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his Week’s Forecast — Precipitation for CA !!

Forecast of Water Vapor
Transport on Wednesday
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Precipitation Total
Through Saturday

About 5 times the water flow of
the Mississippi River with about
20-30% converted to precipitation

NCEP Weather Prediction Center: http://www.hpc.ncep.noaa.gov/qpf/p120i.gif

Precipitation for
most of the State.

Expected
precipitation storm
totals: 3-5in

Another key
contribution to
drought relief —a
few inches at a
time.

Imagery generated by
Prof. Jason Cordeira
(Plymouth State
University) and Dr. Marty
Ralph (CW3E/UCSD)

unless otherwise noted.



Rivers in the Sky: Key Characteristics of
‘Atmospheric Rivers”

Satellite Measurements of
(Total Column) Water Vapor
Highlight Streams of Moisture
that Transport Water Vapor
Poleward & Westward:

“Atmospheric Rivers (ARs)”

WV (cm)

60N 1

Occur Globally
Impact West Coasts of Continents
Role in Weather, Water & Hazards

30N 1

EQ1

30S

60S

ARs transport as much as 5-10 times
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When Atmospheric Rivers Make Landfall
Extreme Precipitation Occurs Near Mountains

Impacts at Landfall

IMlustrated for California

*** / Heavy Rain

Coastal Range

Surface Evaporation

Flood Risk Sierra Nevada Range

Figure Courtesy of Duane Waliser & Marty Ralph

Most flooding / peak streamflow in U.S. coastal states is associated with ARs
(e.g. Ralph et al. 2006; Neimen et al. 2011)




Atmospheric Rivers are to the
West What Hurricane
Hazards are to the Southeast

Atmospheric Rivers account
for 30-409, of the freshwater
supply in the West
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AR forecasts are Critical for Water and Hazard Support
Timing, Location & Intensity of AR Landfall Needs to Improve
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For example: at
5-6 day lead time,
global weather
forecasts cannot
determine if AR will
hit L.A. or San
Francisco

JPL/NASA is teaming with DWR, UCSD, and other agencies/colleagues to carry
out airborne field campaigns, satellite studies, and analysis of weather/climate
models in a steadfast effort to improve our forecasts of atmospheric rivers.




The Unusually Snowy Winter of 2010/2011

Monthly AR Occurrence (# of days)
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No. of ARs in Dec.
2010 well above

normal range
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Figure Courtesy
B.Guan UCLA/JPL

Typical Year in CA
9 AR days occur over entire winter and
contribute ~40% total snow

2010/2011 Winter

* Largest total seasonal snow in
previous 14 Years (~*170% of normal)
e Largest # of AR days (twice normal)

Dec 18 to 22

* Five Straight Days of AR

e >13 feet of snow in the Sierras

 >6inches of rain in LA and >21 inches
in nearby foothills



Frequency (% days)
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Common Climate Modes Linked to
Atmospheric River Frequency

(a) —~AO (b)

(¢) —AO & —PNA
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“Arctic Oscillation”
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“Pacific North
American” (PNA)

both PNA and AO in

AR Frequency, NDJFM, WY1998-2011

Typical
frequency
of ARs
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Changes in AR frequency by AO & PNA

“negative” phase

Circulation anomaly when

500 mb
Geopotential
Height
Anomalies

«  When PNA & AO are in “negative” phases,
there is a doubling of the frequency of ARs.

 This “double negative” occurred in 2010-11.

« Since PNA&AO exhibit some long-lead
predictability, it may be possible to predict
high frequency AR periods in the future.

Guan et al. (2104)




‘ \ I O r e C a S t G a Forecasters say a El Nino weather
pattern may develop later this year

RN 7 DAY FORECAST
r. 0@e) ] LOS ANGELES METRO - ORANGE COUNTY
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Weather Forecasts ~ O (10 Days)

(Mid-Latitude Baroclinic Instability & Cyclone Lifetime)

What about forecast
information between
“‘weather’” and “climate”?

Newly, emerging opportunities
from the so-called “MJO”

EL NINO (the boy)
An irregular event
of abnormal

warming of Pacific

waters. Occurs at L
intervals of two 10 L
seven years

LA NINA (the girl)
A cold episode that usually
follows the warm EI Nino
phenomenon. The warm
equatorial ridge cools,
between the coasts of
South America and
Oceania

EL NINO AND LA NINA

Effects on climate

Temperature °C*  The warm currents
flowing towards the

0o e displace the

I g°  cooler currents to

. Oceania. Rainfall

2L 06" occurs over central

l 24 and eastern
Pacific, and

I 32°  droughtin

Indonesia and

Australia

Currents
contribute to form
awarm pool in

B Oceania, increase
rainfall in Asia and
Australia, lower
the temperature on
the American
coasts, and
increase aridity
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Seasonal Forecasts ~

O (100 Days)

(ENSO Phenomena & Local/Remote Circulation Impacts)



The dominant “subseasonal”
variation of the atmosphere —
provides unique long-lead
prediction potential!

Madden-Julian
Oscillation
(MJO)

Average MJO Life Cycle ~50 Days

PRCP_{GPCP)

MJO Life cycle composite
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Examples of Why Accurate
Multi-week Insight into MJO Forecasts are of
Monsoon Onsets & Breaks Exceptional Value
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The MJO & CA Winter Precipitation

1

Madden-Julian Oscillation (MJO) Life-Cycle
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Typical Impact of MJO on
California Precipitation
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Precipitation Rates ~2-4 mm/day (not shown);
MJO Modulation ~ +/- 1 mm/day (~25-50%)

Precipitation anomalies -5 to +5 mm/day

Typical CA Wintertime
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Lo NDJFM Mean)

MJO Modulation of Sierra-
Nevada Snow Pack
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* The MJO impart a strong
modulation of CA snowfall.

* Phase 3 -> + 30-50%
* Phase 8 -> - 30-50%
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ENSO Modulates Wintertime US Precipitation

Ocean Temperature -> Tropical Precipitation ->
Atmospheric Circulation -> Midlatitude Precipitation

ENSO cycle is many months El Nino Weather

- basis for Seasonal Forecasts ~
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MJO is a modulation of Tropical precipitation with a shorter cycle
of a few weeks - also effects mid-latitude weather & precipitation



Operational
MJO Forecasts

This has been a GREAT
challenge, but many
operational weather

prediction centers now
routinely produce useful
MJO predictions

JPL/NASA has teamed with the
global weather & climate
forecast communities to enable
and improve MJO forecasts.

Next Steps: Research to
Operation activities with DWR.

Climate & Weather Lin
El Nino/La Nina
MJO
Teleconnections
AO
NAO
PNA
AAO
Blocking
Storm Tracks

Climate Glossary

Outreach

About Us

& TR
National Weather Service

Climate Prediction Center

Home Site Map News

Organization

B Forecasts

B Methodology
B verification
B References

" Forecasts | (Gottschalck et al. BAMS, 2010

A key for the label headings in the figure box is provided below. Click on the headings for larger size
images and specific model-related information

Note: Move cursor over product name to display. Click for larger size and info.

Phase Plots of MJO Index Forecas'
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[RMM1, RMM2] 15-day forecast for 24Mar2008 to 07Apr2008

http://www.cpc.ncep.noaa.gov/products/precip/CWIlink/MJO/CLIVAR/clivar_wh.shtml




This Week’s Operational MJO Forecasts

MJO Index Forecast for 24Feb2014-10Mar2014 MJO Index Forecast for 24Feb2014-10Mar2014
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* Note : Only a few MJO events per year (~2-8).
~ + As with ENSO, MJO represents a “forecast of opportunity”




Summary

« Atmospheric Rivers are important to climate, weather, and water.

« Advancing our ability to forecast ARs for weather, water and hazard decision-
support requires additional airborne/satellite observations and improved
weather/climate models.

* NASA contributions: satellite characterizations of ARs, analysis of
precipitation/snow impacts, interactions between ARs and other dominant
weather/climate patterns, airborne field campaign support (e.g. NASA Global
Hawk, remote sensing instruments, science strategy/planning).

* The Madden-Julian Oscillation impacts global climate and weather, including
west coast/CA precipitation and snowpack.

* MJO forecasting has become operational and useful with lead-times of 3-6
weeks —> great progress in last 5-10 years.

 NASA contributions to date include satellite characterizations of the MJO,
climate/weather model evaluation, community leadership in enabling/
improving forecast models, etc.

* MJO & AR forecasts are poised to contribute to operational decision-
support by DWR and related weather, water and hazard agencies.



