfies the constraint in Q.
Algorithm 4 is even faster when handling an extended
keyword query than when handling a simple query with
the same set of keywords, because more constraints on
dimensions actually reduce the size of search space.

5 EXPERIMENTAL STUDY
5.1 Datasets and Environment Setup

A real dataset of multidimensional text data is used in the
experiments. We crawled laptop reviews with multidimen-
sional attributes from Amazon.com, and then select 10 at-
tributes as the structural dimensions in our database (Table
7). Each review (document) together with its categorical
attributes (dimensions) forms a row in our database. We
have 13,930 reviews in sum, and each review has 73.4
keywords with stop words removed on average. The total
length of documents in this text database is 1,022,462.
Synthetic datasets are generated by adding randomly-
generated documents into the real dataset. To this end, we
estimate the overall distributions of terms, document length,
and attribute values for different dimensions. Five synthetic
datasets, DB, DBs,...,DB5 are used in Section 5.2 to
test the scalability of our agorithms w.r.t. the size of
text database. The numbers of rows are: |DB;| = 28K,

|DBs| = 56K, |DB3| = 84K, |DB4| = 112K, and
|DB5| = 140K. DB, isasubset of DB, fori =1,2,3,4.

All the experiments were conducted on a PC running
the Microsoft Windows XP SP2 Professional OS, with a
2.5 GHz Intel Core 2 Duo T9300 CPU, 4 GB of RAM,
and 150 GB hard drive. Our algorithms were implemented
in C/C++ and compiled on Microsoft Visual Studio 2008.

We use Okapi weighting (2) for s(q,d) in experiments.

5.2 Performance Study on Efficiency

We test our four algorithms, One-Scan (Algorithm 1),
Sorted-Scan (Algorithm 2), BU-DP (Algorithm 3) and SS
Ordering (Algorithm 4), to demonstrate their scalability
on both the real dataset (Iaptop reviews) and the synthetic
datasets. We report the time and memory used by these
four algorithms for finding top-k answers to given keyword
queries. Time is measured in terms of milliseconds (M Sec),
and memory is measured in terms of KBs. We aso report
the number of cells that are explored by these algorithms,
to demonstrate the pruning power of our agorithms.

We report only the running-time memory, i.e., the amount
of memory consumed by data structures for query process-
ing (excluding the inverted indexes). One-Scan and BU-DP
consume almost the same amount memory and explore the
same number of cells. So we only report One-Scan for
memory and the number of cells.

In the real dataset, we vary the number of dimensions
(Figure 1), the parameter of k (Figure 4), the number
of keywords |q| (Figure 5), and the minimum support
requirement minsup (Figure 6). Also, the five synthetic
datasets are used to test the scalability of these three
agorithms w.r.t. the sizes of databases (Figure 2).

All the results reported below are the averages for 20 typ-
ical keyword queries (with no dimension-value constraint)
for laptops. Each query has 4 keywords on average.

We omit the results of efficiency experiments for ex-
tended keyword queries, because as discussed in Sec-
tions 3.3 and 4.4, adding such constraints will not slow
down our agorithms. In fact, to handle an extended key-
word query @ = (u1,us,-..,u, : q) with m dimensions
A;’'sst. Q[A;] = u; =7 (dimension A; has no constraint),
it is equivaent for our agorithms to handle a simple
keyword query q in an m-dim text cube.

Preprocessing: Asdiscussed in Section 2.3, our agorithms
benefit from preprocessing (i.e., precomputing the support
of each cell and constructing inverted indexes). In our im-
plementation, it takes four and a half minutes to preprocess
the real dataset described above, which is nontrivial but
affordable since we only need to preprocess a dataset once.

Experiment |: Number of Dimensions (Figure 1) We
use the real dataset (with about 14K rows). Set £ = 10
and minsup = 1. The database is projected into the first n
dimensions, for n = 2,4, 6,8, 10 (refer to Table 7).

SS-Ordering is consistently at least 10 times faster than
the others, and consumes much less memory (except when
n = 2). BU-DP is the second fastest one when n < 6 but
becomes worst later on.

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

let+5

One-Scan -4 2000

Sorted-Scan -©-
le+4 1500
1000

BU-DP &
SS-Ordering > vl
1000 2
100} 500

N T

10 0
2 4 6 8 10 2 4 6 8 10

of Dimensions # of Dimensions

(a) Time (MSec) (b) Memory (KB)

One-Scan - A
Sorted-Scan ©-
SS-Ordering <

Fig. 1. Varying the Number of Dimensions

le+5

One-Scan -
Sorted-Scan ©-
BU-DP

SS-Ordering

le+6
le+5

le+4

@/@/@—,H

le+4 1000 W
1000

100 One-Scan -

100 fye N X Sorted-Scan -©-

10 10 SS-Ordering <

20K 50K 80K 110K 140K 20K 50K 80K 110K 140K
of Tuples (K) # of Tuples (K)
(a) Time (MSec) (b) Memory (KB)

Fig. 2. Varying the Size of Database |D5]|

Sorted-Scan has an improvement of 20% over One-
Scan for 10-dim cube, but is slower than One-Scan for
4-dim cube. This is because they have the same worst-case
complexity and Sorted-Scan needs to maintain additional
data structures; so sometimes when its pruning power is
not strong, it needs more time than One-Scan.

When n increases, the number of non-empty cells in-
creases exponentialy, and thus al algorithms use more time
and memory. SS-Ordering is less sensitive than the rest
three, because SS-Ordering only explores a small portion
of the cells, while One-Scan and BU-DP aways explore all
the non-empty cells. Sorted-Scan explores less cells than
One-Scan, but for the additional operation required, the
improvement over One-Scan on efficiency is not significant.

The experimental result of testing extended keyword
queries Q@ = (u1,usa,...,u, : q) with m no-constraint
dimensions A;'s (i.e. Q[A;] = u; =7?) is similar to the
above, when we vary m from 2 to 10.

Experiment |1: Size of Database (Figure 2) Synthetic
datasets DB+, ..., DB5 are used. These datasets have 10
dimensions and their sizes vary from 28K to 140K. Top-10
answers are output with minsup = 1. Sorted-Scan is aways
faster than One-Scan and BU-DP by 10%-40%. Again, SS-
Ordering is much faster and consumes less memory than
the other three for its power of search space pruning.

Experiment 111: Number of Cells Explored (Figure 3)
We report the number of cells explored by our agorithms
in Experiments I-11. SS-Ordering explores much less cells
than others thanks to its pruning techniques, especially for
datasets that have more dimensions or more tuples (that is
why it needs much less time than other algorithms). Both
of One-Scan and BU-DP (not in the figure) explore al the
non-empty cells which contain at least one keyword, and
Sorted-Scan explores a hit less than them but still much
more and SS-Ordering in most cases.

We will report the running-time memory consumed by

3e+6
One-Scan -4
le+5 ggngdasqan Q le+6 @/@w
-Oraering One-Scan -
le+4 3e+5 Sorted-Scan ©-
1000 1e+5 SS-Ordering <
100 3e+d
é le+4 M
10 3e+3
2 4 6 8 10 20K 50K 80K 110K 140K
of Dimensions # of Tuples (K)

(a) Varying # of Dimensions (b) Varying the Size of Database

Fig. 3. Number of Cells Explored

let+4

3000

One-Scan 4~
BE—E—E—a =3 2500 Sorted-Scan &
SS-Ordering <
1000 S Qne-scan = 2000
orted-Scan
BU-DP £ 1500
100 S$S-Ordering -X- 1000
500
10 0
1 20 40 60 80 100 1 20 40 60 80 100
Top-k Top-k
(8 Time (MSec) (b) Memory (KB)

Fig. 4. Varying the Parameter &

our algorithms for a fair comparison, since different algo-
rithms consume different amounts of memory per cell.

Experiment 1V: Parameter k (Figure 4) We use the rea
dataset with 10 dimensions and set minsup = 1. The time
and memory used in One-Scan and BU-DP nearly unchange
because they aways explore al non-empty cells in the
text cube. For Sorted-Scan, the time and memory nearly
unchange, because the early stop condition (lines 7-9 of
Algorithm 2) tends to output a batch of cells at certain time.
Again, SS-Ordering consumes much less time and memory
than others. Sorted-Scan has an improvement of 20%-40%
over One-Scan and BU-DP in terms of the running time.
It can be also noticed that SS-Ordering uses more time
and memory when £ increases, because when more answers
arerequired, more cells need to be explored in SS-Ordering.
However, the increment is not too much, because, SS-
Ordering agorithm follows a “short-cut” to the top-% cells,
by first aggregating highly-relevant cells into their parents.

Experiment V: Number of Keywords (Figure 5) We study
how the number of keywords |q| affects the performance.
We set k£ = 10 and minsup = 1, using the 10-dimensional
laptop review dataset. Results are reported in Figure 5. SS
Ordering is always faster and consumes less memory than
the other three, as in other experiments.

Note that the time and memory used by Sorted-Scan and
SS-Ordering vibrate irregularly. We explain this as follows.

When the number of keywords increases, there are two
factors which affect the performance of the four algorithms:
(i) a the beginning, more inverted indexes need to be
scanned to compute the relevance of rows/cells; (ii) the
variance of relevance scores of different cells could be
larger, so it is easier for Sorted-Scan to satisfy the early
stop condition, and for the SS-Ordering agorithm to reach
the highly-relevant cells (for it always seeks for a cell with
high relevance score to aggregate it into its parent).

One-Scan and BU-DP are only affected by (i), so its
running time and memory increase consistently as the num-

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

let+4

One-Scan -
& 3000 Sorted-Scan -©-
2500 SS-Ordering < A
1000 One-Scan -4 2000
Sorted-Scan -©-
100 ss-Orderng % 15004
-Ordering 1000
500
10 0
1 2 3 4 5 1 2 3 4 5
of Query Terms # of Query Terms
(a) Time (MSec) (b) Memory (KB)

Fig. 5. Varying the Number of Query Terms |q|

One-Scan 4~ 2000
Sorted-Scan -©-

BU-DP £ /
SS-Ordering < 1500
1000
1000

100 500 One-Scan -
— Sorted-Scan -©-
SS-Ordering <

10 0

le+6

le+4

1 8 16 24 32 1 8 16 24 32
Minimum Support Requirement Minimum Support Requirement
(a) Time (MSec) (b) Memory (KB)

Fig. 6. Varying Minimum Support Requirement minsup

ber of keywords increases. Sorted-Scan and SS-Ordering
are affected by both (i) and (ii), so there is not a strong
correlation between the efficiency of these two agorithms
and the number of keywords. This feature could be regarded
as an advantage of Sorted-Scan and SS-Ordering.

Experiment VI: Minimum Support Requirement (Fig-
ure 6) We vary the minimum support minsup from 1 to 32
in the 10-dimensional real dataset. AS minsup increases,
the performances of One-Scan and BU-DP do not change
much because they always search every cell (to compute
its relevance score and to check whether its support >
minsup). Sorted-Scan and SS-Ordering consume more time
and memory for larger minsup, because they will skip some
cells with low support, and thus explore more cells before
outputting & cells with support > minsup. But still, SS
Ordering outperforms others a lot even when minsup is
large, because it follows a shortcut to the relevant cells.
Data is sparse in the 10-dimensional text cube, so the
support 32 for a cell is aready very high.

Experiment VII: Skewness of Dimension Cardinalities
We modify values on the 10 dimensions of the original real
database to create another two synthetic databases skew
and even. skew is obtained by modifying the dimension
values in original s.t. five dimensions have cardinalities 3
and the other five have cardinalities 20. even has al dimen-
sion cardinalities equal to 5. Let k£ = 80 and minsup = 2.
Using the same set of queries, the average running time
(in MSex) is reported in Table 8. All the four algorithms
perform (a slightly) worse in original than in the other two
essentialy because it contains the most non-empty cells.
Skewness of dimension cardinalities does not play a very
important role in affecting the performance.

5.3 Case Study

In this section, we verify the effectiveness of our model
and algorithms by showing a few example queries and

TABLE 8
Varying Skewness of Dimension Cardinalities
One-Scan | Sorted-Scan | BU-DP | SS-Ordering
skew 2466 3467 4555 202
original 3623 3033 5422 212
even 2232 2902 3667 197

the meaningful retrieval results. Here, we use extended
keyword queries with dimension-value constraints.

Case Study |: Finding Stylish Laptops

We want to find the brands, families, and/or colors of
the most stylish laptops. One example query could be (?,
P, %, %, %, %, ok, %, %, 2 {“stylish”, “beautiful”, “fashion”}),
meaning that we only care about three dimensions (L aptop
Brand, Laptop Family, Color) thus requiring al other
dimensions to be aggregated. Some cells?, (dell, inspiron,
pink), (toshiba, *, red), (*, macbook, *), (apple, *, *), (sony,
vaio, red), and (sony, vaio, pink) have high relevance scores.
Also, more than half of the top-20 cells have bright colors,
eg. pink, white, red, indicating that customers usually
think laptops with bright colors are more stylish.

Case Study I1: Finding Unreliable Laptops

Then, we are interested in finding laptops that are easy to
crash, and we particularly care about the OS pre-installed
on those laptops and their memory sizes. So, we require
dimensions other than {Memory, OS} to be aggregated
(x), and include keywords {“crash”, “slow”, “reinstall”, “re-
store” } in the query. Among the top-20 cells, we found cells
(*, windows xp), (*, vista premium), and (*, vista home)
have higher ranks than (*, linux). Another interesting fact
is that the relevance score of “linux” is less sensitive w.r.t
the main memory size than the “vista’ series. For instance,
both cells (512MB, linux) and (1024MB, linux) have low
relevance scores, but (1024MB, vista premium) has much
higher relevance score than (3072MB, vista premium) does.
This observation could be helpful to potential buyers, since
they need to choose the memory size according to the
operating system type (e.g., vista needs large memory).

6 DiscussIiON
6.1 Handling Different Relevance Functions

Algorithm 4 (SS-Ordering) can be extended to handle
other relevance scoring formulas. Note that we only utilize
Lemmas 1-2 to prove the correctness of Algorithm 4 (asin
Section 4.3.3). So, generaly, Algorithm 4 can handle any
relevance scoring formula that can be computed level-by-
level (from (i 4 1)-dim cells to i-dim cells) and satisfies
the property in Lemma 1, i.e, rel(q,D1) < rel(q,D; UD>)
< rel(q, D2). One example of such relevance scores is the
weighted average relevance model (as discussed at the end
of Section 4.2). Another example is the min/max relevance

2. We use a compact representation of cells to save the space in this
section. As we care about three dimensions (A;, A2, As), acel C is
represented by (v1, ve, v3) iff C[A;] = v; fori =1,2,3, and C[A] = =
for any other dimension A # A;.

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

model (i.e, the relevance of a cell w.r.t. a query is the
min/max relevance of documents in this cell).

When the relevance scoring formula rel does not satisfy
the property in Lemma 1, how to efficiently answer the
top-k keyword query is till an open question.

6.2 About Support Requirement

As discussed in Section 1, the purpose of specifying the
support requirement minsup is to help users filter out
cellg/objects that are not “popular” enough (i.e.,, contain-
ing too few documents). However, when the user has
little knowledge about the database (e.g., the size of this
database), it is undesirable for her/him to provide such a
parameter. We discuss two directions to handle this issue.
One way to address this issue is to integrate the support
of a cell into its relevance score. But the resulting scoring
formula may not satisfy the property in Lemma 1, and thus
cannot be handled by Algorithm 4 (athough still can be
handled by less efficient Algorithm 1 and Algorithm 3).
Another way is more direct. Consider severa typical
support requirements: for example, “normal” (support >
minsup = x1), “somewhat popular” (support > minsup =
x2), “popular” (support > minsup = x3), and “very popu-
lar” (support > minsup = x4). Parameters 1 < ... < x4
are specified by the database administrator, eg., x; = 2°.
For each incoming query (without specifying minsup), the
system returns top-%£ answers for each of the four support
requirements (i.e., running Algorithm 4 once for each value
of minsup), so that the user can browse top-%£ cells in
different levels (in terms of supports) at the same time.

7 RELATED WORK

Keyword Search in RDBMs. Although based on different
applications and motivations, keyword search in text cubeis
related to keyword search in RDBMSs, which has attracted
a lot of attention recently [22], [23], [24]. Most previous
studies on keyword search in RDBMSs model the RDB as
a graph (tuplesitables as nodes, and foreign-key links as
edges) and focus on finding minimal connected tuple trees
that contain al the keywords. They can be categorized into
two types. The first type uses SQL to find the connected
trees[2], [7], [6], [10], [12], [13]. The second type material-
izes the RDB graph and proposes algorithms to enumerate
(top-k) subtrees in the graph [3], [4], [8], [14], [9].

Different from these two types of works, two recent stud-
ies [11] and [5] find single-center subgraphs from the RDB
graph, and multi-center induced subgraphs, respectively.
OLAP on Multidimensional Text Data. The text cube
model is firstly proposed in [1]. [1] mainly focuses on how
to partially materialize inverted indexes and term frequency
vectors in cells of text cube, and how to support OLAP
queries (not keyword query) efficiently.

The topic cube model is proposed in [25]. Different from
the text cube, the topic cube materializes the language
model of the aggregated document in each cell. Efficient
agorithms are proposed to compute this topic cube.

The techniques in [1] and [25] cannot be used directly
to support keyword search, because the information materi-
alized in text cube (term frequencies and inverted indexes)
and in topic cube (language model) is query-independent.

Faceted Search. Several faceted search systems have been
developed to help users navigate the search results if
some meta-data about the results are available ([26], [27],
[28], [29], [30], [31], [32], [33]). An initial faceted search
systems [26] only uses the number of results in different
facets to guide users. [30] introduces a model that allows
dynamic constraints to be applied on the facets. [29], [32]
build a decision tree with minimum height on the data so
that the efforts users spend in order to reach the relevant
tuples will be minimized.

Faceted search is different from our search problem on
both the goal and the methodology. Faceted search systems
aim to enhance the retrieval of individual documents or
tuples by providing users exploration guide, and need a
sequence of user inputs. With an orthogonal purpose, our
work aims to rank aggregated objects/cells in a cube using
only a one-time keyword query, i.e, the input is a set of
keywords, and the output is a ranked list of objects/cells.
For example, in Section 5.3, to find a stylish laptop using
keywords, our system directly tells the user which models
are commented to be stylish (e.g., (toshiba, *, red)), while
faceted search tells the user which dimension(s) she/he
should drill down to find relevant tuples/documents.

Keyword-based Search and OLAP in Data Cube. [34]
studies answering keyword queries on RDB using minimal
group-bys, which is the work most relevant to ours. For
a keyword query against a multidimensional text database,
it ams to find the minimal cells containing al (or some
of) the query terms in the aggregated text data. “Minimal”
here means there is no descendant of this cell containing
more query terms. But, it is unnecessary that documents
(cells) with more query terms are more relevant. And, [34]
does not score or rank the answers. So when the number
of returned answers is large (e.g., a thousand), it is difficult
for the user to browse al the answers.

Another relevant work is keyword-driven analytical pro-
cessing (KDAP) [35]. Motivated by a different scenario,
KDAP supports interactive data exploration using key-
words. Candidate subspaces are output to disambiguate the
keyword terms. Efficiency is not amajor concern in KDAP.

A keyword-driven OLAP system is proposed in [36],
[37]. It populates static and dynamic dimensions, allowing
for roll-up and drill-down operations based on the content
and the link-structure of the dynamically selected document
subset. [36] and [37] still focus on the ranking of rows in
the databases, instead of aggregated cells in our work.

Ranking Cube. Another related work is Ranking Cube
[38], which addresses top-k queries with multidimensional
selection using semi-materialization and semi-online com-
putation model. Different from our work, it does not support
keyword queries. More importantly, it does not aim to find
aggregations (cells) of rows. It can be applied for ranking
base cells or rows (initialization part of our agorithms),

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

which, however, is not the major computational bottleneck
in our problem of ranking cellsin al levels.

8 CONCLUSIONS AND FUTURE WORK

We have proposed and studied the problem of keyword-
based top-£ search in text cube (i.e, multidimensional text
data). Flexible query language and relevance scoring for-
mula are developed. Four efficient algorithms are designed
for this problem. Among them, the most efficient one,
search-space ordering approach, uses different search space
pruning techniques for finding the top-% relevant cells by
exploring only a small portion of the whole text cube (when
k is small). Extensive performance studies are conducted to
verify the efficiency and effectiveness of these approaches.

For future work, (i) it is interesting to compare the
effectiveness of different scoring formulas experimentally
in different real datasets; (ii) it is also interesting to design
efficient algorithms for different forms of relevance scoring
formula rel; and, (iii) while our approaches work in a
bottom-up manner (starting from rows or base cells), it is
interesting to study whether there is any efficient top-down
approach (e.g., starting from the O-dim cell).

ACKNOWLEDGMENTS

The work was supported in part by the NASA Aviation
Safety Program, Integrated Vehicle Health Management
Project by NASA grant NNXO8BAC35A, the U.S. Na
tional Science Foundation grant 1S-09-05215, an HP Re-
search grant, Microsoft research Women’s Scholarship, and
the Network Science Collaborative Technology Alliance
Program (NS-CTA/INARC) of U.S. Army Research Lab
(ARL) under the contract number W911NF-09-2-0053. Any
opinions, findings, and conclusions expressed here are those
of the authors and do not necessarily reflect the views of
the funding agencies. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

This paper is an extended version of [39]. We thank
the anonymous reviewers for their numerous insights and
suggestions that immensely improved the paper.

REFERENCES

[1] C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao, “Text cube:
Computing ir measures for multidimensional text database analysis,”
in Proc. |[EEE Int'l Conf. Data Mining (ICDM), 2008, pp. 905-910.

[2] S Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A system for
keyword-based search over relational databases,” in Proc. |IEEE Int’l
Conf. Data Eng. (ICDE), 2002, pp. 5-16.

[3] G.Bhaotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using banks,” in
Proc. IEEE Int'| Conf. Data Eng. (ICDE), 2002, pp. 431-440.

[4 B.Ding, J X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
top-k min-cost connected trees in databases,” in Proc. |IEEE Int'|
Conf. Data Eng. (ICDE), 2007, pp. 836-845.

[5] L.Qin, J X. Yu, L. Chang, and Y. Tao, “Querying communities in
relational databases,” in Proc. |EEE Int'| Conf. Data Eng. (ICDE),
2009, pp. 724-735.

[6] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style
keyword search over relational databases,” in Proc. Int'l Conf. Very
Large Data Bases (VLDB), 2003, pp. 850-861.

(7

(8l

[10]

(11]

(12]

[13]

[14]

[19]

[16]

[17]

(23]

[24]

[29]

[27]

(28]

[29]

(30]

(31]

V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in
relational databases,” in Proc. Int'l Conf. Very Large Data Bases
(VLDB), 2002, pp. 670-681.

V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desa,
and H. Karambelkar, “Bidirectional expansion for keyword search
on graph databases,” in Proc. Int'l Conf. Very Large Data Bases
(VLDB), 2005, pp. 505-516.

K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword proximity
search in complex data graphs,” in Proc. ACM SSGMOD, 2008, pp.
927-940.

H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: ranked keyword
searches on graphs,” in Proc. ACM SSGMOD, 2007, pp. 305-316.
G. Li, B. C. Ooai, J. Feng, J. Wang, and L. Zhou, “Ease: an effective
3-in-1 keyword search method for unstructured, semi-structured and
structured data,” in Proc. ACM SGMOD, 2008, pp. 903-914.

F. Liu, C. T. Yu, W. Meng, and A. Chowdhury, “Effective keyword
search in relational databases,” in Proc. ACM SSGMOD, 2006, pp.
563-574.

Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: top-k keyword query
inrelational databases,” in Proc. ACM SSGMOD, 2007, pp. 115-126.
B. Kimelfeld and Y. Sagiv, “Finding and approximating top-k an-
swers in keyword proximity search,” in Proc. ACM Symp. Principles
of Database Syst. (PODS), 2006, pp. 173-182.

——, “Efficient engines for keyword proximity search,” in Proc. Int’|
Workshop on the Web and Databases (WebDB), 2005, pp. 67-72.
——, “Efficiently enumerating results of keyword search,” in Proc.
Int’| Workshop on Database Programming Languages (DBPL), 2005,
pp. 58-73.

J. L. Elsas, J. Arguello, J. Callan, and J. G. Carbonell, “Retrieval
and feedback models for blog feed search,” in Proc. Int'l Conf. on
Research and Development in Information Retrieval (SGIR), 2008,
pp. 347-354.

S. E. Robertson, S. Walker, and M. Hancock-Beaulieu, “Okapi at
trec-7: Automatic ad hoc, filtering, vic and interactive” in Proc.
Text REtrieval Conf. (TREC), 1998, pp. 199-210.

A. Singhal, J. Choi, D. Hindle, D. Lewis, and F. Pereira, “At&t at
trec-7,” in Proc. Text REtrieval Conf. (TREC), 1998, pp. 239-252.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithm (2nd Edition). The MIT Press, 2001.

R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation agorithms
for middleware,” J. Comput. Syst. ci., vol. 66, no. 4, pp. 614656,
2003.

S. Chaudhuri, R. Ramakrishnan, and G. Weikum, “Integrating db
and ir technologies: What is the sound of one hand clapping?’ in
Proc. Conf. on Innovative Data Syst. Research (CIDR), 2005, pp.
1-12.

S. Amer-Yahia, P. Case, T. Rolleke, J. Shanmugasundaram, and
G. Weikum, “Report on the db/ir panel at sigmod 2005,” S GMOD
Record, vol. 34, no. 4, pp. 71-74, 2005.

G. Weikum, “Db&ir: both sides now,” in Proc. ACM SGMOD, 2007,
pp. 25-30.

D. Zhang, C. Zhai, and J. Han, “Topic cube: Topic modeling for
olap on multidimensional text databases,” in Proc. SAM Int'l Conf.
on Data Mining (SDM), 2009, pp. 1123-1134.

M. A. Hearst, A. Elliott, J. English, R. R. Sinha, K. Swearingen, and
K.-P. Yee, “Finding the flow in web site search,” Commun. ACM,
vol. 45, no. 9, pp. 4249, 2002.

V. Sinha and D. R. Karger, “Magnet: Supporting navigation in
semistructured data environments,” in Proc. ACM SIGMOD, 2005,
pp. 97-106.

D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. M. Lohman,
“Dynamic faceted search for discovery-driven analysis” in Proc.
Int'l Conf. on Information and Knowledge Management (CIKM),
2008, pp. 3-12.

S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. K. Moha-
nia, “Minimum-effort driven dynamic faceted search in structured
databases,” in Proc. Int'l Conf. on Information and Knowledge
Management (CIKM), 2008, pp. 13-22.

O. Ben-Yitzhak, N. Golbandi, N. Har'El, R. Lempel, A. Neumann,
S. Ofek-Koifman, D. Sheinwald, E. J. Shekita, B. Szngjder, and
S. Yogev, “Beyond basic faceted search,” in Proc. Int'l Conf. on
Web Search and Web Data Mining (WSDM), 2008, pp. 33-44.

J. Koren, Y. Z. 0001, and X. Liu, “Personalized interactive faceted
search,” in Proc. Int'l World Wde Web Conf. (WMAW), 2008, pp.
477-486.

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

[32] S. B. Roy, H. Wang, U. Nambiar, G. Das, and M. K. Mohania,
“Dynacet: Building dynamic faceted search systems over databases,”
in Proc. |IEEE Int'l Conf. Data Eng. (ICDE), 2009, pp. 1463-1466.
C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das, “Facetedpe-
dia: dynamic generation of query-dependent faceted interfaces for
wikipedia,” in Proc. Int'l World Wide Web Conf. (WAMWV), 2010, pp.
651-660.

B. Zhou and J. Pei, “Answering aggregate keyword queries on
relational databases using minimal group-bys,” in Proc. Int'l Conf.
Extending Database Technology (EDBT), 2009, pp. 108-119.

P. Wu, Y. Sismanis, and B. Reinwald, “Towards keyword-driven
analytica processing,” in Proc. ACM SSGMOD, 2007, pp. 617-628.
A. Simitsis, A. Baid, Y. Sismanis, and B. Reinwad, “Multidi-
mensional content exploration,” Proc. VLDB Endowment (PVLDB),
val. 1, no. 1, pp. 660-671, 2008.

A. Baid, A. Bamin, H. Hwang, E. Nijkamp, J. Rao, B. Reinwald,
A. Simitsis, Y. Sismanis, and F. van Ham, “Dbpubs: multidimen-
sional exploration of database publications,” Proc. VLDB Endowment
(PVLDB), vol. 1, no. 2, pp. 1456-1459, 2008.

D. Xin, J. Han, H. Cheng, and X. Li, “Answering top-k queries with
multi-dimensional selections: The ranking cube approach,” in Proc.
Int'l Conf. Very Large Data Bases (VLDB), 2006, pp. 463-475.

B. Ding, B. Zhao, C. X. Lin, J. Han, and C. Zhai, “Topcells:
Keyword-based search of top-k aggregated documents in text cube,”
in Proc. IEEE Int'l Conf. Data Eng. (ICDE), 2010, pp. 381-384.

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Bolin Ding received the BS degree in maths
and applied mathematics from Renmin Uni-
versity of China (2005), and the MPhil de-
gree in system engineering from the Chi-
nese University of Hong Kong (2007). He is
currently working toward the PhD degree in
the Department of Computer Science, Uni-
versity of lllinois at Urbana-Champaign. His
research interests include the mining and
i‘" analysis of structured data, efficient and ef-

fective searching and indexing, and the de-
sign of randomized algorithms and approximation algorithms with
applications in databases.

Bo Zhao received the BS degree in com-
puter science from Fudan University, Shang-
hai, in 2007. He is currently a PhD candi-
date in the Department of Computer Science,
University of lllinois at Urbana-Champaign.
His research interests include data mining,
text mining, information retrieval and social
networks.

Cindy Xide Lin received the BS degree
from Tsinghua University in 2007 and the
Master degree from University of lllinois at
Urbana-Champaign in 2009, both in com-
puter science. She is currently working to-
ward her PhD degree in the Department of
Computer Science, University of lllinois at
Urbana-Champaign. Her research interests
include data mining and information retrieval,
especially topics related to web mining and
social network. She has published more than
10 papers in international conferences, including SIGKDD, VLDB,
WWW, ICDE, ICDM, EMNLP, CIKM, PAKDD and CIDU.

Jiawei Han is a Professor of Computer Sci-
ence at the University of lllinois. He has
served on the program committees of the
major international conferences in the fields
of data mining and database systems, and
also served or is serving on the editorial
boards for Data Mining and Knowledge Dis-
covery, IEEE Transactions on Knowledge
and Data Engineering, Journal of Computer
Science and Technology, and Journal of
Intelligent Information Systems. He is the
founding Editor-in-Chief of ACM Transactions on Knowledge Discov-
ery from Data (TKDD). Jiawei has received IBM Faculty Awards,
HP Innovation Awards, ACM SIGKDD Innovation Award (2004),
IEEE Computer Society Technical Achievement Award (2005), and
IEEE W. Wallace McDowell Award (2009). He is a Fellow of ACM
and |IEEE. He is currently the Director of Information Network Aca-
demic Research Center (INARC) supported by the Network Science-
Collaborative Technology Alliance (NS-CTA) program of U.S. Army
Research Lab. His book "Data Mining: Concepts and Techniques”
(Morgan Kaufmann) has been used worldwide as a textbook.

Chengxiang Zhai is an Associate Profes-
sor of Computer Science at the University
of lllinois at Urbana-Champaign, where he
also holds a joint appointment at the Insti-
tute for Genomic Biology, Statistics, and the
Graduate School of Library and Information
Science. He received a Ph.D. in Computer
Science from Nanjing University in 1990, and
a Ph.D. in Language and Information Tech-
nologies from Carnegie Mellon University in
2002. He worked at Clairvoyance Corp. as
a Research Scientist and a Senior Research Scientist from 1997
to 2000. His research interests include information retrieval, text
mining, natural language processing, machine learning, and bioin-
formatics. He is an Associate Editor of ACM Transactions on Infor-
mation Systems, and Information Processing and Management, and
serves on the editorial board of Information Retrieval Journal. He is
a program co-chair of ACM CIKM 2004, NAACL HLT 2007, and ACM
SIGIR 2009. He is an ACM Distinguished Scientist, and received the
2004 Presidential Early Career Award for Scientists and Engineers
(PECASE), the ACM SIGIR 2004 Best Paper Award, an Alfred P.
Sloan Research Fellowship in 2008, and an IBM Faculty Award in
2009.

KEYWORD SEARCH ON STRUCTURED DATA: SPECIAL ISSUE OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Ashok Srivastava, Ph.D. is the Principal In-
vestigator for the Integrated Vehicle Health
Management research project at NASA. His
current research focuses on the development
of data mining algorithms for anomaly detec-
tion in massive data streams, kernel methods
in machine learning, and text mining algo-
rithms. Dr. Srivastava is also the leader of
the Intelligent Data Understanding group at
NASA Ames Research Center. The group
performs research and development of ad-
vanced machine learning and data mining algorithms in support of
NASA missions. He performs data mining research in a number
of areas in aviation safety and application domains such as earth
sciences to study global climate processes and astrophysics to help
characterize the large-scale structure of the universe. Dr. Srivastava
is the author of many research articles in data mining, machine
learning, and text mining, and has edited a book on Text Mining:
Classification, Clustering, and Applications (with Mehran Sahami,
2009). He is currently editing two more books: Advances in Machine
Learning and Data Mining for Astronomy (with Kamal Ali, Michael
Way, and Jeff Scargle) and Data Mining in Systems Health Man-
agement (with Jiawei Han). Dr. Srivastava has given seminars at
numerous international conferences. He has won numerous awards
including the IEEE Computer Society Technical Achievement Award
for "pioneering work in Intelligent Information Systems,” the NASA
Exceptional Achievement Medal for contributions to state-of-the-art
data mining and analysis, the NASA Distinguished Performance
Award, several NASA Group Achievement Awards, the IBM Golden
Circle Award, and the Department of Education Merit Fellowship.

Nikunj C. Oza received his B.S. in Mathe-
matics with Computer Science from the Mas-
sachusetts Institute of Technology (MIT) in
1994. He received his M.S. (in 1998) and
Ph.D. (in 2001) in Computer Science from the
University of California at Berkeley. He then
joined NASA Ames Research Center as are-
search scientist, a member of the Intelligent
Data Understanding group, and leads of a
team applying data mining to the problem of
health management for aerospace vehicles.
His 40+ research papers represent his research interests which
include machine learning (especially ensemble learning and online
learning), data mining, fault detection, combinations of machine
learning with other areas of Artificial Intelligence, and their appli-
cations to Aeronautics and Earth Science. He was the Co-chair
of the 2005 International Workshop on Multiple Classifier Systems
(MCS), program committee member of several MCS and SIAM Data
Mining (SDM) conferences, and serves as Associate Editor of the
journal Information Fusion (Elsevier). He also received the 2007
Arch T. Colwell Award in 2007 for co-authoring one of the five most
innovative technical papers selected out of over 3300 SAE technical
papers published in 2005.

17

